
Graph Connect Europe 2016

‣ 26th April 2016
‣ HERE QEII Centre, Westminster, London

‣ http://www.graphconnect.com
‣ Use QCON50 to get 50% off

http://www.graphconnect.com
http://www.graphconnect.com

Building a
Recommendation Engine

with Neo4j
Michael Hunger @mesirii

created by
Mark Needham @markhneedham

(Michael)-[:WORKS_FOR]->(Neo4j)

michael@neo4j.org | @mesirii | github.com/jexp | jexp.de/blog

Michael Hunger - Community Caretaker @Neo4j

mailto:michael@neo4j.org
mailto:michael@neo4j.org

Once Upon A Time in SwedenOnce Upon a Time in Sweden

Solution

History of Neo4j

• 0.x ...
small embeddable persistent graph library

• 1.x ...
adding indexes, server, first stab of Cypher

• 2.x ...
ease of use, data-model, optional schema,
cost based optimizer, import, Neo4j-Browser

• 3.x …
binary protocol, bytecode compiled queries,
sharding

(graphs)-[:ARE]->(everywhere)

Value from Data Relationships
Common Use Cases

Internal Applications

Master Data Management

Network and
IT Operations

Fraud Detection

Customer-Facing Applications

Real-Time Recommendations

Graph-Based Search

Identity and
Access Management

http://neo4j.com/use-cases

The Whiteboard Model Is the Physical Model

CAR

DRIVES

name: "Dan"
born: May 29, 1970

twitter: "@dan"
name: "Ann"

born: Dec 5, 1975

since:
Jan 10, 2011

brand: "Volvo"
model: "V70"

Property Graph Model

Nodes
• The objects in the graph
• Can have name-value properties
• Can be labeled

Relationships
• Relate nodes by type and direction
• Can have name-value properties

LOVES

LOVES

LIVES WITH

OW
NS

PERSON PERSON

http://neo4j.com/developer/graph-database/#property-graph

Relational to Graph

Relational Graph

KNOWS

KNOWS

KNOWS

ANDREAS

TOBIAS

MICA

DELIA

Perso

n
Frien

d

Person-

Friend

ANDREAS
DELIA

TOBIAS

MICA

http://neo4j.com/developer/graph-db-vs-rdbms/

Neo4j: All About Patterns

 (:Person { name:"Dan"}) -[:LOVES]-> (:Person { name:"Ann"})

LOVES

Dan Ann

LABEL PROPERTY

NODE NODE

LABEL PROPERTY

http://neo4j.com/developer/cypher

Cypher: Find Patterns

 MATCH (:Person { name:"Dan"}) -[:LOVES]-> (love:Person) RETURN love

LOVES

Dan ?

LABEL

NODE NODE

LABEL PROPERTY ALIAS ALIAS

http://neo4j.com/developer/cypher

Introducing our data set...

meetup.com’s recommendations

Recommendation queries

‣ Several different types
• groups to join
• topics to follow
• events to attend

‣ As a user of meetup.com trying to find
groups to join, events to attend and people
to meet

How will this talk be structured?

Data ?

‣ Groups
‣ Members
‣ Events
‣ Topics
‣ Time & Date
‣ Location

Get Data: Meetup API + jq

stedolan.github.io/jq/meetup.com/meetup_api/

Find similar groups to Neo4j

As a member of the Neo4j London group

I want to find other similar meetup groups

So that I can join those groups

What makes groups similar?

As a member of the Neo4j London group

I want to find other similar meetup groups

So that I can join those groups

Find similar groups to Neo4j

LOAD CSV FROM "file:///groups.csv"

AS row

RETURN row LIMIT 5;

LOAD CSV WITH HEADERS FROM "file:///groups.csv"

AS row WITH row

WHERE row.rating > 4.5

RETURN row;

LOAD CSV

+-----------+------------------------------+----------------------------+--------+----------------

+| id | name | urlname | rating | created

|

|-----------+------------------------------+----------------------------+--------+----------------|

| 841735 | LJC - London Java Community | Londonjavacommunity | 4.54 | 1196081014000 |

| 18313232 | Kubernetes London | Kubernetes-London | 5 | 1420729836000 |

| 18581527 | data+visual London | data-visual-London | 4.67 | 1431021679000 |

| 163876 | London Web | londonweb | 4.11 | 1034097743000 |

| 15734842 | Ansible London | Ansible-London | 4.42 | 1405439359000 |

| 12963902 | Scalability London | Scalability-London | 4.95 | 1392824462000 |

| 4062902 | Ember London | London-Emberjs-User-Group | 4.66 | 1339522219000 |

+-----------+------------------------------+----------------------------+--------+----------------+

groups.csv

LOAD CSV WITH HEADERS FROM "file:///groups.csv"

