
274 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 35, NO. 2, FEBRUARY 2016

Tri-State Coding Using Reconfiguration of Twisted
Ring Counter for Test Data Compression

Sungyoul Seo, Yong Lee, and Sungho Kang, Member, IEEE

Abstract—As technology processes scale up and design com-
plexities grow, system-on-chip integration continues to rise
rapidly. According to these trends, increasing test data vol-
ume is one of the biggest challenges in the testing industry.
In this paper, we present a new test data compression method
based on reusing a stored set with tri-state coding (TSC). For
improving the compression efficiency, a twisted ring counter is
used to reconfigure twist function. It is useful to reuse previ-
ously used data for making next data by using the function
of feedback of the ring counter. Moreover, the TSC is used to
increase the range information transmission without additional
input ports. Experimental results show that this compression
method improves a compression ratio and a test time on both
International Symposium on Circuits and Systems’89 and large
International Test Conference’99 benchmark circuits in most
cases compared to the results of the previous work without
a heavy burden on the hardware.

Index Terms—Automatic test equipment (ATE), logic
testing, system-on-chip (SoC), test data compression, tri-state
coding (TSC), tri-state detection, tri-state input, twisted ring
counter (TRC).

I. INTRODUCTION

DUE TO innovations in the manufacturing technology of
system-on-chips (SoCs), more intellectual property cores

and modules can be integrated into a single chip. In large
designs such as SoCs, attaining a high-test quality requires
more test patterns targeting delay faults and other fault models
beyond stuck-at faults [1]. As the test data volume increases,
memory modification of automatic test equipment (ATE) is
required as well as additional test application time (TAT). As
a result, the cost to sufficiently test SoCs increases.

There are two solutions to overcome the above problems:
1) built-in self-test (BIST) and 2) test data compression. The
former solution needs no external tester, but it is less appropri-
ate for logic testing than memory testing. It leads to inadequate
test coverage because of its random-resistant fault and bus con-
tention during the test application [2]. For this reason, a variety

Manuscript received June 2, 2014; revised September 5, 2014 and
December 16, 2014; accepted February 23, 2015. Date of publication March
16, 2015; date of current version January 19, 2016. This work was sup-
ported by the National Research Foundation of Korea (NRF) grand funded
by the Korea government, Ministry of Science, ICT and Future Planning
(No. 2012R1A2A1A03006255). This paper was recommended by Associate
Editor A. E. Gattiker.

The authors are with the Department of Electrical and Electronics
Engineering, Yonsei University, Seoul 120-749, Korea (e-mail:
shkang@yonsei.ac.kr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2015.2413416

of test data compression methods have been developed and
used by most SoC designers.

To achieve this, the general test data compression schemes
are required to have additional decompression hardware in
the SoC and they are necessary to operate this method by
the external tester. In spite of these disadvantages, the test
data compression is the most preferred test method in the
industry because it is compatible with the conventional design
rules and is even suitable to the scan testing [1]. In addition,
it can reduce the amount of the test data required for an exter-
nal tester such as an ATE, improve the TAT and maintain
high-fault coverage [3]. The compression schemes are stored
in the ATE and the test data are transmitted onto the circuit
under test (CUT) through test ports, i.e., test data input (TDI)
ports.

Test data compression schemes can be classified into three
categories: 1) code-based; 2) linear-decompression-based; and
3) broadcast-scan-based [1]. The linear-decompression-based
scheme decompresses test data with linear-feedback shift
registers (LFSRs), ring generators or exclusive OR (XOR)
networks [4]. This technique can generate a test cube (with
many don’t care bits) using an LFSR with a compact seed or
by using a simple XOR network [5]. It takes advantage of the
fact that typical scan test patterns have very few specified bits,
hence, most test patterns are not specified, i.e., don’t care [6].
The broadcast-scan-based scheme broadcasts few control bits
and generates a large number of bits to scan chains [7]. A TDI
that is scanned in through a scan input of a tester is shared
among multiple scan cells [8]. Moreover, this scheme is much
simpler than the linear-decompression-based scheme.

Although the linear-decompression-based and the
broadcast-scan-based schemes can often acquire better
compression efficiency and are available on commercial
tools [1], they need some circuit structural information
for automatic test pattern generation (ATPG) or fault
simulation [9]. Additionally, the ATPG for these schemes
generate more test patterns than the code-based scheme
because their decompressor cannot make the exact intended
patterns for detecting faults due to dependency of the decom-
pressor structure. Moreover, these problems produce many
switching activities and experience large power consumption
issues, which degrade the test reliability.

The code-based scheme compresses test data using a num-
ber of codewords, which are made up of binary bit streams
based on some specific properties of the underlying test
data [9]. This scheme has an on-chip decoder, which decodes
the compressed test data from the ATE and delivers the

0278-0070 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

SEO et al.: TSC USING RECONFIGURATION OF TRC FOR TEST DATA COMPRESSION 275

decompressed test data to the scan cells [10]. This on-chip
decoder can be easily designed because it has a simple struc-
ture such as a small finite state machine and some controllers.
Hence, this scheme makes them more applicable for designs.

The remainder of this paper is organized as follows.
Section II describes the preliminaries of related works in
the code-based test data compression, the tri-state input
test data, the reusable characteristic of a shift register, and
the test data analysis, and we also present the motivation.
In Section III, the proposed compression method, tri-state
coding (TSC), is introduced. Section IV describes the
proposed decompression architecture that is composed of
a tri-state detector, a decompressor, a reconfigured twisted
ring counter (R-TRC), and a scan chain. The experimental
results are shown in Section V, and we conclude this paper
in Section VI.

