
1 Chapter 28 Application Architectures

©Ian Sommerville 2009

28 Application Architectures

Objectives

The objective of this chapter is to introduce architectural models for specific
classes of application software system. When you have read this chapter, you
will:

be aware of two fundamental architectural organisations of business
systems, namely batch and transaction processing;

understand the abstract architecture of information and resource
management systems;

understand how command-driven systems, such as editors, can be
structured as event processing systems;

know the structure and organisation of language processing systems.

Contents
28.1 Data processing systems
28.2 Transaction processing systems
28.3 Event processing systems
28.4 Language processing systems

 Chapter 28 Application Architectures 2

©Ian Sommerville 2009

As I explained in Chapter 6, you can look at system architectures from a range of
perspectives. So far, the discussions of system architectures in Chapters 6 and 18 have
concentrated on architectural perspectives and issues such as control, distribution and
system structuring. In this chapter, however, I take an alternative approach and look at
architectures from an application perspective.

Application systems are intended to meet some business or organisational need.
All businesses have much in common—they need to hire people, issue invoices, keep
accounts and so forth—and this is especially true of businesses operating in the same
sector. Therefore, as well as general business functions, all phone companies need
systems to connect calls, manage their network, issue bills to customers etc.
Consequently, the application systems that these businesses use also have much in
common.

Usually, systems of the same type have similar architectures and the differences
between these systems are in the detailed functionality that is provided. This can be
illustrated by the growth of Enterprise Resource Planning (ERP) systems such as the
SAP/R3 system (Appelrath and Ritter, 2000) and vertical software packages for
particular applications. In these systems, which I discuss briefly in Chapter 16, a
generic system is configured and adapted to create a specific business application. For
example, a system for supply chain management can be adapted for different types of
suppliers, goods and contractual arrangements.

In the discussion of application architectures here, I present generic structural
models of several types of application. I discuss the basic organisation of these
application types and, where appropriate, break down the high-level architecture to
show sub-systems that are normally included in applications.

As a software designer, you can use these generic application architectures in a
number of ways:

1. As a starting point for the architectural design process If you are unfamiliar with
this type of application, you can base your initial designs on the generic
architectures. Of course, these will have to be specialised for specific systems but
they are a good starting point for your design.

1. As a design checklist If you have developed a system architectural design, you can
check this against the generic application architecture to see whether you have
missed any important design components.

2. As a way of organising the work of the development team The application
architectures identify stable structural features of the system architectures and, in
many cases, it is possible to develop these in parallel. You can assign work to
group members to implement different sub-systems within the architecture.

3. As a means of assessing components for reuse If you have components you might
be able to reuse, you can compare these with the generic structures to see whether
reuse is likely in the application that you are developing.

3 Chapter 28 Application Architectures

©Ian Sommerville 2009

4. As a vocabulary for talking about types of applications If you are discussing a
specific application or trying to compare applications of the same types, then you
can use the concepts identified in the generic architecture to talk about the
applications.

There are many types of application system and, on the surface, they may seem
to be very different. However, when you examine the architectural organisation of
applications, many of these superficially dissimilar applications have much in common.

 I illustrate this here by describing the architectures of four broad types of
application:

1. Data processing applications Data processing applications are applications that
are data-driven. They process data in batches without explicit user interventions
during the processing. The specific actions taken by the application depend on
the data that it is processing. Batch processing systems are commonly used in
business applications where similar operations are carried out on a large amount
of data. They handle a wide range of administrative functions such as payroll,
billing, accounting, and publicity.

2. Transaction processing applications Transaction processing applications are
database-centred applications that process user requests for information and that
update the information in a database. These are the most common type of
interactive business systems. They are organised in such a way that user actions
can’t interfere with each other and the integrity of the database is maintained.
This class of system includes interactive banking systems, e-commerce systems,
information systems and booking systems.

3. Event processing systems This is a very large class of application where the
actions of the system depend on interpreting events in the system’s environment.
These events might be the input of a command by a system user or a change in
variables that are monitored by the system. Many PC-based applications,
including games, editing systems such as word processors, spreadsheets, image
editors and presentation systems are event processing systems. Real-time
systems, discussed in Chapter 20, also fall into this category.

