
1 Chapter 27 Formal Specification

©Ian Sommerville 2009

27 Formal Specification

Objectives

The objective of this chapter is to introduce formal specification techniques
that can be used to add detail to a system requirements specification.
When you have read this chapter, you will:

understand why formal specification techniques help discover problems
in system requirements;

understand the use of algebraic techniques of formal specification to
define interface specifications;

understand how formal, model-based formal techniques are used for
behavioral specification.

Contents

27.1 Formal specification in the software process
27.2 Sub-system interface specification
27.3 Behavioral specification

 Chapter 27 Formal Specification 2

©Ian Sommerville 2009

In ‘traditional’ engineering disciplines, such as electrical and civil engineering,
progress has usually involved the development of better mathematical techniques.
The engineering industry has had no difficulty accepting the need for mathematical
analysis and in incorporating mathematical analysis into its processes.
Mathematical analysis is a routine part of the process of developing and validating
a product design.

However, software engineering has not followed the same path. Although
there has now been more than 30 years of research into the use of mathematical
techniques in the software process, these techniques have had a limited impact. So-
called formal methods of software development are not widely used in industrial
software development. Most software development companies do not consider it
cost-effective to apply them in their software development processes.

The term ‘formal methods’ is used to refer to any activities that rely on
mathematical representations of software including formal system specification,
specification analysis and proof, transformational development, and program
verification. All of these activities are dependent on a formal specification of the
software. A formal software specification is a specification expressed in a language
whose vocabulary, syntax and semantics are formally defined. This need for a
formal definition means that the specification languages must be based on
mathematical concepts whose properties are well understood. The branch of
mathematics used is discrete mathematics and the mathematical concepts are drawn
from set theory, logic and algebra.

 In the 1980s, many software engineering researchers proposed that using
formal development methods was the best way to improve software quality. They
argued that the rigour and detailed analysis that are an essential part of formal
methods would lead to programs with fewer errors and which were more suited to
users’ needs. They predicted that, by the 21st century, a large proportion of
software would be developed using formal methods.

Clearly, this prediction has not come true. There are four main reasons for
this:

1. Successful software engineering The use of other software engineering
methods such as structured methods, configuration management and
information hiding in software design and development processes have
resulted in improvements in software quality. People who suggested that the
only way to improve software quality was by using formal methods were
clearly wrong.

2. Market changes In the 1980s, software quality was seen as the key software
engineering problem. However, since then, the critical issue for many
classes of software development is not quality but time-to-market. Software
must be developed quickly, and customers are sometimes willing to accept
software with some faults if rapid delivery can be achieved. Techniques for
rapid software development do not work effectively with formal
specifications. Of course, quality is still an important factor but it must be
achieved in the context of rapid delivery.

3 Chapter 27 Formal Specification

©Ian Sommerville 2009

3. Limited scope of formal methods Formal methods are not well suited to
specifying user interfaces and user interaction. The user interface
component has become a greater and greater part of most systems, so you
can only really use formal methods when developing the other parts of the
system.

4. Limited scalability of formal methods Formal methods still do not scale up
well. Successful projects that have used these techniques have mostly been
concerned with relatively small, critical kernel systems. As systems increase
in size, the time and effort required to develop a formal specification grows
disproportionately.

These factors mean that most software development companies have been
unwilling to risk using formal methods in their development process. However,
formal specification is an excellent way of discovering specification errors and
presenting the system specification in an unambiguous way. Organizations that
have made the investment in formal methods have reported fewer errors in the
delivered software without an increase in development costs. It seems that formal
methods can be cost-effective if their use is limited to core parts of the system and
if companies are willing to make the high initial investment in this technology.

The use of formal methods is increasing in the area of critical systems
development, where emergent system properties such as safety, reliability and
security are very important. The high cost of failure in these systems means that
companies are willing to accept the high introductory costs of formal methods to
ensure that their software is as dependable as possible. As I discuss in Chapter 24,
critical systems have very high validation costs and the costs of system failure are
large and increasing. Formal methods can reduce these costs.

 Critical systems where formal methods have been applied successfully
include an air traffic control information system (Hall, 1996), railway signalling
systems (Dehbonei and Mejia, 1995), spacecraft systems (Easterbrook, et al., 1998)
and medical control systems (Jacky, 1995, Jacky, et al., 1997). They have also been
used for software tool specification (Neil, et al., 1998), the specification of part of
IBM’s CICS system (Wordsworth, 1991) and a real-time system kernel (Spivey,
1990). The Cleanroom method of software development (Prowell, et al., 1999),
relies on formally based arguments that code conforms to its specification. Because
reasoning about the security of a system is also possible if a formal specification is
developed, it is likely that secure systems will be an important area for formal
methods use (Hall and Chapman, 2002).

27.1 Formal specification in the software process

Critical systems development usually involves a plan-based software process that is
based on the waterfall model of development discussed in Chapter 4. Both the
system requirements and the system design are expressed in detail and carefully
analysed and checked before implementation begins. If a formal specification of

 Chapter 27 Formal Specification 4

©Ian Sommerville 2009

the software is developed, this usually comes after the system requirements have
been specified but before the detailed system design. There is a tight feedback loop
between the detailed requirements specification and the formal specification. As I
discuss later, one of the main benefits of formal specification is its ability to
uncover problems and ambiguities in the system requirements.

The involvement of the client decreases and the involvement of the
contractor increases as more detail is added to the system specification. In the early
stages of the process, the specification should be ‘customer-oriented’. You should
write the specification so that the client can understand it, and you should make as
few assumptions as possible about the software design. However, the final stage of
the process, which is the construction of a complete, consistent and precise
specification, is principally intended for the software contractor. It precisely
specifies the details of the system implementation. You may use a formal language
at this stage to avoid ambiguity in the software specification.

