
2D and 3D Fourier transforms 
 
The 2D Fourier transform 
 
The reason we were able to spend so much effort on the 1D transform in the previous chapter is that the 
2D transform is very similar to it.  The integrals are over two variables this time (and they're always 
from  so I have left off the limits).  The FT is defined as 
 
    (1) 

 
and the inverse FT is 
 
 .   (2) 
 
The Gaussian function is special in this case too: its transform is a Gaussian. 
 
     (3) 
 
The Fourier transform of a 2D delta function is a constant 
 
      (4) 
 
and the product of two rect functions (which defines a square region in the x,y plane) yields a 2D sinc 
function: 
 
 .  (5) 

 
 One special 2D function is the circ function, which describes a disc of unit radius.  Its transform 
is a Bessel function, 
 

     (6) 

 

  

� 

−∞ to ∞

G(u,v) = g(x,y)e− i2π (xu+yv) dxdy∫∫

  g(x, y) = G(u,v)ei2π (xu+ yv)dudv∫∫

    

� 

e−π (x2 +y2 ) FT⎯ → ⎯ e−π (u2 +v2 )

    

� 

δ(x)δ(y) FT⎯ → ⎯ 1

    

� 

rect(x) rect(y) FT⎯ → ⎯ sinc(u)sinc(v)

    

� 

circ(r) FT⎯ → ⎯ J1(2πρ)
ρ

The function rect(x)rect(y) is shown on the left.  
Its transform is the function sinc(u)sinc(v) shown 
on the right.  (Ignore the units in the axes, they 
are the units of the discrete FT used to make the 
figure.) 
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here the variables r and  represent , respectively.  Again, as in the case 
of the rect function, something with "sharp edges" in one domain transforms into something with 
ripples in the other. 

 
The 2D FT has a set of properties just like the 1D transform. 

 
1.  Linearity 
   
 
2.  Scale 

   

 
3.  Shift 
   
 
4. Convolution 
   
 
5. Rotation 
  , 
where  are rotated about the origin through the 
same angle. 

 
The rotation property is the only one we haven’t seen before.  You can understand it this way:  if we 
define the vectors  and  then we can rewrite the definition of the FT (eqn. 13) as 

     (7) 

 
where the vectors appear only through a dot product in the exponential function.  Thus if you rotate the 
coordinate system for x, a corresponding rotation of u will give the same result for the dot product.  

� 

ρ     

� 

(x2 + y2 )1/2  and (u2 + v2 )1/2

  

� 

g + h FT⎯ → ⎯ G + H

    

� 

g(ax,by) FT⎯ → ⎯ 1
ab

G
u
a

, v
b

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

    

� 

g(x − a,y − b) FT⎯ → ⎯ G(u,v)e−i2π (au +bv)

  

� 

g ∗ h FT⎯ → ⎯ G ⋅ H

    

� 

g( ′ x , ′ y ) FT⎯ → ⎯ G( ′ u , ′ v )
    

� 

( ′ x , ′ y ) and ( ′ u , ′ v )

x = (x, y) u = (u,v)

G(u) = g(x)e−i2πx⋅u dx∫∫

The circ function (shown on the left) has the transform on the right (a Bessel function, also 
known as the Airy function.)  The Airy function is circularly symmetric, but doesn’t quite look 
like that here because of aliasing artifacts from the discrete FFT on a computer (more about that 
later). 
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More formally, let R be a rotation matrix.  Then the FT of a rotated function  can be gotten 
through the substitution  in this way: 
 

 

 
Like the 1D lattice, a 2D lattice with unit spacing transforms into the same function in the other 
domain.  Making use of the scaling rule, it is then easy to show that the general 2D lattice transforms 
this way: 
 

 (8) 

 
This means that a lattice with spacings 1/a and 1/b transforms to a lattice with spacings a and b, 
respectively.  This is the origin of the term "reciprocal space" for the Fourier transform space. 
 
