JUDLR@! | Engineering

Simplicity

Junos® OS

Puppet for Junos OS Administration
Guide

Published
2022-04-29

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA

408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Junos® OS Puppet for Junos OS Administration Guide
Copyright © 2022 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | vi

1 Disclaimer

Puppet for Junos OS Disclaimer | 2

2 Puppet for Junos OS Overview

Understanding Puppet for Junos OS | 4

Puppet for Junos OS Supported Platforms | 7

3 Install Puppet for Junos OS

Install Puppet for Junos OS | 16

Setting Up the Puppet Master | 16

Configuring the Puppet Agent Node | 18

Installing the Puppet Agent Package | 19
Configuring the Junos OS User Account | 21
Configuring the Environment Settings | 21
Starting the Puppet Agent Process | 23

Using the Puppet Agent Docker Container | 24

Setting Up the Puppet Configuration File on the Puppet Master and Puppet Agents Running
Junos OS | 26

Configuring the Puppet for Junos OS Addressable Memory | 28

4 Manage Devices Running Junos OS

Puppet Manifests for Devices Running Junos OS | 31

Creating Puppet Manifests Using the netdev Resources | 31

Example: Creating Puppet Manifests for Devices Running Junos OS | 32
Requirements | 33

Overview | 33

Configuration | 34

Verification | 40

Troubleshooting | 41

Puppet netdev Resources | 42

Understanding the netdev_stdlib Puppet Resource Types | 42
netdev_device | 44

netdev_interface | 45

netdev_|2_interface | 49

netdev_lag | 52

netdev_vlan | 57

Puppet for Junos OS apply_group Defined Resource Type | 60

Understanding the Puppet for Junos OS apply_group Defined Resource Type | 60

Creating Embedded Ruby Templates to Use with the Puppet for Junos OS apply_group
Resource | 61

Declaring the Puppet for Junos OS apply_group Resource in a Manifest | 66

Example: Using the Puppet for Junos OS apply_group Resource to Configure Devices Running
Junos OS | 70

Requirements | 70
Overview | 70
Configuration | 71
Verification | 74

apply_group | 76
Monitor and Troubleshoot Puppet for Junos OS

Understanding Reporting for Puppet Agents Running Junos OS | 81

Troubleshoot Puppet for Junos OS Errors | 84

Troubleshooting Junos OS Configuration Exclusive Lock Errors | 84
Troubleshooting Junos OS Configuration Load Errors | 86
Troubleshooting Junos OS Configuration Commit Errors | 87
Troubleshooting Junos OS Configuration Errors | 88

Troubleshooting Agent Errors on an EX4300 Switch | 90

Troubleshoot Connection and Certificate Errors on Puppet Clients | 91

Puppet Client Request Certificate Error | 92

Puppet Client No Certificate Found Error | 93

About This Guide

Use this guide to automate the configuration management of devices running Junos OS with Puppet
software.

CHAPTER

Disclaimer

Puppet for Junos OS Disclaimer | 2

Puppet for Junos OS Disclaimer

Use of the Puppet for Junos OS software implies acceptance of the terms of this disclaimer, in addition
to any other licenses and terms required by Juniper Networks.

Juniper Networks is willing to make the Puppet for Junos OS software available to you only upon the
condition that you accept all of the terms contained in this disclaimer. Please read the terms and
conditions of this disclaimer carefully.

The Puppet for Junos OS software is provided as /s. Juniper Networks makes no warranties of any kind
whatsoever with respect to this software. All express or implied conditions, representations and
warranties, including any warranty of non-infringement or warranty of merchantability or fitness for a
particular purpose, are hereby disclaimed and excluded to the extent allowed by applicable law.

In no event will Juniper Networks be liable for any direct or indirect damages, including but not limited
to lost revenue, profit or data, or for direct, special, indirect, consequential, incidental or punitive
damages however caused and regardless of the theory of liability arising out of the use of or inability to
use the software, even if Juniper Networks has been advised of the possibility of such damages.

CHAPTER

Puppet for Junos OS Overview

Understanding Puppet for Junos OS | 4

Puppet for Junos OS Supported Platforms | 7

Understanding Puppet for Junos OS

IN THIS SECTION

Puppet for Junos OS Overview | 4

Benefits of Puppet and Puppet for Junos OS | 6

Puppet for Junos OS Overview

Puppet is configuration management software that is developed by Puppet. Puppet provides an efficient
and scalable solution for managing the configurations of large numbers of devices. System
administrators use Puppet to manage the configurations of physical and virtual servers and network
devices. Juniper Networks provides support for using Puppet to manage certain devices running the
Junos® operating system (Junos OS).

You typically deploy the Puppet software using a client-server arrangement, where the server, or Puppet
master, manages one or more agent nodes. The client daemon, or Puppet agent, runs on each of the
managed nodes. You create Puppet manifest files to describe your desired system configuration. The
Puppet master compiles the manifests into catalogs, and the Puppet agent periodically retrieves the
catalog and applies the necessary changes to the configuration.

Table 1 on page 4 describes the Puppet for Junos OS support components, and Figure 1 on page 5
illustrates the interaction of the components.

Table 1: Puppet for Junos OS Components

Component Description

jpuppet package Package or container that is installed on the agent node running
Junos OS and that contains the Puppet agent, the Ruby

or programming language, and support libraries.

juniper/puppet-agent Docker container Certain devices running Junos OS have the Puppet agent
integrated into the software image and do not require installing a
separate package.

https://puppet.com/

Table 1: Puppet for Junos OS Components (Continued))

Component Description

netdevops/netdev_stdlib Puppet module Module that contains generic Puppet type definitions. It does not
include any specific provider code.

juniper/netdev_stdlib_junos Puppet module = Module that contains the Junos OS-specific Puppet provider code
that implements the types defined in the netdevops/netdev_stdlib
module. You install this module on the Puppet master when
managing devices running Junos OS.

Ruby gem for NETCONF Gem that is installed on the Puppet master and is also bundled in

(Junos XML API) the jpuppet package.

Figure 1: Puppet Components for Managing Devices Running Junos OS

Device Running Junos OS

netdey |ssssssass Puppet netdev Module

Puppet Master
{server)

Puppet Agent
{client)

JUnos

ipuppet
Package

gO41409

The netdev_stdlib Puppet module provides Puppet resource types for configuring:

e Physical interfaces

e Layer 2 switch ports
e VLANSs
e Link aggregation groups

The Juniper Networks netdev_stdlib_junos module contains the Junos OS-specific Puppet provider
code that implements the resource types defined in the netdev_stdlib module. You install the
netdev_stdlib_junos module on the Puppet master to manage devices running Junos OS. Starting with
netdev_stdlib_junos module version 2.0.2, the module also provides the apply_group defined resource
type, which enables you to manage network resources that do not have type specifications in the
netdev_stdlib module.

When using Puppet to manage devices running Junos OS, the Puppet agent makes configuration
changes under exclusive lock and logs all commit operations with a Puppet catalog version for audit
tracking. Puppet report logs include a Junos OS source indicator for log entries specific to Junos OS
processing and tags associated with the operation or error, which enables easy report extraction.

For more information about Puppet, see the Puppet website at https:/puppet.com.

Benefits of Puppet and Puppet for Junos OS

e Provide an efficient and scalable software solution for managing the configurations of large numbers
of devices

e Enable automatic enforcement of the correct state of a device

¢ Increase operational efficiency by automating configuration management tasks and reducing the
manual configuration and management of devices

e Lower the risk and cost of service outages by reducing configuration errors

e Improve change management processes and provide transparency by logging commit operations with
a Puppet catalog version for audit tracking purposes

e Enable organizations that already use Puppet to manage server resources to extend this to network
devices

Install Puppet for Junos OS | 16
Puppet Manifests for Devices Running Junos OS | 31

https://puppet.com

‘ Puppet netdev Resources | 42

Puppet for Junos OS Supported Platforms

SUMMARY

Determine Puppet support by platform and release. Support for Puppet is removed as of the
indicated releases.

Puppet for Junos OS should only be used with the devices running the Junos OS release and jpuppet
package specified in Table 2 on page 7. You must download the jpuppet package from the download
folder that has the same release number as the Puppet for Junos OS release listed in the table. The
version of the netdev_stdlib_junos module installed on the Puppet master determines which devices the
Puppet master can control.

Certain devices do not require the jpuppet package, because the Puppet agent is either integrated into
the software image or it can be run as a Docker container. Devices running Junos OS Evolved that

support running the Puppet agent as a Docker container can use the Juniper Networks juniper/puppet-
agent Docker container as an alternative to using the Puppet agent that is integrated with the software

image.

Table 2: Puppet for Junos OS Supported Devices and Junos OS Releases

Device Junos OS Release Puppet jpuppet Package Support Compatible
o for agent = Versions of
Junos OS as netdev_stdlib_junos
Release Docker
container
EX4200 12.3R2ora 10 jpuppet- 100
EX4500 later 12.3 release ’ ex-1.0R1.ntgz h

EX4550

https://github.com/Juniper/jpuppet-download
https://github.com/Juniper/jpuppet-download
https://hub.docker.com/r/juniper/puppet-agent
https://hub.docker.com/r/juniper/puppet-agent

Table 2: Puppet for Junos OS Supported Devices and Junos OS Releases (Continued)

Device

EX4300
(standalone and
Virtual Chassis)

EX4400-24P
EX4400-24T
EX4400-48F
EX4400-48P
EX4400-48T

EX4650-48Y

EX9200-15C

MX5
MX10
MX40

MX80

Junos OS Release

14.1X53-D10or a
later 14.1X53 release

21.1R1 through 21.2

18.3R1 through 21.1

18.3R1 through 21.1
with enhanced
automation

20.3R1 through 21.1

12.3R2 or a
later 12.3 release

14.2R2 or a
later 14.2 release
15.1R1ora
later 15.1 release

12.3R2 or a
later 12.3 release

Puppet
for

Junos OS
Release

20

4.0

4.0

4.0

4.0

1.0

20

1.0

jpuppet Package

jpuppet-
powerpc-3.6.1_2.n.tgz

ipuppet-
x86-32-3.6.1_4.n.tgz

ipuppet-
x86-32-3.6.1_4.ntgz

ipuppet-
mx80-1.0R1.n.tgz

ipuppet-
powerpc-3.6.1_2.n.tgz

ipuppet-
mx80-1.0R1.n.tgz

Support
for agent
as
Docker
container

Compatible
Versions of
netdev_stdlib_junos

1.0.2
2.xy

2.xy

2.Xy

2.xy

2.1.0 or later

1.0.0

2.xy

1.0.0

Table 2: Puppet for Junos OS Supported Devices and Junos OS Releases (Continued)

Device

MX104

MX240
MX480
MX960

0OCX1100

Junos OS Release

14.2R2 or a
later 14.2 release
15.1R1ora
later 15.1 release

16.1R1 or later

14.2R2 or a
later 14.2 release
15.1R1ora
later 15.1 release

16.1R1 or later

12.3R2ora
later 12.3 release

14.2R2 or a
later 14.2 release

16.1R1 through 18.1

18.2R1 through 21.1

14.1X53-D20or a
later 14.1X53 release

Puppet
for

Junos OS
Release

20

3.0

20

3.0

1.0

20

3.0

jpuppet Package

ipuppet-
powerpc-3.6.1_2.n.tgz

ipuppet-
powerpc-3.6.1_3.n.tgz

ipuppet-
powerpc-3.6.1_2.n.tgz

jpuppet-
powerpc-3.6.1_3.n.tgz

ipuppet-
mx-1.0R1.n.tgz

ipuppet-
i386-3.6.1_2.n.tgz

jpuppet-
x86-32-3.6.1_3.n.tgz

ipuppet-
x86-32-3.6.1_4.ntgz

Compatible
Versions of
netdev_stdlib_junos

2.xy

2.xy

2.xy

1.0.0

2.Xy

2.xy

2.xy

1.0.2
2.xy

Table 2: Puppet for Junos OS Supported Devices and Junos OS Releases (Continued)

Device

Junos OS Release

PTX10001-36MR | 20.2R1 through 21.4

PTX10003-80C
PTX10003-160C

PTX10004

PTX10008

QFX3500
QFX3600

QFX5100
(standalone)

QFX5120-48T

19.1R1 through 19.4

20.1R1 through 21.4

20.3R1 through 21.4

20.1R1 through 21.4
(Junos OS Evolved
only)

12.3X50-D20 or a
later 12.3X50 release

13.2X51-D15 with
enhanced
automation

14.1X53-D10 with
enhanced
automation or a later
14.1X583 release with
enhanced
automation

20.2R1 through 21.1

Puppet
for

Junos OS
Release

1.0

1.0

20

4.0

jpuppet Package

ipuppet-
qfx-1.0R1.n.tgz

ipuppet-
x86-32-3.6.1_4.n.tgz

Support
for agent
as
Docker
container

Compatible
Versions of
netdev_stdlib_junos

2.1.0 or later

2.0.3 or later

2.1.0 or later

2.1.0 or later

2.1.0 or later

1.0.0

1.0.0

1.0.2
2.xy

2.1.0 or later

Table 2: Puppet for Junos OS Supported Devices and Junos OS Releases (Continued)

