29. Opioids, Covid-19, and Inequality

Everything is complicated; if that were not so, life and poetry and everything else would
be a bore.

—Wallace Stevens

In this final chapter, we apply many-model thinking to three salient policy issues:
the opioid epidemic, the covid-19 pandemic, and economic inequality. We show
how by engaging multiple models, we can better reason through these issues and
better communicate the challenges that each presented. We can also see how, par-
ticularly in the case of covid-19,that had the public trusted multiple models, the
costs of the pandemic might have been less severe. That said, we do not want to
oversell the potential for models to avoid disaster.

Our treatment of the three cases differs. We do not go into too much detail when
modeling the opioid epidemic. This more superficial analysis functions as a tem-
plate for how to apply many models when reasoning through a proposed policy or
action. We do not gather data or calibrate any models. Rather, we apply the models
qualitatively to gain insights. We take a much deeper dive into the models applied
and developed as nations and the world responded to the covid-19 pandemic. That
analysis highlights the seven uses of models introduced early in the book. Finally,
our analysis of income inequality, on the other hand, connects more tightly to the
academic literature than to current policy concerns. Whereas many of the covid-19
pandemic have similar foundations, our foray into inequality reveals a variety of
models that make different assumptions and include different types of actors.

In all three cases, thinking with many models adds to our knowledge base and
makes us wiser. That wisdom has limits. Given the complexity of these systems,
even if guided by many models, as individuals and collectives, we may reach full
understandings, take appropriate actions, or design optimal policies. We will make
mistakes. Our models will be wrong. We can learn from those mistakes to build
more and better models. We can become even wiser. The path toward wisdom
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should be paved with humility and openness, by a desire an inclination to see our
world through many lenses.

Many Models and the Opioid Epidemic

To give some sense of the scale of the opioid epidemic in 2015, in the state of
Massachusetts over 4% of the population above age 11 had an opioid use disorder
according to one estimate. Nationwide, in 2016, doctors wrote more than 200
million prescriptions for opioids, between 10 and 12 million people misused opioids,
over 2 million people were classified as having an opioid use disorder, and more
than 30,000 people died from opioid-related causes.

The primary reason that so many opioids were prescribed was that they work:
they reduce pain. Given the 100 million Americans with chronic pain, opioids had
an enormous potential market. The danger with opioids was, of course, the poten-
tial for people to become addicted. To make sense of how opioids received approval
and how the epidemic arose, we apply four models to generate some core intuitions
as to how the crisis came to be.

The first model, the multi-armed bandit model, explains why opioids were ap-
proved for use. When seeking drug approval, a pharmaceutical company runs clin-
ical trials to demonstrate drug efficacy and a lack of deleterious side effects. We
can model a clinical trial as a multi-armed bandit problem where one arm corre-
sponds to prescribing the new drug and the other arm corresponds to a placebo or
the existing drug.

A Model of Opioid Approval

Multi-Armed Bandit Model

To demonstrate their efficacy, opioids were tested against placebos. In
clinical trials, patients were randomly assigned to take either opioids or a
placebo. The assignment of the opioid can be modeled as one arm of a
two-armed bandit and the placebo as the other arm. At the end of treat-
ment, each trial is classified as a success or a failure. Clinical tests found
that patients who received opioids experienced (statistically) significantly
less pain. Tests on patients who had hip replacements, dental surgery, and
cancer treatments all found that opioids outperform placebos.

With any drug, the potential for addiction is a concern. Tests showed that a
small percentage of patients, fewer than 1%, became addicted, allowing the drug
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to be approved. those tests did not take into account the possibility that doctors
would write longer prescriptions, in some cases a month’s supply. The longer an
individual takes opioids, the more likely that person becomes addicted. Empirical
addiction rates exceeded 2.5% for patients with longer prescriptions. The Markov
model shown in the box below shows how an increase in those rates from 1% to
2.5% can increase the equilibrium number of addicts 5-fold.

The model’s transition probabilities are only loosely calibrated to data. We are
using the model to build intuition for how a relatively small rate of addiction can
lead to a large number of addicts. By experimenting with the model, we find that
if we lower the probability of leaving the addict state and increase the probability
of moving from the no-pain state to the opioid state, then the proportion of addicts
can increase dramatically. If, for example, we lower the transition from addict to no
pain to 1% in the second model, the proportion of addicts increases to 35%. One
implication of this type of model thinking has been that some health care providers,
such as Blue Cross, now limit the number of pills a doctor can prescribe. In addi-
tion, some states, including the State of Michigan, have passed laws restricting the
number of pills in a single prescription.
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Transition-to-Addiction Model
Markov Model

A three-state Markov model reveals a nonlinear relationship between tran-
sitions to addiction and overall addiction rates. The model’s states repre-
sent people not in pain, people using opioids, and addicts. We estimate the
transition probabilities between those states, which we represent as arrows.
The model on the left assumes that 1% of of people who use opioids be-
come addicted and that 10% of addicts revert to the no-pain state. It also
assumes that 20% of the people in the no-pain state become opioid users. In
equilibrium, only 2.2% of the population are addicts. To account for longer
prescriptions, the model on the left assumes that 2.5% of people who use
opioids become addicted and that 5% of addicts revert to the no-pain state.
It also assumes that 20% of the people in the no-pain state become opioid
users. Now, in equilibrium, 10% of the population are addicts.’
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Our third model relies on systems dynamics. This model, like the Markov model,
assumes that there are people in pain, people who use opioids, and people no longer
in pain. Rather than write transition probabilities between these states, however,
it imagines a flow from people in pain to opioid use to people not in pain. More
elaborate systems dynamics models can include sources for other drug providers,
and allow for movements between opioid and heroin users. In addition, a richer
model could include heterogenous types of potential users. The fact that people
who suffer from anxiety and depression are more likely to become addicted could
therefore be included in the model.?
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Paths to Heroin Addiction
Systems Dynamics Model

A population of people in pain produces opioid users and addicts. People on
opioids flow into the no-pain state and also flow into the addict state. Ad-
dicts, in turn, can become heroin users. One reason that people use heroin
is that they can no longer get opioids. Thus, as the flow of opioids increases,
so does the number of heroin users.
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A possible final model, which we do not write down formally, relies on social net-
works to explain why maps of per-capita opioid use show clustering in rural coun-
ties. From our analysis of the square root rules, we know that smaller populations
should have higher variation. (Recall the example of the best and worst performing
schools being small.) Higher use in rural areas could also be due to doctors writ-
ing longer prescriptions for rural patients who live farther from pharmacies. Those
explanations aside, the clustering exceeds what would occur randomly. Clustering
could arise if people provide or sell opioids to neighbors. Unlike used furniture,
which people sell by placing ads, opioids cannot be sold in the open market. Most
often, people sell them through trusted personal connections. A network model of
opioid selling in which people distribute opioids through family and friends would
likely produce local clusters of opioid abusers. The extent to which those clusters
resembled the clusters seen in the data could be used to draw inferences about who
sells to whom. And, that model could then be used to create interventions.

Other network and social influence models might delve into what drives the
choice to take or prescribe opioid or the potential for social influences to help people
overcome their addictions, and even the interactions between the local economy
and opioid addiction. Does, for example, the need to show up to work increase the
prevalence of opioid use or reduce the likelihood of addition? Or, perhaps it does
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both? Such questions, of course, require gathering data, but what data to gather
and how to interpret it would be informed by models.