AS row

CREATE (:Group { id:row.id,

 name:row.name,

 urlname:row.urlname,

 rating:toInt(row.rating),

 created:toInt(row.created) })

Create groups

LOAD CSV WITH HEADERS FROM "file:///groups.csv"

AS row

CREATE (:Group { id:row.id,

 name:row.name,

 urlname:row.urlname,

 rating:toint(row.rating),

 created:toint(row.created) })

Create groups

We use CREATE because the database is empty.

groups_topics.csv

|----------+---------------------------+--------------------------|

| id | name | urlkey |

----------+---------------------------	--------------------------	
827	.NET	dotnet
2109	System Administration	sysadmin
2260	C#	csharp
10105	Microsoft Windows	mswindows
15167	Cloud Computing	cloud-computing
46810	Configuration Management	configuration-management
52210	PowerShell	powershell
66339	Windows Azure Platform	windows-azure-platform
84706	Scripting	scripting
87614	DevOps	devops
99537	Microsoft Technology	microsoft-technology
189	Java	java
563	Open Source	opensource
----------+---------------------------+--------------------------		

LOAD CSV WITH HEADERS FROM "file:///groups_topics.csv"

AS row

MERGE (topic:Topic {id: row.id})

ON CREATE SET topic.name = row.name,

 topic.urlkey = row.urlkey

Create topics

LOAD CSV WITH HEADERS FROM "file:///groups_topics.csv"

AS row

MERGE (topic:Topic {id: row.id})

ON CREATE SET topic.name = row.name,

 topic.urlkey = row.urlkey

Create topics

We use MERGE because we want to avoid
creating duplicate topics

CREATE CONSTRAINT ON (t:Topic)

ASSERT t.id IS UNIQUE

CREATE CONSTRAINT ON (g:Group)

ASSERT g.id IS UNIQUE

Create unique constraints

CREATE CONSTRAINT ON (t:Topic)

ASSERT t.id IS UNIQUE

CREATE CONSTRAINT ON (g:Group)

ASSERT g.id IS UNIQUE

Create unique constraints

We create unique constraints to:
● ensure uniqueness across a (label,property) pair
● allow fast lookup of nodes which match these

(label,property) pairs.

How does Neo4j use indexes?

Indexes are only used to find the starting
point for queries.

Use index scans to look up rows in tables
and join them with rows from other tables

Use indexes to find the starting
points for a query.

Relational Graph

|----------+-----------|

| id | groupId |

|----------+-----------|

| 827 | 18780165 |

| 2109 | 18780165 |

| 2260 | 18780165 |

| 10105 | 18780165 |

| 15167 | 18780165 |

| 46810 | 18780165 |

| 52210 | 18780165 |

|----------+-----------|

Groups and topics

LOAD CSV WITH HEADERS FROM "file:///groups_topics.csv"

AS row

MATCH (topic:Topic {id: row.id})

MATCH (group:Group {id: row.groupId})

MERGE (group)-[:HAS_TOPIC]->(topic)

Connect groups and topics

LOAD CSV WITH HEADERS FROM "file:///groups_topics.csv"

AS row

MATCH (topic:Topic {id: row.id})

MATCH (group:Group {id: row.groupId})

MERGE (group)-[:HAS_TOPIC]->(topic)

Connect groups and topics

We can use MERGE to uniquely create
relationships as well

CREATE INDEX ON :Group(name)

Create index

CREATE INDEX ON :Group(name)

Create index

We create an index on :Group(name) so that
we can quickly look up groups by name.

Find similar groups to Neo4j

MATCH (group:Group {name: "Neo4j - London User Group"})
 -[:HAS_TOPIC]->(topic)<-[:HAS_TOPIC]-(otherGroup)
RETURN otherGroup.name,
 COUNT(topic) AS topicsInCommon,
 COLLECT(topic.name) AS topics
ORDER BY topicsInCommon DESC, otherGroup.name
LIMIT 10

Find similar groups to Neo4j

I’m already a member of these!