Device

QFX5120-48Y

QFX5120-48YM

QFX5220-32CD

QFX5220-128C

QFX10002
QFX10008

Junos OS Release

20.2R1 through 21.1
with enhanced
automation

18.3R1 through 21.1

18.3R1 through 21.1
with enhanced
automation

20.4R1 through 21.1

20.4R1 through 21.1
with enhanced
automation

19.1R2 through 19.4

20.1R1 through 21.4

19.2R1 through 19.4

20.1R1 through 21.4

15.1X53-D30ora
later 15.1X53-D3x
release

Puppet
for

Junos OS
Release

4.0

4.0

4.0

4.0

4.0

jpuppet Package

ipuppet-
x86-32-3.6.1_4.ntgz

ipuppet-
x86-32-3.6.1_4.n.tgz

ipuppet-
i386-3.6.1_2.n.tgz

Support
for agent
as
Docker
container

Compatible
Versions of
netdev_stdlib_junos

2.1.0 or later

2.Xy

2.1.0 or later

2.1.0 or later

2.0.3 or later

2.1.0 or later

2.0.3 or later

2.1.0 or later

2.xy

Table 2: Puppet for Junos OS Supported Devices and Junos OS Releases (Continued)

Device Junos OS Release Puppet jpuppet Package Support Compatible
o for agent = Versions of
Junos OS as netdev_stdlib_junos
Release Docker
container
15.1X53-D30 with
enhanced
automation or a later
. 2.0 - - 2.Xy
15.1X53 release with
enhanced
automation
15.1X53-Dé60 or a jpuppet-
2.0 - 2.xy
later 15.1X53 release x86-32-3.6.1_2.n.tgz
j et-
17.1R2 through 18.1 | 3.0 jpupp . 2xy
x86-32-3.6.1_3.n.tgz
17.1R2 through 18.1
with enhanced 3.0 - - 2.xy
automation
jpuppet-
18.2R1 through 21.1 | 4.0 jpupp . 2.xy
x86-32-3.6.1_4.n.tgz
18.2R1 through 21.1
with enhanced 4.0 - - 2.xy
automation
15.1X53-Dé60 or a jpuppet-

2.0 - 2.x
QFX10016 later 15.1X53 release x86-32-3.6.1_2.n.tgz Y

Table 2: Puppet for Junos OS Supported Devices and Junos OS Releases (Continued)

Device Junos OS Release Puppet jpuppet Package Support Compatible
o for agent = Versions of
Junos OS as netdev_stdlib_junos
Release Docker
container
15.1X53-D60 with
enhanced
automation or a later
. 2.0 - - 2.Xy
15.1X53 release with
enhanced
automation
ipuppet-
17.1R2 through 18.1 @ 3.0 - 2.x
u& Xx86-32-3.6.1_3.n.tgz i
17.1R2 through 18.1
with enhanced 3.0 - - 2.xy
automation
ipuppet-
18.2R1 through 21.1 4.0 - 2.x
g x86-32-3.6.1_4.ntgz Y
18.2R1 through 21.1
with enhanced 4.0 - - 2.xy

automation

Table 3 on page 13 describes the naming conventions for the jpuppet package in different Puppet for
Junos OS releases. In Release 1.0 of Puppet for Junos OS, jpuppet packages are specific to a particular
platform. In later releases, the packages are only specific to the device architecture.

Table 3: jpuppet Package Naming Conventions

Puppet for Junos OS Release Package Naming Convention

1.0 jpuppet-platform-mOR1.n.tgz

Table 3: jpuppet Package Naming Conventions (Continued)

Puppet for Junos OS Release Package Naming Convention
20 jpuppet-architecture- puppet_m.n.tgz
3.0
4.0
Where:

architecture Device architecture, for example: powerpc, i386, or x86-32.

m.n Puppet for Junos OS release, where m represents the major release number, and n
represents the minor release number.

platform Platform series, for example, mx.

puppet Puppet version, for example, 3.6.1.

CHAPTER

Install Puppet for Junos OS

Install Puppet for Junos OS | 16

Install Puppet for Junos OS

IN THIS SECTION

Setting Up the Puppet Master | 16

Configuring the Puppet Agent Node | 18

Setting Up the Puppet Configuration File on the Puppet Master and Puppet Agents Running Junos OS | 26

Configuring the Puppet for Junos OS Addressable Memory | 28

NOTE: Support for Puppet is removed as of the releases indicated in "Puppet for Junos OS

Supported Platforms" on page 7.

Setting Up the Puppet Master

Juniper Networks provides support for using Puppet to manage certain devices running Junos OS. The
Puppet master must be running Puppet open-source edition. Table 4 on page 16 outlines the version of
Puppet that must be installed on the Puppet master in order to manage the different Junos OS variants

and releases of Puppet for Junos OS on the client.

Table 4: Puppet Version Required on Puppet Master

Junos OS Variant Puppet for Junos OS Version
Junos OS or Junos OS with Enhanced Automation 1.0

2.0

3.0

4.0

Junos OS Evolved -

Puppet Version

Puppet 2.7.19 or later

Puppet 3.6.1 or later

Puppet 3.8.7 or later

The Puppet master must also have the following software installed in order to use Puppet to manage
devices running Junos OS:

e Juniper Networks NETCONF Ruby gem—Ruby gem that enables device management using the
NETCONF protocol.

¢ netdevops/netdev_stdlib Puppet module—includes the Puppet type definitions for the netdev
resources.

¢ juniper/netdev_stdlib_junos Puppet module—includes the Junos OS-specific code that implements
each of the types. When you install this module on the Puppet master, it automatically installs the
netdev_stdlib module.

To configure the Puppet master for use with devices running Junos OS:

1. Install Puppet open-source edition.
See the Puppet website for Puppet installation instructions.

2. Install the Juniper Networks NETCONF Ruby gem using the command appropriate for your Puppet
master installation.

root@server:~# gem install netconf

Fetching: netconf-0.2.5.gem (100%)

Successfully installed netconf-0.2.5

1 gem installed

Installing ri documentation for netconf-0.2.5...

Installing RDoc documentation for netconf-0.2.5...

3. Install or upgrade the Juniper Networks netdev_stdlib_junos Puppet module.

¢ To install the netdev_stdlib_junos module, execute the following command on the Puppet master,
and specify the module version required to manage your particular devices.

root@server:~# puppet module install juniper-netdev_stdlib_junos --version 2.0.6
Notice: Preparing to install into /etc/puppetlabs/code/environments/production/modules ...
Notice: Downloading from https://forgeapi.puppet.com ...
Notice: Installing -- do not interrupt ...
/etc/puppetlabs/code/environments/production/modules
|—-|- juniper-netdev_stdlib_junos (v2.0.6)

L netdevops-netdev_stdlib (v1.0.0)

https://puppet.com

e To upgrade the module when you have an older version installed, use the upgrade option.

root@server:~# puppet module upgrade juniper-netdev_stdlib_junos --version 2.0.6

4. Set up the puppet.conf file on the Puppet master.

For information about the configuration file, see "Setting Up the Puppet Configuration File on the
Puppet Master and Puppet Agents Running Junos OS" on page 26.

NOTE: The Puppet agent identifies with the Puppet master using SSL. By default, the puppet
master service does not sign client certificate requests. As a result, the Puppet master must
approve the agent certificate the first time an agent tries to connect to the master. After the
Puppet agent node is configured and running, approve the client certificate on the Puppet master
by using the command appropriate for your installation, for example, by using the puppet cert sign
host command or the puppetserver ca sign --certname Aost command.

Configuring the Puppet Agent Node

IN THIS SECTION

Installing the Puppet Agent Package | 19
Configuring the Junos OS User Account | 21
Configuring the Environment Settings | 21
Starting the Puppet Agent Process | 23

Using the Puppet Agent Docker Container | 24

Juniper Networks provides support for using Puppet to manage certain devices running Junos OS. The
setup on the agent node depends on the device and the Junos OS variant running on the device. Certain
devices require installing the Puppet agent package on the device, other devices have the Puppet agent
integrated into the software image, and some devices support running the Puppet agent as a Docker
container. To verify support for a specific platform and determine which setup to use for a given device
and Junos OS release, see "Puppet for Junos OS Supported Platforms" on page 7.

Table 5 on page 19 outlines the tasks required to configure the Puppet agent node for the different
types of setups. To configure the node, perform the steps in each linked task.

Table 5: Puppet Agent Setup

Puppet Agent Setup Tasks

Puppet agent must be installed using the jpuppet Perform the steps in the following tasks:

package
1. "Installing the Puppet Agent Package" on page 19
2. "Configuring the Junos OS User Account" on page 21
3. "Configuring the Environment Settings" on page 21
Puppet agent is integrated on the device Perform the steps in the following tasks:
1. "Configuring the Junos OS User Account" on page 21
2. "Configuring the Environment Settings" on page 21
3. "Starting the Puppet Agent Process" on page 23
Puppet agent will run as a Docker container Perform the steps in the following tasks:

1. "Configuring the Junos OS User Account" on page 21

2. "Using the Puppet Agent Docker Container" on page 24

NOTE: OCX1100 switches, QFX Series switches running Junos OS with Enhanced Automation,
and devices running Junos OS Evolved have the Puppet agent integrated with the software. If
the device also supports using the Puppet agent Docker container, you can elect to run the
Puppet agent as a Docker container instead of using the integrated Puppet agent.

Installing the Puppet Agent Package

To install the Puppet agent on devices running Junos OS that do not have the agent integrated into the
software:

1. Determine the jpuppet software package required for your platform and release at "Puppet for Junos
OS Supported Platforms" on page 7.

2. Access the download page at https:/github.com/Juniper/jpuppet-download.

3. Select the release folder corresponding to the Puppet for Junos OS release to download.

https://github.com/Juniper/jpuppet-download

4. Download to the /var/tmp/ directory on the agent device the jpuppet software package that is
specific to your platform or device microprocessor architecture, depending on the Puppet for Junos
OS release.

NOTE: Starting in Puppet for Junos OS Release 2.0, the jpuppet packages are specific to the
microprocessor architecture. In earlier releases, the packages are specific to a particular
platform. If you do not know the microprocessor architecture of your device, you can use the
UNIX shell command uname -a to determine it.

NOTE: We recommend that you install the jpuppet software package from the /var/tmp/
directory on your device to ensure the maximum amount of disk space and RAM for the
installation.

5. Configure the provider name, license type, and deployment scope associated with the application.

[edit]
user@host# set system extensions providers juniper license-type juniper deployment-scope
commercial

user@host# commit and-quit

6. Install the software package using the request system software add operational mode command, and
include the no-validate option.

user@host> request system software add /var/tmp/jpuppet-package-name no-validate

7. Verify that the installation is successful by issuing the show version command.

The list of installed software should include the jpuppet package. For example:

admin@jd> show version

Hostname: jd

Model: mx80-48t

Junos: 16.1R1.7

JUNOS Base 0S boot [16.1R1.7]

JUNOS Base 0S Software Suite [16.1R1.7]

JUNOS Crypto Software Suite [16.1R1.7]

JUNOS Packet Forwarding Engine Support (MX80) [16.1R1.7]
JUNOS Web Management [16.1R1.7]

JUNOS Online Documentation [16.1R1.7]

JUNOS Services Application Level Gateways [16.1R1.7]
JUNOS Services Jflow Container package [16.1R1.7]
JUNOS Services Stateful Firewall [16.1R1.7]

JUNOS Services NAT [16.1R1.7]

JUNOS Services RPM [16.1R1.7]

JUNOS Macsec Software Suite [16.1R1.7]

JUNOS Services Crypto [16.1R1.7]

JUNOS Services IPSec [16.1R1.7]

JUNOS py-base-powerpc [16.1R1.7]

JUNOS py-extensions-powerpc [16.1R1.7]

JUNOS Kernel Software Suite [16.1R1.7]

JUNOS Routing Software Suite [16.1R1.7]

JET app jpuppet [3.6.1_3.0]

NOTE: The package name might vary depending on the Puppet for Junos OS release.

Configuring the Junos OS User Account

You must configure a user account to run the Puppet agent. The user must have configure, control, and
view permissions. You can configure any username and authentication method for the account.

To configure a Junos OS user account to run the Puppet agent:

1. Configure the account username, login class, authentication method, and shell.

[edit]
user@host# set system login user puppet class class
user@host# set system login user puppet authentication authentication-options

user@host# set system login user puppet shell csh

2. Commit the configuration.

[edit]
user@host# commit and-quit

Configuring the Environment Settings

Set up the directory structure and environment settings on any agent nodes on which you installed the
Puppet agent package or that use the Puppet agent that is integrated with the software image.

To configure the necessary directory structure and environment settings to run the Puppet agent:

1. Log in to the agent node using the Puppet account username and password.

. If you are not already in the UNIX-level shell, enter the shell.

user@host> start shell

. Create a $HOME/.cshrc file, and include the content corresponding to the variant of Junos OS and
the release of Puppet for Junos OS installed on the device, which is outlined in Table 6 on page 22.

Table 6: Content in Puppet Agent .cshrc File

Junos OS Variant .cshrc content

Puppet for
Junos OS Release

Junos OS or 1.00r 2.0 setenv PATH ${PATH}:/opt/sdk/juniper/bin
Junos OS with

Enhanced Automation
3.00r4.0 setenv PATH ${PATH}:/opt/jet/juniper/bin

Junos OS Evolved - setenv PATH ${PATH}:/usr/bin

. Exit the device and log back in using the Puppet account username and password.