Many Models and the Covid-19 Pandemic

Models played prominent roles in world’s response to the covid-19 pandemic. Fatal-
ity rate models communicated the potential impact of the pandemic. Curve fitting
and SIR models forecasted numbers of cases and locations of outbreaks. Model
based measures such as the effective reproduction number guided policy choices
and individual behaviors, and elaborate microsimulation (agent-based) models in-
formed decisions about what parts of society to close and what to keep open, and
calibrated models of specific sectors and industries informed how re-opening oc-
curred. Models based thinking became so prevalent during the covid-19 pandemic,
that the terminology of epidemiological models became part of our daily conversa-
tions. We worked to flatten the curve, to reduce the probability of transmission and
prevent superspreaders.

A comprehensive analysis of the many models that were put to use during the
pandemic - their successes, failures, and impact — could, and surely will, fill mul-
tiple volumes. Here, we focus on some of the more prominent models and their
contributions. To frame how the models were used, some basic facts about covid-
19, though widely circulated, bear repeating. In December of 2019, a deadly strain
of coronavirus, creating a disease known as covid-19, was identified in the Wuhan
province of China. By the end of January, the World Health Organization had de-
clared it a global pandemic. Coronaviruses, named for their crown shaped appear-
ance when viewed under a microscope, are not rare. Along with rhinoviruses, they
are a leading cause of the common cold. These can spread from person to person
when someone coughs or sneezes, droplets can also linger in the air or on sur-
faces. Lethal variants of a coronavirus can cause severe acute respiratory syndrome
(SARS). The novel coronavirus that produced covid-19 was such a variant.

While the media focused much of their attention on the use of models to make
forecasts of cases, hospitalizations, and fatalities, by far the more important contri-
bution of those models was to inform interventions. By structuring our reasoning,
models calibrated to data guided actions and informed the time and duration of
interventions (Jewell, Lewnard, and Jewell 2020).

This dialogue between data and models happened rapidly. Model based empir-
ical analyses of interventions in Italy (Gatto et al 2020) and on travel restrictions
globally (Chinazzi et al 2020) were invaluable in helping countries and regions
make wise policy choices. Multiple models showed that without stringent efforts
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to slow the virus’s spread, that globally, tens of millions of people would die. Gov-
ernments around the world restricted air travel, closed schools, and, in some cases,
quarantined entire populations. Interventions were enacted broadly, even in coun-
tries and regions that had few cases because leaders trusted science and were per-
suaded by the evidence that had been structured by models. Nothing was spared
—~The 2020 Olympic games, music festivals and cultural events, and professional
conferences — all cancelled or moved online. To be effective, laws and policies re-
quire public support. Models played central roles in educating the public as to the
need for drastic measures. Not surprisingly, people who trust science and under-
stand models were more supportive of those interventions.

In early March of 2020, the Center for Disease Control and Prevention an-
nounced that their models suggested that up to 1.7 million people could die and that
the number of hospitalizations could exceed 20 million. To put those hospitalization
numbers in perspective, the United States has approximately one million hospital
beds (Fink 2020). Other projections were even more dire. A model developed by
researchers from Imperial College in London estimated that without interventions,
2.2 million people in the United States and over 500,000 people in Britain would
die from coronavirus (Ferguson et al 2005, Ferguson et al 2020).

Models were also used to explore questions about the potential effects of viral
mutation and how the efficacy of a vaccine will depend in large part on wether fear
of the vaccine overpowers fear of the disease (Epstein 2020). The sociological and
psychological impacts of quarantining and separation from family, though difficult
to quantify, have been enormous.

Before discussing specific models, we should take a moment to discuss the dif-
ficulties associated with making an accurate predictions about the extent of a pan-
demic whether measured in infections, hospitalizations, or fatalities. The central
difficulty is that credible models change the world they are forecasting. A model
that policy makers trust, that predicts millions of deaths often turns out to be a self-
unfulfilling prophecy. In fact, we want those models to be self-unfulfilling! We want
governments and people to take actions to prevent those deaths from occurring.*

To be accurate in the long run, a forecasting model must therefore predict the
actions that governments will take and people’s responses. Neither of those is easy.
Government actions are notoriously hard to predict, and we spent an entire chapter
on the difficulty of modeling people. Add to these difficulties that, a virus spreads
through individual contacts, and as a pandemic begins its spread, individual contact
networks change. Predicting how people will change behavior in a novel situation
is especially hard. Thus, we should not expect any model to be super accurate, and
even if one was, we probably could not identify that model before the fact.
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A smarter approach, the one followed by the Center for Disease Control and
Prevention, is to rely on many diverse models.> Anthony Fauci, the Director of the
National Institute of Allergy and Infectious Diseases, was quick to note that multiple
models were consulted when making decisions. To encourage the development
of those models, the CDC sponsors annual contests among models to predict flu
incidence. In those contests, the most accurate models are themselves ensembles
of models. In the 2017-2018 influenza season, which by the way was the worst
in the past decade with approximately 45 million people infected, a consortium of
four research teams created an ensemble that combined twenty-one models. They
weighted the models so as to maximize the ensemble’s accuracy (Reich et al 2019).5
That ensemble model outperformed all twenty-one of its component models.

The CDC contests embody the many-to-one principle. They also, as it turns
out, satisfied the one-to-many principle. Detailed microsimulation (agent-based)
seasonal flu models could be rewritten as covid-19 models. The ability of modelers
to retool existing models endowed the CDC with multiple models to interrogate
when making projections about cases, hospitalizations, and fatalities from covid-
19. All of those models, of course, would be wrong. But collectively, they would
prove useful, and far more accurate than claims made without models that the virus
would disappear in summer or lead to a few thousand fatalities at most.

We begin our coverage of the models, we first describe how epidemiologists
used fatality rate models to arrive at estimate of more than two million fatalities.”
A fatality rate model expresses the expected number of fatalities as the product of
three terms: the population size, the proportion of people infected, and the fatality
rate. To make a prediction, we need only assign values or make predictions to each
of the three terms on the right side of the equation. We know the population of the
United States population. It is approximately 330 million people.

We must make predictions or forecasts of the other two terms. Data from China,
Italy, and Spain gathered in the spring of 2020 estimated the fatality rate from covid-
19 as being between one and two and a half percent. Of course, the fatality rate for
covid-19 depends on who catches the virus, which will depend on behavior. Recall
that our task here is to predict fatalities assuming no extraordinary response. We
might then assume that people would respond to the coronavirus in latter stages of
the pandemic just as they had at the beginning, so we can assume the fatality rate
remained at two and half percent.

To estimate the proportion infected, we can look to past pandemics. The 1918
flu had a similar basic reproduction number to the novel coronavirus and infected
approximately one-third of the world’s population. In 1913, people travelled less
and fewer people lived in cities. Medical care was less advanced, and information
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flowed much more slowly. These societal changes point in opposite directions. For
more virulent flu viruses, such as the 2017-2018 seasonal flu, upwards of 15% of
people show symptoms. That year 40% of people received flu shots, which reduce
the likelihood of illness by up to one-half. Combining all of this information, the
one-third figure seems a reasonable initial benchmark.

Fatality Rate Model:

The number of fatalities can be expressed as the product of the population
size, the percentage of people infected, and the population level fatality rate.

Fatalities = Population Size x % Infected x Fatality Rate

No Intervention Estimate:
2,500,000 = 333,000,000 x 30% x 2.5%
Best Case Scenario:

100,000 = 333,000,000 x 3% x 1%

If we multiply those three numbers together, we arrive at two and a half million
fatalities. To put that number in perspective, covid-19 loomed a larger threat to
human life than the ten leading causes of mortality — heart disease, cancer, acci-
dents, respiratory failure, stroke, Alzheimers, influenza and pneumonia, nephritis,
and suicide — combined. Actions were necessary.