Exclude groups I’m a member of

As a member of the Neo4j London group

I want to find other similar meetup groups
that I’m not already a member of

So that I can join those groups

What other data can we get?

Exclude groups I’m a member of

As a member of the Neo4j London group

I want to find other similar meetup groups
that I’m not already a member of

So that I can join those groups

|------------+--------------------+---------------|

| id | name | joined |

|------------+--------------------+---------------|

| 103929052 | A | 1378461129000 |

| 11337881 | Abhishek Shivkumar | 1421419313000 |

| 39676622 | Ali Syed | 1395723669000 |

| 2773509 | Amit | 1407935487000 |

| 30225872 | Attila Sztupak | 1378812292000 |

| 12882650 | Cathy White | 1423566263000 |

| 109548702 | Danny Bickson | 1378196635000 |

|------------+--------------------+---------------|

members.csv

Create members

LOAD CSV WITH HEADERS FROM "file:///path/to/members.csv" AS row

WITH DISTINCT row.id AS id, row.name AS name

MERGE (member:Member {id: id})

ON CREATE SET member.name = name

|------------+-----------|

| id | groupId |

|------------+-----------|

| 103929052 | 10087112 |

| 11337881 | 10087112 |

| 39676622 | 10087112 |

| 2773509 | 10087112 |

| 30225872 | 10087112 |

| 12882650 | 10087112 |

| 109548702 | 10087112 |

|------------+-----------|

Members and groups

LOAD CSV WITH HEADERS FROM "file:///path/to/members.csv" AS row

WITH row WHERE NOT row.joined is null

MATCH (member:Member {id: row.id})

MATCH (group:Group {id: row.groupId})

MERGE (member)-[:MEMBER_OF {joined: toint(row.joined)}]->(group)

Connect members and groups

Exclude groups I’m a member of

MATCH (group:Group {name: "Neo4j - London User Group"})
 -[:HAS_TOPIC]->(topic)<-[:HAS_TOPIC]-(otherGroup:Group)
RETURN otherGroup.name,
 COUNT(topic) AS topicsInCommon,
 EXISTS((:Member {name: "Mark Needham"})
 -[:MEMBER_OF]->(otherGroup)) AS alreadyMember,
 COLLECT(topic.name) AS topics
ORDER BY topicsInCommon DESC
LIMIT 10

Exclude groups I’m a member of

Exclude groups I’m a member of

MATCH (group:Group {name: "Neo4j - London User Group"})
 -[:HAS_TOPIC]->(topic)<-[:HAS_TOPIC]-(otherGroup:Group)
WHERE NOT((:Member {name: "Mark Needham"})
 -[:MEMBER_OF]->(otherGroup))
RETURN otherGroup.name,
 COUNT(topic) AS topicsInCommon,
 COLLECT(topic.name) AS topics
ORDER BY topicsInCommon DESC
LIMIT 10

Exclude groups I’m a member of

Find my similar groups

As a member of several meetup groups

I want to find other similar meetup groups

that I’m not already a member of

So that I can join those groups

Find my similar groups

As a member of several meetup groups

I want to find other similar meetup groups

that I’m not already a member of

So that I can join those groups

|------------+--|

| id | topics |

|------------+--|

| 103929052 | 18062;563;16575;20923;3833;108403;1307;10099 |

| 11337881 | 1372;1512;49585;24553;417;24778;25584;23005 |

| 39676622 | |

| 2773509 | |

| 30225872 | 48471;22792;58162;1762 |

| 12882650 | 563;3833;9696;659;1621,48471;22792 |

| 109548702 | 21681;30928;18062;5532,55324;15167;108403 |

|------------+--|

Members and topics

USING PERIODIC COMMIT 10000

LOAD CSV WITH HEADERS FROM "file:///path/to/members.csv" AS row

WITH split(row.topics, ";") AS topics, row.id AS memberId

UNWIND topics AS topicId

MATCH (member:Member {id: memberId})

MATCH (topic:Topic {id: topicId})

MERGE (member)-[:INTERESTED_IN]->(topic)

Connect members and topics

Find my similar groups

MATCH (member:Member {name: "Mark Needham"})
 -[:INTERESTED_IN]->(topic),
 (member)-[:MEMBER_OF]->(group)-[:HAS_TOPIC]->(topic)

WITH member, topic, COUNT(*) AS score
MATCH (topic)<-[:HAS_TOPIC]-(otherGroup)
WHERE NOT (member)-[:MEMBER_OF]->(otherGroup)
RETURN otherGroup.name,
 COLLECT(topic.name),
 SUM(score) as score
ORDER BY score DESC

Find my similar groups

Interests

What am I actually interested in?