. If you are not already in the UNIX-level shell, enter the shell.

user@host> start shell

. Verify that the jpuppet code is installed and that the PATH variable is correct by running Facter,
which should display device-specific information. For example:

% facter

architecture => mx80-48t
domain => example.com
facterversion => 2.0.1
fgdn => jd.example.com
hardwareisa => powerpc
hardwaremodel => mx80-48t
hostname => jd

id => puppet

ipaddress => 198.51.100.1

kernel => JUNOS
<.more..>

7. Create the following $HOME/.puppet directory structure:

% mkdir -p $HOME/.puppet/var/run
% mkdir -p $HOME/.puppet/var/log

8. Place your puppet.conf file in the $HOME/.puppet directory.

For information about the configuration file, see "Setting Up the Puppet Configuration File on the
Puppet Master and Puppet Agents Running Junos OS" on page 26.

Starting the Puppet Agent Process

Devices that have the Puppet agent integrated into the software require that you start the Puppet agent
process on the device. Start the Puppet agent process after configuring the Junos OS user account and
environment settings.

To start the Puppet agent process:

1. Enter the shell.

user@host> start shell

2. Start the Puppet agent process by executing the puppet agent command, and include any desired
options.

e For example, on devices running Junos OS or Junos OS with Enhanced Automation:

% puppet agent --server servername --waitforcert 60 --test

e On devices running Junos OS Evolved, switch to the default VRF for management traffic, vrfO,
and then start the agent.

[vrf:none] user@host:~# switchvrf $$ vrfo

[vrf:vrf@] user@host:~# puppet agent --test

NOTE: You can choose to define the server settings in your Puppet configuration file instead
of specifying the settings as command options.

Using the Puppet Agent Docker Container

Certain devices running Junos OS Evolved support running the Puppet agent as a Docker container.
Docker is a software container platform that is used to package and run an application and its
dependencies in an isolated container. Juniper Networks provides a Docker image for the Puppet agent
on Docker Hub.

When you run the Puppet agent using the Docker container, the container:
e Shares the hostname and network namespace of the host

e Uses the host network to communicate with the Puppet server

o Authenticates to the host using key-based SSH authentication

To use the Puppet agent Docker container on supported devices:

1. Login as the root user.

N

Switch to the default VRF for management traffic, vrfO.

[vrf:none] root@host:~# switchvrf $$ vrfo

3. Start the Docker service, and bind it to the default VRF for management traffic, vrfO.

[vrf:vrf@] root@host:~# systemctl start docker@vrf@

4. Set the DOCKER_HOST environment variable.

Lvrf:vrf@] root@host:~# export DOCKER_HOST=unix:///run/docker-vrf0.sock

5. Start the Puppet agent Docker container as follows, and set the NETCONF_USER to the Junos OS user
account that was set up to run the agent.

Lvrf:vrf@] root@host:~# docker run -d -e PATH="/usr/local/bundle/bin:$PATH" -e
NETCONF_USER=puppet --network=host --name=puppet-agent juniper/puppet-agent:latest

6. Generate the SSH key pair that will be used to authenticate the container to the host.

[vrf:vrf@] root@host:~# docker exec -it puppet-agent ssh-keygen -t rsa -N "" -f /root/.ssh/
id_rsa
Generating public/private rsa key pair.

Created directory '/root/.ssh'.

https://hub.docker.com/

Your identification has been saved in /root/.ssh/id_rsa.
Your public key has been saved in /root/.ssh/id_rsa.pub.
The key fingerprint is:
2a:69:77:00:47:b0:c4:8f:90:39:f7:0d:04:61:ca:d1 root@host
The key's randomart image is:

+---[RSA 2048]----+

7. Copy the public key to the host, and add it to the root user’s authorized_keys file.

[vrf:vrf@] root@host:~# docker cp puppet-agent:/root/.ssh/id_rsa.pub .
[vrf:vrf@] root@host:~# cat id_rsa.pub >> .ssh/authorized_keys

8. Verify the connection from the container to the host.

[vrf:vrf@] root@host:~# docker exec -it puppet-agent ssh puppet@localhost

The authenticity of host 'localhost (127.0.0.1)' can't be established.

ECDSA key fingerprint is 3c:3c:ed:5c:ce:ee:34:09:79:22:d3:cd:af:d0:68:4a.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'localhost' (ECDSA) to the list of known hosts.

--- JUNOS 20.1-20200115.0-EVO Linux (none) 4.8.28-WR2.2.1_standard #1 SMP PREEMPT Thu Jun
13 00:19:16 PDT 2019 x86_64 x86_64 x86_64 GNU/Linux

[vrf:none] puppet@host:~#

9. Place your puppet.conf file in the container’s /etc/puppet directory.

[vrf:vrf@] root@host:~# docker cp /var/tmp/puppet.conf puppet-agent:/etc/puppet

NOTE: For information about the configuration file, see "Setting Up the Puppet
Configuration File on the Puppet Master and Puppet Agents Running Junos OS" on page
26.

10. Start the Puppet agent.

[vrf:vrf@] root@host:~# docker exec -it puppet-agent puppet agent -t

11. On the Puppet master, accept the agent’s keys using the command appropriate for your installation.

root@server:~# puppet cert sign host.example.com

Setting Up the Puppet Configuration File on the Puppet Master and
Puppet Agents Running Junos OS

The Puppet configuration file, puppet.conf, defines the settings for the Puppet master and agent nodes.
It is an INI-formatted file with code blocks that contain indented setting = value statements. The main
code blocks are:

o [master]—settings for the Puppet master.
e [agent]—settings for the agent node.

o [main]—global settings that are used by all commands and services. The settings in the [master] and
[agent] blocks override those in [main].

On the Puppet master, the configuration file resides at $confdir/puppet.conf. On agent nodes running
Junos OS, the location depends on your setup. Table 7 on page 26 outlines the location where the
Puppet configuration file should reside for a given setup on devices running Junos OS.

Table 7: Puppet Configuration File Location

Puppet agent setup puppet.conf location

Puppet agent is installed using the jpuppet = $HOME/.puppet directory for the Junos OS user account set up to
package run the Puppet agent

Puppet agent is integrated on the device $HOME/.puppet directory for the Junos OS user account set up to
run the Puppet agent

Puppet agent is running as a Docker /etc/puppet directory within the container
container

Creating environment-specific Puppet configuration files is beyond the scope of this document.
However, when using Puppet to manage devices running Junos OS, the Puppet master and agent node
puppet.conf files must contain the following statement within the [main] configuration block:

[main]

pluginsync = true

In addition, client devices running Junos OS Evolved must include the certname statement in the
puppet.conf file and specify the node’s certificate name. The Puppet master uses the certificate name,
which can be a hostname, an IP address, or any user-defined name in lowercase characters, to identify
the client.

[main]
certname = puppet-client

pluginsync = true

The following example shows a sample puppet.conf file for an agent node running Junos OS:
[main]

libdir = $vardir/lib
logdir = $vardir/log/puppet

rundir = $vardir/run/puppet

$vardir/ssl
moduledir = $libdir
factpath = $libdir/facter

pluginsync = true

ssldir

[agent]
server = puppetmaster.example.com
classfile = $vardir/classes. txt

localconfig = $vardir/localconfig

The following example shows a sample puppet.conf file for an agent node running Junos OS Evolved:

[main]
libdir = $vardir/lib
logdir = $vardir/log/puppet

rundir = $vardir/run/puppet
ssldir = $vardir/ssl
moduledir = $libdir

factpath = $libdir/facter
certname = agent@1.example.com

pluginsync = true

[agent]
server = puppetmaster.example.com
classfile = $vardir/classes.txt
localconfig = $vardir/localconfig

For more information about Puppet configuration files, see the Puppet website at https:/puppet.com/.

Configuring the Puppet for Junos OS Addressable Memory

On devices running Junos OS, the amount of memory available to Puppet is 64 MB by default. You can
expand the usable memory to the system maximum values as defined in Table 8 on page 28.

Table 8: Puppet Agent Execution Environment Memory Limits

Device Upper Memory Limit
EX4200, EX4500, EX4550 128 MB

EX4300 64 MB

MX5, MX10, MX40, MX80 64 MB

MX104 64 MB

MX240, MX480, MX960 2048 MB

0OCX1100 64 MB

QFX3500, QFX3600 1024 MB

QFX5100 64 MB

https://puppet.com/

Table 8: Puppet Agent Execution Environment Memory Limits (Continued))

Device Upper Memory Limit

QFX10002, QFX10008, QFX10016 1024 MB

To expand the amount of memory available to the Puppet agent execution environment, including the
Puppet agent and Facter processes:

1. Log in to the Puppet agent using the Puppet user account username and password.

2. In the Puppet user $HOME/.cshrc file, add the limit data memory command to the file. For example:

limit data 128M

Release History Table

Release = Description

2.0 Starting in Puppet for Junos OS Release 2.0, the jpuppet packages are specific to the microprocessor
architecture. In earlier releases, the packages are specific to a particular platform.

Understanding Puppet for Junos OS | 4
Puppet for Junos OS Supported Platforms | 7

Troubleshoot Connection and Certificate Errors on Puppet Clients | 91

CHAPTER

Manage Devices Running Junos OS

Puppet Manifests for Devices Running Junos OS | 31
Puppet netdev Resources | 42

Puppet for Junos OS apply_group Defined Resource Type | 60

Puppet Manifests for Devices Running Junos OS

IN THIS SECTION

Creating Puppet Manifests Using the netdev Resources | 31

Example: Creating Puppet Manifests for Devices Running Junos OS | 32

Creating Puppet Manifests Using the netdev Resources

Puppet manifests are files written in the Puppet language that describe your desired system
configuration. The Puppet master compiles the manifests into catalogs. The agent nodes periodically
download the catalogs and make the required changes so that the resulting system configuration
matches the desired configuration.

Puppet manifest files are identified by the .pp extension. In the manifest, you use the Puppet language
to describe the resources to manage on each agent node.

The netdev_stdlib module defines resource types that model properties for various network resources.
The module includes resource definitions for the network device, physical interfaces, Layer 2 switching
services, VLANSs, and link aggregation groups (LAGs). For a list of available resource types, see "Puppet
netdev Resources" on page 42.

The Juniper Networks netdev_stdlib_junos module, which you install on the Puppet master when
managing devices running Junos OS, contains the Junos OS-specific Puppet provider code that
implements the resource types defined in the netdev_stdlib module. Starting in netdev_stdlib_junos
module version 2.0.2, the module also provides the apply_group defined resource type, which enables you
to manage network resources that do not have type specifications in the netdev_stdlib module. For
more information, see "Puppet for Junos OS apply_group Defined Resource Type" on page 60.

The following sample Puppet manifest is for a switch with the hostname jd.example.com. The manifest
defines three VLANSs, Pink, Green, and Red, with VLAN IDs 105, 101, and 103, respectively. The
manifest defines that the ge-0/0/20 trunk interface accept tagged packets for both Pink and Green
VLANSs. By default, the ge-0/0/19 interface will be configured as an access port, which accepts untagged
packets. The Red VLAN is the native VLAN for both ge-0/0/19 and ge-0/0/20.

node "jd.example.com" {

netdev_device { $hostname: }

netdev_vlan { "Pink":
vlan_id => 105,
description => "This is a pink vlan",

netdev_vlan { "Green":
vlan_id => 101,

netdev_vlan { "Red":
vlan_id => 103,
description => "This is the native vlan",

netdev_12_interface { 'ge-0/0/19":
untagged_vlan => Red,

netdev_12_interface { 'ge-0/0/20":
description => "connected to R1-central",
untagged_vlan => Red,
tagged_vlans => [Green, Pink],

Example: Creating Puppet Manifests for Devices Running Junos OS

IN THIS SECTION

Requirements | 33
Overview | 33
Configuration | 34
Verification | 40

Troubleshooting | 41

This example shows how to create a sample Puppet manifest to manage VLANs and Layer 2 interfaces
on a Puppet agent node running Junos OS. The manifest takes advantage of class definitions and
variables in the Puppet language to create a more flexible and scalable manifest file.

Requirements

e EX Series switch running Junos OS Release 12.3R2 or later 12.3 release with the jpuppet software
package installed and a Junos OS user account for Puppet.

e Puppet master with the Juniper Networks NETCONF Ruby gem and juniper/netdev_stdlib_junos
Puppet module installed.

Overview

In this example, you create a Puppet manifest to manage VLANs and Layer 2 interfaces on switches
running Junos OS that are in the “database” pod. The netdev_stdlib module defines the netdev_device,
netdev_vlan, and netdev_12_interface resource types that are used in this example to model the connection
properties, VLANs, and Layer 2 interfaces on devices running Junos OS.

The Puppet class definition, database_switch, contains the settings for switches that are members of the
“database” pod. Within the class definition, you must define a netdev_device resource that models the
connection properties of the target switch. The netdev_device argument is the $hostname variable, which is
provided by Facter. Within the class definition, you also create the netdev_vlan and netdev_12_interface
resources for the switches.

To create the necessary resources, this example uses the Puppet function create_resources, which
converts a hash into a set of resources of the specified type. The function has two mandatory
arguments, the resource type and a hash table that describes the resource titles and parameters. An
optional third argument contains a hash table of default parameters that are applied to each new
resource. If you specify the same parameter in both hash arguments, the parameter value in the
mandatory argument overrides the default value in the optional argument.

In this example, you construct the variables $vlans, $db_ports, and $db_port_settings, which contain hashes
that describe the VLAN and Layer 2 interface resources on the agent node. The hash values must be
attributes that are defined in the netdev module for that resource type. You use the hashes as
arguments to the create_resources Puppet function to create the resources that are added to the catalog.