We can also apply the fatality rate model to construct a best case scenario. To
do so, we again use flu virus data to benchmark estimates. CDC data show that
the flu season with the fewest cases in the past decade was 2011- 2012 in which
approximately 3% of the population was infected. That season’s flu vaccine had an
estimated effectiveness of 47%, which is relatively high. While there would be no
available vaccine for covid-19 in the first six months, the proposed interventions for
covid-19 could, in a best case scenario, reduce the incidence of the disease to that of
a mildly virulent flu. For a fatality rate, we might optimistically assume that medical
treatment and isolation of the most vulnerable could reduce the fatality rate to 1%.
In a moment, we will give that assumption more justification. Multiplying those
three numbers together, we arrive at a best case scenario of 100,000 fatalities, a
twenty-fold reduction in the number of fatalities.
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We can now return to the question of how to estimate the realized fatality rate,
which will depend on how people react to the virus. Recall the three types of mod-
els of human behavior: rational choice, sociological, and psychological. To make a
robust prediction of the fatality rate, we should consider all three. A rational choice
approach would predict that people balance the risk of death against the enjoyment
of going out to dinner. If so, high risk people will be far more likely to quarantine
lowering the realized fatality rate. That behavioral prediction requires that people
know their risks. General health issues - obesity, diabetes, heart damage, respiratory
problems, and the like - were known comorbidities.

Age functions as a reasonable proxy for these comorbidities. Early data showed
that older people were more likely to suffer fatalities. Figure ?? shows the approxi-
mate population size of the United States broken up into ten year age groups along
with rough estimates of the covid-19 fatality rates for each group. The youngest two
categories each contain approximately 40 million people and have fatality rates of
less than one-fifth of a percent. The oldest two categories together contain 40 mil-
lion people. These groups have fatality rates of eight percent and fifteen percent -
more than forty times the fatality rate of the youngest categories.
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Figure 29.1: Population Sizes and Fatality Rates for US Population by Age

A rational actor model would assume that people over fifty recognize the risk
and quarantine themselves or, at least, more actively engage in social distancing.
Given that people under fifty suffer few fatalities, a purely self interested rational
actor model might assume that they reduce their social distancing. A rational actor
model that assumes people care about the health of others (which most people do)
would assume that younger people who do not sequester avoid older people.
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Sociological models of behavior would assume that highly educated scientifi-
cally minded people would place themselves at less risk than people who are skep-
tical of science, or who feel immune to ill effects of covid-19. This last group would
consist of mostly young people. That model might even assume that some young
people and religious people would continue meet in large groups. Thus, the soci-
ological model would assume, contrary to a rational choice model, that some high
risk people would choose risky behaviors and pay the consequences.

Last, psychological models would assume that more affable, conscientious, and
introverted people would be better at sequestering, and that people who are more
neurotic, or who lack self control or are more extroverted would be more likely to
socialize. These personality characteristics could be captured in a model by adding
personality type to a rational choice framework, and having personality enter into
decisions. The result would be that some very low risk people would sequester,
while some high risk people would not.

If we combine all three of these models, we might expect (optimistically) that
only 1% of people over fifty become infected, but that say 4% of those under fifty do.
The large proportion for the younger people would result from both rational calcu-
lations and sociological conformity. Those assumptions produce an estimate of just
shy of 80, 000 fatalities, a number close to our previous estimate of 100,000.° More
sophisticated models such as the ones we cover later produced similar projections.

The central take away is that interventions, if successful, could save millions of
lives. However, there was no guarantee that interventions would produce numbers
as low the best case scenario. Estimates of how well interventions might succeed
varied. One that informed policy in the United States was developed by the Insti-
tute for Health Metrics (IHME). Early on, this model predicted that with successful
interventions, the United States would have only 60,000 fatalities. That model, de-
veloped by Christopher Murray and colleagues, received an enormous amount of
attention in the media and from politicians. Media coverage gave the impression
that the IHME model alone was being used to predict outcomes and inform policies.
As already noted, that was not the case, the CDC relied on multiple models. Even
had the IHME model been known to be by far the best model (it was not), the CDC
would have relied on multiple models.

The popularity of the IHME model stemmed from its simplicity, its brashness (the
model presented narrow ranges of likely outcomes), and its exceptional graphical
interface. Each of these three attributes positioned the model for media amplifica-
tion. Ironically, the use of the IHME model spread through a contagion process. As
media sources promoted the model, other media sources turned to the same model.

While the features of the IHME model that drove its contagion — simplicity, confi-
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dence, and graphics — should not be the primary reasons for choosing among mod-
els, each can be justified. All else equal, simpler models are often better. They
reveal logic more clearly and they can be communicated with less effort. Higher
statistical confidence, the narrower outcome ranges, are also preferred. Who would
not want a more accurate model. However, the error ranges reported by the model
were conditional on assumptions that could not be expected to hold - as we learn
when we unpack the model. Finally, choosing a model based on graphics may sound
ridiculous, but the quality of graphics may signal quality of programmers or level of
funding. The IHME model had deep pocketed funders, including the Gates Foun-
dation. As we learned when we covered models of signaling, people who lack full
information rely on signals to make choices. In this instance, The Gates Foundation
signal plus fabulous graphics might be thought of as the equivalent of a peacock’s
feathers.

To understand how the original IHME model made its predictions, we need to
recall the SIR model from our study of contagious processes. That model shows
that viruses will produce an S-shaped patten of the number of infected people. The
initial upward slope results from the increasing number of infected people. As the
number of susceptible people decreases, the slope of the curve attenuates.

The initial IHME model was not based on an underlying SIR model. Instead,
the model assumed that the number of cases and fatalities could be approximated
by a logistic function. A logistic function is an S-shaped curve with time as the inde-
pendent variable. The shape of the S depends on three parameters: a growth rate,
a maximum value, and a center. To make their predictions, IHME researchers,“fit”
data on the number of fatalities to a logistic curve. They used fatalities rather than
the number of cases because early in a pandemic when testing is not widespread,
fatality data are more accurate.

By fitting the data to the logistic function, they could estimate the growth rate,
center, and maximum value - which in this case corresponds to the number of fa-
talities. The initial data that they fit to the logistic curve came from people largely
unaware of the virus and an almost complete absence of government policies to
reduce the virus’s spread. Policies to quarantine, social distance, and close schools
and businesses were in the process of being enacted.

The IHME model had to confront the question of how to model people’s re-
sponses to the interventions. Here, the IHME team ran into a difficulty: they had no
explicit model of behavior; so how could they model a behavioral response? They had
constructed their estimate by leveraging the fact that diseases produce S-shaped
curves and used data to fit such a curve. That approach is less a “model" than an
exercise in fitting data to a curve derived from a model. To account for the effects
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of government policies, they decided to fit another another curve. Using data from
regions in China, Spain, and Italy that had imposed strong stay at home orders and
reduced the spread of the virus, they constructed a second curve. IHME now had
two fitted curves. The first was a United States curve, which was the sum of a col-
lection of state level curves estimated from data. That curve had a high maximum
number of fatalities. Call this the no intervention curve. The second curve, which
had a much lower maximum number of fatalities, corresponded to an effective in-
terventions curve.

The IHME Model

The IHME Model assumes that the empirical number of fatalities (cases)
closely fits a logistic function

Fe)= 1+ es(t=)

This function produces an S-shaped curve as a function of time, t, and three
parameters: a maximum value, m, a growth rate, g, and a center, c.

Maximum Value (M)

Cases

Center (C)

Time

Using data on the number of fatalities, IHME estimated the parameters for
each state in the United States. Using post intervention data from China,
Italy, and Spain, they also estimated parameters assuming interventions,
a post intervention estimate. If states adopted intervention policies, their
estimated logisitic function was predicted to shift to the post intervention
estimate.
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The IHME team assumed that interventions would move the United States curve
toward the effective interventions curve. Specifically, they assumed that each of four
policies: school closings, closings of non essential businesses, stay at home orders,
and travel restrictions, would shift the US curve one-third of the distance to the
China-Italy curve, with a maximum shift of the full amount. In other words, once
three of the policies had been adopted, there was no benefit to adding the fourth.