4. Language processing systems Language processing systems are systems where
the user’s intentions are expressed in a formal language (such as Java). The
language processing system processes this language into some internal format
and then interprets this internal representation. The best-known language
processing systems are compilers, which translate high-level language programs
to machine code. However, language processing systems are also used to
interpret command languages for databases and information systems and markup
languages such as XML (Harold and Means, 2002), which is extensively used to
describe structured data items.

 Chapter 28 Application Architectures 4

©Ian Sommerville 2009

I have chosen these particular types of system because they represent the majority of
systems in use today. Business systems are generally either data processing or
transaction processing systems, and most personal computer software is built around an
event processing architecture. Real-time systems are also event processing systems
although I do not cover these architectures in this chapter but in Chapter 20. All
software development relies on language processing systems such as compilers.

Batch processing systems and transaction processing systems are both database
centric systems. Because of the central importance of data, it is common for
applications of different types to share the same database. For example, a business data
processing system that prints bank statements uses the same customer account database
as a transaction processing system that provides web-based access to account
information.

Of course, as I discussed in Chapter 6, complex applications rarely follow a
single, simple architectural model. Rather, their architecture is more often a hybrid,
with different parts of the application structured in different ways. When designing
these systems, you therefore have to consider the architectures of individual sub-
systems as well as the how these are integrated within an overall system architecture.

28.1 Data processing systems

Businesses rely on data processing systems to support many aspects of their business
such as paying salaries, calculating and printing invoices, maintaining accounts and
issuing renewals for insurance policies. As the name implies, these systems focus on
data and the databases that they rely on are usually orders of magnitude larger than the
systems themselves. Data processing systems are batch processing systems where data
is input and output in batches from a file or database rather than input from and output
to a user terminal. These systems select data from the input records and, depending on
the value of fields in the records, take some actions specified in the program. They may
then write back the result of the computation to the database and format the input and
computed output for printing.

The architecture of batch processing systems has three major components, as
illustrated in Figure 28.1. An input component collects inputs from one or more
sources; a processing component makes computations using these inputs; and an output
component generates outputs to be written back to the database and printed. For
example, a telephone billing system takes customer records and telephone meter
readings (inputs) from an exchange switch, computes the costs for each customer
(process) and then prints bills (outputs) for each customer.

The input, processing and output components may themselves be further
decomposed into an input-process-output structure. For example:

5 Chapter 28 Application Architectures

©Ian Sommerville 2009

1. An input component may read some data (input) from a file or database, check
the validity of that data and correct some errors (process), then queue the valid
data for processing (output).

2. A processing component may take a transaction from a queue (input), perform
some computations on the data and create a new data record recording the results
of the computation (process), then queue this new record for printing (output).
Sometimes the processing is done within the system database and sometimes it is
a separate program.

3. An output component may read records from a queue (input), format these
according to the output form (process), then send them to a printer or write new
records back to the database (output).

The nature of data processing systems where records or transactions are
processed serially with no need to maintain state across transactions means that these
systems are naturally function-oriented rather than object-oriented. Functions are
components that do not maintain internal state information from one invocation to
another. Data-flow diagrams, introduced in Chapter 5, are a good way to describe the
architecture of business data processing systems.

Data-flow diagrams are a way of representing function-oriented systems where
each round-edged rectangle in the data flow represents a function that implements some
data transformation, and each arrow represents a data item that is processed by the
function. Files or data stores are represented as rectangles. The advantage of data-flow
diagrams is that they show end-to-end processing. That is, you can see all of the
functions that act on data as it moves through the stages of the system. The fundamental
data-flow structure consists of an input function that passes data to a processing
function and then to an output function.

Figure 28.2 illustrates how data-flow diagrams can be used to show a more
detailed view of the architecture of a data processing system. This figure shows the

Figure 28.1 An
input-process-
output model of a
data processing
system

 Chapter 28 Application Architectures 6

©Ian Sommerville 2009

design of a salary payment system. In this system, information about employees in the
organisation is read into the system, monthly salary and deductions are computed, and
payments are made. You can see how this system follows the basic input-process-
output structure:

1. The functions on the left of the diagram ‘Read employee record’, ‘Read monthly
pay data’ and ‘Validate employee data’ input the data for each employee and
check that data.