There’s an implicit INTERESTED_IN relationship
between the topics of groups I belong to but
don’t express an interest in. Let’s make it explicit

What am I actually interested in?

There’s an implicit INTERESTED_IN relationship
between the topics of groups I belong to but
don’t express an interest in. Let’s make it explicit

P

G

T

MEMBER_OF

HAS_TOPIC

P

G

T

MEMBER_OF

HAS_TOPIC

INTERESTED_IN

What am I actually interested in?

MATCH (m:Member)-[:RSVPD {response:"yes"}]->(event)
 <-[:HOSTED_EVENT]->()-[:HAS_TOPIC]->(topic)

WITH m, topic,
 COUNT(*) AS times

WHERE times > 5

RETURN m.name, topic.name, times
ORDER BY times DESC

What am I actually interested in?

MATCH (m:Member)-[:RSVPD {response:"yes"}]->(event)
 <-[:HOSTED_EVENT]->()-[:HAS_TOPIC]->(topic)

WITH m, topic,
 COUNT(*) AS times,
 COLLECT(event.name) AS events

WHERE times > 5

AND NOT (m)-[:INTERESTED_IN]->(topic)
MERGE (m)-[:INTERESTED_IN]->(topic)

What am I actually interested in?

Finally, Events!

Now - let’s recommend events!

Events in my groups

As a member of several meetup groups

I want to find other events hosted by

those groups

So that I can attend those events

Events in my groups

As a member of several
meetup groups

I want to find other events

hosted by those groups

So that I can attend those
events

Events

|---------------+---+---------------+-------------|
| id | name | time | utc_offset |
|---------------+---+---------------+-------------|
3261890	London Web Design October Meetup	1097776800000	3600000
3492560	London Web Design November Meetup	1100199600000	0
3683911	London Web Design December Meetup	1102618800000	0
4339054	The London Web Design March Meetup	1113413400000	3600000
4825171	The London PHP January Meetup	1136487600000	0
4795898	January Meetup	1137006000000	0
4826924	The London PHP February Meetup	1138906800000	0
4832622	The London Web Design February Meetup	1140030000000	0
8646860	JAVAWUG BOF 40 JQuantLib	1221672600000	3600000
8689280	PHP London October Meetup	1222972200000	3600000
8730923	The London Cloud Computing October Meetu	1223488800000	3600000
8879609	JWUG BOF41 Web Applications and RESTful	1224523800000	3600000
8921257	OSGi for the Web Developer followed by f	1225217700000	0
---------------+---+---------------+-------------			

CREATE INDEX ON :Event(id)

CREATE INDEX ON :Event(time)

LOAD CSV WITH HEADERS FROM "file:///events.csv" AS row

MERGE (event:Event {id: row.id})

ON CREATE SET event.name = row.name,

 event.time = toint(row.time),

 event.utcOffset = toint(row.utc_offset)

Create events

Events and groups

|---------------+-----------|
| id | group_id |
|---------------+-----------|
3261890	163876
3492560	163876
3683911	163876
3857967	163876
4339054	163876
4572794	163876
4709866	163876
4772985	163876
4785678	163876
4825171	218194
4826924	218194
4832622	163876
4846072	218194
---------------+-----------	

Connect events and groups

LOAD CSV WITH HEADERS FROM "file:///events.csv" AS row

MATCH (group:Group {id: row.group_id})

MATCH (event:Event {id: row.id})

MERGE (group)-[:HOSTED_EVENT]->(event)

WITH 24.0*60*60*1000 AS oneDay

MATCH (member:Member {name: "Mark Needham"}),

 (member)-[:MEMBER_OF]->(group),

 (group)-[:HOSTED_EVENT]->(futureEvent)

WHERE futureEvent.time >= timestamp()