2D Power spectrum 
 
The 2D power spectrum is an important tool in electron microscopy.  Recall from last time that the 
power spectrum is the magnitude squared of the FT, so in 2D it is 
 
    𝑆(𝑢, 𝑣) = |𝐹(𝑢, 𝑣)|*.      (9) 
 
If the random signal has been filtered by some filter function H such that 𝐹 = 𝐺 ∙ 𝐻, then the 
expectation value of the spectrum is given by  
 
    𝑆(𝑢, 𝑣) = |𝐺(𝑢, 𝑣)|*|𝐻(𝑢, 𝑣)|*    (10) 
 
Let’s let H be the contrast transfer function.  In two dimensions the CTF should be circularly symmetric 
(why do you think?)  We’ll define the magnitude s of the spatial frequency as 
 
  𝑠 = √𝑢* + 𝑣*  
 
so the CTF has the form—ignoring spherical aberration but including the envelope function 
 
  𝐻(𝑠) = sin	(−𝜋𝛿𝑠* − 𝛼)𝑒:;<=/?.      (11) 
 

g(Rx)
x' = Rx

GR (u) = g(Rx)e−i2πx⋅u dx∫∫
= g( ′x )e−i2π (R

−1 ′x )⋅u d ′x∫∫
= g( ′x )e−i2π ′x ⋅(Ru) d ′x∫∫
=G(Ru)
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Below left is the theoretical CTF, the middle is a micrograph, and on the right is the power spectrum of 
the micrograph.  Note that the power spectrum looks a lot like the CTF (actually according to (10) it is 
proportional to the CTF squared). 

 
 
 
The 2D FT and diffraction 
 
The diffraction pattern is the Fourier transform of the amplitude pattern of a source of radiation.  
Consider the following system.  A plane wave is propagating in the +z direction, passing through a 
scattering object at z=0, where its amplitude becomes Ao(x,y).  We want to know the amplitude of the 
wave at the detector in the u,v plane, which is a distance z from the x,y plane. 

   
Classical wave theory says that we can solve this problem by treating each point in the x,y plane as the 
source of a spherical wavefront.  Here is the wave function of a spherical wave of magnitude A0 that 
starts from the origin, 
 

 , 

  
 
and the wave function at the detector plane is gotten by adding up a spherical wave emanating from 
each point in the x,y plane.  Using the weak-phase approximation we’ll scale the amplitude of each 
diffracted wave by 1/𝑖𝜆 and get: 
 

 

𝜓D(𝑢, 𝑣) = E 	
𝐴G(𝑥, 𝑦)

𝑖𝜆J(𝑢 − 𝑥)* + (𝑣 − 𝑦)* + 𝑧*
	𝑒L*MJ(N:O)=P(Q:R)=/S	

O,R
𝑑𝑥𝑑𝑦. 

 
Making various approximations, specifically assuming u and v are large compared to x and y and that z 
is much larger than all other dimensions, the Fraunhofer formula for the wave amplitude at the detector 
plane is 

Ψ(r) = A0
r
ei2π r /λ
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  (12) 

 
or, letting G be the Fourier transform of the amplitude distribution A(x,y), 
 

    (13) 

 
Where G is the Fourier transform of the amplitude distribution .  The intensity of X-rays or 
photons at the detector will be the squared magnitude of , in which the various phase factors drop 
out and we have 
 

      (14) 

 
The intensity at the detector is proportional to the magnitude squared of the FT of the scattering pattern.  
This is the basis of electron crystallography.  Working from the measured intensity at the detector, the 
first step is to find what the amplitude is at the detector (which you get by taking the square root of the 
intensity and assigning phases).  Then the IFT give you the original pattern of amplitudes Ao at the 
object. 
 
 
 
The 3D Fourier transform 
 
In the same way, there exists a 3D Fourier transform as well.  It is defined as a triple integral, and it has 
all the properties of the 2D FT, including rotations. 
 
    (15) 
 
Central to the theory of 3D reconstruction is the "central slice theorem".  It is based on the fact that for 
any 3D distribution of density g(x,y,z) there is a 3D Fourier transform volume G(u,v,w).  If you take a 
projection through g to obtain a 2D image, it turns out that the Fourier transform of that image has the 
same values as slice through G.  If you have data to fill up the Fourier volume with slices, then you can 
do an inverse transform to obtain the density map g.  We’ll talk more about this next time. 
 