2. The Compute salary function works out the total gross salary for each employee
and the various deductions that are made from that salary. The net monthly
salary is then computed.

3. The output functions write a series of files that hold details of the deductions
made and the salary to be paid. These files are processed by other programs once
details for all employees have been computed. A payslip for the employee,
recording the net pay and the deductions made, is printed by the system.

Figure 28.2 Data-
flow diagram of a
payroll system

7 Chapter 28 Application Architectures

©Ian Sommerville 2009

The architectural model of data processing programs is relatively simple.
However, in those systems the complexity of the application is often reflected in the
data being processed. Designing the system architecture therefore involves thinking
about the data architecture (Bracket, 1994) as well as the program architecture. The
design of data architectures is outside the scope of this book.

28.2 Transaction processing systems

Transaction processing systems are designed to process user requests for information
from a database or requests to update the database (Lewis, et al., 2003). Technically, a
database transaction is sequence of operations that is treated as a single unit (an atomic
unit). All of the operations in a transaction have to be completed before the database
changes are made permanent. This means that failure of operations within the
transaction do not lead to inconsistencies in the database.

An example of a transaction is a customer request to withdraw money from a
bank account using an ATM. This involves getting details of the customer’s account,
checking the balance, modifying the balance by the amount withdrawn and sending
commands to the ATM to deliver the cash. Until all of these steps have been completed,
the transaction is incomplete and the customer accounts database is not changed.

From a user perspective, a transaction is any coherent sequence of operations
that satisfies a goal, such as ‘find the times of flights from London to Paris’. If the user
transaction does not require the database to be changed then it may not be necessary to
package this as a technical database transaction.

Transaction processing systems are usually interactive systems where users
make asynchronous requests for service. Figure 28.3 illustrates the high-level
architectural structure of these applications. First, a user makes a request to the system
through an I/O processing component. The request is processed by some application-
specific logic. A transaction is created and passed to a transaction manager, which is
usually embedded in the database management system. After the transaction manager
has ensured that the transaction is properly completed it signals to the application that
processing has finished.

The input-process-output structure that we can see in data processing
applications also applies to many transaction processing systems. Some of these
systems are interactive versions of batch processing systems. For example, at one time
banks input all customer transactions off-line then ran these transactions in a batch

Figure 28.3 The
structure of
transaction
processing
applications

I/O
processing

Application
logic

Transaction
manager Database

 Chapter 28 Application Architectures 8

©Ian Sommerville 2009

against their accounts database every evening. This approach has mostly been replaced
by interactive, transaction-based systems that update accounts in real time.

An example of a transaction processing system is a banking system that allows
customers to query their accounts and withdraw cash from an ATM. The system is
composed of two cooperating software sub-systems—the ATM software and the
account processing software in the bank’s database server. The input and output sub-
systems are implemented as software in the ATM, whereas the processing sub-system is
in the bank’s database server. Figure 28.4 the architecture of this system. I have added
some detail to the basic input-process-output diagram to show components that may be
involved in the input, processing and output activities. I have deliberately not suggested
how these internal components interact, as the sequence of operation may differ from
one machine to another.

In systems such as a bank customer accounting systems, there may be different
ways to interact with the system. Many customers will interact through ATMs, but bank
staff will use counter terminals to access the system. There may be several types of
ATMs and counter terminals used, and some customers and staff may access the
account data through web browsers.

To simplify the management of different terminal communication protocols,
large-scale transaction processing systems may include middleware that communicates
with all types of terminal, organises and serialises the data from terminals, and sends
that data for processing. This middleware is sometimes called a ‘teleprocessing
monitor’ or a ‘transaction management’ system. IBM’s CICS (Horswill and Miller,
2000) is a very widely used example of such a system.

Figure 28.5 shows another view of the architecture of a customer accounting
system that handles personal account transactions from ATMs and counter terminals in
a bank. The teleprocessing monitor handles the input and serialises transactions, which
it converts to database queries. The query processing takes place in the database

Figure 28.4 The
software
architecture of an
ATM

9 Chapter 28 Application Architectures

©Ian Sommerville 2009

management system. Results are passed back to the teleprocessing monitor, which
keeps track of terminals making the request. This system then organises the data into a
form that can be handled by the terminal software and returns the results of the
transaction to it.