The $vlans variable is a hash defining five VLAN resources spanning VLAN IDs in the range 100 through
104. Each hash entry defines the resource title (VLAN name) as the hash key and the resource attributes
(vlan_id and description) as the hash values. For example:

$vlans = {
'Blue’ => { vlan_id => 100, description => "This is a Blue VLAN, just updated" },

The $db_ports variable is a hash defining which switch interfaces will be managed, and the
$db_port_settings variable defines the default settings for these ports. The default settings configure the

interface as a trunk interface that accepts tagged packets from the Blue, Green, and Yellow VLANSs with
the Red VLAN as the native VLAN.

$db_ports = {
"ge-0/0/0" => { description => "${db_port_desc} ge@" },

$db_port_settings = {
untagged_vlan => Red,
tagged_vlans => [Blue, Green, Yellow]

After you construct the hashes that define the resources, you use the create_resources function to create
the resources. You create the VLAN resources by using the create_resources Puppet function with the
netdev_vlan resource type and the $vlan hash as arguments. You create the Layer 2 interface resources by
using the create_resources Puppet function with the netdev_12_interface resource type and the $db_ports

hash as arguments. Additionally, include the $db_port_settings hash as the optional third argument
containing the default settings for those ports.

Configuration

IN THIS SECTION

Step-by-Step Procedure | 34
Results | 36

Step-by-Step Procedure

To create a sample Puppet manifest to manage VLANSs and Layer 2 interfaces on a Puppet agent node
running Junos OS:

1. Create a file named database_switch.pp.

2. Define the VLANSs that the Puppet agent will create on the agent nodes running Junos OS.

Define a list of VLANS to create
$vlans = {

'Blue’ => { vlan_id => 100, description => "This is a Blue VLAN, just updated" },
'Green' => { vlan_id => 101, description => "This is a Green VLAN" },
'"Purple' => { vlan_id => 102, description => "This is a Purple VLAN" },
'Red’ => { vlan_id => 103, description => "This is a Red VLAN" },

a

'Yellow' => { vlan_id => 104, description => "This is a Yellow VLAN" }

3. Create the code block for the database_switch class, which will contain the settings for switches in the
“database” pod.

Define a class for all Switches in the 'database' pod
##H Start class definition

class database_switch {

3
End class definition

4. Within the database_switch class definition, define the netdev_device resource for the switch.

netdev_device { $hostname: }

5. Within the database_switch class definition, create the VLAN resources by using the create_resources
Puppet function with the netdev_vlan resource type and the $vlans hash as arguments.

Create all the VLANs on the switch

create_resources(netdev_vlan, $vlans)

6. Within the database_switch class definition, define the Layer 2 interfaces and port settings on the
member switches.

Set up ports to use a selected list of VLANS
$db_port_desc = "This is for database"

$db_ports = {

"ge-0/0/0" => { description => "${db_port_desc} ge0" },
"ge-0/0/1" => { description => "${db_port_desc} gel" },
"ge-0/0/2" => { description => 'this is ge2' },
"ge-0/0/10" => { description => 'this is gel@' },
"ge-0/0/11" => { description => 'this is gell' },
"ge-0/0/12" => { description => 'this is gel2' }

$db_port_settings = {
untagged_vlan => Red,
tagged_vlans => [Blue, Green, Yellow]

7. Within the database_switch class definition, create the Layer 2 interface resources by using the
create_resources Puppet function with the netdev_12_interface resource type, the $db_ports hash, and the
$db_port_settings hash as arguments.

create_resources(netdev_12_interface, $db_ports, $db_port_settings)

8. Use the class definition for that node.

Use the class definition for this node
node "jd.example.com" {

include database_switch

Results

On the Puppet master, review the completed database_switch.pp manifest file. If the file does not
display the intended code, repeat the instructions in this example to correct the manifest.

Define a list of VLANS to create
$vlans = {

'Blue’ => { vlan_id => 100, description => "This is a Blue VLAN, just updated" },
'Green' =>{ vlan_id => 101, description => "This is a Green VLAN" },
'Purple' => { vlan_id => 102, description => "This is a Purple VLAN" },
'Red’ => { vlan_id => 103, description => "This is a Red VLAN" },

a

'Yellow' => { vlan_id => 104, description => "This is a Yellow VLAN" }

Define a class for all Switches in the 'database' POD
Start class definition

class database_switch {

netdev_device { $hostname: }

Create all the VLANs on the switch

create_resources(netdev_vlan, $vlans)

Set up ports to use a selected list of VLANS
$db_port_desc = "This is for database"

$db_ports = {
"ge-0/0/0" => { description => "${db_port_desc} ge@" },
"ge-0/0/1" => { description => "${db_port_desc} gel" },
"ge-0/0/2" => { description => 'this is ge2' },
"ge-0/0/10" => { description => 'this is gel0@' },
"ge-0/0/11" => { description => 'this is gell' },
"ge-0/0/12" => { description => 'this is gel2' }

$db_port_settings = {
untagged_vlan => Red,
tagged_vlans => [Blue, Green, Yellow]

create_resources(netdev_12_interface, $db_ports, $db_port_settings)

3
End class definition

Use the class definition for this node
node "jd.example.com" {

include database_switch

After the Puppet agent applies the configuration changes, the resulting configuration updates are:

[edit]
interfaces {
ge-0/0/0 {

unit 0 {
description "This is for database ge@";
family ethernet-switching {
port-mode trunk;
vlan {

members [Blue Green Yellow 1;

}
native-vlan-id Red;
}
}
}
ge-0/0/1 {
unit 0 {
description "This is for database gel";
family ethernet-switching {
port-mode trunk;
vlan {
members [Blue Green Yellow 1;
}
native-vlan-id Red;
}
}
}
ge-0/0/2 {
unit 0 {
description "this is ge2";
family ethernet-switching {
port-mode trunk;
vlan {
members [Blue Green Yellow 1;
}
native-vlan-id Red;
}
}
}
ge-0/0/10 {
unit 0 {

description "this is gel@";
family ethernet-switching {
port-mode trunk;
vlan {

members [Blue Green Yellow 1;

native-vlan-id Red;

}
}
}
ge-0/0/11 {
unit 0 {
description "this is gell";
family ethernet-switching {
port-mode trunk;
vlan {
members [Blue Green Yellow 1;
}
native-vlan-id Red;
}
}
}
ge-0/0/12 {
unit 0 {
description "this is gel2";
family ethernet-switching {
port-mode trunk;
vlan {
members [Blue Green Yellow 1;
}
native-vlan-id Red;
}
}
}
}
vlans {
Blue {
description "This is a Blue vlan, just updated";
vlan-id 100;
}
Green {
description "This is a Green vlan";
vlan-id 101;
}
Purple {

description "This is a Purple vlan";
vlan-id 102;

Red {
description "This is a Red vlan";
vlan-id 103;

}

Yellow {
description "This is a Yellow vlan";
vlan-id 104;

Verification

IN THIS SECTION

Verifying the Puppet Manifest | 40

Verifying the Puppet Manifest

Purpose

After the Puppet agent applies the configuration changes, verify that the Puppet agent node has the
correct configuration.

Action

View the configuration or configuration differences, and verify that the Puppet agent made the correct
changes. To view the full configuration, use the show configuration operational mode command. To view
the configuration differences, use the show configuration | compare rollback rollback-number operational
mode command.

Meaning

If the changes to the configuration include the updates defined in the manifest, then the manifest was
created and applied correctly.

Troubleshooting

IN THIS SECTION

Troubleshooting Configuration Issues | 41

Troubleshooting Configuration Issues

Problem

The configuration on the agent node does not reflect the changes requested in the manifest.

If you do not see any updates to the configuration, the switch might not be included in the managed
agent nodes, or the Puppet agent might not have downloaded the latest catalog and performed the
configuration update. If you do see updates to the configuration, but they are incorrect, the Puppet
manifest might contain incorrect information.

Solution

Make sure that the Puppet master is properly configured to create the catalog for that node. If the
Puppet master is properly configured, review the Puppet manifest file to ensure that it contains the
correct configuration changes, and if necessary, correct the manifest.

If you have reporting enabled, also review the log files on the Puppet master to verify that the agent
node downloaded the latest catalog and committed the configuration changes. If the Puppet agent could
not obtain a lock on the configuration database, could not upload the configuration changes due to a
syntax error, or could not commit the configuration on the device, the configuration remains unchanged.

Puppet netdev Resources | 42
Puppet for Junos OS apply_group Defined Resource Type | 60
Troubleshoot Puppet for Junos OS Errors | 84

Puppet netdev Resources

IN THIS SECTION

Understanding the netdev_stdlib Puppet Resource Types | 42
netdev_device | 44

netdev_interface | 45

netdev_|2_interface | 49

netdev_lag | 52

netdev_vlan | 57

Understanding the netdev_stdlib Puppet Resource Types

On the Puppet master, two Puppet modules are required to manage devices running Junos OS. The first
module, netdevops/netdev_stdlib, includes the Puppet type definitions for the netdev resources. The
netdev resources model the properties for various network resources and control specific Ethernet
switch configuration such as VLANSs. Table 9 on page 42 describes the resource types defined by the
netdev_stdlib module. In the Puppet manifest, you use the netdev resource types in resource
declarations to specify the desired configurations of the agent nodes running Junos OS.

NOTE: The netdev_stdlib resource definitions represent a superset of configuration parameters
for that resource. The manifest file should only configure those parameters that are supported on
a given platform or that are relevant to the given interface type.

Table 9: Resource Types Defined in the netdev_stdlib Module

Type Name Description

netdev_device Models the properties of the network device.

Table 9: Resource Types Defined in the netdev_stdlib Module (Continued)

Type Name Description

netdev_interface Models the properties for a physical interface.
The properties for a physical interface are managed separately from the services on the
interface.

netdev_12_interface | Models the properties for Layer 2 switching services on an interface.
The services for a Layer 2 interface are managed separately from the physical interface.

netdev_lag Models the properties for a link aggregation group (LAG).
The properties for a LAG are managed separately from the physical member links and
services on the interface.

netdev_vlan Models the properties for a VLAN resource.

The second Puppet module, juniper/netdev_stdlib_junos, includes the Junos OS-specific code that
implements each of the types defined by netdev_stdlib. When you install the netdev_stdlib_junos
module on the Puppet master, it automatically installs the netdev_stdlib module.

In a Puppet manifest, you must specify one and only one netdev_device for a given node. The netdev
provider code automatically creates dependencies between the netdev_device resource and the other
netdev resources. If the netdev_device cannot be created, then the Puppet agent does not process the
other resources.

To create the netdev_device resource, the Puppet agent must open a NETCONF session with the device
running Junos OS and establish an exclusive lock on the configuration database. Since the Puppet agent
is running on the device, opening a connection should not fail. However, obtaining an exclusive lock
could fail if another administrator is managing the device and already has a lock on the configuration
database.

The netdev_interface resource type models the properties for a physical interface, whereas
netdev_12_interface models the properties for Layer 2 switching services on an interface. You only need to
define the netdev_interface resource to change physical interface properties such as speed, MTU, or
duplex mode. You do not need to define a netdev_interface resource as a prerequisite for defining a
netdev_12_interface resource.

The netdev_vlan resource type models the properties for a VLAN resource. A netdev_12_interface resource
can reference VLANSs created using netdev_vlan resources, or it can reference VLANSs already existing in
the device configuration. Thus, you do not need to define a netdev_vlan resource in order to use VLANSs in
the netdev_12_interface definition.

NOTE: Only the netdev_device and netdev_interface resources are supported on OCX1100 switches.

NOTE: To manage resources that do not have type specifications in the netdev_stdlib module,
you can use the apply_group defined resource type provided as part of the netdev_stdlib_junos
module.

netdev_device

IN THIS SECTION

Syntax | 44
Description | 44
Attributes | 44
Usage Examples | 45

Release Information | 45

Syntax

netdev_device { "name": }

Description

Puppet resource type that models the management connection to the agent node running Junos OS. In
a Puppet manifest, you must specify one and only one netdev_device for a given node.

Attributes

name Name identifying the agent node. This can be a user-defined identifier and does not need to have
any relationship to the actual node name.

Usage Examples

The following Puppet manifest code creates a netdev_device resource. In this example, the netdev_device
name is the value of the $hostname variable, which is provided by Facter.

node "jd.example.com" {

netdev_device { $hostname: }
<.additional resources..>

Release Information

Resource support starting in netdev_stdlib_junos module version 1.0.0.

netdev_interface

IN THIS SECTION

Syntax | 45
Description | 46
Attributes | 46
Usage Examples | 47

Release Information | 49

Syntax

netdev_interface { "name":
ensure => (present | absent),
active => (true | false),
admin => (up | down),

description => "interface-description",

speed => speed,
duplex => (auto | full | half),

mtu => mtu

Description

Puppet resource type that enables you to model the properties and manage the configuration of a
physical interface.

NOTE: The netdev_stdlib resource definitions represent a superset of configuration parameters
for that resource. The manifest file should only configure those parameters that are supported on
a given platform or that are relevant to the given interface type.

Attributes

name

active

admin

description

duplex

Junos OS interface name, for example, ge-0/0/0.

(Optional) Specify whether to activate or deactivate the corresponding configuration. A

value of true activates the configuration. A value of false deactivates the configuration
without removing it.

e Default: true

NOTE: If the resource declaration includes the active attribute and also
ensure => absent, the client deletes the corresponding configuration and ignores
the active attribute.