 
Discrete Fourier transform and terminology 
 
In this course we will be talking about computer processing of images and volumes involving Fourier 
transforms.  The computer operates on data that have been sampled at regular, finite intervals and 
produces results that we view as individual pixels or voxels.  There is an alternative Fourier transform 
in which the integrals are replaced by sums for working on such finite data sets.  This is called the 
discrete Fourier transform (DFT).  Its theory and use are very similar to those of the continuous FT that 
we have discussed here.  There are some considerations about sampling intervals that have to be made, 
but otherwise things work just fine. 
 
In the 1960s people discovered a beautiful algorithm for computing the DFT that is extremely efficient.  
It is called the fast Fourier transform.  Its results are exactly the same as the DFT, only obtained much 

Ψd (u,v) =
ei2π z/λ

iλz
ei2π (u

2+v2 )/2λz Ao(x, y)e
−i2π xu+yv( )/λz dx dy

(x,y)
∫∫

Ψd (u,v) = e
i2π z/λ

iλz
eiπ (u2+v2 )/λz  G u

λz , vλz( )
A0 (x, y)

Ψd

I(u,v) = 1
λz

G u
λz ,

v
λz

⎛
⎝

⎞
⎠

2

G(u,v,w) = g(x, y,z)e− i2π (xu+ yv+wz) dxdy∫∫∫ dz
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more quickly.  Here is an example.  Suppose you want to do the 2D DFT of a 1000 x 1000 pixel image.  
To get the 1000 x 1000 element DFT, you have to do 1012 arithmetic operations (just think, you have to 
use all values of x, y, u and v in the calculation).  It is spectacular that this calculation can be done more 
than 104 times faster with the FFT.  The FFT of a 1000 x 1000 image takes less than 0.1 second on my 
laptop computer, requiring about 108 operations! 
 
So, whenever someone talks about computing an FT on a computer, they usually say they are "taking 
the FFT".  They are actually taking the discrete FT using the FFT algorithm. 
 
More about the DFT can be found in the Appendix below. 
 
 
 
 
Appendix.		The	discrete	Fourier	transform	
 
The Fourier transform is defined as an integral over all of space.  How could we evaluate this 
on a computer?  We will have to take a finite number of discrete samples both in the real (x,y) 
space and in the (u,v) frequency space. 
 
Let’s first do this in one dimension, and we’ll model discrete samples by multiplying 
functions by series of delta functions.  Recall the Fourier transform pair 
 

    (1.1) 

 
We can use this to understand the properties of the discrete Fourier transform (DFT).  Start 
with our favorite FT pair, 
 

 
 
which we’ll call 𝑔G and 𝐺G.  But now we’ll multiply g0 by a series of delta functions (a scaled 
Shah function) to yield 

     (1.2) 

 
where a is set to 4, that is we sample x in units of 1/4.  We know what the FT of (1.2) will be: it 
will be the convolution of G(u) with a series of delta functions, so we’ll get copies of G spaced 
every 4 units on the u axis.  See the middle row of Figure A1.  This spacing looks to be 
sufficient that if we were just to cut out the central copy of the Gaussian function, between u = 
-2 to u = 2, we’d have the original function back.  This demonstrates a very important 
theorem, the sampling theorem.  If the FT of some function 𝑔G	is zero outside a limited interval 
of u, it can be reconstructed perfectly from discrete samples.  The only requirement is that the 
sampling frequency must be at least twice the highest frequencies +u for which G(u) is 
nonzero. 

δ (ax − n) FT⎯ →⎯
n=−∞

∞

∑ 1
a
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a
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e−πx2 FT⎯ → ⎯ e−πu2
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2

δ (ax − n)
n=−∞
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You will understand what will happen if this criterion, called the Nyquist criterion, is violated. 
Imagine that we had sampled g(x) more coarsely, say in x steps of ½.  Then the periodicity of 
the repeats in 𝐺W would be only two units and there would be overlap of the copies of the 
Gaussians.  This overlap is called aliasing and it reflects the loss of information—we can no 
longer reconstruct 𝑔W perfectly from 𝐺W. 
 