28.2.1 Information and resource management systems
All systems that involve interaction with a shared database can be considered to be
transaction-based information systems. An information system allows controlled access
to a large base of information, such as a library catalogue, a flight timetable or the
records of patients in a hospital. The development of the WWW meant that a huge
number of information systems moved from being specialist organisational systems to
universally accessible general-purpose systems.

Figure 28.6 is a very general model of an information system. The system is
modelled using a layered or abstract machine approach (discussed in Chapter 6), where
the top layer supports the user interface and the bottom layer the system database. The
user communications layer handles all input and output from the user interface, and the
information retrieval layer includes application-specific logic for accessing and
updating the database. As we shall see later, the layers in this model can map directly
onto servers in an Internet-based system.

As an example of an instantiation of this layered model, Figure 28.7 presents the
architecture of a library system called LIBSYS. This system allows users to access
documents in remote libraries and download these for printing, taking copyright
considerations into account. I have added detail to each layer in the model by
identifying the components that support user communications and information retrieval
and access. You should also notice that the database is a distributed database. Users
actually connect, through the system, to the databases of the libraries that provide
documents.

The user communication layer in Figure 28.7 includes three major components:

Figure 28.5
Middleware for
transaction
management

 Chapter 28 Application Architectures 10

©Ian Sommerville 2009

1. The LIBSYS login component identifies and authenticates users. All information
systems that restrict access to a known set of users need to have user
authentication as a fundamental part of their user communication systems. User
authentication can be personal but, in e-commerce systems, may also require
credit card details to be provided.

2. The form and query manager component manages the forms that may be
presented to the user and provides query facilities allowing the user to request
information from the system. Again, all information systems must include a
component that provides these facilities.

3. The print manager component is specific to LIBSYS. It controls the printing of
documents that, for copyright reasons, may be restricted. For example, some
documents may only be printed once on printers of the registered library.

The information retrieval and modification layer in the LIBSYS system includes
application-specific components that implement the system’s functionality. These
components are:

1. Distributed search This component searches for documents in response to user
queries across all of the libraries that have registered with the system. The list of
known libraries is maintained in the library index.

2. Document retrieval This component retrieves the document or documents that
are required by the user to the server where the LIBSYS system is running.

3. Rights manager This component handles all aspects of digital rights
management and copyright. It keeps track of who has requested documents and,

Figure 28.6 A
layered model of
an information
system

11 Chapter 28 Application Architectures

©Ian Sommerville 2009

for example, ensures that multiple requests for the same document cannot be
made by the same person.

4. Accounting This component logs all requests and, if necessary, handles any
charges that are made by the libraries in the system. It also produces
management reports on the use of the system.

We can see the same, four-layer generic structure in another type of information
system, namely systems that are designed to support resource allocation. Resource
allocation systems manage a fixed amount of some given resource, such as tickets for a
concert or a football game, that must be allocated to users who request that resource
from the supplier. Ticketing systems are an obvious example of a resource allocation
system, but a large number of apparently dissimilar programs are also actually resource
allocation systems. Some examples of this class of system are:

1. Timetabling systems that allocate classes to timetable slots. The resource being
allocated here is a time period and there are usually a large number of constraints
associated with each demand for the resource.

2. Library systems that manage the lending and withdrawal of books or other items.
In this case, the resources being allocated are the items that may be borrowed. In
this type of system, the resources are not simply allocated but must sometimes
be deallocated from the user of the resource.

3. Air traffic management systems where the resource that is being allocated is a
segment of airspace so that separation is maintained between the planes that are

Figure 28.7 The
architecture of the
LIBSYS system

Web browser interface

Distributed
search Accounting

LIBSYS
login

Forms and
query manager

Library index

Document
retrieval

DB1 DB2 DB3 DB4 DBn

Rights
manager

Print
manager

 Chapter 28 Application Architectures 12

©Ian Sommerville 2009

being managed by the system. Again, this involves dynamic allocation and
reallocation of resource, but the resource is a virtual rather than a physical
resource.