RETURN group.name, futureEvent.name,

 round((futureEvent.time - timestamp()) / oneDay) AS days

ORDER BY days

LIMIT 10

Events in my groups

Events in my groups

Events in my groups

Events in my groups

Layered recommendations

We can improve our recommendation by
weighting different attributes:

‣ events in my groups
‣ events I’ve previously attended
‣ topics I’m interested in
‣ events my peers attend

Events in my groups

We can improve our recommendation by
weighting different attributes:

‣ events in my groups
‣ events I’ve previously attended
‣ topics I’m interested in
‣ events my peers attend

WITH 24.0*60*60*1000 AS oneDay

MATCH (member:Member {name: "Mark Needham"})

MATCH (futureEvent:Event) WHERE futureEvent.time >= timestamp()

MATCH (futureEvent)<-[:HOSTED_EVENT]-(group)

RETURN group.name,

 futureEvent.name,

 EXISTS((group)<-[:MEMBER_OF]-(member)) AS isMember,

 round((futureEvent.time - timestamp()) / oneDay) AS days

ORDER BY isMember DESC, days

Events in my groups

Events in my groups

+ previous events attended

We can improve our recommendation by
weighting different attributes:

‣ events in my groups
‣ events I’ve previously attended
‣ topics I’m interested in
‣ events my peers attend

+ previous events attended

As a member of several meetup
groups who has previously
attended events

I want to find other events

hosted by those groups

So that I can attend those events

RSVPs

|------------+-----------+-----------+--------+----------+---------------+----------------|
| rsvp_id | event_id | member_id | guests | response | created | mtime |
|------------+-----------+-----------+--------+----------+---------------+----------------|
654924042	100056812	65110402	0	yes	1358436329000	1358436329000
666200862	100056812	32158012	0	yes	1359212092000	1359212092000
655045942	100056812	45574682	0	yes	1358442847000	1358442847000
654946622	100056812	64073592	0	yes	1358437486000	1358437486000
696456002	100056812	70201982	0	yes	1361279846000	1361279846000
689115982	100056812	12434405	0	yes	1360748670000	1360748670000
654924112	100056812	34168592	0	no	1358436332000	1358436332000
654925662	100056812	3401490	0	no	1358436413000	1360361799000
656439652	100056812	12252389	0	no	1358533048000	1361197297000
689112692	100056812	76908802	0	yes	1360748069000	1360748069000
690924922	100056812	10704191	0	yes	1360876122000	1360876122000
690834812	100056812	71296302	0	yes	1360871204000	1360871204000
691120252	100056812	71730512	0	yes	1360888294000	1360888294000
------------+-----------+-----------+--------+----------+---------------+----------------						

LOAD CSV WITH HEADERS FROM "file:///rsvps.csv" AS row

MATCH (member:Member {id: row.member_id})

MATCH (event:Event {id: row.event_id})

MERGE (member)-[rsvp:RSVPD {id: row.rsvp_id}]->(event)

ON CREATE SET rsvp.created = toint(row.created),

 rsvp.lastModified = toint(row.mtime),

 rsvp.response = row.response;

Create RSVPs

+ previous events attended
WITH 24.0*60*60*1000 AS oneDay

MATCH (member:Member {name: "Mark Needham"})

MATCH (futureEvent:Event) WHERE futureEvent.time >= timestamp()

MATCH (futureEvent)<-[:HOSTED_EVENT]-(group)

WITH oneDay, group, futureEvent, member, EXISTS((group)<-[:MEMBER_OF]-(member)) AS isMember

OPTIONAL MATCH (member)-[rsvp:RSVPD {response: "yes"}]->(pastEvent)<-[:HOSTED_EVENT]-(group)

WHERE pastEvent.time < timestamp()

RETURN group.name,

 futureEvent.name,

 isMember,

 COUNT(rsvp) AS previousEvents,

 round((futureEvent.time - timestamp()) / oneDay) AS days

ORDER BY days, previousEvents DESC

+ previous events attended

RSVP_YES vs RSVPD

I was curious whether refactoring
RSVPD {response: "yes"} to RSVP_YES would have
any impact as Neo4j is optimised for querying
by unique relationship types.