II. PRELIMINARIES AND MOTIVATION

A. Code-Based Test Data Compression

The code-based scheme has been researched over the years
to reduce the required test data and decrease the test time
with smaller hardware in comparison to other schemes. Both
the amount of test data and TAT are major issues for SoCs
from an economic testing point of view [15]. At this point,
the code-based test data compression is one of the best solu-
tions for the problems. This scheme encodes test cubes which
consist of test data with unspecified bits.

Huffman coding is known to be the most effective
statistical-based coding method because it is proven to
provide the shortest average codeword length among
all uniquely decodable variable length codes [13]. Some
Huffman coding-based compression methods are published
in [14]–[18]. Although there are a high-compression ratio,
making a Huffman tree requires large internal hardware.
The run-length-based compression method encodes runs
of patterns as values and counts [9]. Examples of these
method include Golomb coding [19], cyclical scan reg-
ister (CSR)-based run-length code [20], frequency-directed
run-length (FDR) code [3], extended FDR code [22], and
dual-run-length code [2]. For improving compression effi-
ciency, data-independent pattern run-length (DIPRL) [23] has
been proposed. It takes advantage of equality and com-
plementarity of patterns, but it requires a large hardware
area overhead. Similar to DIPRL, 2n-PRL [9] compression
has been published recently; it encodes 2|n| runs of compat-
ible or inversely compatible patterns. It has the advantage
of simple and easy decompression logic, but it still does
not have sufficient compression efficiency. Another method is
the dictionary-based code; it is researched in [24]–[26]. This
method is useful for the embedded systems domain because it
provides good compression efficiency as well as a fast decom-
pression mechanism [10]. Recently, a more optimized version
was proposed in [7] and a mixed bit-mask method was pro-
posed in [10]. A new method based on the reuse of parts of
dictionary entries [11] considerably improves the test com-
pression efficiency, but it still requires quite a large amount of
internal memory for storing some dictionary patterns. From

a hardware area overhead point of view, the fact that the
dictionary overhead is a large burden cannot be overlooked.

In this paper, we use feedback and twist characteristic of
the R-TRC for reusing previously used test data. Moreover,
the inserted test data used in the proposed method are
tri-state levels. In Sections II-B and II-C, we describe more
details of these characteristics. This method overcomes the
high-hardware area overhead of the dictionary-based and
Huffman methods and the low-compression ratio of the
run-length-based method.

B. Input Test Data Consisting of Tri-State Values

As previously mentioned, the input test data which are
stored in the ATE memory is generally composed of binary
value (“0” and “1”). Although most ATE can support the
Hi-Z value transmission from its connected ports, the formal
test data compression methods have never attempted to use the
Hi-Z values in the design-for-testability (DFT) field. However,
we initially use the Hi-Z value for improving the compression
efficiency that is beneficial to the environment-limited channel
bandwidth. Hence, entropy can be increased for this situation.

In order to communicate with channels using three lev-
els of information, some tri-state detection circuits have been
researched in [12] and [27]–[29]. To apply the DFT flow, we
select the circuit from [29]; it can be easily combined with
the existing decompressor. This circuit requires only six tran-
sistors; hence it has a low-area overhead and complexity. The
operation of this circuit is very simple. The truth table [29]
shows that the output values are determined according to
input values. Because most internal digital logic has difficulty
handling the Hi-Z value, it is necessary to insert a binary con-
version module between the input ports and decompressor.
In [29], this circuit converts a bit with a tri-state value to two
bits of data with a binary value.

Adding this circuit for the DFT application is very use-
ful, especially in cases with a dependence on the ATE such
as the test data compression method. For this, there is no
additional cost for modifying the external tester because most
existing ATE generally supports Hi-Z output. Besides, it over-
comes the restriction in the number of TDI ports, published
to the standard of IEEE 1149.1 [30]. As a result, this circuit
enables the use of tri-state level input data in order to insert
the compressed test data and control the decompressor.

C. Characteristic of the Twisted Ring Counter for Reuse

In the code-based test data compression, there are a vari-
ety of methods for reusing stored data. An example is the
CSR [17], [20] which added a XOR gate and registers before
the CUT. Although the CSR is useful for reducing the amount
of test data by making a longer run length through using
difference test data, it is not practical to use this module
in the data compression architecture [33]. This is because
the hardware area overhead grows by the length of the
scan chain [34]. An additional application is widely used by
LFSRs [35], [36] for the linear and broadcast-based test com-
pression schemes. It consists of a shift register and extra XOR
gates; therefore, it is used for the pseudo-random sequence
generator. However, this approach is limited for the reuse

276 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 35, NO. 2, FEBRUARY 2016

Fig. 1. Test data compositions of ISCAS’89 circuits.

concept because it is dependent on the longer length shift
registers for a high-feedback probability.

To overcome the problems discussed above, the
R-TRC is used to improve reusable data. The R-TRC
has been used to generate test data for test data
compression [37] and BIST [38] by reconfiguring the
property of it. Flip-flops of ring counter in the TRC can be
used to store the test data. However, if the compression ratio
is proportional to the length of the R-TRC, inserting a chip
for the test is not useful because the hardware area overhead
significantly increases. Therefore, considering the compres-
sion ratio and the hardware area overhead, this length needs
to be calculated appropriately. In Section V, we present this
relationship and propose an acceptable length.