(Optional) Configure the interface as administratively enabled or disabled. A value of up

configures the interface as administratively enabled, and a value of down administratively
disables the interface.

e Default: up

(Optional) Interface description.

e Default: “Puppet created interface: <name>"

(Optional) Interface duplex mode. Acceptable values are auto, full, and half.

e Default: auto

NOTE: EX4300 switches support full duplex only. If you include the duplex
attribute in your manifest file and set it to anything other than full, the Puppet
agent displays an error message when it runs and ignores the duplex attribute
setting.

ensure (Optional) Specify whether to create or delete the configuration. A value of present creates
the configuration. A value of absent deletes the configuration.

o Default: present
mtu (Optional) Maximum transmission unit (MTU) of the interface.

speed (Optional) Interface speed. Acceptable values are auto, 10m, 100m, 1g, and 10g.

e Default: auto

NOTE: Setting the speed attribute to the default value of auto causes the device
to use the existing configuration for the speed statement and does not explicitly
configure anything for the interface speed.

Usage Examples

The following Puppet manifest code configures the description, speed, and duplex mode for interface
ge-0/0/0:

node "jd.example.com" {
netdev_device { $hostname: }

netdev_interface { "ge-0/0/0":
description => "connected to old hub",
speed => 100m,
duplex => full

On a switch running Junos OS, the resulting configuration is:

root@jd.example.com> show configuration interfaces ge-0/0/0
description "connected to old hub";
ether-options {
link-mode full-duplex;
speed {
100m;

On an MX Series router running Junos OS, the resulting configuration is:

root@jd.example.com> show configuration interfaces ge-0/0/0
description "Connected to old hub";

speed 100m;

link-mode full-duplex;

If the Puppet manifest sets the speed attribute to auto, the device uses the existing configuration for the
speed statement and does not explicitly configure anything for the interface speed. The following Puppet
manifest code configures the mtu statement for the ge-0/0/0 interface and instructs the device to use

the existing configuration for the speed statement:

node "jd.example.com" {
netdev_device { $hostname: }
netdev_interface { "ge-0/0/0":

speed => auto,
mtu => 1514

The resulting configuration uses the existing configuration for the speed statement, which in this case is
100m.

root@jd.example.com> show configuration interfaces ge-0/0/0
speed 100m;
mtu 1514;

Release Information

Resource support starting in netdev_stdlib_junos module version 1.0.0.

netdev_|2_interface

IN THIS SECTION

Syntax | 49
Description | 50
Attributes | 50
Usage Examples | 51

Release Information | 52

Syntax

netdev_12_interface { "name":
ensure => (present | absent),
active => (true | false),
description => "interface-description",
tagged_vlans => (vian | [vlani, vian2, vlan3, ...1),
untagged_vlan => vian,

vlan_tagging => (enable | disable)

Description

Puppet resource type that enables you to model the properties and manage the configuration of Layer 2

switching services on an interface. You do not need to define a netdev_interface resource as a prerequisite

for defining a netdev_12_interface resource.

NOTE: The netdev_12_interface resource is not supported on OCX1100 switches.

A netdev_12_interface resource can reference VLANSs created using netdev_vlan resources, or it can
reference VLANSs that already exist in the device configuration. Thus, you do not need to define a

netdev_vlan resource in order to use VLANS in the netdev_12_interface definition.

Attributes

name

active

description

ensure

tagged_vlans

Junos OS interface name, excluding any logical unit number, for example, ge-0/0/0.

(Optional) Specify whether to activate or deactivate the corresponding configuration. A
value of true activates the configuration. A value of false deactivates the configuration
without removing it.

e Default: true

NOTE: If the resource declaration includes the active attribute and also
ensure => absent, the client deletes the corresponding configuration and ignores
the active attribute.

(Optional) Interface description.

e Default: “Puppet created netdev_I2_interface: <name>"

(Optional) Specify whether to create or delete the configuration. A value of present creates
the configuration. A value of absent deletes the configuration.

e Default: present

(Optional) Configure one or more VLANSs that can carry traffic on a trunk interface. The
value can be a single VLAN name or an array of VLAN names. If you set this attribute, the
code automatically configures the port as a trunk port.

untagged_vlan (Optional) Configure the specified VLAN as the native VLAN on an interface. The value is
the name of the VLAN for untagged packets.

vlan_tagging (Optional) Configure the mode for the given port as access or trunk.

A value of enable configures the port in trunk mode, in which tagged packets are
processed. A value of disable configures the port in access mode, in which tagged packets
are discarded.

If you do not specify a value for this attribute, but you do set the tagged_vlans attribute, the
code automatically configures the port as a trunk port. When you configure an MX Series
router, you must define the tagged_vlans attribute for a trunk port configuration or define
the untagged_vlan attribute for an access port configuration.

e Default: disable

Usage Examples

The following Puppet manifest code configures ge-0/0/0 as a trunk port accepting tagged frames from
the Pink and Green VLANSs. The code configures the Red VLAN as the native VLAN for that interface.

node "jd.example.com" {
<.config omitted..>

netdev_12_interface { "ge-0/0/0":
tagged_vlans => [Green, Pink 1,
untagged_vlan => Red

On a switch running Junos OS, the resulting configuration is:

root@jd.example.com> show configuration interfaces ge-0/0/0
unit @ {
description "Puppet created netdev_12_interface: ge-0/0/0";
family ethernet-switching {
port-mode trunk;
vlan {

members [Green Pink 1;

}

native-vlan-id Red;

On an MX Series router, the resulting configuration uses the corresponding VLAN IDs instead of VLAN
names, as shown in the following output:

root@jd.example.com> show configuration interfaces ge-0/0/0
flexible-vlan-tagging;
native-vlan-id 103;
encapsulation flexible-ethernet-services;
unit @ {
description "Puppet created netdev_12_interface: ge-0/0/0";
family bridge {
interface-mode trunk;
vlan-id-list [101 103 105 J;

Release Information

Resource support starting in netdev_stdlib_junos module version 1.0.0.

netdev_lag

IN THIS SECTION

Syntax | 53
Description | 53
Attributes | 53
Usage Examples | 54

Release Information | 56

Syntax

netdev_lag { "name":
ensure => (present | absent),
active => (true | false),
links => ('interface-name' | ['interface-namel', 'interface-name2' ...1),
lacp => (active | disabled | passive),

minimum_links => minimum

Description

Puppet resource type that enables you to model the properties and manage the configuration of link
aggregation groups (LAGs). In Junos OS, LAG ports are referred to as aggregated Ethernet bundles or ae
ports.

NOTE: The netdev_lag resource is not supported on OCX1100 switches.

The links attribute causes physical interfaces to be added or removed from the LAG. To successfully
assign the physical interfaces in the links attribute list to a LAG, you must ensure that there are no
existing logical units configured on those physical interfaces. To enforce this prerequisite, you can use
the netdev_12_interface resource with ensure=>absent to remove any existing logical units.

NOTE: Junos OS requires at least one unit configured under the LAG (ae) port for the links to
display as part of the show command. Therefore, you need to define Layer 2 services using the
netdev_12_interface resource type.

Attributes
name Junos OS LAG name, excluding any logical unit number, for example, ae0.
active (Optional) Specify whether to activate or deactivate the corresponding configuration. A

value of true activates the configuration. A value of false deactivates the configuration
without removing it.

o Default: true

ensure

lacp

links

minimum_links

NOTE: If the resource declaration includes the active attribute and also
ensure => absent, the client deletes the corresponding configuration and ignores
the active attribute.

(Optional) Specify whether to create or delete the configuration. A value of present creates
the configuration. A value of absent deletes the configuration.

e Default: present

(Optional) Link Aggregation Control Protocol (LACP) mode.
e disabled—LACP is not used.

e active—LACP active mode.

e passive—LACP passive mode.

e Default: disabled

Configure one or more physical interfaces as members of the LAG bundle. The value can
be a single interface or an array of interfaces.

(Optional) Integer that defines the minimum number of physical links that must be in the
up state to declare the LAG port in the up state.

Usage Examples

The following Puppet manifest code configures a LAG bundle aeO consisting of three interfaces,
ge-0/0/15, ge-0/0/20, and ge-0/0/21, which accept tagged frames from the Blue and Green VLANSs. The
code configures the Red VLAN as the native VLAN.

node "jd.example.com" {

<.config omitted..>

netdev_lag { "aed":
links => ['ge-0/0/15', 'ge-0/0/20', 'ge-0/0/21']

netdev_12_interface { "aed":

tagged_vlans => [Blue, Green 1,

untagged_vlan => Red

On a switch running Junos OS, the resulting configuration is:

root@jd.example.com> show configuration interfaces

ge-0/0/15 {
ether-options {
802.3ad aeo0;
}
}
ge-0/0/20 {
ether-options {
802.3ad ae0;
}
}
ge-0/0/21 {
ether-options {
802.3ad aeo0;
}
}
aed {
unit @ {

description "Puppet created netdev_12_interface: aed";
family ethernet-switching {
port-mode trunk;
vlan {
members [Blue Green I;
}

native-vlan-id Red;

On an MX Series router running Junos OS, the resulting configuration is:

root@jd.example.com> show configuration interfaces
ge-0/0/15 {
gigether-options {

802.3ad aeo0;

}
ge-0/0/20 {
gigether-options {
802.3ad ae0;

}
ge-0/0/21 {
gigether-options {
802.3ad aeo0;

aed {
apply-macro "netdev_lag[:1links]" {
ge-0/0/15;
ge-0/0/20;
ge-0/0/21;
}
flexible-vlan-tagging;
native-vlan-id 103;
encapsulation flexible-ethernet-services;
unit 0 {
description "Puppet created netdev_12_interface: ae@";
family bridge {
interface-mode trunk;
vlan-id-list [103 520 101 1,

NOTE: Puppet for Junos OS uses an apply-macro statement in LAG configurations to identify the
list of LAG members.

Release Information

Resource support starting in netdev_stdlib_junos module version 1.0.0.

netdev_vlan

IN THIS SECTION

Syntax | 57
Description | 57
Attributes | 57
Usage Examples | 58

Release Information | 60

Syntax

netdev_vlan { "name":
ensure => (present | absent),
active => (true | false),
vlan_id => id,
description => "vlan-description"

Description

Puppet resource type that enables you to model the properties and manage the configuration of VLANs
on agent nodes running Junos OS.

NOTE: The netdev_vlan resource is not supported on OCX1100 switches.

Attributes
name Name of the VLAN, which must be a VLAN name that is valid on the agent node.
active (Optional) Specify whether to activate or deactivate the corresponding configuration. A

value of true activates the configuration. A value of false deactivates the configuration
without removing it.

e Default: true

NOTE: If the resource declaration includes the active attribute and also
ensure => absent, the client deletes the corresponding configuration and ignores
the active attribute.

description (Optional) VLAN description.

e Default: “Puppet created VLAN: <name>: <vlan-id>"

ensure (Optional) Specify whether to create or delete the configuration. A value of present creates
the configuration. A value of absent deletes the configuration.

e Default: present

vlan_id VLAN tag identifier. Valid VLAN IDs range from 1 through 4094.

Usage Examples

The following Puppet manifest code defines a VLAN named Green with a VLAN ID of 500:

node "jd.example.com" {
netdev_device { $hostname: }

netdev_vlan { "Green":
vlan_id => 500

On a switch running Junos OS, the resulting configuration is:

vlans {
Green {
description "Puppet created VLAN: Green: 500";
vlan-id 500;

On an MX Series router, the resulting configuration is:

bridge-domains {
Green {
description "Puppet created VLAN: Green: 500";
domain-type bridge;
vlan-id 500;

The following Puppet manifest code deactivates the Green VLAN, which has a VLAN ID of 500:

node "jd.example.com" {

netdev_device { $hostname: }

netdev_vlan { "Green":
active => false,
vlan_id => 500

On a switch running Junos OS, the resulting configuration is:

root@jd.example.com> show configuration vlans
inactive: Green {
description "Puppet created VLAN: Green: 500";
vlan-id 500;

On an MX Series router, the resulting configuration is:

root@jd.example.com> show configuration bridge-domains
inactive: Green {
description "Puppet created VLAN: Green: 500";
domain-type bridge;
vlan-id 500;

Release Information

Resource support starting in netdev_stdlib_junos module version 1.0.0.

Understanding Puppet for Junos OS | 4
Puppet Manifests for Devices Running Junos OS | 31
Puppet for Junos OS apply_group Defined Resource Type | 60

Puppet for Junos OS apply_group Defined Resource
Type

IN THIS SECTION

Understanding the Puppet for Junos OS apply_group Defined Resource Type | 60
Creating Embedded Ruby Templates to Use with the Puppet for Junos OS apply_group Resource | 61
Declaring the Puppet for Junos OS apply_group Resource in a Manifest | 66

Example: Using the Puppet for Junos OS apply_group Resource to Configure Devices Running Junos
0S| 70

apply_group | 76

Understanding the Puppet for Junos OS apply_group Defined Resource
Type

Puppet for Junos OS enables you to use Puppet to manage certain devices running the Junos®
operating system (Junos OS). The Puppet netdev_stdlib module is a vendor-neutral network abstraction
framework that defines Puppet type specifications for certain resources used on network devices. The
netdev_stdlib_junos module contains the provider implementations that enable you to configure these
resources, which include physical interfaces, VLANS, link aggregation groups (LAGs), and Layer 2
switching services, on devices running Junos OS.

Puppet enables you to more easily manage resources on your network devices, but you are generally
limited to configuring resource types that are already defined and implemented. Starting with
netdev_stdlib_junos module version 2.0.2, the module provides the apply_group defined resource type,
which enables you to manage resources that do not have separate type specifications. apply_group
enables you to create generic resources as groups under the [edit groups] hierarchy level and apply those
groups to your configuration.