Thoses assumption may seem ad hoc. To an extent, they are. Why should each
policy have the same effect? Why would the fourth policy have no effect? And,
perhaps most troubling, why would the effects be additive? It is not clear that any
one policy would be that effective alone. Those critiques aside, these were not
unreasonable assumptions about policy efficacy. They just turned out to be wrong.
People did not behave as (implicitly) predicted.

A deeper problem with the initial IHME model, or any curve fitting exercise,
is that it presumes that the spread of the virus will follow an S-curve. The model
cannot predict a second wave in which a second S-shaped curve, a second wave,
occurs. Second waves arise when few people are infected initially, and society then
opens up allowing the virus to spread anew. This occurred with the 1918 flu virus,
and second waves of the coronavirus also appeared in late summer of 2020.

The “cannot get a second wave if you fit a curve" criticism may be a bit harsh.
Think of the IHME model as a short term model to predict where and approximately
how fast the virus was likely to spread. For those purposes, the model was useful.
(Yes, in the long run, the criticism holds.) To predict a second wave, the model
would have to make explicit assumptions about numbers of infected and susceptible
people and rates of transmission. The IHME team knew this, and in later versions
of their model, they included an SIR model as part of their calibration.

Before describing how to build a coronavirus specific SIR model, we first return
to the basic SIR model to show how it was used in communicating risk and in
evaluating policy efficacy. Recall that with the SIR model, we can calculate the basic
reproduction number, R, which equals the product of the probability of spreading
the virus and the probability of contact divided by the probability of recovery. If R,
exceeds one, the virus will spread, and if it less than one, the virus will dissipate.
Early estimates of R, for the coronavirus were around 2.5, a number that when
combined with the fatality rate caused sufficient concern for actions to be taken.

Those interventions and the resulting changes in behaviors changed the prob-
ability of spreading and the probability of contact. Epidemiologists, therefore, cal-
culate the effective reproduction number, R,, which is a function of time, t.

One quick and powerful method for gauging the success of interventions is to
track R, by region. Estimated effective reproduction numbers can identify hot spots
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and guide policy at regional and state levels. If estimates of R, far exceeded one in
a region, policy makers knew to take more aggressive actions to slow the spread
of the virus. The often heard phase of “flattening the curve" refers to reducing the
effective reproduction number. The goal was to reduce the effective reproduction
number below one. The difference between an effective reproduction number of
1.1 and an effective reproduction number of 0.9, equates to the difference between
the spread of the disease increasing or decreasing.

Flattening (and Unflattening) The Curve

In SIR model, the number of newly infected depends on the effective repro-
duction number. Reducing that number through more social distancing and
fewer contacts flattens the curve. It reduces the maximal number of new
cases, which occurs at a later date.

Cases

Time

J

Flattening the curve reduces the peak number of cases. In doing so, it improves
the capability of a health care system to respond. We do not need a model to know
that. What the model can tell us, when calibrated to data, is approximately how
much lowering the effective reproduction number will reduce the maximum num-
ber of beds needed. The SIR model also tells us something less intuitive: flattening
the curve pushes back the peak date. This gives health care systems more time to
prepare. In brief, lowering the effective reproduction number offers a win-win. It
reduces the maximal number of cases and delays when those occur.

The policies that closed businesses and schools and limited travel proved suc-
cessful, at least initially. As shown in figure 29.2, in Michigan, the effective repro-
duction number fell well below one soon after interventions were imposed. Over
time though, people became less vigilant. Self quarantine became difficult. Peo-
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ple wanted to socialize. As evident in the graph, when policies were relaxed, the
effective reproduction number crept back above one, meaning that the virus had
picked up steam. In Michigan, by August, the effective reproduction number would
once again fall below one. Figures for most other states followed a similar pattern,
with the effective reproduction number falling below one but then increasing. That
pattern reveals the adaptive response to the threat. When people perceived risk,
they acted in such a way to reduce the virus’s spread. When they felt the virus was
under control, people relaxed allowing the virus to spread more quickly. We saw
that same dynamic in our ping-pong model covered earlier in the book: when people
take actions that oppose a trend, they reverse the trend.

3
Policies Policies
Rt 2 Enacted Relaxed
1 J/—

Time

Figure 29.2: Sequestration Policy Effects on R, in Michigan (rt.live)

Many of the models that government officials and health administrators used for
making short term forecasts of the number of cases and hospitalizations relied on
variants of the SIR model. These models were calibrated to covid-19 and included
features like a latency stage, degrees of infection, and the possibility of hospitaliza-
tions. The latency period, the time in which a person has the virus but shows no
symptoms, could range from two to five days depending on the individual. Once
someone had a covid-19 infection, they might experience mild systems and recover
on their own, or experience more severe symptoms and require hospitalization.

We will describe on such model built by Marissa Eisenberg, a mathematical epi-
demiologist. Rather than three states — susceptible, infected and recovered, this model
has eight states and ten arrows which correspond to probabilities or rates of moving
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from one state to the next. The values assigned to those arrows could be calibrated
by region to develop regional policies.

In deciding how large to make the regions, the modeler once again confronts
the bias-variance tradeoff. Make the regions too large, say an entire state, and the
model’s predictions will be biased for regions that differ demographically or in their
density of connections. Make the regions too small, and the lack of data leads to
high variance in predictions.

SIR with Latency and Severity (Eisenberg)

At any moment in time, each member of the population can be classified
in one of eight states. The circle on the far left represents people who are
susceptible, S. If infected, people enter a latent (L) state where they cannot
infect other people. After exiting the latent state, individuals either recover
(R), or become infected. Infections can be either severe (I;) or mild (I,,).
In either of the infected states, people could infect other people. People
with severe cases become hospitalized (H). After entering the hospital, they
either recover or suffer a fatality (F). People with mild cases, do not enter
the hospital. They either recover or seek care (C) and then recover.

@\—> ©

O—@—0,
O—0—@

An entire state based model might underestimate the fatality rate for regions
with more older people and understand infection rates for more dense regions. For
instance, people living in upstate New York and the Upper Penninsula of Michigan
are older but interact with fewer people than people living in New York City and
Detroit. So, you would not want to lump upstate New York with New York City or
the Upper Pennisula with Detroit.
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Models like this do more than make predictions. They help policy makers rea-
son. The Eisenberg model included a dashboard that had two sliders. Adjustments
to the first slider changed how much people reduced their contacts.'® Contact rates
could be set to some percentage of normal. The second sider set a start date and an
end date for when social distancing occurred. According to the model, if no social
distancing occurred, Michigan would have had over twenty-thousand cases per day
in mid April. If social distancing were put in place from April 1 until May 31 and if
people reduced their contacts to 25% of normal, then in mid April, the peak number
of cases would have been cut in half.

The model also revealed the potential for a second wave if the interventions
were strict and imposed for too short a time period. According to the model, if
people reduced their contacts to 10% of normal for two months and then society
returned to normal levels of contact, a second wave would occur in which nearly as
many people catch the virus in July and August as in April and May. This potential
for a second wave weighed heavily on the minds of policy makers.

Keep in mind that given the difficulty of making accurate long term predictions
of a first wave, we should be skeptical of any model’s quantitative estimates of the
likelihood of a second wave or its size. And yet, every ounce of skepticism about
numerical estimates should be balanced by a pound of engagement with the logic
the model reveals: too much flattening of the curve could leave so many people sus-
ceptible and invite a second wave. We would expect that the first signs of a second
wave would lead to more shutdowns. That in fact happened in many states: poli-
cies that shut down parts of the society were reinstated. From our ping-pong model
analogy, we should have expected interventions to reappear, and, more generally,
should have known before hand that managing the pandemic would require con-
stant vigilance.