D. Test Data Analysis

Since test patterns extracted from the ATPG have many
unspecified bits, an important advantage exists that makes
the test patterns flexible for improving the compression effi-
ciency. According to our test data analysis of the International
Symposium on Circuits and Systems (ISCAS)’89 circuits [31],
it has been observed that the test data contain a number of
unspecified bits, as shown in Fig. 1. A deterministic ATPG
algorithm of TetraMAX is used in a test generation tool of
Synopsys. In most of the ISCAS’89 circuits, over 74% of the
bits are unspecified. Even the care bit density of most test sets
is 1%–5% [1], [32] in the industrial circuits. Moreover, most
unspecified bits are directed specifically at the deterministic
patterns, which take over 80%–90% of the latter test patterns.
Therefore, most test sets (about 80%–90%) can easily produce
similar content.

E. Motivation

As mentioned above, although many test data compres-
sion methods have been developed, the test data compression
method is restricted to a few approaches: 1) run-length;
2) Huffman; and 3) dictionary. These methods cannot
completely consider the three main issues for test data
compression: 1) the compression ratio; 2) the hardware
area overhead; and 3) the TAT. Hence, more than one of these
issues tends to be ignored.

The main purpose of a new method is to understand and
overcome these problems in contrast with the previous works.
For this reason, we improve the reusing of the test data to

Fig. 2. Simple test architecture using the 10-bit R-TRC.

Fig. 3. Procedure for the proposed test data compression based on TSC.

use the characteristics of the ring counter in the R-TRC and
apply the tri-state input data using the tri-state detector. These
methods are possible to acknowledge the three main issues at
the same time. While the compression ratio and the TAT are
better, the increase in the hardware area overhead is very small.
The achieved experimental results are presented in Section V.

III. COMPRESSION METHOD

We propose a new test data compression method using the
TSC that maximizes reusing frequencies of the stored split
data. The R-TRC is composed of a ring counter and a mul-
tiplexer (MUX) as shown in Fig. 2. The MUX enables both
feedback and twist mode as needed. In addition, the twisted
data can be selected as C_in data. Hence, this module can save
and change the internal data according to the MUX selection.
Section IV discusses the details. The compression procedure
following the TSC is conceptually illustrated in Fig. 3. Note
that, the extracted test data from the ATPG are split into the
length of the R-TRC. Then, each split data is matched with
the unspecified bits. Finally, full filled split data are com-
pressed into tri-state code using the R-TRC. While the length
of the compressed test data is variable, the decompressed test
data is generated at a fixed length. Hence, it is based on
the variable-to-fixed compression method. To explain in more
detail, we sequentially demonstrate this compression flow and
illustrate its examples.

A. Test Data Split

The original test data set, TD, for a circuit with n test pat-
terns, which are generated by the ATPG, can be represented
by an n-tuple set, TD = {T1

D, T2
D, . . . , Tn

D}, where the length
of ith test data, Ti

D, which consists of 0s, 1s, and Xs, match
the length of the scan chain, lSC. After acquiring the above
test data, TD, the next strategy is for each Ti

D to be split into
the length of the R-TRC, lSR. Hence, this makes the m × n
split test data sets, Ti

D = {T(i−1)m+1
d , T(i−1)m+2

d , . . . , Tim
d },

where each Ti
d is a subset of Ti

D and the length of these sub-
sets is lSR. Hence, test data TD is composed of the subsets of
Ti

d with slices of m × n, as shown in Fig. 4.

SEO et al.: TSC USING RECONFIGURATION OF TRC FOR TEST DATA COMPRESSION 277

Fig. 4. Test data split into the length of the R-TRC.

TABLE I
SIMPLE EXAMPLE FOR SPLIT TEST DATA

Let us consider the following case where lSC = 30 and
lSR = 10; the example is illustrated in Table I. Here, the value
of lSR must be determined by a certain standard because this
length is associated to the hardware area overhead and com-
pression ratio. The amount of compressed test data can be
predicted for determining a suitable lSR by the following:

CB(TD) ∼= |TD| ×
[
1 − Pm

(
Ti

d, Ti+1
d

)]
× Rpi + m × n (1)

where CB(TD) is the number of compressed bits of the test
data, TD, |TD| is the size of the test data, and Pm(Ti

d, Ti+1
d)

is the probability of match between Ti
d and Ti+1

d ; it can be
written as follows:

Pm

(
Ti

d, Ti+1
d

)
= 1

n × m − 1

n×m−1∑
i=1

(
Ti

d == Ti+1
d

)
(2)

where (Ti
d == Ti+1

d) is 1 if Ti
d can match Ti+1

d com-
pletely; otherwise, it is 0. Rpi is the ratio of the partial input
insertion data for changing the stored the R-TRC data when
(Ti

d == Ti+1
d) is 0. Rpi can be roughly regarded as constant

at 0.48, which is a heuristic result by our experiment. The last
term, m×n, is the number of the split test data. The Hi-Z sig-
nal is always assigned to the end of the split test data set, Ti

d,
to announce the end of the insertion in the R-TRC. A more
specific reason is illustrated in Section IV.

Finally, the key is that the two terms, Pm(Ti
d, Ti+1

d) and m,
are dependent on lSR. Therefore, lSR is closely related to the
compression ratio and hardware area overhead. The effort to
obtain a saturated area for proper lSR is important for acquir-
ing improved results. The accuracy of (1) is specified for the
experimental results in Section V.

Fig. 5. Forward X-filling for making more matching data.