Figure 27.1 shows the stages of software specification and its interface with
the design process. The specification stages shown in Figure 27.1 are not
independent nor are they necessarily developed in the sequence shown. Figure 27.2
shows specification and design activities may be carried out in parallel streams.
There is a two-way relationship between each stage in the process. Information is
fed from the specification to the design process and vice versa.

As you develop the specification in detail, your understanding of that
specification increases. Creating a formal specification forces you to make a
detailed systems analysis that usually reveals errors and inconsistencies in the
informal requirements specification. This error detection is probably the most

Figure 27.1
Specification
and design

Increasing contractor involvement

Decreasing client involvement

Specification

Design

User
requirements

definition

System
requirements
specification

Architectural
design

Formal
specification

High-level
design

Figure 27.2
Formal
specification in the
software process

System
requirements
specification

Formal
specification

High-level
design

User
requirements

definition

System
modelling

Architectural
design

5 Chapter 27 Formal Specification

©Ian Sommerville 2009

potent argument for developing a formal specification (Hall, 1990). It helps you
discover requirements problems that can be very expensive to correct later.

Depending on the process used, specification problems discovered during
formal analysis might influence changes to the requirements specification if this
has not already been agreed. If the requirements specification has been agreed and
is included in the system development contract, you should raise the problems that
you have found with the customer. It is then up to the customer to decide how they
should be resolved before you start the system design process.

Developing and analysing a formal specification front-loads software
development costs. Figure 27.3 shows how software process costs are likely to be
affected by the use of formal specification. When a conventional process is used,
validation costs are about 50% of development costs, and implementation and
design costs are about twice the costs of specification. With formal specification,
specification and implementation costs are comparable and system validation costs
are significantly reduced. As the development of the formal specification uncovers
requirements problems, rework to correct these problems after the system has been
designed is avoided.

Two fundamental approaches to formal specification have been used to
write detailed specifications for industrial software systems. These are:

1. An algebraic approach where the system is described in terms of operations
and their relationships.

2. A model-based approach where a model of the system is built using
mathematical constructs such as sets and sequences and the system
operations are defined by how they modify the system state.

Different languages in these families have been developed to specify
sequential and concurrent systems. Figure 27.4 shows examples of the languages in

Figure 27.3
Software
development costs
with formal
specification

Specification

Specification

Design and
implementation

Design and
implementation

Validation

Validation

Cost

 Chapter 27 Formal Specification 6

©Ian Sommerville 2009

each of these classes. You can see from this table that most of these languages were
developed in the 1980s. It takes several years to refine a formal specification
language, so most formal specification research is now based on these languages
and is not concerned with inventing new notations.

In this chapter, my aim is to introduce both algebraic and model-based
approaches. The examples here should give you an idea of how formal
specification results in a precise, detailed specification, but I don’t discuss
specification language details, specification techniques or methods of program
verification. You can download a more detailed description of both algebraic and
model-based techniques from the book’s website.

27.2 Sub-system interface specification

Large systems are usually decomposed into sub-systems that are developed
independently. Sub-systems make use of other sub-systems, so an essential part of
the specification process is to define sub-system interfaces. Once the interfaces are
agreed and defined, the sub-systems can be developed independently.

Sub-system interfaces are often defined as a set of objects or components
(Figure 27.5). These describe the data and operations that can be accessed through
the sub-system interface. You can therefore define a sub-system interface
specification by combining the specifications of the objects that make up the
interface.

Precise sub-system interface specifications are important because sub-
system developers must write code that uses the services of other sub-systems

 Sequential Concurrent

Algebraic Larch (Guttag, et al., 1993),
OBJ (Futatsugi, et al., 1985)

Lotos (Bolognesi and Brinksma,
1987),

Model-based Z (Spivey, 1992)
VDM (Jones, 1980)
B (Wordsworth, 1996)

CSP (Hoare, 1985)
Petri Nets (Peterson, 1981)

Figure 27.4
Formal
specification
languages

Figure 27.5
Sub-system
interface
objects

Interface
objects

Sub-system
A

Sub-system
B

7 Chapter 27 Formal Specification

©Ian Sommerville 2009

before these have been implemented. The interface specification provides
information for sub-system developers so that they know what services will be
available in other sub-systems and how these can be accessed. Clear and
unambiguous sub-system interface specifications reduce the chances of
misunderstandings between a sub-system providing some service and the sub-
systems using that service.

The algebraic approach was originally designed for the definition of abstract
data type interfaces. In an abstract data type, the type is defined by specifying the
type operations rather than the type representation. Therefore, it is similar to an
object class. The algebraic method of formal specification defines the abstract data
type in terms of the relationships between the type operations.

Guttag (Guttag, 1977) first discussed this approach in the specification of
abstract data types. Cohen et al. (Cohen, et al., 1986) show how the technique can
be extended to complete system specification using an example of a document
retrieval system. Liskov and Guttag (Liskov and Guttag, 1986) also cover the
algebraic specification of abstract data types.

The structure of an object specification is shown in Figure 27.6. The body of
the specification has four components.

1. An introduction that declares the sort (the type name) of the entity being
specified. A sort is the name of a set of objects with common characteristics.
It is similar to a type in a programming language. The introduction may also
include an ‘imports’ declaration, where the names of specifications defining
other sorts are declared. Importing a specification makes these sorts
available for use.

2. A description part, where the operations are described informally. This
makes the formal specification easier to understand. The formal
specification complements this description by providing an unambiguous
syntax and semantics for the type operations.

3. The signature part defines the syntax of the interface to the object class or
abstract data type. The names of the operations that are defined, the number
and sorts of their parameters, and the sort of operation results are described
in the signature.