Resource allocation systems are a very widely used class of application. If we
look at their architecture in detail, we can see how it is aligned with the information
system model shown in Figure 28.6. The components of a resource allocation system
(shown in Figure 28.8) include:

1. A resource database that holds details of the resources being allocated.
Resources may be added or removed from this database. For example, in a
library system, the resource database includes details of all items that may be
borrowed by users of the library. Normally, this is implemented using a database
management system that includes a transaction processing system. The database
management system also includes resource-locking facilities so that the same
resource cannot be allocated to users who make simultaneous requests.

2. A rule set that describes the rules of resource allocation. For example, a library
system normally limits who may be allocated a resource (registered library
users), the length of time that a book or other item may be borrowed, the
maximum number of books that may be borrowed and so on. This is
encapsulated in the resource policy control component.

3. A resource management component that allows the provider of the resources to
add, edit or delete resources from the system.

Figure 28.8 A
layered model of a
resource allocation
system

13 Chapter 28 Application Architectures

©Ian Sommerville 2009

4. A resource allocation component that updates the resource database when
resources are assigned and that associates these resources with details of the
resource requestor.

5. A user authentication module that allows the system to check that resources are
being allocated to an accredited user. In a library system this might be a
machine-readable library card; in a ticket allocation system it could be a credit
card that verifies the user is able to pay for the resource.

6. A query management module that allows users to discover what resources are
available. In a library system, this would typically be based around queries for
particular items; in a ticketing system, it could involve a graphical display
showing what tickets are available for particular dates.

7. A resource delivery component that prepares the resources for delivery to the
requestor. In a ticketing system, this might involve preparing an e-mail
confirmation and sending a request to a ticket printer to print the tickets and the
details of where these should be posted

8. A user interface component (often a web browser) that is outside the system and
allows the requester of the resource to issue queries and requests for the resource
to be allocated.

This layered architecture can be realised in several ways. Information systems
software can be organised so that each layer is a large-scale component running on a
separate server. Each layer defines its external interfaces and all communication takes
place through these interfaces. Alternatively, if the entire information system executes
on a single computer, then the middle layers are usually implemented as a single
program that communicates with the database through its API. A third alternative is to
implement finer-grain components as separate web services (discussed in Chapter 19)
and compose these dynamically according to the user’s requests.

Implementations of information and resource management systems based on
Internet protocols are now the norm; the user interface in these systems is implemented
using a web browser. These systems are usually implemented as multi-tier client
server/architectures, as discussed in Chapter 18. The system organisation is shown in
Figure 28.9. The web server is responsible for all user communications; the application
server is responsible for implementing application-specific logic as well as information
storage and retrieval requests; the database server moves information to and from the
database. Using multiple servers allows high throughput and makes it possible to handle
hundreds of transactions per minute.

Figure 28.9 A
multi-tier Internet
transaction
processing system

Web
browser Web server Application

server
Database

server

 Chapter 28 Application Architectures 14

©Ian Sommerville 2009

E-commerce systems are Internet-based resource management systems that are
designed to accept electronic orders for goods or services and then arrange delivery of
these goods or services to the customer. There is a wide range of these systems now in
use ranging from systems that allow services such as car-hire to be arranged to systems
that support the order of tangible goods such as books or groceries. In an e-commerce
system, the application-specific layer includes additional functionality supporting a
‘shopping cart’ in which users can place a number of items in separate transactions,
then pay for them all together in a single transaction.

28.3 Event processing systems

Event processing systems respond to events in the system’s environment or user
interface. As I discussed in Chapter 6, the key characteristic of event processing
systems is that the timing of events is unpredictable and the system must be able to cope
with these events when they occur.

We all use such event-based systems like this on our own computers—word
processors, presentation systems and games are all driven by events from the user
interface. The system detects and interprets events. User interface events represent
implicit commands to the system, which takes some action to obey that command. For
example, if you are using a word processor and you double-click on a word, the double-
click event means ‘select that word’.