TABLE II
SIMPLE EXAMPLE FOR FORWARD X-FILLING

B. Matching the Split Test Data With the Unspecified Bits

After producing the split test data, each split test data needs
to be made to a lot more matching data by filling the
unspecified bits to 0 or 1 because the R-TRC efficiently
improves the compression ratio with them. In order to com-
press the split test data, the two steps should be performed:
1) a forward X-filling for more matching data and 2) a back-
ward X-filling for using the R-TRC. The unfilled split test
data, Ti

d, are converted to forward X-filled split data, Ti
p,

where Ti
P = {T(i−1)m+1

p , T(i−1)m+2
p , . . . , Tim

p }; they are a
subset of TP.

Additionally, the variable Neq is added to store the match-
ing point compared to a previous test data and this point is
the number of matching bits and is used in the next step for
encoding the data. Let us assume that lSC is 30 and lSR is 10,
the forward X-filling method is represented in Fig. 5, where
xi indicates a binary or an unspecified bit. This method is pre-
ceded in the forward direction following the arrow. If it is
a first test data, X-filling is not applied to this data and Neq
is assigned 0. From the second test data to the last test data,
searching the matching part between the current split test data
and the previous one is conducted iteratively; the unspecified
values of the current matching part are assigned to the values
of the previous matching part, where the matching part indi-
cates that they can be equal. The forward X-filling algorithm
is illustrated in Fig. 6 and an example of this is shown in
Table II. In Fig. 6, the fifth line detects whether the selected
part is matched or not; the size of the equal part is stored
in Neq through the sixth and ninth lines fulfill the X-filling.
Lastly, the unequal part is retained as shown in 14th line. This
paper is iterated; hence the split test data of Table I are con-
verted to the partially filled split test data of Table II through
the proposed algorithm.

278 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 35, NO. 2, FEBRUARY 2016

Fig. 6. Algorithm for forward X-filling split test data.

TABLE III
SIMPLE EXAMPLE FOR BACKWARD X-FILLING

In contrast to a previous step, the order of the next X-filling
is backward; hence this paper is performed from the last to
first data. To be more specific, Ti

P is converted to the back-
ward X-filled split test data, Ti

F , and Ti
F is encoded to the

final encoded split test data, Ti
E, where Ti

F = {T(i−1)m+1
f ,

T(i−1)m+2
f , . . . , Tim

f } is a subset of TF . This method is the
procedure for using the R-TRC.

An example is shown in Table III and the following data are
the results applied from Table II. First of all, the last data, T6

P,
is applied to the adjacent filling, which is assigned a previous
bit if there is an unspecified bit. Next, the content between
T5

f [lSR − N6
eq + 1] and T5

f [lSR] is assigned, in order, to the

content from T6
f [1] to T6

f [N6
eq]. On the other hand, the other

contents are still applied to the adjust filling. When this pro-
cedure reaches T1

f , the full X-filling test data, TF , can be
acquired.

C. TSC

The final step is that the results so far, Ti
F ,

are encoded to TSC, Ti
E, using the R-TRC, where

TABLE IV
SIMPLE EXAMPLE FOR ENCODING TEST DATA

Fig. 7. Conceptual overview of the proposed decompression architecture in
a single chain environment.

Ti
E = {T(i−1)m+1

e , T(i−1)m+2
e , . . . , Tim

e } is a subset of
TE. Here, Ti

e has variable length and it can be found to be
lSR −Ni

eq +1 and this content consists of the R-TRC insertion
values from Ti

f [Ni
eq + 1] to Ti

f [lSR] and a Hi-Z signal.

An example for encoding test data is shown in Table IV.
The data shown in Table IV is encoded from the fully filled
test data shown in Table III. First of all, the first encoded
data, T1

e , is composed of T1
f and a Hi-Z value. However, the

next T2
e has only a Hi-Z because the next T2

f is exactly equal
to T1

f . In case of T3
e , it is composed of 1 and a Hi-Z value.

It means that if 1 is inserted to the R-TRC, it can make T3
f

data because the R-TRC is stored to T2
f data. In Table IV, the

third column data is essentially inserted contents to make the
test data. This procedure is iterated until Ti

e reaches the last
encoded test data. As a result, the final compressed data size
is 22-bit, which is composed of binary and Hi-Z values.

IV. DECOMPRESSION ARCHITECTURE

The proposed decompression architecture in the single chain
environment is given in Fig. 7. In a conventional test flow,
compressed test data (codewords) that consists of 0s and 1s
are initially transmitted to an on-chip decoder then the decoder
decodes them and delivers the original test data to the scan
cells [10]. However, the proposed architecture is required
to have a tri-state detector behind the TDI and a R-TRC

SEO et al.: TSC USING RECONFIGURATION OF TRC FOR TEST DATA COMPRESSION 279

Fig. 8. Tri-state detector proposed by Thomson et al. [29].

TABLE V
TRUTH TABLE OF TRI-STATE DETECTOR

behind the decompressor. To be more specific, each module is
continually represented in this section.

A. Tri-State Detector

The added tri-state detector is important for increasing the
range information transmission from the ATE without addi-
tional ports. Hence, this module enables to improve the entropy
from 1- to 1.5-bit. This range expandability can be widely
used for applying the general decompression architecture for
the same purpose. In Fig. 8, the tri-state detector outputs 2-bit
results through code ports; thereby the written TDI that is
composed of a tri-state level is converted to 2-bit binary value
as shown in Table V. The objective of this conversion is for
the Hi-Z value to not be recognized by the decompressor and
the registers. This tri-state detector module is required to have
only six transistors, hence it is a negligible burden compared
to the expected effects.