Figure 27.6 The
structure of an
algebraic
specification

sort < name >
imports < LIST OF SPECIFICATION NAMES >

Informal description of the sort and its operations

Operation signatures setting out the names and the types of
the parameters to the operations defined over the sort

Axioms defining the operations over the sort

< SPECIFICATION NAME >

 Chapter 27 Formal Specification 8

©Ian Sommerville 2009

4. The axioms part defines the semantics of the operations by defining a set of
axioms that characterize the behavior of the abstract data type. These
axioms relate the operations used to construct entities of the defined sort
with operations used to inspect its values.

The process of developing a formal specification of a sub-system interface
includes the following activities:

1. Specification structuring Organize the informal interface specification into a
set of abstract data types or object classes. You should informally define the
operations associated with each class.

2. Specification naming Establish a name for each abstract type specification,
decide whether or not they require generic parameters and decide on names
for the sorts identified.

3. Operation selection Choose a set of operations for each specification based
on the identified interface functionality. You should include operations to
create instances of the sort, to modify the value of instances and to inspect
the instance values. You may have to add functions to those initially
identified in the informal interface definition.

4. Informal operation specification Write an informal specification of each
operation. You should describe how the operations affect the defined sort.

 5. Syntax definition Define the syntax of the operations and the parameters to
each operation. This is the signature part of the formal specification. You
should update the informal specification at this stage if necessary.

6. Axiom definition Define the semantics of the operations by describing what
conditions are always true for different operation combinations.

To explain the technique of algebraic specification, I use an example of a
simple data structure (a linked list) as shown in Figure 27.7. Linked lists are
ordered data structures where each element includes a link to the following element
in the structure. I have used a simple list with only a few associated operations so
that the discussion here is not too long. In practice, object classes defining a list
would probably have more operations

Assume that the first stage of the specification process, namely specification
structuring, has been carried out and that the need for a list has been identified. The
name of the specification and the name of the sort can be the same, although it is
useful to distinguish between these by using some convention. I use uppercase for
the specification name (LIST) and lowercase with an initial capital for the sort name
(List). As lists are collections of other types, the specification has a generic
parameter (Elem). The name Elem can represent any type: integer, string, list, and
so on.

In general, for each abstract data type, the required operations should
include an operation to bring instances of the type into existence (Create) and to
construct the type from its basic elements (Cons). In the case of lists, there should
be an operation to evaluate the first list element (Head), an operation that returns

9 Chapter 27 Formal Specification

©Ian Sommerville 2009

the list created by removing the first element (Tail) and an operation to count the
number of list elements (Length).

To define the syntax of each of these operations, you must decide which
parameters are required for the operation and the results of the operation. In
general, input parameters are either the sort being defined (List) or the generic sort
(Elem). The results of operations may be either of those sorts or some other sort
such as Integer or Boolean. In the list example, the Length operation returns an
integer. Therefore, you must include an ‘imports’ declaration, declaring that the
specification of integer is used in the specification.

To create the specification, you define a set of axioms that apply to the
abstract type and these specify its semantics. You define the axioms using the
operations defined in the signature part. These axioms specify the semantics by
setting out what is always true about the behavior of entities with that abstract type.

Operations on an abstract data type usually fall into two classes.

1. Constructor operations that create or modify entities of the sort defined in
the specification. Typically, these are given names such as Create, Update,
Add or, in this case, Cons, meaning construct.

2. Inspection operations that evaluate attributes of the sort defined in the
specification. Typically, these are given names such as Eval or Get.

 A good rule of thumb for writing an algebraic specification is to establish
the constructor operations and write down an axiom for each inspection operation
over each constructor. This suggests that if there are m constructor operations and n
inspection operations there should be m * n axioms defined.

Figure 27.7 A
simple list
specification

Head (Create) = Undefined exception (empty list)
Head (Cons (L, v)) = if L = Create then v else Head (L)
Length (Create) = 0
Length (Cons (L, v)) = Length (L) + 1
Tail (Create) = Create
Tail (Cons (L, v)) = if L = Create then Create else Cons (Tail (L), v)

sort List
imports INTEGER

Defines a list where elements are added at the end and removed
from the front. The operations are Create, which brings an empty list
into existence, Cons, which creates a new list with an added member,
Length, which evaluates the list size, Head, which evaluates the front
element of the list, and Tail, which creates a list by removing the head from
its input list. Undefined represents an undefined value of type Elem.

Create List
Cons (List, Elem) List
Head (List) Elem
Length (List) Integer
Tail (List) List

LIST (Elem)

 Chapter 27 Formal Specification 10

©Ian Sommerville 2009

However, the constructor operations associated with an abstract type may
not all be primitive constructors. That is, it may be possible to define them using
other constructors and inspection operations. If you define a constructor operation
using other constructors, then you only need to define the inspection operations
using the primitive constructors.

In the list specification, the constructor operations that build lists are Create,
Cons and Tail. The inspection operations are Head (return the value of the first
element in the list) and Length (return the number of elements in the list), which are
used to discover list attributes. The Tail operation, however, is not a primitive
constructor. There is therefore no need to define axioms over the Tail operation for
Head and Length operations but you do have to define Tail using the primitive
constructor operations.

Evaluating the head of an empty list results in an undefined value. The
specifications of Head and Tail show that Head evaluates the front of the list and
Tail evaluates to the input list with its head removed. The specification of Head
states that the head of a list created using Cons is either the value added to the list
(if the initial list is empty) or is the same as the head of the initial list parameter to
Cons. Adding an element to a list does not affect its head unless the list is empty.

Recursion is commonly used when writing algebraic specifications. The
value of the Tail operation is the list that is formed by taking the input list and
removing its head. The definition of Tail shows how recursion is used in
constructing algebraic specifications. The operation is defined on empty lists then
recursively on non-empty lists with the recursion terminating when the empty list
results.