Real-time systems, which take action in ‘real time’ in response to some external
stimulus, are also event-based processing systems. However, for real-time systems,
events are not usually user interface events but events associated with servers or
actuators in the system. Because of the need for real-time response to unpredictable
events, these real-time systems are normally organised as a set of cooperating
processes. I cover generic architectures for real-time systems in Chapter 20.

In this section, I focus on describing the generic architecture of editing systems.
Editing systems are programs that run on PCs or workstations that allow users to edit
documents such as text documents, diagrams or images. Some editors focus on editing a
single type of document, such as images from a digital camera or scanner. Others,
including most word processors, are multi-editors and include support for editing
different types including text and diagrams. You can even think of a spreadsheet as an
editing system where you edit boxes on the sheet. Of course, spreadsheets have
additional functionality to carry out computations.

Editing systems have a number of characteristics that distinguish them from
other types of system and that influence their architectural design:

1. Editing systems are mostly single-user systems. They therefore don’t have to
deal with the problems of multiple concurrent access to data and have simpler
data management than transaction-based systems. Even where data are shared,

15 Chapter 28 Application Architectures

©Ian Sommerville 2009

transaction management is not usually used because transactions take a long
time and alternative methods of maintaining data integrity are used.

2. They have to provide rapid feedback on user actions such as ‘select’ and
‘delete’. This means they have to operate on representations of data that is held
in computer memory rather than on disk. Because the data is in volatile memory,
it can be lost if there is a system fault, so editing systems should make some
provision for error recovery.

3. Editing sessions are normally much longer than sessions involving ordering
goods, or making some other transaction. This again means that there is a greater
risk of loss if problems arise. Therefore, many editing systems include recovery
facilities that automatically save work in progress and recover this for the user in
the event of a system failure.

A generic architecture for an editing system is shown in Error! Reference source
not found. as a set of interacting objects. The objects in the system are active rather than
passive and can operate concurrently and autonomously. Essentially, screen events are
processed and interpreted as commands. This updates a data structure, which is then
redisplayed on the screen.

The responsibilities of the architectural components shown in Figure 28.10 are:

1. Screen This object monitors the screen memory segment and detects events that
occur. These events are then passed to the event processing object along with
their screen coordinates.

2. Event This object is triggered by an event arriving from Screen. It uses
knowledge of what is displayed to interpret this event and to translate this into
the appropriate editing command. This command is then passed to the object
responsible for command interpretation. For very common events, such as
mouse clicks or key presses, the event object can communicate directly with the
data structure. This allows faster updates of that structure.

3. Command This object processes a command from the event object and calls the
appropriate method in the Editor data object to execute the command.

4. Editor data When the appropriate command method in Editor data object is
called, it updates the data structure and calls the Update method in Display to
display the modified data.

5. Ancillary data As well as the data structure itself, editors manage other data such
as styles and preferences. In this simple architectural model, I have bundled this
together under Ancillary data. Some editor commands, such as a command to
initiate a spelling check, are implemented by a method in this object.

6. File system This object handles all opening and saving of files. These can be
either editor data or ancillary data files. To avoid data loss, many editors have

 Chapter 28 Application Architectures 16

©Ian Sommerville 2009

auto-save facilities that save the data structure automatically. This can then be
retrieved in the event of system failure.

7. Display This object keeps track of the organisation of the screen display. It calls
the Refresh method in Screen when the display has been changed.

Because of the need for a rapid response to user commands, editing systems do
not have a central controller that calls the components to take action. Rather, the critical
components in the system execute concurrently and can communicate directly (e.g., the
event processor can communicate directly with the editor data structure) so that faster
performance can be achieved.

Figure 28.10 The
abstract
architecture of an
editing system

17 Chapter 28 Application Architectures

©Ian Sommerville 2009

28.4 Language processing systems

Language processing systems accept a natural or artificial language as an input and
generate some other representation of that language as an output. In software
engineering, the most widely used language processing systems are compilers that
translate an artificial high-level programming language into machine code, but other
language-processing systems translate an XML data description into commands to
query a database and natural language processing systems that attempt to translate one
natural language to another.