B. Decompressor

The code-based schemes usually have a complicated design
flow due to the decompressor. For this reason, the proposed
decompressor has a simple structure and lessens the depen-
dency of the test data. Generally, the internal hardware for
DFT should be significantly modified when the test data is
changed in the code-based schemes. However, since the pro-
posed method requires a slight modifications for redesign
when test data or the target circuit is changed, the design
burden and complexity of the design flow of the proposed
method is less than compared to other code-based schemes.
The proposed decompressor is given in Fig. 9; it is an internal
architecture of the decompressor in Fig. 7. This decompressor
is comprised of a code converter, a k-bit counter, and a con-
trol and generator unit (CGU). The code converter has simple
combinational logic in order to identify the code data that are
outputs of the tri-state detector. It has two input and output

Fig. 9. Decompressor for TSC using the R-TRC.

TABLE VI
TRUTH TABLE OF CODE CONVERTER

ports and its truth table is shown in Table VI. The k-bit counter
helps to control the CGU to enable the shifting operation from
the R-TRC to the scan chain, where k is �log2(lSR + 1)�. The
CGU is responsible for controlling the R-TRC and scan chain,
delivering the decompressed test data to the scan chain, adjust-
ing the suitable clocks among the ATE and internal clocks, and
synchronizing the clocks between the ATE and internal circuit.

For example, if the valid is 1, this means that the next split
test data is required to change the R-TRC data. Therefore, C_in
is set to the same value of the data and the selection signal
(Sel) of the MUX is set to 0. Furthermore, C_in value is trans-
mitted to the shift register of the R-TRC by operating test clock
input, which is set to the port of the R-TRC clock (RCK).
On the other hand, the other output ports of the CGU are
assigned 0. Another example is that if the valid is 0, the
stored the R-TRC data are sent to the scan chain through
the scan data in (SI) and feedback operation is carried out
simultaneously by changing the Sel from 0 to 1. For a fast
sending operation, the RCK and scan clock are set to the inter-
nal clock (i_clk). Furthermore, the scan enable (SE) and the
counter enable (en) are assigned 1. This sending operation
proceeds until the result of the counter (cnt) is lSR. The two
operations above are iterated until the scan test is finished.

C. R-TRC

The R-TRC is a module that stored the previous inserted
test data so that future requests for that data can be reused
as if it is a cache in the computer architecture. This module
is similar to a cache memory in computer architecture. The
required data from the ATE can be minimized by reusing and
duplicating the data that are stored in the R-TRC. For using
this reuse stored data, all test data must be conveyed to the
scan cells through the R-TRC as mentioned in Section IV-B.
Therefore, once the R-TRC is completely filled with valid test
data, these data are fed back to this module and transmitted to
the scan cells simultaneously by operating an internal clock.

280 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 35, NO. 2, FEBRUARY 2016

Fig. 10. Chain selector for multiple scan chains.

Consider the following example. If the requested split
data match the R-TRC data completely, these data can be
served to the scan cells by using the feedback mode of the
R-TRC without any insertion data. However, a few data are
inserted into the R-TRC using the twist mode for making next
data if the requested split data match the R-TRC data partially.
Next, the R-TRC data are transmitted to the scan cells by
using feedback mode. Hence, the lower twist mode requests
that can be served from the R-TRC, the lower the amount of
the inserted data from the ATE becomes.

In order to use this module efficiently, CGU has an impor-
tant role when controlling its clock and selecting its mode.
Fortunately, the CGU operation is not complicated as men-
tioned above in Section IV-B. Finally, this approach can be
used for reducing the test time and improving the compres-
sion ratio in spite of a lower hardware area overhead compared
to that of the dictionary method and CSR.

D. Chain Selector

In recent industrial design trends, the multiple scan chain
is preferred to a serial single scan chain because a serial scan
chain cannot ensure patterns in all of the subspaces spanned
by the inputs of all of the output logic cones that are exhaus-
tively generated [39]. Unfortunately, most existing code-based
methods cannot exploit the existence of multiple scan chains in
a core [40]. For application of the multiple scan chains by the
proposed architecture, the chain is given in Fig. 10. The chain
selector can send an enable signal to only one of the multi-
ple scan chains properly. It is composed of a demultiplexer
and counter and this selector can be controlled by the con-
trol bits of the decompressor. When SE is 1, a selected scan
chain receives this enable signal according to the output of
the counter, but the other chains receive the disable signal, 0.
Except for the scan shift and capture mode, all enable signals
of the multiple scan chains are assigned 0, because all outputs
are disabled when SE is set to 0.

TABLE VII
COMPRESSION RATIO WITH DIFFERENT lSR

V. EXPERIMENTAL RESULTS

To examine the improved effects of the pro-
posed method, experiments are performed on the six
ISCAS’89 benchmark circuits and two large International
Test Conference (ITC)’99 benchmark circuits [27]. All
test data are generated from TetraMAX which is the test
generation tool of Synopsys with the dynamic compaction
turned on and random-fill turned off. The proposed method
is analyzed from the three main points of view of the test
data compression: 1) the compression ratio; 2) the hardware
area overhead; and 3) the TAT. These three issues are very
important to the industry because they are closely related to
the design and the test costs.

First, we present the compression ratio, CR(TD), that is
estimated with the following equation:

CR(TD) =
(|TD| − |TE|

|TD|
)

× 100 (3)

where |TD| is the size of the original test data and |TE| is the
size of the compressed test data. The compressed test data is
composed of both binary and Hi-Z values, and the size of rep-
resenting Hi-Z values is the same as that for the binary values.
In Table VII, the results of the compression ratio with the des-
ignated benchmark circuits are presented with four different
types of lSR. These results show that the compression ratio
generally increases with the increase of lSR, but it is obvious
that as lSR increases, the hardware area overhead increases.
Clearly, this overhead is linearly dependent on lSR. Therefore,
a proper selection of lSR is very important for applying the
proposed decompression architecture.