More detailed SIR models like the one just covered do not take full advantage of
the types of data now available. The next model we cover, a microsimulation (agent-
based) model developed by researchers at Imperial College in London, does. It can
be best understood as a giant simulation of the real world (Ferguson et al 2020).
Agents in the computer model represent individual people who live in communi-
ties, belong to families, and go to work and school. Using census data, the model
matches household sizes and age distributions. The model includes data on work-
place sizes (not firm sizes), lengths of commuters, and school populations. The
model distributes schools based on population density. Denser regions have more
schools.
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Imperial College Microsimulation Model

The model assumes four locations in which the virus could spread: neigh-
borhoods, households, schools, and workplaces. Agents representing in-
dividuals in the population live in households (H,)that are parts of neighbor-
hoods (N;). Household sizes and demographics and neighborhood densities
and demographics are calibrated to data. Younger agents within a house-
hold attend schools (S;) in their neighborhoods with school and classroom
size calibrated to data, meaning that neighborhoods with higher population
density have more schools. Where people work (W))is assigned to calibrate
with commute times.

N A N
/ o
NN N\ N\

The arrows in this diagram correspond to agents from neighborhoods going
to school and work. Within each household and location, the model as-
sumes an SIR model with latency and severity of infectiousness and a basic
reproduction number of 2.4.

This model was not constructed anew. It was a repurposing of an earlier flu
model (Ferguson et al 2005). To apply the model to covid-19, the researchers

performed the same type of calibration as in the previous cases. They estimated

latency and varying levels of infectiousness. Because the model differentiates be-

tween where someone catches the virus, it can (and does) assume different rates
of social contact. Based on past flu data, schools were assumed to have double the

per capita contacts as the workplace, home, or community. That calibration implied

that without interventions that infections would be equally likely to occur at work

or school, within households, or in neighborhoods.
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The Imperial College model includes far more detail than the other models. By
including so much detail, the model enables us to explore what happens if schools
close but workplaces are left open, or to estimate the consequences of keeping
schools open while shutting down workplaces and limiting community interactions.
Models like this can also include heterogeneous behaviors. Some people may fol-
low rules and maintain social distance, wear masks, and not gather in large groups.
Other people may not.

By altering behavioral assumptions within the model and by exploring the ef-
fects of policy alternatives, policy makers can identify crucial communities, behav-
iors, and policies. The estimates will not be perfectly accurate. If they are off by
less than a factor of two or three, they will be of great value. Without a model, we
would be left to conjecture the effects. Our intuitions about dynamical processes
are so poor that we might make decisions that cost many lives.

The models we have covered so far have considered regions or entire coun-
tries. Industries, sectors, and organizations also built models to inform designs
for reopening. We consider here one such model developed at Cornell University
that used enrollment data to evaluate risk. Kim Weeden and Ben Cornwell con-
structed this model to calculate how many students co-enrolled in classes. They
considered the entire university, undergraduates, and liberal arts majors. All three
co-enrollment networks could be described as small world networks. Such networks
have short path lengths. Short path lengths facilitate sharing ideas, so universities
like short path lengths. Unfortunately, so does a virus.

The numerical estimates from Cornell shocked college administrators. On av-
erage, each Cornell student took at least one class with 2.4% of the student body.
Unfortunately, each student was also only one person removed from 60% of the
population, and two students removed from over 95% of the population (Weeden
and Cornwell 2020). In other words, start from any student at Cornell and you can
get to any other student through just two other students. Viruses thrive on networks
such as these.

To make sense of how these numbers could arise, we can perform the same
sort of algebraic calculations used to explain six degrees of separation/ Cornell
has approximately 15,000 undergraduates. A student taking five classes: one large
class with two hundred students, two medium sized classes with sixty students, and
two small classes with twenty students, would be co-enrolled with three hundred
and sixty students. With no overlap in students, that would be 2.4% of Cornell’s
student body. If, on average, those three hundred and sixty students each took
classes with twenty-five unique other students, then the number of unique students
who are connected to our initial student through just one other student would be
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nine thousand, or 60% of the student population.!* Each of those nine thousand
students would need, on average, fewer than one unique connection to reach the
95% proportion for students one more connection away.

Based on the Cornell findings, other universities built models of their entire stu-
dent population to explore different procedures for re-opening. Those exploratory
models argued strongly against holding large classes. They led to design ideas for
creating cohorts or bubbles of students. Similar applications of models can be found
in every sector. As should be evident from this cursory overview, in helping society
respond to the coronavirus, models performed all seven uses. They helped us reason
and explain patterns. They were used to communicate concepts. They made pre-
dictions which guided action and informed the design of interventions. The helped
us to explore policy spaces and reopening plans.

On a final note, a great deal of ink has been spent characterizing how wrong
the models have been. The IHME model with its estimates of 60,000 and then
80,000 fatalities has been a particular focus of criticism. Those projections implicitly
assumed that Americans would lock down as well as people in other countries. We
did not. The model proved wrong. Other models though, including simple fatality
rate models, were nearly accurate. Imagine for a moment that we had not had
models. How much worse might the responses of countries around the world have
been? How many resources would have been misallocated? How many lives would
have been unnecessarily lost? Or, imagine if everyone had believed the models and
acted accordingly. How many lives might have been saved?

Many Models of Inequality

Our final many-model exercise delves relatively deep and wide into the causes of
economic inequality. We undertake this effort for three reasons. First, inequality
is one of the most important policy issues of our time. Income and wealth corre-
late with human flourishing. Higher-income individuals enjoy better health, longer
life expectancy, and higher life satisfaction and happiness. Those at the bottom of
the income distribution experience higher rates of homicide, divorce, mental ill-
ness, and anxiety.!? We must be careful not to confuse correlation with causation:
a substantial part of this correlation can be explained by the fact that healthier,
happier people earn more money. Nevertheless, almost all studies show a connec-
tion between income and flourishing. No one prefers to be poorer. Second, we
have a plethora of models of inequality written by a diversely tooled collection
of economists, sociologists, political scientists, and even physicists and biologists.
Third, we have abundant data on income and wealth within and across countries.
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Figure 29.3: Income Shares of the Top 0.1% 1916-2010. Source: Piketty 2011.

We have both current data and time series stretching back hundreds of years.

We start by summarizing some empirical regularities. First, in all countries at all
times, the distribution of income has an elongated tail, with many low-income peo-
ple and a small percentage of people who earn large incomes. Historically, income
distributions were calibrated to lognormal distribution or Pareto distributions. Re-
cently, more granular data reveals the tail to be longer than lognormal, though not
quite that described by a power law. Wealth distribution is similarly skewed.

Second, within most developed countries, income and wealth inequality, how-
ever measured, have been rising in recent decades. Current levels of income and
wealth inequality in the United States approach those of the Gilded Age. Shifts in
entire distributions can be hard to discern, so, following convention, we describe
those shifts with respect to the share of income that goes to the upper tail of the
distribution. Figure 29.3 shows how the top 0.1% has increased its share of income.
The share of income to the top 0.1% of families fell steadily through 1950, and re-
mained stable at less than 4% until around 1980, when it began to climb. In 2018,
the proportion of total wealth own by these super rich was around 10%.

Third, globally, the number of people living in poverty has dropped precipi-
tously. We should see no logical contradiction in these opposing trends. Fast-rising
incomes in poor countries reduce cross-country differences and more than offset
within-country increases in inequality. Our model of group selection produced sim-
ilar effects. The growth in the number of altruistic communities outpaced the trend
toward selfishness within each community.