At the most abstract level, the architecture of a language processing system is
illustrated in Figure 28.11. The instructions describe what has to be done. These are
translated into some internal format by a translator. The instructions correspond to the
machine instructions for an abstract machine. These instructions are then interpreted by
another component that fetches the instructions for execution and executes them using,
if necessary, data from the environment. The output of the process is the result of
interpreting the instructions on the input data. Of course, for many compilers, the
interpreter is a hardware unit that processes machine instructions and the abstract
machine is a real processor. However, for many languages, such as Java, the interpreter
is a software component.

Language processing systems are used in situations where the easiest way to
solve a problem is to specify that solution as an algorithm or as a description of the
system data. For example, meta-CASE tools are program generators that are used to

Figure 28.11 The
abstract
architecture of a
language
processing system

Translator

Check syntax
Check semantics
Generate

Interpreter

Fetch
Execute

Abstract m/c
instructions

Data Results

Instructions

 Chapter 28 Application Architectures 18

©Ian Sommerville 2009

create specific CASE tools to support software engineering methods. Meta-CASE tools
include a description of the method components, its rules and so on, written in a
special-purpose language that is parsed and analysed to configure the generated CASE
tool.

Translators in a language processing system have a generic architecture (Figure
28.12) that includes the following components:

1. A lexical analyser that takes input language tokens and converts them to an
internal form.

2. A symbol table, which holds information about the names of entities (variables,
class names, object names, etc.) used in the text that is being translated.

3. A syntax analyser, which checks the syntax of the language being translated. It
uses a defined grammar of the language and builds a syntax tree.

4. A syntax tree, which is an internal structure representing the program being
compiled.

5. A semantic analyser that uses information from the syntax tree and the symbol
table to check the semantic correctness of the input language text.

6. A code generator that ‘walks’ the syntax tree and generates abstract machine
code.

Other components might also be included which transform the syntax tree to
improve efficiency and remove redundancy from the generated machine code. In other
types of language processing system, such as a natural language translator, the
generated code is actually the input text translated into another language.

The components that make up a language processing system can be organised
according to different architectural models. As Garlan and Shaw point out (Garlan and
Shaw, 1993), compilers can be implemented using a composite model. A data-flow
architecture may be used with the symbol table acting as a repository for shared data.
The phases of lexical, syntactic and semantic analysis are organised sequentially, as
shown in Figure 28.12.

Figure 28.12 A
data-flow model
of a compiler

Lexical
analysis

Syntactic
analysis

Semantic
analysis

Code
generation

Symbol table

Syntax tree

19 Chapter 28 Application Architectures

©Ian Sommerville 2009

This data-flow model of compilation is still widely used. It is effective in batch
environments where programs are compiled and executed without user interaction. It is
less effective when the compiler is to be integrated with other language processing tools
such as a structured editing system, an interactive debugger or a program prettyprinter.
The generic system components can then be organised in a repository-based model, as
shown in Figure 28.13.

This figure illustrates how a language processing system can be part of an
integrated set of programming support tools. In this example, the symbol table and
syntax tree act as a central information repository. Tools or tool fragments
communicate through it. Other information that is sometimes embedded in tools, such
as the grammar definition and the definition of the output format for the program, have
been taken out of the tools and put into the repository. Therefore, a syntax-directed
editor can check that the syntax of a program is correct as it is being typed and a
prettyprinter can create listings of the program in a format that is easy to read.

KEY POINTS

 Generic models of application systems architectures help us
understand the operation of applications, compare applications of the

Figure 28.13 The
repository model
of a compiler

Syntax
analyser

Lexical
analyser

Semantic
analyser

Abstract
syntax tree

Grammar
definition

Symbol
table

Output
definition

Pretty-
printer

Editor

Optimiser

Code
generator

Repository

 Chapter 28 Application Architectures 20

©Ian Sommerville 2009

same type, validate application system designs and assess large-scale
components for reuse.

 Many applications either fall into one of four classes of generic
application or are combinations of these generic applications. The four
types of generic application covered here are data processing systems,
transaction processing systems, event processing systems and
language processing systems.

 Data processing systems operate in batch mode and generally have an
input-process-output structure. Records are input into the system, the
information is processed and outputs are generated.