RSVP_YES vs RSVPD

MATCH (m:Member)-[rsvp:RSVPD {response:"yes"}]->(event)

MERGE (m)-[rsvpYes:RSVP_YES {id: rsvp.id}]->(event)

ON CREATE SET rsvpYes.created = rsvp.created,

 rsvpYes.lastModified = rsvp.lastModified;

MATCH (m:Member)-[rsvp:RSVPD {response:"no"}]->(event)

MERGE (m)-[rsvpYes:RSVP_NO {id: rsvp.id}]->(event)

ON CREATE SET rsvpYes.created = rsvp.created,

 rsvpYes.lastModified = rsvp.lastModified;

RSVP_YES vs RSVPD

RSVPD {response: "yes"}

vs

RSVP_YES

Cypher version: CYPHER 2.3,
planner: COST.
688635 total db hits in 232 ms.

Cypher version: CYPHER 2.3,
planner: COST.
559866 total db hits in 207 ms.

+ my topics

We can improve our recommendation by
weighting different attributes:

‣ events in my groups
‣ events I’ve previously attended
‣ topics I’m interested in
‣ events my peers attend

+ my topics
WITH 24.0*60*60*1000 AS oneDay

MATCH (member:Member {name: "Mark Needham"})

MATCH (futureEvent:Event) WHERE futureEvent.time >= timestamp()

MATCH (futureEvent)<-[:HOSTED_EVENT]-(group)

WITH oneDay, group, futureEvent, member, EXISTS((group)<-[:MEMBER_OF]-(member)) AS isMember

OPTIONAL MATCH (member)-[rsvp:RSVPD {response: "yes"}]->(pastEvent)<-[:HOSTED_EVENT]-(group)

WHERE pastEvent.time < timestamp()

WITH oneDay, group, futureEvent, member, isMember, COUNT(rsvp) AS previousEvents

OPTIONAL MATCH (futureEvent)<-[:HOSTED_EVENT]-()-[:HAS_TOPIC]->(topic)<-[:INTERESTED_IN]-(member)

RETURN group.name, futureEvent.name, isMember, previousEvents,

 COUNT(topic) AS topics, round((futureEvent.time - timestamp()) / oneDay) AS days

ORDER BY days,previousEvents DESC, topics DESC

+ my topics

+ events my friends are attending

We can improve our recommendation by
weighting different attributes:

‣ events in my groups
‣ events I’ve previously attended
‣ topics I’m interested in
‣ events my peers attend

+ events my friends are attending

There’s an implicit FRIENDS relationship
between people who attended the same events.
Let’s make it explicit.

+ events my friends are attending

There’s an implicit FRIENDS relationship
between people who attended the same events.
Let’s make it explicit.

M

E

M

RSVPD

RSVPD

FRIENDS

M

E

M

RSVPD

RSVPD

+ events my friends are attending

MATCH (m1:Member)
WHERE NOT m1:Processed

WITH m1 LIMIT {limit}
MATCH (m1)-[:RSVP_YES]->(event:Event)<-[:RSVP_YES]-(m2:Member)

WITH m1, m2, COLLECT(event) AS events, COUNT(*) AS times
WHERE times >= 5

WITH m1, m2, times, [event IN events | SIZE((event)<-[:RSVP_YES]-())] AS attendances

WITH m1, m2, REDUCE(score = 0.0, a IN attendances | score + (1.0 / a)) AS score

RETURN ID(m1) AS m1, ID(m2) AS m2, score

+ events my friends are attending

UNWIND {rows} AS row

MATCH (m1), (m2)
WHERE ID(m1) = row.m1 AND ID(m2) = row.m2

MERGE (m1)-[friendsRel:FRIENDS]-(m2)
SET friendsRel.score = row.score

SET m1:Processed

rows
[
 ...
 {
 "m1": 12345,
 "m2": 678912,
 "score": 0.23471
 },
 ...
]

Bidirectional relationships

‣ You may have noticed that we didn’t specify a
direction when creating the relationship
MERGE (m1)-[:FRIENDS]-(m2)

‣ FRIENDS is a bidirectional relationship. We only
need to create it once between two people.