Inequality has multiple, interwoven causes. Economic forces, sociological trends,
exercises of political power, and the weight of history all contribute to disparities.
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Thus, as Steven Durlauf points out, we should not try to explain the levels or trends
in disparities with a single equation. Nor should we base policy on one.!®> We must
be nuanced in our thinking. The processes concentrating wealth and income in the
top 1% or top 0.1% may be unrelated to the forces trapping the bottom 20% in a
cycle of poverty. To understand the disparate causes, we need many models.

We start by describing models that explain the changing distribution of income.
Income has four sources: wages and salaries, business income, capital income, and
capital gains. The relative sizes of those shares varies with income level. Low-
income people earn few capital gains or capital income. Many of the highest earners
receive substantial income from every category. They earn income from wages,
businesses, and capital.

Our first model extends the Cobb-Douglas production model to include two
types of labor: educated and uneducated. The wage paid to a type of labor de-
pends on the relative supply of that type and on technology.!* This model explains
the recent rise in inequality based on supply and demand.

Technology and Human Capital Model

Growth Model

Output depends on physical capital (K), educated labor (S), and uneducated
labor (U) as follows:

Output = AK*SPUY

The parameters A, a, 3, and y capture the technology and the relative value
of the three types of labor. The relative market wage for high- and low-
skilled workers is:!°

Wage —[U] [ﬁ] Wage
8€s = S Y 8Cuy
Cause of inequality: Technological changes that favor educated workers in-
crease f3 and decrease y. These changes, along with increases in the supply
of low-skilled workers, increase inequality.

During the 1950s, the rise in manufacturing increased demand for uneducated
workers. At the same time, increased college enrollments due in part to the GI Bill
increased the supply of educated workers. In the 1980s, decreased incentives to
attend college slowed the growth in the number of college graduates, and a sub-
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sequent inflow of immigrants with low education levels increased the supply of
low-skilled workers. At the same time, technological changes—the rise of auto-
mated manufacturing and the transition to a more digital economy—increased the
relative value of educated workers, and their rising wages reflected this value.

Time series data on average incomes by education level fit this model reasonably
well. For this reason, many economists rely on the model to guide policy. The model
advocates increasing access to education, as that will depress the wages of educated
workers and reduce inequality. This model explains broad trends well, but it cannot
explain the increase in variation within each income class.

The next model, the positive feedback model, can explain the increased variation
within professions. It focuses on the tail of the distribution and, in particular, on
entrepreneurs. In 2011, entrepreneurs made up 70% of the 400 wealthiest individ-
uals in the United States.'® The model assumes that technologies—the internet and
smartphones in particular—have made us more connected and more influenced by
the choices of others.!” A person buying wireless stereo speakers can read reviews
online and select “the best” from among a dozen choices. In the past, that person
might have had a single option at her local stereo store. Now, a person who twists
her knee can search the web and learn the identity of her favorite athlete’s doctor.
That behavior creates a positive feedback and more inequality. We model socially
influenced economic choices by reframing the preferential attachment model as a
model that links positive feedbacks to talent.

Positive Feedbacks to Talent

Preferential Attachment Model

There exist N producers, and each begins with zero sales. The first consumer
buys from a random producer with zero sales, giving that producer positive
sales. Each subsequent consumer with probability p buys from a producer
with zero sales and with probability (1 —p) buys from a producer with pos-
itive sales. When buying from a producer with positive sales, a customer
selects randomly, with the probability of choosing a particular producer that
is proportional to that producer’s sales.

Cause of inequality: Increased connectedness increases social influences,
creating a positive feedback.

Though the positive feedbacks model cannot be fitted to time series data with
the same fidelity as the previous technology model, we can look to experiments
to see how feedbacks contribute to inequality. Recall the music lab experiments
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described in Chapter 6. College students sampled and downloaded music under
two treatments. In the first treatment, subjects could not see what music others
had downloaded. This treatment captures the pre-internet world. In the second
treatment, subjects could see the download numbers for each song. In the treatment
without social information, no song receives more than two hundred downloads
and only one song receives fewer than thirty. When people can see downloads, one
song receives more than three hundred downloads and over half receive fewer than
thirty. Information and social influence amplify the Matthew effect. The rich get
even richer, and the poor become relatively poorer.

We can apply that same logic to the economy writ large.!® The potential for
positive feedbacks through social networks to contribute to inequality depends in
part on the nature of what people buy. Weightless goods such as movie and music
downloads, web applications, and some technologies can be scaled quickly, if not
immediately. Tractors, cars, and washing machines cannot be duplicated by clicking
on an icon. So while a new smartphone application can scale up with little to
no capital outlay, a best-selling car cannot. As a benchmark, in May 2015, Volvo
announced that it would build its S60 sedan in South Carolina. The company broke
ground on the plant three months later. In 2018, the first S60s rolled off the line.
Due to changing demand, the plant will also produce sport utility vehicles, but not
until 2022.

Our next model applies the spatial voting model to explain the rise in CEO pay,
which is not determined by social forces. In 2012, the average income of a CEO
at a Fortune 500 company exceeded $10 million, or roughly 300 times the average
pay of a worker. By comparison, in 1966, the CEO made only about 25 times the
average worker’s salary. CEOs in other countries earn much less. In Japan, CEOs
earn about 10 times what the average worker does. In Canada and throughout
Europe, CEOs earn approximately 20 times the pay of the average worker.

At most large companies in the United States, the CEO’s pay is set by a com-
pensation committee consisting of members of the board of directors. That pay
includes salary, bonuses, and stock options. The people who determine the pay of
CEOs are often other CEOs. They have an incentive for the pay of other CEOs to be
high in order to drive up their own pay. We can use the spatial model to represent
the preferences of the compensation committee. According to the spatial model,
the salary will be set at the median voter’s preferences. The difference in CEO pay
by country can be explained by the composition of boards and the compensation
committees. In Germany, boards of directors include workers, who prefer that the
CEO be paid less.

The model explains the rise in CEO pay based on the preferences of board mem-
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bers about what appropriate CEO pay should be. Here we can refer back to multiple
models of value. It could be that the preferences of compensation committee mem-
bers rely on model based thinking informed by data. However, those preferences
might also be socially constructed or part of an elaborate log roll, in which CEOs
vote to raise one another’s pay.

CEO Political Capture

Spatial Voting Model

CEO pay is determined by a vote of a compensation committee. In the
United States, compensation committees include many current and former
CEOs, who prefer higher pay, as well as compensation experts (X). Other
countries include workers (W) on compensation committees, resulting in a
median voter who prefers much lower pay.

50 100 150 200 250 300

X CEO, CEO,

40 50 100 150 200 250 300

[ |
W X CEO

Cause of inequality: CEOs determine their own pay through capture. In-
creases in the pay of any one CEO shifts preferences toward higher pay for
all CEOs.

. J

Our next model of income inequality comes from Thomas Piketty’s best-selling
book Capital in the Twenty-First Century. This is less a model than an observa-
tion that the rate of return on capital exceeds the growth rate of capital. When
that holds, the portion of income that high-income individuals receive from returns
on capital will increase over time. By constructing more elaborate versions of the
growth models from Chapter 8, it can be shown that the return to capital should
always exceed the rate of growth in the broader economy. Over the long haul, an
economy might grow at less than 2% or 3%, but returns to capital may be more
than double that.