The apply_group defined resource type references a custom Embedded Ruby (ERB) template that
generates Junos OS configuration data. ERB is a templating engine for Ruby that enables you to create
templates consisting of plain text documents with embedded Ruby code. ERB is part of the Ruby
standard library, and ERB templates are supported in Puppet.

Because ERB templates are plain text documents, the template can include Junos OS configuration data
in any of the supported formats including formatted ASCII text, Junos XML elements, or Junos OS set
commands. The ability to add Ruby code to the template provides flexibility through the use of variable
substitution and flow control. You can customize the input provided to the template for different Puppet
client nodes by defining the relevant variables for that node in the manifest. When the ERB template is
rendered, the plain text is copied directly to the output, and the embedded Ruby tags are processed. The
client node applies the resulting configuration changes at the [edit groups] hierarchy level under the
group name that matches the title for that apply_group resource.

An apply_group resource enables you to create and delete configuration groups as well as activate or
deactivate a group. When you create or activate a configuration group, the client node also configures
the group name in the apply-groups statement at the top of the configuration hierarchy so that the
configuration inherits the statements in the corresponding group. When you delete or deactivate a
configuration group, the client node removes the group name from the apply-groups statement if
configured.

Creating Embedded Ruby Templates to Use with the Puppet for Junos OS
apply_group Resource

Puppet for Junos OS enables you to use Puppet to manage certain devices running Junos OS. Starting
with netdev_stdlib_junos module version 2.0.2, you can use the apply_group defined resource type to
manage resources in the Junos OS configuration that do not have type specifications in the
netdev_stdlib module. An apply_group resource references a custom Embedded Ruby (ERB) template that
generates the Junos OS configuration data for a specific resource using the supplied inputs.

The ERB templating system for Ruby enables you to generate output from a template consisting of plain
text with embedded Ruby code. You can create generic ERB templates that generate the desired Junos
OS configuration data for any resource. Because ERB templates are plain text documents, the template
can include Junos OS configuration data in any of the supported formats including formatted ASCII text,
Junos XML elements, or Junos OS set commands. When the ERB template is rendered, the plain text is

copied directly to the output, and the code in embedded Ruby tags is executed as Ruby code. ERB
templates can also reference any node-specific Puppet variables that you define in the manifest.

ERB templates that are referenced by the apply_group resource must be placed in the
netdev_stdlib_junos/templates directory on the Puppet master. The template filename must use the
following format where the base filename can be any user-defined string, and the configuration format
must reflect the format of the configuration data in the template, which can be "set", "text", or "xml". If
the filename does not specify a format, the Puppet client uses XML as the default.

filename. configuration-format.erb

After you create and stage your ERB templates, you can use them to generate configuration data for
resources on client nodes running Junos OS. To use a template, the Puppet manifest must include the
apply_group resource, and the template_path attribute must reference the template. Any variables required
by the template must be declared in the manifest.

ERB templates can contain Ruby tags, which are delimited by <% and %>. Table 10 on page 62
summarizes the different ERB tag types, their syntax, and their impact on the rendered output. ERB
code tags are generally used for flow control. The ERB processor executes code in a code tag but does
not insert any values into the output. ERB tags that contain an equals sign (=) are expressions. The ERB
processor evaluates the expression and places the resulting value in the output. ERB tags that contain
the hash (#) symbol are comments that do not affect the rendered output.

Table 10: Embedded Ruby Tag Types

Tag Type Syntax Behavior
Code <% code %> Executes the code, but does not insert a value into the output.
Comment <%t comment %> Ignores any code following # and does not insert any text into the output.

Expression | <%= expression %> | Generates a value from the expression and inserts the value into the output.

Literal <% %k6> Inserts a literal <% %> into the output.

You can use Ruby tags in your templates to manipulate data, perform variable substitutions, iterate over
indexed collections like arrays and hashes, and create conditional constructs. Some of the more common
constructs are presented here. For detailed information about using ERB templates in Puppet, see
https:/puppet.com/docs/puppet/latest/lang_template_erb.html.

https://puppet.com/docs/puppet/latest/lang_template_erb.html

An ERB template can iterate over collections, such as arrays or hashes, by using the <% @variable.each ..

syntax. The following template iterates over each service in an array and generates Junos OS
configuration data that configures each service at the [edit system services] hierarchy level under the
specified configuration group.

<% @services.each do | service | %>
set system services <%= service[@] %> <%= service[1] %>
<% end %>

Consider the following array declaration in the manifest, which defines several services:

$services = [['ftp' 1, ['ssh' 1, ['telnet' 1, ['netconf', 'ssh'] 1]

%>

When the template is evaluated with the given array, the template generates the following configuration

data as set commands:

set system services ftp

set system services ssh

set system services telnet

set system services netconf ssh

You can also iterate over items in a hash, which is indexed using a key rather than a number. The

following ERB template iterates over log files in a hash and generates configuration data that configures

the files along with their facility and severity details at the [edit system syslog] hierarchy level under the

specified configuration group. Each log file is mapped to an array of hashes that store the facility and
severity details.

system {
syslog {
<% @syslog_names.each do | name, details | %>
file <%= name %> {
<% details.each do | detail | %>
<%= detail['facility'] %> <%= detaill['level'] %>;
<% end %>
}

<% end %>

Consider the following hash declaration in the manifest, which defines two log files and specifies the
facility and severity of the messages to include in each log:

$syslog_names = {
'messages' => [{ 'facility' => 'any', 'level' => 'critical' }, { 'facility' =>
'authorization', 'level' => 'info' } 1,

"interactive-commands' => [{ 'facility' => 'interactive-commands', 'level' => 'any'}]

When the template is evaluated with the given hash, the template generates the following configuration
data in text format:

system {
syslog {
file messages {
any critical;
authorization info;
}
file interactive-commands {

interactive-commands any;

You can also create conditional constructs like the following to modify the configuration data based on
the presence or absence of variables in the supplied inputs:

<% if condition %>
text
<% end %>

For example, suppose that you are configuring a number of physical interfaces, and you only want to
configure a logical interface when the relevant information is included in the supplied inputs. Consider
the following hash declaration in the manifest:

$interfaces = {

'ge-0/0/1" => {'unit' => 0, 'description' => 'to-B', 'family' => 'inet', 'address' =>
'198.51.100.1/30" 7},

'ge-0/0/2' => {'unit' => 0, 'description' => 'to-D', 'family' => 'inet', 'address' =>
'198.51.100.5/30" 7},

'ge-0/0/3"' => {'description' => 'to-E'}

A template can test whether the hash for each interface contains a unit key and then modify the
configuration output based on the result. The following ERB template generates configuration data that
configures a description for each physical interface but only configures the logical interface when the
unit key is present in the hash for that interface:

<interfaces>
<% @interfaces.each do | name, hash | %>
<interface>
<name><%= name %></name>
<description><%= hash['description'] %></description>
<% if hash.has_key?('unit') %>
<unit>

<name><%= hash['unit'] %></name>

<family>
<<%= hash['family'] %>
<address>
<name><%= hash['address'] %></name>
</address>
</<%= hash['family'] %>>
</family>
</unit>
<% end %>
</interface>
<% end %>
</interfaces>

The template generates the following Junos XML configuration data, which does not configure a logical
unit for the ge-0/0/3 interface:

<interfaces>
<interface>

<name>ge-0/0/1</name>
<description>to-B</description>
<unit>

<name>0</name>

<family>

<inet>

<address>

<name>198.51.100.1/30</name>
</address>
</inet>
</family>
</unit>
</interface>
<interface>
<name>ge-0/0/2</name>
<description>to-D</description>
<unit>
<name>0</name>
<family>
<inet>
<address>
<name>198.51.100.5/30</name>
</address>
</inet>
</family>
</unit>
</interface>
<interface>
<name>ge-0/0/3</name>
<description>to-E</description>
</interface>
</interfaces>

To avoid creating ERB templates from scratch, you can copy a portion of an existing device configuration
into a new ERB template file, replace the variables in the configuration data with appropriate ERB
variables, and add Ruby tags as required for flow control. For an example outlining how to copy and
convert a configuration into an ERB template, see Expert Advice: Puppet + ERB Templates + Junos =
Increased automation agility and flexibility.

For more information about using Puppet templates, see the official Puppet documentation at https://
puppet.com/docs/puppet/latest/lang_template.html.

Declaring the Puppet for Junos OS apply_group Resource in a Manifest

Puppet for Junos OS enables you to use Puppet to manage certain devices running Junos OS. You can
use the apply_group defined resource type to manage generic resources in the Junos OS configuration that
do not have type specifications in the netdev_stdlib module. An apply_group resource references a custom

https://community.juniper.net/browse/blogs/blogviewer?blogkey=24755b4e-10fb-459c-944e-76c9e7ad9738
https://community.juniper.net/browse/blogs/blogviewer?blogkey=24755b4e-10fb-459c-944e-76c9e7ad9738
https://puppet.com/docs/puppet/latest/lang_template.html
https://puppet.com/docs/puppet/latest/lang_template.html

Embedded Ruby (ERB) template that generates the configuration data for the specific resource using the
supplied inputs.

You declare resources of type apply_group in your manifest. When you declare the resource, you must
define a title, which determines the group name under which the Puppet client applies the configuration
changes. You must also define the template_path attribute to reference the desired ERB template located
in the netdev_stdlib_junos/templates directory on the Puppet master. The template_path attribute follows
Puppet’s normal convention of using module/ template-filename for referencing template files. By
default, Puppet looks for the template in the given module’s templates directory. For example:

netdev_stdlib_junos: :apply_group{ "services_group":
template_path => "netdev_stdlib_junos/services.set.erb",

The apply_group resource type includes two optional attributes, ensure and active. The ensure attribute
determines whether to create or delete a configuration group, and the active attribute determines
whether the group should be active or inactive on the device. Table 11 on page 67 outlines the effects
on the configuration for different attribute settings.

Setting ensure to present causes the client to create the configuration group in the Junos OS configuration
at the [edit groups group-name] hierarchy level, whereas setting ensure to absent causes the client to delete
the corresponding configuration group from the device configuration. Setting active to true activates the
configuration group and adds the group name to the apply-groups statement at the top of the
configuration hierarchy. Setting active to false, on the other hand, deactivates the configuration and
removes the group name from the apply-groups statement, if configured. When you deactivate the
configuration group, the device marks it with the inactive: tag and ignores that portion of the
configuration when you commit it.

If the group name is configured under the apply-groups statement, the configuration inherits the
statements in that configuration group. The order of the groups in the apply-groups statement determines
the inheritance priority. The configuration data in the first group takes priority over the data in
subsequent groups.

Table 11: ensure and active Attributes for apply_group Resources

Attribute Settings = Configuration Group apply-groups Statement

Create or modify the configuration Add the group name to the apply-groups

ensure => present o]
group and ensure it is active statement, if not already present.

active => true
(Default)

Table 11: ensure and active Attributes for apply_group Resources (Continued))

Attribute Settings = Configuration Group apply-groups Statement

ensure => present Create OszOdifY the configuration Remove the group name from the apply-groups
roup and deactivate it i

active => false group statement, if present.

ensure => absent | Delete the configuration group Remove the group name from the apply-groups

statement, if present.

NOTE: If active is set to true but ensure is set to absent, the client still deletes the group name from
the apply-group statement, because the configuration group does not exist.

If the apply_group resource uses an ERB template that references Puppet variables, you must declare the
necessary variables for that node in the manifest. Puppet variables are prefixed with a dollar sign ($).

When the Puppet client node downloads the catalog, it applies the configuration changes generated by
the template at the [edit groups group-name] hierarchy level in the configuration and updates the group
name in the apply-groups statement as instructed. The client also stores a copy of the configuration group
in a /var/tmp/group-name file on the device, which can be useful for troubleshooting any issues.

The following steps outline how to add an apply_group resource to your manifest. In this example, the
apply_group resource references the following ERB template named services.set.erb in the
netdev_stdlib_junos/templates directory:

<% @services.each do | service | %>
set system services <%= service[0] %> <%= service[1] %>
<% end %>

1. Declare any Puppet variables that are used by the ERB template to generate the configuration data
for that node.

$services = [['ftp' 1, ['ssh' 1, ['telnet'], ['netconf', 'ssh']]

. Declare an apply_group resource, and define the group name under which the configuration changes
are applied.

netdev_stdlib_junos: :apply_group{ "services_group":

. Define the template_path attribute, and reference the desired ERB template located in the
netdev_stdlib_junos/templates directory.

netdev_stdlib_junos: :apply_group{ "services_group":

template_path => "netdev_stdlib_junos/services.set.erb",

. (Optional) Define the ensure attribute as present or absent to specify whether to create or delete the
configuration group.

If you omit the attribute, it defaults to present.

netdev_stdlib_junos: :apply_group{ "services_group":
template_path => "netdev_stdlib_junos/services.set.erb",

ensure => present,

. (Optional) Define the active attribute as true or false to specify whether to activate or deactivate the
configuration group.

If you omit the attribute, it defaults to true.

netdev_stdlib_junos: :apply_group{ "services_group":
template_path => "netdev_stdlib_junos/services.set.erb",
ensure => present,

active => true,

An apply_group resource in a sample manifest file is presented here:

node "jd.example.com" {

netdev_device { $hostname: }

$services = [['ftp' 1, ['ssh' 1, ['telnet' 1, ['netconf', 'ssh']]

netdev_stdlib_junos: :apply_group{ "services_group":
template_path => "netdev_stdlib_junos/services.set.erb",
ensure => present,

active => true,

Example: Using the Puppet for Junos OS apply_group Resource to
Configure Devices Running Junos OS

IN THIS SECTION

Requirements | 70
Overview | 70
Configuration | 71

Verification | 74

Puppet for Junos OS enables you to use Puppet to manage certain devices running Junos OS. This
example shows how to use the apply_group defined resource type with an Embedded Ruby (ERB) template
to configure a BGP resource, which does not have a type specification in the netdev_stdlib module.