It is sometimes easier to understand recursive specifications by developing a
short example. Say we have a list [5, 7] where 5 is the front of the list and 7 the end
of the list. The operation Cons ([5, 7], 9) should return a list [5, 7, 9] and a Tail
operation applied to this should return the list [7, 9]. The sequence of equations
which results from substituting the parameters in the above specification with these
values is:

Tail ([5, 7, 9]) =
 Tail (Cons ([5, 7], 9)) = Cons (Tail ([5, 7]), 9) =
 Cons (Tail (Cons ([5], 7)), 9) = Cons (Cons (Tail ([5]), 7), 9) =
 Cons (Cons (Tail (Cons ([], 5)), 7), 9) = Cons (Cons ([Create], 7), 9) =
 Cons ([7], 9) = [7, 9]

The systematic rewriting of the axiom for Tail illustrates that it does indeed
produce the anticipated result. You can check that axiom for Head is correct using
the same rewriting technique.

Now let us look at how you can use algebraic specification of an interface in
a critical system specification. Assume that, in an air traffic control system, an
object has been designed to represent a controlled sector of airspace. Each
controlled sector may include a number of aircraft, each of which has a unique
aircraft identifier. For safety reasons, all aircraft must be separated by at least 300
metres in height. The system warns the controller if an attempt is made to position
an aircraft so that this constraint is breached.

11 Chapter 27 Formal Specification

©Ian Sommerville 2009

To simplify the description, I have only defined a limited number of
operations on the sector object. In a practical system, there are likely to be many
more operations and more complex safety conditions related to the horizontal
separation of the aircraft. The critical operations on the object are:

1. Enter This operation adds an aircraft (represented by an identifier) to the
airspace at a specified height. There must not be other aircraft at that height
or within 300 metres of it.

2. Leave This operation removes the specified aircraft from the controlled
sector. This operation is used when the aircraft moves to an adjacent sector.

3. Move This operation moves an aircraft from one height to another. Again,
the safety constraint that vertical separation of aircraft must be at least 300
metres is checked.

4. Lookup Given an aircraft identifier, this operation returns the current height
of that aircraft in the sector.

It makes it easier to specify these operations if some other interface
operations are defined. These are:

1. Create This is a standard operation for an abstract data type. It causes an
empty instance of the type to be created. In this case, it represents a sector
that has no aircraft in it.

2. Put This is a simpler version of the Enter operation. It adds an aircraft to the
sector without any associated constraint checking.

3. In-space Given an aircraft call sign, this Boolean operation returns true if the
aircraft is in the controlled sector, false otherwise.

4. Occupied Given a height, this Boolean operation returns true if there is an
aircraft within 300 metres of that height, false otherwise.

The advantage of defining these simpler operations is that you can then use
them as building blocks to define the more complex operations on the Sector sort.
The algebraic specification of this sort is shown in Figure 27.8.

Essentially, the basic constructor operations are Create and Put, and I use
these in the specification of the other operations. Occupied and In-space are
checking operations that I have defined using Create and Put, and I then use them
in other specifications. I don’t have space to explain all operations in detail here but
I discuss two of them (Occupied and Move). With this information, you should be
able to understand the other operation specifications.

1. The Occupied operation takes a sector and a parameter representing the
height and checks if any aircraft have been assigned to that height. Its
specification states that:

 In an empty sector (one that has been create by a Create operation) every
level is vacant. The operation returns false irrespective of the value of the
height parameter.

 Chapter 27 Formal Specification 12

©Ian Sommerville 2009

 In a non-empty sector (one where there has been previous Put operations)
the Occupied operation checks whether the specified height (parameter H)
is within 300 metres of the height of aircraft that was last added to the
sector by a Put operation. If so, that height is already occupied so the
value of Occupied is true.

Enter (S, CS, H) =
 if In-space (S, CS) then S exception (Aircraft already in sector)
 elsif Occupied (S, H) then S exception (Height conflict)
 else Put (S, CS, H)

Leave (Create, CS) = Create exception (Aircraft not in sector)
Leave (Put (S, CS1, H1), CS) =
 if CS = CS1 then S else Put (Leave (S, CS), CS1, H1)

Move (S, CS, H) =
 if S = Create then Create exception (No aircraft in sector)
 elsif not In-space (S, CS) then S exception (Aircraft not in sector)
 elsif Occupied (S, H) then S exception (Height conflict)
 else Put (Leave (S, CS), CS, H)

-- NO-HEIGHT is a constant indicating that a valid height cannot be returned

Lookup (Create, CS) = NO-HEIGHT exception (Aircraft not in sector)
Lookup (Put (S, CS1, H1), CS) =
 if CS = CS1 then H1 else Lookup (S, CS)

Occupied (Create, H) = false
Occupied (Put (S, CS1, H1), H) =
 if (H1 > H and H1 - H 300) or (H > H1 and H - H1 300) then true
 else Occupied (S, H)

In-space (Create, CS) = false
In-space (Put (S, CS1, H1), CS) =
 if CS = CS1 then true else In-space (S, CS)

sort Sector
imports INTEGER, BOOLEAN

Enter - adds an aircraft to the sector if safety conditions are satisfed
Leave - removes an aircraft from the sector
Move - moves an aircraft from one height to another if safe to do so
Lookup - Finds the height of an aircraft in the sector

Create - creates an empty sector
Put - adds an aircraft to a sector with no constraint checks
In-space - checks if an aircraft is already in a sector
Occupied - checks if a specified height is available

Enter (Sector, Call-sign, Height) Sector
Leave (Sector, Call-sign) Sector
Move (Sector, Call-sign, Height) Sector
Lookup (Sector, Call-sign) Height

Create Sector
Put (Sector, Call-sign, Height) Sector
In-space (Sector, Call-sign) Boolean
Occupied (Sector, Height) Boolean

SECTOR

Figure 27.8 The
specification of a
controlled sector

13 Chapter 27 Formal Specification

©Ian Sommerville 2009

 If it is not occupied, the operation checks the sector recursively. You can
think of this check being carried out on the last aircraft put into the sector.
If the height is not within range of the height of that aircraft, the operation
then checks against the previous aircraft that has been put into the sector
and so on. Eventually, if there are no aircraft within range of the specified
height, the check is carried out against an empty sector so returns false.