It follows that in an economy that consists of workers who earn wages and cap-
italists who earn income from rents, the share of income going to capitalists will
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increase. To be a bit more formal, the rate at which capital increases will depend
on three rates: the consumption rate, the tax rate, and the return on capital. Con-
sumption depends on the level of capital. A person with little capital will consume
a large percentage of her income. A person who owns a substantial amount of cap-
ital will consume a small percentage of her income. As shown formally in the box
below, if we make the consumption level constant, the consumption rate will equal
that amount divided by the level of capital. Thus, wealthier people will consume at
a lower rate making it more likely that their net capital increases.

Rent-from-Capital Model (Piketty)

Rule of 72

The economy consists of workers and capitalists. The wages of workers
increase at a rate g, the growth rate in the economy. The capitalists have
wealth W, at time t and earn return r (net of taxes) and consume a constant
amount A. The income of capitalists will increase faster than that of workers
if and only if

AL
W,
Cause of inequality: In a market economy, the rate of return on capital
exceeds the overall rate of growth (r > g). Capitalists with large accumu-
lations of wealth spend a small proportion of their income from capital on
consumption, so their share of total income increases over time.

To see how the difference in rates produces inequality, we can apply the rule of
72. If initially the incomes of workers equal those of capitalists and wages grow
at 2% while capital grows at 6%, then in thirty-six years wages double but income
from capital increases 8-fold. Within seventy-two years, capitalists earn sixty-four
times the income of workers.

Piketty applies this model to explain long-term trends in inequality of both in-
come and wealth. The model calibrates remarkably well with three centuries of data
from France and England. The model also sheds light on patterns of inequality over
the past century in the United States and Europe, in which the two world wars de-
stroyed capital stocks in Europe, evening out the income and capital distributions
there. One reason the model fits the data as well as it does is that it omits two effects
that cancel out. By excluding entrepreneurs, the model understates inequality. In
assuming that all succeeding generations of capitalists invest wisely—not all do—
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the model overstates capital accumulations contribution to inequality. The creation
of a new class of rich individuals and the loss of an old class of rich individuals need
not balance out. A more granular model would include movement in and out of the
wealthy class.

That caveat aside, the model’s implication is that so long as capital increases,
capitalists earn an increasing portion of the economic pie. If we keep applying the
rule of 72, we find that the income of the capitalists eventually dwarfs that of the
workers. The problem of capital accumulation has a straightforward solution: im-
pose a wealth tax. That may not be politically possible. As an alternative, we might
wait for a war or revolution to redistribute wealth by force or for some technological
breakthroughs that produces a new set of wealthy capitalists.

Our next two models give priority to sociological forces. Both also have strong
empirical support. The first explains rising inequality based on assortative mating.
A family’s income depends on the incomes of both partners. If a low-income person
marries a high-income person, then that marriage will contribute toward equalizing
income distributions. If high-income people marry other high earners, then income
disparities will increase. Most people marry at an age when a potential partner’s
lifetime income cannot be known with certainty. People do know the education
level and general health of potential partners and get signals of their ambitions.
Evidence shows that as men and women become more educated and earn higher
incomes—refer back to the technology and human capital model—they choose life
partners who also have higher education levels.

The increase in inequality results from the following factors. First, women in-
creasingly earn college degrees. Second, relative income increases with education
level. Third, educated men and women prefer educated partners. Therefore, fam-
ilies with two educated people will be more likely to have two high incomes con-
tributing to household-level income inequality. The logic is airtight. The only ques-
tion concerns the size of the effect.!®

Sociologists calibrate the model by categorizing people into five education lev-
els: dropout, high school, some college, college degree, and postgraduate. They
then calculate the average income for each education level and fit the data for the
number of marriages between each pair of education levels, resulting in a crude
approximation of the impact of assortative mating.

Had marriages been random rather than assortative, income inequality would
be much less. One study finds that inequality as measured by the Gini coefficient,
a common measure of inequality, would have decreased by 25%.2°
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Assortative Mating

Sorting Model and Categories

Each individual has an education level: {1,2,3,4,5} where 1 = dropout,
2 = high school diploma, 3 = some college, 4 = college degree, and 5 =
postgraduate.

Let P(m, j) and P(w, j) denote the probability that a man and woman have
education level j. Income(g, ¢) equals the (estimated) income of a person of
gender g and income level £. Household income for a couple consisting of
a man with education level ¢, and a woman with education level ¢, earns
the following estimated household income:?2!

Income(M, ¢,,) + Income(W,Z4y,)

Cause of inequality: Increases in the number of educated women, in-
creased pay for workers with higher levels of education, and assortative
mating (the tendency for people to marry others of the same income level)
result in an increase in household-level income inequality.

Our next model analyzes movements between income categories using a Markov
model. It categorizes people (or households) by income level: high, upper middle,
lower middle, and low. Each category contains one-fourth of the distribution. Given
a time period—it could be a year, a decade, or a generation— we can then estimate
the transition probabilities between income categories to capture mobility.

If there were no stickiness across generations, then the income of the child of
a high-income parent would be equally likely to belong to any of the four income
classes—all of the transition probabilities equal %. In the most extreme case of
no mobility, transition probabilities would consist of only 1s along the diagonal.
Empirical estimates suggest that the reality lies between these extremes.

We can run experiments by taking 100 randomly selected low- or high-income
families and computing the probability distribution of incomes in subsequent gen-
erations. Using the probabilities shown in the box, the children of high-income
parents have a 60% chance of being high-income and only a 5% chance of being
low-income. The grandchildren of the high-income parent have less than a 43%
chance of being high-income and more than a 10% chance of being low-income.??
The income dynamics model also serves as a baseline from which to evaluate
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the causes of income mobility. We might use a linear model to estimate a child’s
income as a function of parental wealth, parental income, and parental ability levels
(assuming we had data). The Piketty model would imply a positive coefficient on
parental wealth. The ability-based model would imply a positive coefficient on
parental ability given that there exists some correlation between parental ability

and ability of offspring.

7~

Markov Model

correspond to greater social mobility.

Parent Child

Intergeneration Income (Wealth) Dynamics

The population can be divided into four income (or wealth) categories with
equal numbers of people. We can estimate the transition probability that
an individual (or family) in one category moves to another category within a
generation, as shown in the figure below. More equal transition probabilities

High

Up
Mid

Low
Mid

Low

High

.25

.05

Up
Mid

15

5

Low
3 Mid
ow

-

.05

.05

®—©

Transition Probabilities Between Income Levels

Cause of inequality: Social skills, tacit knowledge, attitudes toward risk
and education, and bequests reduce mobility between income classes.

Note that determining the coefficient on parental income requires data on the
income of each child and each parent. Scholars have individual-level income data
only for the past few decades. In The Son Also Rises, Gregory Clark (2014) found a
novel solution to the problem of lack of data: he relies on surnames. He calculates
the average income of everyone named, say, Thatcher, in 1888 and compares this
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to the average income of everyone named Thatcher in 1917. The thirty-year incre-
ment represents the length of a work life. He finds substantial correlation across
surnames’ average incomes, suggesting a lack of income mobility.

This type of model allows us to identify racial differences in intergenerational
transfers. African Americans exhibit less persistence of wealth at the top of the
income distribution and more persistence at the low end. A wealthy African Amer-
ican will be less likely to have wealthy children, and a poor African American will
be more likely to have poor children.??

Our last model based on neighborhood effects, Durlauf’s persistent inequality
model, leverages the empirical regularity that people segregate by income category—
that is, high-income people live in communities with other high-income people and
low-income people live near low-income people. Segregation by income produces
economic, sociological, and psychological externalities that reduce mobility. In
the model, an individual’s income depends on ability, educational spending, and
spillovers.

Persistent Inequality (Durlauf)
Schelling Segregation Model + Local Majority Model

Individuals belong to income classes and segregate residentially by income.
Individuals allocate a portion of their income to education, resulting in
positive spillovers that increase with community income level. The future
income of a child living in community C depends on her innate ability,
spending on education, and spillovers. The contributions of education and
spillovers depend on the level of income within the community, I..