Requirements
This example uses the following hardware and software components:

e MX80 router running Junos OS Release 14.2R2 with the jpuppet software package installed and a
Junos OS user account for Puppet.

e Puppet master with the Juniper Networks NETCONF Ruby gem and netdev_stdlib_junos module
version 2.0.3 installed.

Overview

This example creates a Puppet manifest that uses the apply_group resource to configure statements for
internal and external BGP peering for the puppet-client.example.com node. The apply_group resource

references the bgp.set.erb ERB template, which generates the configuration data for the resource. The
template is located in the modules/netdev_stdlib_junos/templates directory.

The Puppet manifest declares the $bgp variable, which contains the node-specific configuration values
that the template uses to generate the configuration data for that node. The data is provided in a hash
that uses the BGP group names as keys. Each key maps to another hash that contains the details for that
group including the group type, and the IP addresses and AS number of the peers. When the template is
referenced, it iterates over the hash and generates the configuration data as Junos OS set commands.

The title for the apply_group resource defines the bgp_group group name under which the configuration
changes are applied at the [edit groups] hierarchy level. The template_path attribute is set to
netdev_stdlib_junos/bgp.set.erb, which references the bgp.set.erb template. The ensure attribute is set to
present to instruct the client to create the configuration on the device, and the active attribute is set to
true to make sure that the configuration is active and that the group name is configured under the apply-
groups statement. Both attributes are optional in this case, because they are set to the default values.

When the client downloads the catalog, it adds the configuration data generated by the template under
the [edit groups bgp_group] hierarchy level and configures the apply-groups statement to include the
bgp_group group name. If the commit succeeds, the configuration inherits the statements in the
configuration group.

NOTE: This example assumes that the local autonomous system number is already defined on
the device.

Configuration

IN THIS SECTION

Creating the ERB Template | 71
Creating the Manifest | 72
Results | 74

Creating the ERB Template

To create and stage the ERB template:

1. Create a new template file named bgp.set.erb, and add the text and Ruby tags required to generate
the desired configuration data for the BGP resource.

<% @bgp.each do | name, hash | %>
set protocols bgp group <%=name%> type <%= hash['type']%>
set protocols bgp group <%=name%> local-address <%= hash['local-address']1%>
set protocols bgp group <%=name%> peer-as <%= hash['peer-as']%>
<% hash['neighbor'].each do | neighbor | %>
set protocols bgp group <%=name%> neighbor <%=neighbor%>
<% end %>
<% end %>

2. Place the template file in the modules/netdev_stdlib_junos/templates directory on the Puppet
master.

Creating the Manifest

To declare the apply_group resource in a Puppet manifest and reference the ERB template:

1. Create the manifest file and define the client node.

node 'puppet-client.example.com'{
netdev_device { $hostname:}

variable declarations and resources

2. Declare any Puppet variables that are used by the template to configure that node.

$hgp = {
"internal' = {
"type' => 'internal',
'neighbor' => ['10.0.0.3', '10.0.0.4"' 1,
'local-address' => '10.0.0.2',
'peer-as' => '64501'
1,
'external' => {
"type' => 'external',
'neighbor' => ['10.1.12.1', '10.1.12.5"' 1,

'local-address' => '10.0.0.2',
'peer-as' => '64502'

3. Declare the apply_group resource and its title, which defines the group name under which the

configuration data will be added at the [edit groups group-name] hierarchy level.

netdev_stdlib_junos: :apply_group{ "bgp_group":

4. Set the apply_group template_path attribute to reference the bgp.set.erb template.

netdev_stdlib_junos: :apply_group{ "bgp_group":
template_path => "netdev_stdlib_junos/bgp.set.erb",

5. (Optional) Set the apply_group ensure attribute to present to create the configuration group.

netdev_stdlib_junos::apply_group{ "services_group":
template_path => "netdev_stdlib_junos/services.set.erb",

ensure => present,

6. (Optional) Set the apply_group active attribute to true to activate the configuration.

netdev_stdlib_junos: :apply_group{ "bgp_group":
template_path => "netdev_stdlib_junos/bgp.set.erb",
ensure => present,

active => true,

Results

On the Puppet master, review the manifest. If the manifest does not display the intended code, repeat
the instructions in this example to correct the manifest.

node 'puppet-client.example.com'{

netdev_device { $hostname:}

$bgp = {

"internal' => {
"type' => 'internal',
'neighbor' => ['10.0.0.3"', '10.0.0.4"' 1,
'local-address' => '10.0.0.2',
'peer-as' => '64501"'

3,

'external' => {
"type' => 'external',
'neighbor' => ['10.1.12.1', '10.1.12.5"],
'local-address' => '10.0.0.2',
'peer-as' => '64502'

netdev_stdlib_junos: :apply_group{ "bgp_group":
template_path => "netdev_stdlib_junos/bgp.set.erb",

ensure => present,
active => true,
}
}
Verification

IN THIS SECTION

Verifying the Commit | 75

Verifying the Configuration | 75

To verify that the commit was successful and the configuration reflects the new BGP resource, perform
these tasks:

Verifying the Commit

Purpose

Verify the commit by reviewing the commit history for the Puppet node.

Action

From operational mode, you can enter the show system commit command to verify that the catalog changes
were successfully committed.

puppet@puppet-client> show system commit

0 2015-10-14 16:14:56 PDT by puppet via netconf
Puppet agent catalog: 1444894500

Meaning

The commit log indicates that the Puppet client successfully applied the configuration changes
generated by the template.

Verifying the Configuration

Purpose

Verify that the BGP configuration group is in the active configuration on the device and that the
configuration group name is configured for the apply-groups statement.

Action

From operational mode, enter the show configuration groups bgp_group and the show configuration apply-groups
commands.

puppet@uppet-client> show configuration groups bgp_group

protocols {

bgp {

group internal {
type internal;
local-address 10.0.0.2;
peer-as 64501,
neighbor 10.0.0.3;
neighbor 10.0.0.4;

}

group external {
type external;
local-address 10.0.0.2;
peer-as 64502,
neighbor 10.1.12.1;
neighbor 10.1.12.5;

puppet@puppet-client> show configuration apply-groups
apply-groups [global re@ rel bgp_group 1;

apply_group

IN THIS SECTION

Syntax | 77
Description | 77
Attributes | 77
Usage Examples | 78

Release Information | 79

Syntax

netdev_stdlib_junos: :apply_group { "group-name" :
template_path => "netdev_stdlib_junos/ template-filename",
ensure => (present | absent),
active => (true | false),

Description

Defined resource type in the Juniper Networks netdev_stdlib_junos Puppet module that enables you to
manage network resources that do not have type specifications in the netdev_stdlib module. apply_group
enables you to create generic resources as groups under the [edit groups group-name] hierarchy level and
apply those groups to the configuration of devices running Junos OS.

apply_group references an Embedded Ruby (ERB) template, which takes inputs defined in the manifest and
generates the Junos OS configuration data that is configured on the client node. ERB templates
referenced by an apply_group resource must be placed in the netdev_stdlib_junos/templates directory.

Attributes

group-name Name of the group at the [edit groups] hierarchy level in the Junos OS configuration under
which the configuration changes are applied.

active (Optional) Specify whether to activate or deactivate the corresponding configuration
group. A value of true activates the configuration group and adds the group name to the
apply-groups statement in the configuration. A value of false deactivates the configuration
group and removes the group name from the apply-groups statement if configured.

e Default: true

ensure (Optional) Specify whether to create or delete the configuration group. A value of present
creates the configuration group. A value of absent deletes the configuration group and
removes the group name from the apply-groups statement if configured.

e Default: present

template_path Reference to an ERB template. The value uses the Puppet convention for referencing
template files, which is module/ template-filename. The module name is
netdev_stdlib_junos, and the template filename is an ERB template file residing in the
netdev_stdlib_junos/templates directory.

Usage Examples

Consider the following ERB template, interface.set.erb, which iterates over a collection of interfaces.
When rendered, the template generates configuration data that configures each interface with a
description and a logical unit that has a protocol family and an address.

<% @interfaces.each do | name, hash | %>

set interfaces <%= name %> description <%= hash['description'] %> unit <%= hash['unit'J%> family
<%= hash['family'] %> address <%= hash['address']%>

<% end %>

The following Puppet manifest uses an apply_group resource to configure the specified interfaces under
the [edit group interface_group] hierarchy level. apply_group references the interface.set.erb ERB template
in the netdev_stdlib_junos/templates directory.

node "jd.example.com" {
netdev_device { $hostname: }

Variables passed to the template file
$interfaces = {
'ge-1/1/1" => {'unit' => 0, 'description' => 'to-B', 'family' => 'inet', 'address' =>
'198.51.100.1/30" 7},
'ge-1/2/1" => {'unit' => 0, 'description' => 'to-D', 'family' => 'inet', 'address' =>
'198.51.100.5/30" }
}
netdev_stdlib_junos: :apply_group { "interface_group":
template_path => "netdev_stdlib_junos/interface.set.erb",
ensure => present,

active => true,

Puppet renders the configuration data in the template using the inputs defined in the manifest.

set interfaces ge-1/1/1 description to-B unit @ family inet address 198.51.100.1/30
set interfaces ge-1/2/1 description to-D unit @ family inet address 198.51.100.5/30

The Puppet client configures the data under the [edit groups interface_group] hierarchy level and adds the
group name to the apply-groups statement.

puppet@jd.example.com> show configuration groups interface_group
interfaces {
ge-1/1/1 {
description to-B;
unit 0 {
family inet {
address 198.51.100.1/30;

}
}
}
ge-1/2/1 {
description to-D;
unit 0 {
family inet {
address 198.51.100.5/30;
}
}
}

puppet@jd.example.com> show configuration apply-groups
apply-groups [global re@d rel interface_group 1;

Release Information

Defined resource type introduced in netdev_stdlib_junos module version 2.0.2.

Puppet Manifests for Devices Running Junos OS | 31

Puppet netdev Resources | 42

CHAPTER

Monitor and Troubleshoot Puppet for
Junos OS

Understanding Reporting for Puppet Agents Running Junos OS | 81
Troubleshoot Puppet for Junos OS Errors | 84

Troubleshoot Connection and Certificate Errors on Puppet Clients | 91

Understanding Reporting for Puppet Agents
Running Junos OS

You can require a Puppet agent to compile reports containing the log messages and metrics that are
generated during configuration updates. To require that the Puppet agent report to the server after each
transaction, you must set the agent report value to true in the puppet.conf file. If you enable reporting,
by default, the agent node sends a YAML-formatted transaction report to the same server from which it
downloads its configuration.

Puppet log messages can identify the source, severity level, and timestamp of the message, information
about the operation or error that generated the message, and any tags associated with that operation or
error. The Puppet agent always generates log messages with a severity level of notice, info, or err as part
of a normal update. To generate log messages with a severity level of debug, you must specify the --debug
option when you run the Puppet agent.

The Junos OS provider code for the netdev_stdlib_junos module designates log entries specific to Junos
OS processing with source: JUNOS. Table 12 on page 81 describes the Puppet agent reporting logs
generated for Junos OS operations.

Table 12: Puppet Agent Reporting Logs for Devices Running Junos OS

Severity Level =~ Operation Message Content Tags

debug configuration changes Junos OS configuration changes in XML debug, config,
format. changes

debug operational updates Information concerning the operation, for debug

example: "Opening a local connection:
jex.example.com".

err commit operation failed Reason for failed commit. config, fail

info commit operation Number of configuration changes. config, commit
requested

notice configuration changes Junos OS configuration changes in a diff config, changes

format.

Table 12: Puppet Agent Reporting Logs for Devices Running Junos OS (Continued)

Severity Level = Operation Message Content Tags

notice commit operation Commit success message. config, success

successful

The following examples show sample log messages generated by a Puppet agent while performing a
configuration update.

¢ The following sample log message shows that the Puppet agent requested a commit operation

involving one change to the configuration:

- lruby/object:Puppet::Util::Log
level: !ruby/sym info
message: Committing 1 changes.
source: JUNOS
tags:
- info
- config

- commit
time: 2012-11-12 10:32:33.594720 -05:00

¢ The following sample log message shows that the Puppet agent requested the specified update to
the configuration. The message only displays the configuration differences.

- lruby/object:Puppet::Util::Log

level: !ruby/sym notice

"\nledit interfaces ge-0/0/20 unit @ family ethernet-switching]\n+ native-

message:
vlan-id Pink;"
source: JUNOS
tags:
- notice
- config

- changes
time: 2012-11-12 10:32:33.877671 -05:00

e The following sample debug log message shows that the Puppet agent requested the specified
update to the configuration. This is the same configuration request as in the previous example, but in

this case, the message displays the configuration data using XML format. To generate log messages
with a severity level of debug, you must specify the --debug option when you run the Puppet agent.