 Transaction processing systems are interactive systems that allow
information in a database to be remotely accessed and modified by a
number of users. Information systems and resource management
systems are examples of transaction processing systems.

 Event processing systems include editing systems and real-time
systems. In an editing system, user interface events are interpreted and
an in-store data structure is modified. Word processors and
presentation systems are examples of editing systems.

 Language processing systems are used to translate texts from one
language into another and to carry out the instructions specified in the
input language. They include a translator and an abstract machine that
executes the generated language.

FURTHER READING

The topic of application architectures has been largely neglected; authors of books and
articles on software architecture tend to focus on abstract principles or product line
architectures.
Design and Use of Software Architectures. This book takes a product-line approach to
software architectures and therefore discusses architecture from an application
perspective. (J. Bosch, 2000, Addison-Wesley)

Databases and Transaction Processing: An Application-oriented Approach. This is not
really a book on software architecture, but it discusses the principles of transaction
processing and data-centric applications. (P.M. Lewis, A. J. Bernstein and M. Kifer, 2003,
Addison-Wesley)

21 Chapter 28 Application Architectures

©Ian Sommerville 2009

EXERCISES

28.1 Explain how the generic applications architectures described here can be used to
help the designer make decisions about software reuse.

28.2 Using the four basic application types introduced in this chapter, classify the
following systems and explain your classification:

A point-of-sale system in a supermarket
A system that sends out reminders that magazine subscriptions are due to be paid
A photo album system that provides some facilities for restoring old photographs
A system that reads web pages to visually disabled users
An interactive game in which characters move around, cross obstacles and collect
treasure
An inventory control system that keeps track of what items are in stock and
automatically generates orders for new stock then the level falls below a certain
value.

28.3 Based on an input-process-output model, expand the Compute salary function in
Figure 28.2 and draw an activity diagram that shows the computations carried out in
that function. You need the following information to do this:

• The employee record identifies the grade of an employee. This grade is then
used to look up the table of pay rates.

• Employees below a particular grade may be paid overtime at the same rate as
their normal hourly pay rate. The extra hours for which they are to be paid are
indicated in their employee record.

• The amount of tax deducted depends on the employee’s tax code (indicated in
the record) and their annual salary. Monthly deductions for each code and a
standard salary are indicated in the tax tables. These are scaled up or down
depending on the relationship between the actual salary and the standard salary
used.

28.4 Explain why transaction management is necessary in systems where user inputs
can result in database changes.

28.5 Using the basic model of an information system as presented in Figure 28.6,
show the components of an information system that allows users to view information
about flights arriving and departing from a particular airport.

28.6 Using the layered architecture shown in Figure 28.8, show the components of a
resource management system that could be used to handle hotel room bookings.

28.7 In an editing system, all user interface events can be translated into implicit or
explicit commands. Explain why, in Figure 28.10, the Event object therefore
communicates directly with the editor data structure as well as the Command object.

28.8 Modify Figure 28.10 to show the generic architecture of a spreadsheet system.
Base your design on the features of any spreadsheet system that you have used.

28.9 What is the function of the syntax tree component in a language processing
system?

 Chapter 28 Application Architectures 22

©Ian Sommerville 2009

28.10 Using the generic model of a language processing system presented here, design
the architecture of a system that accepts natural language commands and translates
these into database queries in a language such as SQL.

REFERENCES

Appelrath, H.-J. and Ritter, J. (2000). SAP R/3 Implementation: Methods and Tools
(SAP Excellence). Berlin: Springer-Verlag.

Bracket, M. H. (1994). Data Sharing using a Common Data Architecture. New York:
John Wiley & Sons.

Garlan, D. and Shaw, M. (1993). 'An Introduction to Software Architecture'. Advances
in Software Engineering and Knowledge Engineering, 1 1-39.

Harold, E. R. and Means, W. S. (2002). XML in a Nutshell. Sebastopol. Ca.: O'Reilly.

Horswill, J. and Miller, S. A. (2000). Designing and Programming CICS Applications.
Sebastopol, Ca.: O'Reilly.

Lewis, P. M., Bernstein, A. J. and Kifer, M. (2003). Databases and Transaction
Processing: An Application-oriented Approach. Boston: Addison-Wesley.