‣ We ignore the direction when querying

+ events my friends are attending
WITH 24.0*60*60*1000 AS oneDay
MATCH (member:Member {name: "Mark Needham"})
MATCH (futureEvent:Event) WHERE futureEvent.time >= timestamp()
MATCH (futureEvent)<-[:HOSTED_EVENT]-(group)

WITH oneDay, group, futureEvent, member, EXISTS((group)<-[:MEMBER_OF]-(member)) AS isMember
OPTIONAL MATCH (member)-[rsvp:RSVPD {response: "yes"}]->(pastEvent)<-[:HOSTED_EVENT]-(group)
WHERE pastEvent.time < timestamp()

WITH oneDay, group, futureEvent, member, isMember, COUNT(rsvp) AS previousEvents
OPTIONAL MATCH (futureEvent)<-[:HOSTED_EVENT]-()-[:HAS_TOPIC]->(topic)<-[:INTERESTED_IN]-(member)

WITH oneDay, group, futureEvent, member, isMember, previousEvents, COUNT(topic) AS topics
OPTIONAL MATCH (member)-[:FRIENDS]-(:Member)-[rsvpYes:RSVP_YES]->(futureEvent)

RETURN group.name, futureEvent.name, isMember, round((futureEvent.time - timestamp()) / oneDay) AS days,
 previousEvents, topics, COUNT(rsvpYes) AS friendsGoing
ORDER BY days, friendsGoing DESC, previousEvents DESC
LIMIT 15

+ events my friends are attending

Scoring

We’re using a simple count based scoring
ordering.

In a production system we might apply
something more sophisticated e.g. log or
Pareto function

Real time recommendations

Real time recommendations
{
 "venue": {
 "venue_id": 14544952
 },
 "response": "no",
 "guests": 0,
 "member": { "member_id": 54585732 },
 "rsvp_id": 1579878700,
 "mtime": 1448705224460,
 "event": {
 "event_id": "226676071",
 },
 "group": {
 "group_id": 8501832,
 }
}

Real time recommendations

import requests
import json

def stream_meetup():
 r = requests.get('http://stream.meetup.com/2/rsvps', stream=True)
 for raw_rsvp in r.iter_lines():
 if raw_rsvp:
 yield raw_rsvp

Real time recommendations

from py2neo import authenticate, Graph

authenticate("localhost:7474", "neo4j", "test")
graph = Graph()

group_ids = []
group_query = "MATCH (g:Group) RETURN g.id AS groupId"
for row in graph.cypher.execute(group_query):
 group_ids.append(int(row["groupId"]))

Real time recommendations
for rsvp in stream_meetup():
 if rsvp["group"]["group_id"] in group_ids:
 params = { "rsvp_id": str(rsvp["rsvp_id"]),
 "event_id": str(rsvp["event"]["event_id"]),
 "member_id": str(rsvp["member"]["member_id"]),
 "response": rsvp["response"],
 "mtime": rsvp["mtime"] }
 graph.cypher.execute("""
 MATCH (event:Event {id: {event_id}})
 MATCH (member:Member {id: {member_id}})
 MERGE (member)-[rsvpRel:RSVPD {id: {rsvp_id}}]->(event)
 ON CREATE SET rsvpRel.created = toint({mtime})
 ON MATCH SET rsvpRel.lastModified = toint({mtime})
 SET rsvpRel.response = {response}""", params)

What could we do next?

‣ Comments sentiment analysis
• do people actually like the events they go to?

‣ Topic ontology
• how are topics related? e.g. Neo4j, Cassandra,

MongoDB are part of NoSQL

‣ Event similarity based on descriptions
• use automated topic derivation to derive categories

What could we do next?

‣ Social network
• what events do our twitter/Facebook friends attend?

‣ Location
• do we favour events in a certain part of town?

‣ Day of the week
• do we only go to events on certain days of the week?

• do we go to different events on weekdays vs

weekend?

Why Neo4j for recommendations?

‣ Real time
• take into account what you’ve just done

‣ Flexibility
• bring information from different sources and evolve data model as

needed for use-cases
• easily combine collaborative + content filtering in a single query

‣ Intuitive query language
• focus on describing the domain problem. Even non technical users

can read our queries.

That’s all for today!
Questions? :-)

Michael Hunger @mesirii
created by

Mark Needham @markhneedham
https://github.com/neo4j-meetups/modeling-worked-example

https://github.com/neo4j-meetups/modeling-worked-example
https://github.com/neo4j-meetups/modeling-worked-example

Graph Connect Europe 2016

‣ 26th April 2016
‣ HERE QEII Centre, Westminster, London

‣ http://www.graphconnect.com
‣ Use QCON50 to get 50% off

http://www.graphconnect.com
http://www.graphconnect.com

Data Dump