- lruby/object:Puppet::Util::Log
level: !ruby/sym debug
message: |-
<configuration>
<interfaces>
<interface>
<name>ge-0/0/20</name>
<unit>
<name>0</name>
<family>
<ethernet-switching>
<native-vlan-id>Pink</native-vlan-id>
</ethernet-switching>
</family>
</unit>
</interface>
</interfaces>
</configuration>
source: JUNOS
tags:
- debug
- config

- changes
time: 2012-11-12 10:32:33.597816 -05:00

e The following sample log message shows a successful commit operation on the agent node:

- lruby/object:Puppet::Util::Log
level: !ruby/sym notice
message: "OK: COMMIT success!"
source: JUNOS
tags:

- notice
- config

- success
time: 2012-11-12 10:32:38.945565 -05:00

Troubleshoot Puppet for Junos OS Errors

IN THIS SECTION

Troubleshooting Junos OS Configuration Exclusive Lock Errors | 84
Troubleshooting Junos OS Configuration Load Errors | 86
Troubleshooting Junos OS Configuration Commit Errors | 87
Troubleshooting Junos OS Configuration Errors | 88

Troubleshooting Agent Errors on an EX4300 Switch | 90

The following sections outline errors that you might encounter when using Puppet to manage devices
running Junos OS. These sections also present potential causes and solutions for each error.

Troubleshooting Junos OS Configuration Exclusive Lock Errors

IN THIS SECTION

Problem | 84

Cause | 85

Solution | 86
Problem
Description

The Puppet agent cannot obtain an exclusive lock on the configuration. Thus, the dependency on the
netdev_device fails causing the Puppet agent to skip configuration updates for all netdev resources.

Cause

Another user currently has the exclusive lock on the candidate configuration or is modifying the
configuration.

The following sample error output indicates that the configuration database is locked by another user:

err: JUNOS: configuration database locked by:
jeremy terminal p@ (pid 1469) on since 2012-11-12 15:57:29 UTC

exclusive {master:0}[edit]

err: /Stage[main]/Database_switch/Netdev_device[jd]: Could not evaluate: Unable to obtain Junos
configuration exclusive lock

notice: /Stage[main]/Database_switch/Netdev_12_interface[ge-0/0/11]: Dependency
Netdev_device[jd] has failures: true

warning: /Stage[main]/Database_switch/Netdev_12_interface[ge-0/0/11]: Skipping because of failed
dependencies

notice: /Stage[main]/Database_switch/Netdev_vlan[Yellow]: Dependency Netdev_device[jd] has
failures: true

warning: /Stage[main]/Database_switch/Netdev_vlan[Yellow]: Skipping because of failed
dependencies

notice: /Stage[main]/Database_switch/Netdev_12_interface[ge-0/0/1]: Dependency Netdev_device[jd]
has failures: true

warning: /Stage[main]/Database_switch/Netdev_12_interface[ge-0/0/1]: Skipping because of failed
dependencies

notice: /Stage[main]/Database_switch/Netdev_vlan[Blue]: Dependency Netdev_device[jd] has
failures: true

<.output omitted..>

The following sample error output indicates that the configuration database has modifications in
progress:

err: JUNOS: configuration database modified

err: /Stage[main]/Database_switch/Netdev_device[jd]: Could not evaluate: Unable to obtain Junos
configuration exclusive lock

notice: /Stage[main]/Database_switch/Netdev_12_interface[ge-0/0/11]: Dependency
Netdev_device[jd] has failures: true

warning: /Stage[main]/Database_switch/Netdev_12_interface[ge-0/0/11]: Skipping because of failed
dependencies

<.output omitted..>

Solution

Wait until the lock on the configuration is released. When the Puppet agent retrieves the configuration
and can obtain an exclusive lock on the configuration database, the agent updates the system
configuration accordingly.

Troubleshooting Junos OS Configuration Load Errors

IN THIS SECTION

Problem | 86

Cause | 86

Solution | 87
Problem
Description

The Puppet agent is unable to load the requested configuration changes into the candidate
configuration.

Cause

The configuration change might contain invalid syntax, elements, or values.

The following sample error output indicates that the Puppet agent attempted to set the VLAN ID to
9999, which is out of the accepted range of 1 through 4094:

notice: /Stage[main]//Node[jd.example.com]/Netdev_vlan[Bad_VLAN]/ensure: created
info: JUNOS: Committing 1 changes.
err: JUNOS: ERROR: Configuration change
<?xml version="1.0"?>
<load-configuration-results>
<rpc-error>
<error-severity>error</error-severity>

<error-info>

<bad-element>9999</bad-element>
</error-info>
<error-message>Value 9999 is not within range (1..4094)</error-message>
</rpc-error>
<load-error-count>1</load-error-count>

</load-configuration-results>

Solution

Correct the corresponding Puppet manifest file so that it contains valid configuration changes for the

agent node.

Troubleshooting Junos OS Configuration Commit Errors

IN THIS SECTION

Problem | 87

Cause | 87

Solution | 88
Problem
Description

The Puppet agent is unable to commit the requested configuration changes.

Cause

The configuration change might contain invalid syntax, elements, or values.

The following sample error output indicates that the Puppet agent attempted to associate an interface
with a nonexistent VLAN:

notice: /Stage[mainl]//Node[jd.example.com]/Netdev_12_interface[ge-0/0/21]/description:
description changed '' to 'Puppet created netdev_12_interface: ge-0/0/21'

notice: /Stage[main]//Node[jd.example.com]/Netdev_12_interface[ge-0/0/21]/untagged_vlan:
untagged_vlan changed '' to 'I_do_not_exist'

info: JUNOS: Committing 1 changes.

notice: JUNOS:

[edit interfaces ge-0/0/21 unit 0]

+ description "Puppet created netdev_12_interface: ge-0/0/21";

[edit interfaces ge-0/0/21 unit @ family ethernet-switching]

+ vlan {
+ members I_do_not_exist;
i }

err: JUNOS: ERROR: Configuration change
<?xml version="1.0"?>
<commit-results>
<rpc-error>
<error-severity>error</error-severity>
<source-daemon>eswd</source-daemon>
<error-message>Interface <ge-0> vlan member <i_do_not_exist> undefined</i_do_not_exist></
ge-0></error-message>
</rpc-error>
<rpc-error>
<error-severity>error</error-severity>
<error-message>configuration check-out failed</error-message>
</rpc-error>
</commit-results>

Solution

Correct the corresponding Puppet manifest file so that it contains valid configuration changes for the
agent node.

Troubleshooting Junos OS Configuration Errors

IN THIS SECTION

Problem | 89
Cause | 89

Solution | 89

Problem

Description

The log files indicate that the Puppet agent successfully committed the configuration, but the agent
node does not reflect the desired configuration changes.

Cause

There can be multiple reasons why the agent node does not reflect the correct configuration.
e The Puppet manifest contains incorrect configuration information.
e The Puppet agent has not yet performed the configuration update for the latest catalog.

To verify that the Puppet agent has downloaded and committed a specific catalog, issue the show
system commit operational mode command on the agent node running Junos OS to view the commit
history and catalog versions.

root@jd.example.com> show system commit

0 2013-01-29 10:50:17 EST by puppet via netconf
Puppet agent catalog: 1359474609

1 2013-01-29 10:49:54 EST by root via cli

2 2013-01-29 10:48:00 EST by puppet via netconf
Puppet agent catalog: 1359474408

3 2013-01-29 10:47:37 EST by root via cli

4 2013-01-29 10:46:57 EST by puppet via netconf
Puppet agent catalog: 1359474408

Solution

If the Puppet manifest file contains incorrect configuration changes, correct the file to include the
desired configuration changes for the agent node.

If the Puppet agent has not yet installed the changes in the latest catalog, wait until the update is made
and then verify the configuration.

Troubleshooting Agent Errors on an EX4300 Switch

IN THIS SECTION

Problem | 90

Cause | 90

Solution | 90
Problem
Description

On an EX4300 switch, the Puppet agent reports errors during a run which involves configuring a large
number of number of VLANSs. For example, you might see a “Could not send report” or "Could not run:
failed to allocate memory" message.

Cause

Memory limitation on EX4300 devices.

Solution

Divide the VLAN configuration across multiple manifest files and apply each manifest file in a separate
Puppet agent run.

For example, suppose you have 1024 VLANSs. You can split the VLAN configuration across four manifest
files (vlan1.pp, vlan2.pp, vlan3.pp, and vlan4.pp) so that each manifest file contains configuration for 256
VLANSs. Then run the Puppet agent four times, changing the node definition in the main manifest file as
follows on each agent run:

e First agent run:

node <node-name> {
netdev_device { $hostname: }

import 'vlani'

e Second agent run:

node <node-name> {
netdev_device { $hostname: }
import 'vlani'
import 'vlan2'

e Third agent run:

node <node-name> {
netdev_device { $hostname: }
import 'vlani'
import 'vlan2'

import 'vlan3'

e Fourth agent run:

node <node-name> {
netdev_device { $hostname: }
import 'vlani'
import 'vlan2'
import 'vlan3'
import 'vlan4'

Troubleshoot Connection and Certificate Errors on
Puppet Clients

IN THIS SECTION

Puppet Client Request Certificate Error | 92

Puppet Client No Certificate Found Error | 93

The following sections outline errors that you might encounter on Puppet clients running Junos OS.
These sections also present potential causes and solutions for each error.

Puppet Client Request Certificate Error

IN THIS SECTION

Problem | 92

Cause | 92

Solution | 93
Problem
Description

The Puppet client generates an error that it cannot request a certificate from the Puppet master.

% puppet agent --test
Info: Creating a new SSL key for puppet-client.example.com
Error: Could not request certificate: Invalid argument - connect(2)

Exiting; failed to retrieve certificate and waitforcert is disabled

Cause

The Puppet master might not be running an instance of the puppet master process.

On the Puppet master, review the list of active processes to determine whether the puppet master
process is running. The output should include the puppet process if it is already running.

[root@puppet-master ~1# ps aux | grep puppet
root 3328 0.0 0.0 103308 848 pts/0 S+ 12:42 0:00 grep puppet

Alternatively, on the Puppet client, telnet to the Puppet master on port 8140. If the puppet master
process is not running, the connection fails.

% telnet puppet-master.example.com 8140

Trying 198.51.100.1...

telnet: connect to address 198.51.100.1: Connection refused
telnet: Unable to connect to remote host

Solution

If the Puppet master is not running an instance of the puppet master process, start the process by
issuing the puppet master command with any required options. Then verify that the process is running.

[root@puppet-master ~]# puppet master options

[root@puppet-master ~1# ps aux | grep puppet
puppet 1785 0.0 4.4 437540 45028 ? Ssl 11:21 0:01 /opt/puppet/embedded/bin/puppet
root 3328 0.0 0.0 103308 848 pts/0 S+ 12:42 0:00 grep puppet

Puppet Client No Certificate Found Error

IN THIS SECTION

Problem | 94
Cause | 94

Solution | 94

Problem

Description

The Puppet client generates a no certificate found error and fails to download the catalog from the

Puppet master.

Exiting; no certificate found and waitforcert is disabled

Cause

The error might indicate that the certificate for the Puppet client is not signed.

Solution

On the Puppet master, sign outstanding client certificate requests using the puppet cert sign command.
For example:

[root@puppet-master]# puppet cert sign puppet-client.example.com

Notice: Signed certificate request for puppet-client.example.com

Notice: Removing file Puppet::SSL::CertificateRequest puppet-client.example.com at '/var/lib/
puppet/ssl/ca/requests/puppet-client.example.com’

See the official Puppet documentation for detailed information about Puppet commands.

	Table of Contents
	About This Guide
	Disclaimer
	Puppet for Junos OS Disclaimer

	Puppet for Junos OS Overview
	Understanding Puppet for Junos OS
	Puppet for Junos OS Supported Platforms

	Install Puppet for Junos OS
	Install Puppet for Junos OS
	Setting Up the Puppet Master
	Configuring the Puppet Agent Node
	Installing the Puppet Agent Package
	Configuring the Junos OS User Account
	Configuring the Environment Settings
	Starting the Puppet Agent Process
	Using the Puppet Agent Docker Container

	Setting Up the Puppet Configuration File on the Puppet Master and Puppet Agents Running Junos OS
	Configuring the Puppet for Junos OS Addressable Memory

	Manage Devices Running Junos OS
	Puppet Manifests for Devices Running Junos OS
	Creating Puppet Manifests Using the netdev Resources
	Example: Creating Puppet Manifests for Devices Running Junos OS
	Requirements
	Overview
	Configuration
	Verification
	Troubleshooting

	Puppet netdev Resources
	Understanding the netdev_stdlib Puppet Resource Types
	netdev_device
	netdev_interface
	netdev_l2_interface
	netdev_lag
	netdev_vlan

	Puppet for Junos OS apply_group Defined Resource Type
	Understanding the Puppet for Junos OS apply_group Defined Resource Type
	Creating Embedded Ruby Templates to Use with the Puppet for Junos OS apply_group Resource
	Declaring the Puppet for Junos OS apply_group Resource in a Manifest
	Example: Using the Puppet for Junos OS apply_group Resource to Configure Devices Running Junos OS
	Requirements
	Overview
	Configuration
	Verification

	apply_group

	Monitor and Troubleshoot Puppet for Junos OS
	Understanding Reporting for Puppet Agents Running Junos OS
	Troubleshoot Puppet for Junos OS Errors
	Troubleshooting Junos OS Configuration Exclusive Lock Errors
	Troubleshooting Junos OS Configuration Load Errors
	Troubleshooting Junos OS Configuration Commit Errors
	Troubleshooting Junos OS Configuration Errors
	Troubleshooting Agent Errors on an EX4300 Switch

	Troubleshoot Connection and Certificate Errors on Puppet Clients
	Puppet Client Request Certificate Error
	Puppet Client No Certificate Found Error