2. The Move operation moves an aircraft in a sector from one height to
another. Its specification states that:

 If a Move operation is applied to an empty airspace (the result of Create),
the airspace is unchanged and an exception is raised to indicate that the
specified aircraft is not in the airspace.

 In a non-empty sector, the operation first checks (using In-space) whether
the given aircraft is in the sector. If it is not, an exception is raised. If it is
in the sector, the operation checks that the specified height is available
(using Occupied), raising an exception if there is already an aircraft at that
height.

 If the specified height is available, the Move operation is equivalent to the
specified aircraft leaving the airspace (so the operation Leave is used) and
being put into the sector at the new height.

27.3 Behavioural specification

The simple algebraic techniques described in the previous section can be used to
describe interfaces where the object operations are independent of the object state.
That is, the results of applying an operation should not depend on the results of
previous operations. Where this condition does not hold, algebraic techniques can
become cumbersome. Furthermore, as they increase in size, I find that algebraic
descriptions of system behavior become increasingly difficult to understand.

An alternative approach to formal specification that has been more widely
used in industrial projects is model-based specification. Model-based specification
is an approach to formal specification where the system specification is expressed
as a system state model. You can specify the system operations by defining how
they affect the state of the system model. The combination of these specifications
defines the overall behavior of the system.

Mature notations for developing model-based specifications are VDM
(Jones, 1980, Jones, 1986), B (Wordsworth, 1996) and Z (Hayes, 1987) (Spivey,
1992). I use Z (pronounced Zed, not Zee) here. In Z, systems are modelled using
sets and relations between sets. However, Z has augmented these mathematical
concepts with constructs that specifically support software specification.

In an introduction to model-based specification, I can only give an overview
of how a specification can be developed. A complete description of the Z notation
would be longer than this chapter. Rather, I present some small examples to

 Chapter 27 Formal Specification 14

©Ian Sommerville 2009

illustrate the technique and introduce notation as it is required. A full description of
the Z notation is given in textbooks such as those by Diller (Potter, et al., 1996) and
Jacky (Jacky, 1997).

Formal specifications can be difficult and tedious to read especially when
they are presented as large mathematical formulae. The designers of Z have paid
particular attention to this problem. Specifications are presented as informal text
supplemented with formal descriptions. The formal description is included as
small, easy-to-read chunks (called schemas) that are distinguished from associated
text using graphical highlighting. Schemas are used to introduce state variables and
to define constraints and operations on the state. Schemas can themselves be
manipulated using operations such as schema composition, schema renaming and
schema hiding.

To be most effective, a formal specification must be supplemented by
supporting, informal description. The Z schema presentation has been designed so
that it stands out from surrounding text (Figure 27.9).

The schema signature defines the entities that make up the state of the
system and the schema predicate sets out conditions that must always be true for
these entities. Where a schema defines an operation, the predicate may set out pre-
and post-conditions. These define the state before and after the operation. The
difference between these pre- and post-conditions defines the action specified in
the operation schema.

To illustrate the use of Z in the specification of a critical system, I have
developed a formal specification of the control system of the insulin pump that I
introduced in Chapter 3.

Recall that this system monitors the blood glucose level of diabetics and
automatically injects insulin as required. Even for a small system like the insulin
pump, the formal specification is fairly long. Although the basic operation of the
system is simple, there are many possible alarm conditions that have to be
considered. I only include some of the schemas defining the system here; the
complete specification can be downloaded from the book’s website.

To develop a model-based specification, you have to define state variables
and predicates that model the state of the system that you are specifying and define
invariants (conditions that are always true) over these state variables.

The Z state schema that models the insulin pump state is shown in Figure
27.10. You can see how the two basic parts of the schema are used. In the top part,
names and types are declared and in the bottom part of the schema the invariants.

Figure 27.9 The
structure of a Z
schema contents capacity

Container
contents: N
capacity: N

Schema name Schema signature Schema predicate

15 Chapter 27 Formal Specification

©Ian Sommerville 2009

The names declared in the schema are used to represent system inputs,
system outputs and internal state variables:

Figure 27.10 State
schema for the
insulin pump

INSULIN_PUMP_STATE

//Input device definition
switch?: (off, manual, auto)
ManualDeliveryButton?: N
Reading?: N
HardwareTest?: (OK, batterylow, pumpfail, sensorfail, deliveryfail)
InsulinReservoir?: (present, notpresent)
Needle?: (present, notpresent)
clock?: TIME

//Output device definition
alarm! = (on, off)
display1!, string
display2!: string
clock!: TIME
dose!: N

// State variables used for dose computation
status: (running, warning, error)
r0, r1, r2: N
capacity, insulin_available : N
max_daily_dose, max_single_dose, minimum_dose: N
safemin, safemax: N
CompDose, cumulative_dose: N

r2 = Reading?
dose! ≤ insulin_available
insulin_available ≤ capacity

// The cumulative dose of insulin delivered is set to zero once every 24 hours
clock? = 000000 ⇒ cumulative_dose = 0

// If the cumulative dose exceeds the limit then operation is suspended

cumulative_dose ≥ max_daily_dose ∧ status = error ∧
display1! = “Daily dose exceeded”

// Pump configuration parameters
capacity = 100 ∧ safemin = 6 ∧ safemax = 14
max_daily_dose = 25 ∧ max_single_dose = 4 ∧ minimum_dose = 1

display2! = nat_to_string (dose!)
clock! = clock?