To examine the above relation between lSR and the com-
pression ratio, we recommended using (1) from Section III.
Fig. 11 presents the actual compression ratio and evaluated
results of the compression ratio from (1) for s38584 circuit.
In these results, both lines are saturated at about the same time
at the R-TRC length of 12. This saturation point is found to be
a suitable lSR because this point results in minimized hardware
area overhead although an almost saturated compression ratio
is given. Actually, the experimental results show that most
of the compression ratios are above 78.3% and below 80.0%
since the length of the R-TRC is 12. Hence, a saturated lSR can
be obtained from (1) for minimizing the hardware overhead
without a heavy reduction in the compression ratio.

SEO et al.: TSC USING RECONFIGURATION OF TRC FOR TEST DATA COMPRESSION 281

TABLE VIII
COMPARISON OF THE COMPRESSION RATIO WITH A VARIETY OF PREVIOUS TEST DATA COMPRESSION METHODS

TABLE IX
COMPARISON OF THE HARDWARE AREA OVERHEAD WITH A VARIETY OF PREVIOUS TEST DATA COMPRESSION METHODS

Fig. 11. Correlation between the evaluations and actual experimental results.

Table VIII compares the compression ratio with a vari-
ety of previous test data compression methods: 1) Golomb;
2) FDR; 3) selective Huffman coding; 4) variable-length input
Huffman coding (VIHC); 5) DIPRL; 6) multilevel Huffman
coding (MHC); 7) fixed input variable output (FIVO); and
8) 2n-PRL. The highest compression ratio is illustrated in bold.
Except for the s13027 circuit, the proposed method covers the
highest compression ratios (above 5% up to 14%) compared
to the highest compression ratio of the previous work. It can
be seen that our proposed method performs up to an average
of 11% better than [9].

In our next set of experimental results, we illustrate the
hardware area overhead compared to the previous meth-
ods in Table IX. Note that the hardware area overhead of
the MHC and FIVO methods is too large, so they are not

written in the comparison table. To acquire this overhead, the
proposed decompressor, the R-TRC and the ISCAS’89 circuit
are synthesized with a different lSR using Synopsys’ design
compiler. Note that, the overhead of the tri-state detector is not
combined with this area overhead because it can consists of
only six transistors. The features of the proposed architecture
are slightly dependent on the size of the circuit; hence the over-
head is negligible with the large circuits. This feature is shown
in the last column of Table IX and its overhead is below 1%.
When lSR is 8, this overhead is mostly situated between VIHC
and 2n-PRL and the compression ratio is higher in the case
of the s5378, s9234, s38417, and s38584, but the other cir-
cuits are lower than 2n-PRL. When lSR is 16, the hardware
area overhead is a little higher than VIHC and 2n-PRL in the
case of the small circuits such as s5378 and s9234. However,
in the other cases such as s13207, s15850, s38417, and s35854,
the difference in this overhead is below 1.1%, hence it is
negligible.

The International Technology Roadmap for Semiconductors
2012 report [41] states that recent industrial circuits increase
the size of logic exponentially, i.e., the number of logic gates is
above 501 million from 2014 onward; this number is rising at
more than 100 million gates a year. Therefore, the hardware
area overhead of the proposed method can be predicted to
below 1.0% and this method is more suitable for effectively
applying these industrial circuits.

In our experimental results, we estimate the comparison of
the TAT with a variety of previous test data compression meth-
ods and with different frequency ratios (α). The α is the ratio
between the chip internal clock (fchip) and the ATE operating
clock (fATE); it is presented as follows: α = fchip/fATE.

282 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 35, NO. 2, FEBRUARY 2016

TABLE X
COMPARISON OF THE TAT WITH THE DIFFERENT FREQUENCY RATIOS

As most of the test compression methods are used for
the at-speed scan test, both clocks require synchronization.
Therefore, the TAT and proposed method are affected by the
frequency ratio.

In our method, the TAT is estimated with the following
equation:

TAT(cycle) = Tcode + Toper_shift (4)

where Tcode is the time that the compressed test data are
inserted in the test chip according to the ATE operating clock
and Toper_shift is the ATE waiting clock for transmitting the
R-TRC values to the scan cells. The TAT is estimated as
above (4), and it is compared to the previous existing test
data compression method in Table X. Here, the methods that
are specified their TATs unclearly are not selected for the com-
parison targets. Except for a few of the cases, the proposed
method outperforms most of the cases. To be more specific,
the proposed method is reduced to 20%–45% by comparing
it to 2n-PRL with an α of 32.

It is important that whether the proposed method can be
applied to the real design with high-compression ratio. If the
compression ratio is about 70%, it is hard to use the proposed
method for industrial circuit. For this reason, the additional
experiments are performed to apply some real designs and
these results are shown in Table XI. These real designs are
composed of 5.8–8.4 M gates and 380–420 K scan cells. The
results show that it can obtain 64-72X compression ratio and
these ratios are much higher than the results of the bench-
mark circuits. Hence, the proposed method can improve the

TABLE XI
INFORMATION OF THE REAL-DESIGN CIRCUIT

AND COMPRESSION RATIO

compression ratio in proportion to the design size. These
results show that the proposed method can be applied to the
real-industrial design.