Income, = F(ability, education(I;), spillover(I.))

Cause of inequality: Children who grow up in low-income neighborhoods
receive fewer educational opportunities and economic spillovers.

The educational attribute captures public spending on education, which empir-
ically correlates with average income: high-income locations spend more on ed-
ucation than low-income locations, resulting in better educational outcomes and
higher incomes for children in high-income neighborhoods.

The spillover term can be interpreted as socially transmitted knowledge of ap-
propriate tools to acquire. Here we can link Durlauf’s model to how people who
live in high-income communities gain awareness of appropriate tools. We can also
link the model to our network model and the strength of weak ties phenomenon:
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people who live in high-income communities will be connected indirectly to more
people with access to economically valuable information. This will produce a posi-
tive feedback on income.

We can also interpret the spillover as socially transmitted behaviors, such as the
number of hours spent studying or working. If income includes a random compo-
nent, then a person in a low-income community will see (correctly) a low return to
time spent on self-improvement. Relatedly, the spillover could include psychologi-
cal attributes—a positive or negative outlook on life, a feeling of safety, or a belief
in oneself.

In the complete model, Durlauf solves for equilibrium levels of educational
spending and derives conditions in which persistent inequality arises. That inequal-
ity results from what he calls poverty traps. Individuals living in low-income commu-
nities lack the educational resources and levels of spillovers necessary to earn high
incomes regardless of their ability levels. Durlauf’s model can help to explain the
enormous racial gaps in income levels. African Americans disproportionately live
in poor neighborhoods, and as a result, they may become trapped in low income
trajectories owing to a lack of resources on multiple dimensions.

Sociologists refer to this as compounded disadvantage (Sampson 2019). The
persistent inequality model calls into question the efficacy of what we earlier defined
as big coefficient thinking to reduce racial inequality. African Americans attend
weaker schools, have access to fewer family resources - both in terms of financial
capital and human capital. They live in neighborhoods with more crime and less
healthy water and air. Identifying which one of these impediments has the largest
effect and fixing may not hav much impact if the other forces remain in play. Such
efforts would be like small steps up a slippery hill, quickly erased by a larger force.
This model suggests that to be effective, a policy must work to create a new reality
which would require multiple simultaneous large actions.

We have now covered a number of models that each describe a distinct cause
of income inequality. In a sense, each is correct, but, as we know, each model is
also wrong. This can be seen by examining their explanatory contributions. The
models vary in how much and what part of the variation in income they can explain.
For the upper end of the income distribution, the empirical evidence most strongly
supports the models that rely on technological change.?* For over twenty years, the
IRS has tracked the highest 400 incomes. Those at the top of the distribution come
from technology, mass retail, and finance, three industries that can scale quickly.
That high growth rate could stem from winner-take-all markets for search engines
(Google) or social networking sites (Facebook). These models tell us little about the
lower end of the income distribution. Nor do they say much about income mobility,
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or explain why CEO pay in the United States far exceeds that in other countries.

To explain these other features of the data, we need the other models, such as
the income mobility model, Durlauf’s persistent inequality model, and the spatial
voting model. By constructing a dialogue between multiple models and data, we
come away with a deep, multifaceted understanding of the causes of inequality.
We identify multiple processes that produce and maintain inequality and see how
they overlap and intersect. Our understanding of the complexity of inequality and
the self-reinforcing causal forces that sustain it should make us dubious of quick
fixes. As discussed in the context of the persistent inequality model, real change
will require concentrated efforts on multiple fronts.

Into the World

We have just learned how by applying many models as an ensemble we can expli-
cate the multiple causes of the opioid epidemic and income equality and reveal the
limits of any one model to predict outcomes of a pandemic. Were we policymakers,
we could fit some of these models to data to gauge effect sizes. We could then run
experiments to help us guide policy choices based on what we have learned. Find-
ings from experiments which typically have limited duration and scope should be
interpreted within other models. Are their systemic effects or feedbacks that would
occur were the experiment to be expanded? Models can help us to reason more
clearly through such questions.

The core theme of this book, that we need many models, to reason, act, de-
sign, and so on can be applied to any number of our present challenge. Reversing
trends in obesity, improving school performance, mitigating climate change, man-
aging water resources, and improving international relations can all benefit from a
many model approach.

Adding even a single new model can have enormous consequences. Take for
example the problem of predicting financial collapses. The United States Federal
Reserve relies on traditional economic models using national accounting data on
inflation, unemployment, and inventories. Those data suffer from lags. They are
released weekly, quarterly, or annually. Those data also come from surveys, that is,
samples of the entire economy.

Complexity scholar, J. Doyne Farmer argues for creating a second class of mod-
els based on real time data scraped from the web. These new models would rely
on more granular, instantaneous data, and therefore differ from traditional mod-
els. Farmer argues that such models could prove much better than existing models.
He may be right. Yet, these new models need not be more accurate to be of use
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in predicting and preventing financial disasters. Given the new models would use
different data and rely on different assumptions, so long as they are not far less
accurate, when combined with existing models, these new models would improve
predictions. Policy makers, to use Farmer’s turn of phrase, would be more collec-
tively aware.?®

Business leaders and policy makers might engage in a similar exercise when
making important decisions. They could apply multiple models informed by data
to decide on product or policy attributes, time product or program launches, design
compensation plans, construct supply chains, and forecast sales or impact. Each of
these actions occurs within a complex system. No single model will suffice to excel
at any of those tasks. Many models will be needed.

That logic applies when confronted with any choice — when asked to make a
prediction, or when faced with a design challenge, we should take a many-model
approach. Many-model thinking produces better performance than taking actions
based on hunches and gut instincts. That said, we have no guarantee of success.
Even with many models, we may not identify the most relevant logical chain. The
domain of interest might be so complex that even ensembles of models can only
explain a small portion of the variation.

The same holds when applying models to aid in design, we may find ourselves
unable to construct useful abstractions. The simplicity of models may, in those cases,
be their undoing. In the face of complexity, it is possible that we find models not
up to the tasks of communicating ideas, making accurate predictions, or pointing
us toward the best actions.

Our explorations with models may often lead us down rabbit holes. We might
not be able to identify a new policy or a behavioral intervention likely to improve
the world. Nevertheless, even in those cases, we benefit from contemplating and
applying models. And, we benefit all the more from applying many models as they
will clarify our thinking by uncovering interdependencies. Complex processes, such
as those that result in epidemics and inequalities, often frustrate our attempts to
understand, explain, or communicate. That is not a reason to give up, but a reason
to press on.

As we learn to apply models, we must maintain a degree of humility. Even when
using many models, our abilities to reason have limits. We must keep our minds
open. We must continue to build new models and to improve upon existing ones.
If a model leaves out key features of the world—such as social influences, positive
feedbacks, or cognitive biases—then we should build other models that include
those features. By doing so, we can begin to discern when those attributes matter
and how much. The fact that all models are wrong should not take the wind out of
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our sails but instead motivate us to develop more models. With many models, we
have the possibility of wisdom.

We should seek joy in our efforts to build models. Throughout the book, much
of the focus has been on pragmatic ends—to become better thinkers, to be more
effective at work, and to operate as more informed citizens of the world. At times,
we have taken notice of the beauty and elegance of models. Modeling can bring
great joy if we see it as an art as well as a science. We make the assumptions, write
the rules, and then play within those rules. The laws of logic outline the boundaries
and we play within those lines. Through that logical play, we improve ourselves and
become wise. May we take that wisdom out into the world and help to change it in
positive ways.
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