 Chapter 27 Formal Specification 16

©Ian Sommerville 2009

1. System inputs where the convention in Z is for all input variable names to
be followed by a ? symbol. I have declared names to model the on/off
switch on the pump (switch?), a button for manual delivery of insulin
(ManualDeliveryButton?), the reading from the blood sugar sensor
(Reading?), the result of running a hardware test program (HardwareTest?),
sensors that detect the presence of the insulin reservoir and the needle
(InsulinReservoir?, Needle?), and the value of the current time (clock?).

Figure 27.11 The
RUN schema

RUN

ΔINSULIN_PUMP_STATE

 switch? = auto

status = running ∨ status = warning
insulin_available ≥ max_single_dose
cumulative_dose < max_daily_dose

// The dose of insulin is computed depending on the blood sugar level

(SUGAR_LOW Ú SUGAR_OK ∨ SUGAR_HIGH)
// 1. If the computed insulin dose is zero, don’t deliver any insulin

CompDose = 0 ⇒ dose! = 0

∨

// 2. The maximum daily dose would be exceeded if the computed dose
was delivered so the insulin dose is set to the difference between the
maximum allowed daily dose and the cumulative dose delivered so far

CompDose + cumulative_dose > max_daily_dose ⇒ alarm! = on ∧
status’ = warning ∧ dose! = max_daily_dose - cumulative_dose
∨

// 3. The normal situation. If maximum single dose is not exceeded
then deliver the computed dose. If the single dose computed is too high,
restrict the dose delivered to the maximum single dose

CompDose + cumulative_dose < max_daily_dose ⇒
 (CompDose ≤ max_single_dose ⇒ dose! = CompDose

 ∨
CompDose > max_single_dose ⇒ dose! = max_single_dose)
insulin_available’ = insulin_available - dose!
cumulative_dose’ = cumulative_dose + dose!

insulin_available ≤ max_single_dose * 4 ⇒ status’ = warning ∧
display1! = “Insulin low”

r1ʼ = r2
r0ʼ = r1

 !

17 Chapter 27 Formal Specification

©Ian Sommerville 2009

2. System outputs where the convention in Z is for all output variable names to
be followed by a ! symbol. I have declared names to model the pump alarm
(alarm!), two alphanumeric displays (display1! and display2!), a display of
the current time (clock!), and the dose of insulin to be delivered (dose!).

3. State variables that are used for dose computation. I have declared variables
to represent the status of the device (status), to hold previous values of the
blood sugar level (r0, r1 and r2), the capacity of the insulin reservoir and the
amount of insulin currently available (capacity, insulin_available), several
variables used to impose limits on the dose of insulin delivered
(max_daily_dose, max_single_dose, minimim_dose, safemin, safemax), and
two variables used in the dose computation (CompDose and
cumulative_dose). The type N means a non-negative number.

The schema predicate defines invariants that are always true. There is an
implicit ‘and’ between each line of the predicate so all predicates must hold
at all times. Some of these predicates simply set limits on the system but
others define fundamental operating conditions of the system. These
include:

1. The dose must be less than or equal to the capacity of the insulin reservoir.
That is, it is impossible to deliver more insulin than is in the reservoir.

2. The cumulative dose is reset at midnight each day. You can think of the Z
phrase <logical expression 1> ⇒ <logical expression 2> as being the same
as if <logical expression 1> then <logical expression 2>. In this case,
<logical expression 1> is ‘clock? = 000000’ and <logical expression 2> is
‘cumulative_dose = 0’.

3. The cumulative dose delivered over a 24-hour period may not exceed
max_daily_dose. If this condition is false, then an error message is output.

4. display2! always shows the value of the last dose of insulin delivered and
clock! always shows the current clock time.

The insulin pump operates by checking the blood glucose every 10 minutes
and (simplistically) insulin is delivered if the rate of change of blood glucose is
increasing. The RUN schema, shown in Figure 27.11, models the normal operating
condition of the pump.

If a schema name is included in the declarations part, this is equivalent to
including all the names declared in that schema in the declaration and the
conditions are included in the predicate part. The delta schema (Δ) in the first line
in Figure 27.11 illustrates this. The delta means that the state variables defined in
INSULIN_PUMP_STATE are in scope as are a set of other variables that represent
state values before and after some operation. These are indicated by ‘priming’ the
name defined in INSULIN_PUMP_STATE. Therefore, insulin_available represents the
amount of insulin available before some operation and insulin_availableʹ′ represents
the amount of insulin available after some operation.

 Chapter 27 Formal Specification 18

©Ian Sommerville 2009

Figure 27.11 The RUN schema defines the operation of the system by
specifying a set of predicates that are true in normal system use. Of course, these
are in addition to the predicates defined in the INSULIN_PUMP_STATE schema that
are invariant (always true). This schema also shows the use of a Z feature —
schema composition — where the schemas SUGAR_LOW, SUGAR_OK and
SUGAR_HIGH are included by giving their names. Notice that these schemas are
‘ored’ so that there is a schema for each of three possible conditions. The ability to
compose schemas means that you can break down a specification into smaller parts
in the same way that you can define functions and methods in a program.

I won’t go into the details of the RUN schema here but, in essence, it starts
by defining predicates that are true for normal operation. For example, it states that
normal operation is only possible when the amount of insulin available is greater
than the maximum single dose that may be delivered. Three schemas are then
‘ored’ that represent different blood sugar levels and, as we shall see later, these
define a value for the state variable CompDose.