VI. CONCLUSION

In this paper, we present a new input test data compres-
sion method called TSC and a decompression architecture
with a tri-state detection circuit. Our proposed method is
more effective concerning three main factors: 1) the compres-
sion ratio; 2) the hardware area overhead; and 3) the TAT.
Experimental results show that in most of the cases, the per-
formance of the proposed method is more outstanding than
the results of previous methods. This is especially the case
with circuits larger than the ISCAS’89 benchmark circuits
such as the ITC’99 benchmark circuit which also acquired
a high-compression ratio above 90%. To conclude, the pro-
posed method’s compression ratio improved up to an average
of 8.41% compared to the best previous results and the
TAT was reduced up to approximately 17 000 cycles without
high-hardware area overhead.

SEO et al.: TSC USING RECONFIGURATION OF TRC FOR TEST DATA COMPRESSION 283

ACKNOWLEDGMENT

The authors would like to thank the SoC Design Technology
Team, System IC Research and Development Laboratory, LG
Electronics, Inc., for providing the test data of industrial
circuits.

REFERENCES

[1] N. Touba, “Survey of test vector compression techniques,” IEEE Des.
Test Comput., vol. 23, no. 4, pp. 294–303, Aug. 2006.

[2] Y. Yu, Z. Yang, and X. Peng, “Test data compression based on variable
prefix dual-run-length code,” in Proc. Instrum. Meas. Technol. Conf.,
Graz, Austria, May 2012, pp. 2537–2542.

[3] J. Shao and J. Ding, “Research on VLSI test compression,” in Proc.
Int. Conf. Comput. Sci. Netw. Technol., Harbin, China, Dec. 2011,
pp. 545–548.

[4] M. Chloupek and O. Novak, “Test pattern compression based on pattern
overlapping and broadcasting,” in Proc. 10th Int. Workshop Electron.
Control Meas. Signals, Liberec, Czech Republic, Jun. 2011, pp. 1–5.

[5] Z. Wang, H. Fang, and K. Chakrabarty, “Deviation-based LFSR reseed-
ing for test-data compression,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 28, no. 2, pp. 259–271, Feb. 2009.

[6] S. Wang, W. Wei, and Z. Wang, “A low overhead high test compres-
sion technique using pattern clustering with n-detection test support,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 12,
pp. 1672–1685, Dec. 2010.

[7] C. Y. Lin, H. C. Lin, and H. M. Chen, “On reducing test power and
test volume by selective pattern compression schemes,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 8, pp. 1220–1224,
Aug. 2010.

[8] S. Wang and W. Wei, “Cost efficient methods to improve performance
of broadcast scan,” in Proc. IEEE Asian Test Symp., Sapporo, Japan,
Nov. 2008, pp. 163–169.

[9] L. J. Lee, W. D. Tseng, R. B. Lin, and C. H. Chang, “2n pattern
run-length for test data compression,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 31, no. 4, pp. 644–648, Apr. 2012.

[10] K. Basu and P. Mishra, “Test data compression using efficient bitmask
and dictionary selection methods,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 18, no. 9, pp. 1277–1286, Sep. 2010.

[11] P. Sismanoglou and D. Nikolos, “Input test data compression based on
the reuse of parts of dictionary entries: Static and dynamic approaches,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 32, no. 11,
pp. 1762–1775, Apr. 2012.

[12] A. J. Ahne, “Tri-state detection circuit for use in devices associated with
an imaging system,” U.S. Patent 7 259 588, Aug. 21, 2007.

[13] D. A. Huffman, “A method for the construction of minimum redundancy
codes,” Proc. IRE, vol. 40, no. 9, pp. 1098–1101, Sep. 1952.

[14] A. Jas, J. Ghosh-Dastidar, and N. A. Touba, “Scan vector
compression/decompression using statistical coding,” in Proc. IEEE
VLSI Test Symp., Dana Point, CA, USA, May 1999, pp. 114–120.

[15] A. Jas, J. Ghosh-Dastidar, M.-E. Ng, and N. A. Touba, “An effi-
cient test vector compression scheme using selective Huffman coding,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 22, no. 6,
pp. 797–806, Jun. 2003.

[16] X. Kavousianos, E. Kalligeros, and D. Nikolos, “Optimal selective
Huffman coding for test-data compression,” IEEE Trans. Comput.,
vol. 56, no. 8, pp. 1146–1152, Aug. 2007.

[17] P. T. Gonciari, B. M. Al-Hashimi, and N. Nicolici, “Variable-length input
Huffman coding for system-on-a-chip test,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 22, no. 6, pp. 783–796, Jun. 2003.

[18] C. Giri, “Test data compression by split-VIHC (SVIHC),” in Proc.
Int. Conf. Comput. Theory Appl. (ICCTA), Kolkata, India, Mar. 2007,
pp. 146–150.

[19] A. Chandra and K. Chakrabarty, “System-on-a-chip test-data com-
pression and decompression architectures based on Golomb codes,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 20, no. 3,
pp. 335–368, Mar. 2001.

[20] A. Jas and N. Touba, “Test vector decompression via cyclical scan chains
and its application to testing core-based designs,” in Proc. IEEE Int. Test
Conf., Washington, DC, USA, Oct. 1998, pp. 458–464.

[21] A. Chandra and K. Chakrabarty, “Test data compression and test
resource partitioning for system-on-a-chip using frequency-directed
run-length (FDR) codes,” IEEE Trans. Comput., vol. 52, no. 8,
pp. 1076–1088, Aug. 2003.