The value of CompDose represents the amount of insulin that has been
computed for delivery, based on the blood sugar level. The remainder of the
predicates in this schema define various checks to be applied to ensure that the dose
actually delivered (dose!) follows safety rules defined for the system. For example,
one safety rule is that no single dose of insulin may exceed some defined maximum
value.

Finally, the last two predicates define the changes to the value of
insulin_available and cumulative_dose. Notice how I have used the ‘primed’
version of the names here.

The final schema example given in Figure 27.12 defines how the dose of
insulin is computed assuming that the level of sugar in the diabetic’s blood lies
within some safe zone. In these circumstances, insulin is only delivered if the blood

SUGAR_OK

r2 ≥ safemin ∧ r2 ≤ safemax
// sugar level stable or falling
r2 ≤ r1 ⇒ CompDose = 0
∨
// sugar level increasing but rate of increase falling
r2 > r1 ∧ (r2-r1) < (r1-r0) ⇒ CompDose = 0
∨
// sugar level increasing and rate of increase increasing compute dose
// a minimum dose must be delivered if rounded to zero
r2 > r1 ∧ (r2-r1) ≥ (r1-r0) ∧ (round ((r2-r1)/4) = 0) ⇒
 CompDose = minimum_dose
∨
r2 > r1 ∧ (r2-r1) ≥ (r1-r0) ∧ (round ((r2-r1)/4) > 0) ⇒
 CompDose = round ((r2-r1)/4)

Figure 27.12 The
SUGAR_OK
schema

19 Chapter 27 Formal Specification

©Ian Sommerville 2009

sugar level is rising and the rate of change of blood sugar level is increasing. The
other schemas SUGAR_LOW and SUGAR_HIGH define the dose to be delivered if the
sugar level is outside the safe zone. The predicates in the schema are as follows:

1. The initial predicate defines the safe zone, that is, r2 must lie between
safemin and safemax.

2. If the sugar level is stable or falling, indicated by r2 (the later reading) being
equal to or less than r1 (an earlier reading) then the dose of insulin to be
delivered is zero.

3. If the sugar level is increasing (r2 > r1) but the rate of increase is falling then
the dose to be delivered is zero.

4. If the sugar level is increasing and the rate of increase is stable then a
minimum dose of insulin is delivered.

5. If the sugar level is increasing and the rate of increase is increasing, then the
dose of insulin to be delivered is derived by applying a simple formula to the
computed values.

I don’t model the temporal behavior of the system (i.e., the fact that the
glucose sensor is checked every 10 minutes) using Z. Although this is certainly
possible, it is rather clumsy and, in my view, an informal description actually
communicates the specification more concisely than a formal specification.

KEY POINTS

 Methods of formal system specification complement informal
requirements specification techniques. They may be used with a natural
language requirements definition to clarify any areas of potential
ambiguity in the specification.

 Formal specifications are precise and unambiguous. They remove areas
of doubt in a specification and avoid some of the problems of language
misinterpretation. However, non-specialists may find formal
specifications difficult to understand.

 The principal value of using formal methods in the software process is
that it forces an analysis of the system requirements at an early stage.
Correcting errors at this stage is cheaper than modifying a delivered
system.

 Formal specification techniques are most cost-effective in the
development of critical systems where safety, reliability and security are
particularly important. They may also be used to specify standards.

 Algebraic techniques of formal specification are particularly suited to
specifying interfaces where the interface is defined as a set of object
classes or abstract data types. These techniques conceal the system

 Chapter 27 Formal Specification 20

©Ian Sommerville 2009

state and specify the system in terms of relationships between the
interface operations.

 Model-based techniques model the system using mathematical
constructs such as sets and functions. They may expose the system
state and this simplifies some types of behavioral specification.

 You define the operations in a model-based specification by defining
pre- and post-conditions on the system state.

FURTHER READING

‘Formal methods: Promises and problems’. This article is a realistic discussion of
the potential gains from using formal methods and the difficulties of integrating the
use of formal methods into practical software development (Luqi and J. Goguen.
IEEE Software, 14 (1), January 1997)

‘Correctness by construction: Developing a commercially secure system’. A good
description of how formal methods can be used in the development of a security-
critical system. (A. Hall and R. Chapman, IEEE Software, 19(1), January 2002)

IEEE Transactions on Software Engineering, January 1998. This issue of the journal
includes a special section on the practical uses of formal methods in software
engineering. It includes papers on both Z and LARCH.

EXERCISES

27.1 Suggest why the architectural design of a system should precede the
development of a formal specification.

27.2 You have been given the task of ‘selling’ formal specification techniques to
a software development organization. Outline how you would go about
explaining the advantages of formal specifications to sceptical, practising
software engineers.

27.3 Explain why it is particularly important to define sub-system interfaces in a
precise way and why algebraic specification is particularly appropriate for sub-
system interface specification.

27.4 An abstract data type representing a stack has the following operations
associated with it:

New: Bring a stack into existence
Push: Add an element to the top of the stack
Top: Evaluate the element on top of the stack
Retract: Remove the top element from the stack and return the
modified stack
Empty: True if there are no elements on the stack

Define this abstract data type using an algebraic specification.

21 Chapter 27 Formal Specification

©Ian Sommerville 2009

27.5 In the example of a controlled airspace sector, the safety condition is that
aircraft may not be within 300 m of height in the same sector. Modify the
specification shown in Figure 10.8 to allow aircraft to occupy the same height in
the sector so long as they are separated by at least 8 km of horizontal
difference. You may ignore aircraft in adjacent sectors. Hint: You have to modify
the constructor operations so that they include the aircraft position as well as its
height. You also have to define an operation that, given two positions, returns
the separation between them.

27.6 Bank teller machines rely on using information on the user’s card giving
the bank identifier, the account number and the user’s personal identifier. They
also derive account information from a central database and update that
database on completion of a transaction. Using your knowledge of ATM
operation, write Z schemas defining the state of the system, card validation
(where the user’s identifier is checked) and cash withdrawal.

27.7 Modify the insulin pump schema, shown in Figure 27.10, to add a further
safety condition that the ManualDeliveryButton? can only have a non-zero value
if the pump switch is in the manual position.

27.8 Write a Z schema called SELF_TEST that tests the hardware components of
the insulin pump and sets the value of the state variable HardwareTest?. Then
modify the RUN schema to check that the hardware is operating successfully
before any insulin is delivered. If not, the dose delivered should be zero and an
error should be indicated on the insulin pump display.

27.9 Z supports the notion of sequences where a sequence is like an array. For
example, for a sequence S, you can refer to its elements as S[1], S[2], and so
on. It also allows you to determine the number of elements in a sequence
using the # operator. That is, if a sequence S is [a, b, c, d] then #S is 4. You can
add an element to the end of a sequence S by writing S + a, and to the
beginning of the sequence by writing a + S. Using these constructs, write a Z
specification of the LIST that is specified algebraically in Figure 27.7.

27.10 You are a systems engineer and you are asked to suggest the best
way to develop the safety-critical software for a heart pacemaker. You suggest
formally specifying the system but your manager rejects your suggestion. You
think his reasons are weak and based on prejudice. Is it ethical to develop the
system using methods that you think are inadequate?

REFERENCES

Bolognesi, T. and Brinksma, E. (1987). 'Introduction to the ISO specification
language LOTOS'. Computer Networks, 14 (1), 25-59.

Cohen, B., Harwood, W. T. and M.I., J. (1986). The Specification of Complex
Systems. Wokingham: Addison-Wesley.

Dehbonei, B. and Mejia, F. (1995). 'Formal development of safety-critical software
systems in railway signalling'. In Applications of Formal Methods. Hinchey, M.
and Bowen, J. P. (ed.). London: Prentice-Hall. 227-52.

 Chapter 27 Formal Specification 22

©Ian Sommerville 2009

Easterbrook, S., Lutz, R., Covington, R., Kelly, J., Ampo, Y. and Hamilton, D.
(1998). 'Experiences using Lightweight Formal Methods for Requirements
Modeling'. IEEE Trans. on Software Eng., 24 (1), 4-14.

Futatsugi, K., Goguen, J. A., Jouannaud, J. P. and Meseguer, J. (1985). 'Principles
of OBJ2'. 12th ACM Symp. on Principles of Programming Languages, New
Orleans: ACM Press. 52-66.

Guttag, J. (1977). 'Abstract Data Types and the Development of Data Structures'.
Comm. ACM, 20 (6), 396-405.

Guttag, J., Horning, J., Garland, S., Jones, K., Modet, A. and Wing, J. (1993).
Larch: Languages and Tools for Formal Specification. Heidleberg: Springer-
Verlag.

Hall, A. (1990). 'Seven Myths of Formal Methods'. IEEE Software, 7 (5), 11-20.

Hall, A. (1996). 'Using Formal methods to Develop an ATC Information System'.
IEEE Software, 13 (2), 66-76.

Hall, A. and Chapman, R. (2002). 'Correctness by Construction: Developing a
Commercially Secure System'. IEEE Software, 19 (1), 18-25.

Hayes, I. (1987). Specification Case Studies. London: Prentice-Hall.

Hoare, C. A. R. (1985). Communicating Sequential Processes. London: Prentice-
Hall.

Jacky, J. (1995). 'Specifying a safety-critical control system'. IEEE Trans. on
Software Eng., 21 (2), 99-106.

Jacky, J. (1997). The Way of Z: Practical Programming with Formal methods.
Cambridge: Cambridge University Press.

Jacky, J., Unger, J., Patrick, M. and Resler, R. (1997). 'Experience with Z:
Developing a Control program for a Radiation Therapy Machine'. Proc. ZUM'97,
Reading: Springer.

Jones, C. B. (1980). Software Development - A Rigorous Approach. London:
Prentice-Hall.

Jones, C. B. (1986). Systematic Software Development using VDM. London:
Prentice-Hall.

Liskov, B. and Guttag, J. (1986). Abstraction and Specification in Program
Development. Cambridge, Mass.: MIT Press.

Neil, M., Ostrolenk, G., Tobin, M. and Southworth, M. (1998). 'Lessons from
Using Z to Specify a Software Tool'. IEEE Trans. on Software Eng., 24 (1), 15-23.

Peterson, J. L. (1981). Petri Net Theory and the Modeling of Systems. New York:
McGraw-Hill.

Potter, B., Sinclair, J. and Till, D. (1996). An Introduction to Formal Specification
and Z. London: Prentice Hall.

23 Chapter 27 Formal Specification

©Ian Sommerville 2009

Prowell, S. J., Trammell, C. J., Linger, R. C. and Poore, J. H. (1999). Cleanroom
Software Engineering: Technology and Process. Reading, Mass.: Addison-Wesley.

Spivey, J. M. (1990). 'Specifying a Real-Time Kernel'. IEEE Software, 7 (5), 21-8.

Spivey, J. M. (1992). The Z Notation: A Reference Manual, 2nd edition. London:
Prentice-Hall.

Wordsworth, J. (1996). Software Engineering with B. Wokingham: Addison-
Wesley.

Wordsworth, J. B. (1991). 'The CICS application programming interface
definition'. Z User Workshop, Oxford: Berlin: Springer.