[22] A. H. El-Maleh, “Test data compression for system-on-a-chip using
extended frequency-directed run-length (EFDR) code,” IET Comput.
Digit. Tech., vol. 2, no. 3, pp. 155–163, May 2008.

[23] X. Ruan and R. S. Katti, “Data-independent pattern run-length compres-
sion for testing embedded cores in SoCs,” IEEE Trans. Comput., vol. 56,
no. 4, pp. 545–556, Apr. 2007.

[24] L. Li, K. Chakrabarty, and N. Touba, “Test data compression using
dictionaries with selective entries and fixed-length indices,” ACM Trans.
Design Autom. Electron. Syst., vol. 8, no. 4, pp. 470–490, Oct. 2003.

[25] S. M. Reddy, K. Miyase, S. Kalihara, and I. Pomeranz, “On test data vol-
ume reduction for multiple scan chain design,” in Proc. VLSI Test Symp.,
Monterey, CA, USA, 2002, pp. 103–108.

[26] F. Wolff and C. Papachristou, “Multiscan-based test compression
and hardware decompression using LZ77,” in Proc. Int. Test Conf.,
Baltimore, MD, USA, 2002, pp. 331–339.

[27] T. Nguyen and H. Luong, “3.3 volt CMOS tri-state driver circuit capable
of driving common 5 volt line,” U.S. Patent 5 467 031, Nov. 14, 1995.

[28] J. Nicolai, “Integrated circuit with mode detection pin for tristate level
detection,” U.S. Patent 5 198 707, Mar. 30, 1993.

[29] D. Thomson, P. Sheridan, and J. Cleary, “Tri-state input detection
circuit,” U.S. Patent 6 133 753, Oct. 17, 2000.

[30] IEEE Standard Test Access Port Boundary Scan Architecture,
IEEE Standard 1149.1-2001, 2001.

[31] (1989). ISCAS’89 Circuit. [Online]. Available: http://www.iwls.org/
iwls2005/benchmarks.html

[32] T. Hiraide et al., “BIST-aided scan test—A new method for test
cost reduction,” in Proc. VLSI Test Symp., Napa, CA, USA, 2003,
pp. 359–364.

[33] A. Chandra and K. Chakrabarty, “Combining low-power scan testing
and test data compression for system-on-a-chip,” in Proc. Design Autom.
Conf., Las Vegas, NV, USA, Jun. 2001, pp. 166–169.

[34] W. L. Li, P. H. Wu, and J. C. Rau, “Reducing switching activity by test
slice difference technique for test volume compression,” in Proc. IEEE
Int. Symp. Circuit Syst., Taipei, Taiwan, May 2009, pp. 2686–2989.

[35] C. V. Krishna and N. A. Touba, “Reducing test data volume using LFSR
reseeding with seed compression,” in Proc. Int. Test Conf., Baltimore,
MD, USA, 2002, pp. 321–330.

[36] D. Lee and K. Roy, “Viterbi-based efficient test data compression,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 31, no. 4,
pp. 610–619, Apr. 2012.

[37] A. Chandra, K. Chakrabarty, and S. R. Das, “On using twisted-ring
counters for testing embedded cores in system-on-a-chip designs,”
in Proc. Instrum. Meas. Technol. Conf., Budapest, Hungary, May 2001,
pp. 216–220.

[38] B. Zhou, Y.-Z. Ye, and Y.-S. Wang, “Simultaneous reduction in test
data volume and test time for TRC-reseeding,” in Proc. 17th Great Lakes
Symp. VLSI, Stresa, Italy, Mar. 2007, pp. 49–54.

[39] Z. Zhang and R. D. McLeod, “An efficient multiple scan chain test-
ing scheme,” in Proc. 6th Great Lakes Symp. VLSI, Ames, IA, USA,
Mar. 1996, pp. 294–297.

[40] X. Kavousianos, E. Kalligeros, and D. Nikolos, “Multilevel-Huffman
test-data compression for IP cores with multiple scan chains,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16, no. 7,
pp. 926–931, Jul. 2008.

[41] ITRS. (2012). Edition Reports. [Online]. Available: http://www.itrs.net

Sungyoul Seo received the B.S. degree in electronic
engineering from Kwangwoon University, Seoul,
Korea, in 2013. He is currently pursuing the
combined Ph.D. degree with the Department of
Electrical and Electronic Engineering, Yonsei
University, Seoul.

His current research interests include
design-for-testability, scan-based testing, test data
compression, and low-power testing.

284 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 35, NO. 2, FEBRUARY 2016

Yong Lee received the B.S. and M.S. degrees in
electrical and electronic engineering from Yonsei
University, Seoul, Korea, in 2005, where he is cur-
rently pursuing the Ph.D. degree.

He was an Engineer with the System IC Business
Team, LG Electronics, Seoul. His current research
interests include design-for-testability, design flow,
verification, and validation.

Sungho Kang (M’89) received the B.S. degree
from Seoul National University, Seoul, Korea,
and the M.S. and Ph.D. degrees in electrical and
computer engineering from the University of Texas
at Austin, Austin, TX, USA, in 1992.

He was a Research Scientist with the
Schlumberger Laboratory for Computer Science,
Schlumberger, Inc., Houston, TX, USA, and a Senior
Staff Engineer with the Semiconductor Systems
Design Technology, Motorola, Inc., Schaumburg,
IL, USA. Since 1994, he has been a Professor

with the Department of Electrical and Electronic Engineering, Yonsei
University, Seoul. His current research interests include very large-scale
integration/system-on-chip design and testing, design-for-testability, built-in
self-test, defect diagnosis, and design-for-manufacturability.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