Now, what happens if we sample 𝐺W, say in steps of ¼ in u, to yield the function 𝐺*.  If we 
evaluate its inverse transform 𝑔* we see that it also consists of copies of the original function  

 
(see the bottom row of Fig. A1).  Now we have discrete samples in both x and u, which is 
exactly what we’d need to process data on a computer.  Discrete samples mean that both g 
and G have become periodic functions, but as long as we make the periods long enough (by 
sampling finely enough) we can work with these discrete samples just fine, by chopping out 
one period to work with. 
 
So, if we restrict both x and u to integer values, we can define the discrete Fourier transform 
and its inverse (DFT and IDFT, respectively) as 
 

      (1.3) 

      (1.4) 

 
The values of x range from 0 to N-1, as do the values of u.  This can be confusing, as 
demonstrated in Fig. A2.  Part A of the figure shows how I’d like to visualize a Gaussian 
function in an array with N=16 for use with the DFT, with index values of x= -8, -7,…-2, -1, 0 , 
1, 2…7.  Part B shows however the conventional representation for using the DFT on a 
computer.  The successive points correspond to my x values of 0, 1, ...6, 7, -8, -7, …-1.  
Remember that the DFT treats its input as if it were periodic, so it will “splice together” the 
end points of the interval; this means that the representations in A and B are equivalent.  Note 
also that some programming languages have array indices starting with 1 instead of 0.  
(Matlab and Fortran are like this.)  As I’m using Matlab you’ll see that in panel B the point 
corresponding to the peak of the Gaussian is at position 1 on the x axis, which is actually 
showing array indices. 

G(u) = g(x)e−i2πux/N
x=0

N−1

∑

g(x) = 1
N

G(u)ei2πux/N
u=0

N−1

∑

Figure A1.  The continuous functions g0 and G0 are sampled, 
resulting in periodic copies. 
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Figure A2.  Two discrete representations of a Gaussian function using N=16 points. 

 
Two commonly-used Matlab functions for “unwrapping” functions for use in the DFT are 
fftshift and ifftshift.  To convert part B of the figure to part A, one uses fftshift; to convert A to 
B you use ifftshift.  If the number of points N is even, fftshift and ifftshift do exactly the same 
thing.  So if you have an array g that is indexed like A, you can compute the DFT and get a 
centered Gaussian back by typing 
 

G=fftshift(fft(ifftshift(g))); 
 
In Matlab you have the functions fft and ifft (one-dimensional forward and inverse 
transforms) and fftn and ifftn (n-dimensional transforms). 
 
The FFT algorithm happens to work best when the number of points N is a power of 2 or a 
product of small factors.  That is one reason why people often use array sizes like 1024 instead 
of, say, 1020. 
 
Windowing 
 
Figure A3 demonstrates another problem that arises from the finite sum in the DFT, that we 
never had with the FT because the latter uses an infinite integral.  Function 𝑔W is a cosine 
function that has 8 cycles in the N=80 points, and its DFT looks a lot like the two delta 
functions we expect from the FT of a cosine function. (Right?)  The cosine function 𝑔* has a 
slightly higher frequency, so 8.5 cycles fit in the 80 points.  Its DFT looks horrible.  Why all the 
ripples if we’re taking the transform of a nice smooth cosine function?  Remember that the 
DFT thinks its input is a periodic function.  If we shift the display of g2 by half of the window 
(bottom row in the figure) you can see that g2 actually contains a discontinuity which is what 
causes the trouble.  

 
Figure A3.  DFTs of a cosine function.  N=80. 
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One can get rid of the problems with a discontinuity by using a windowing function w(x) that 
tapers gently toward zero at the edges.  Here in Fig. A4 are the same functions except that 𝑔WX  
and 𝑔*X  are the products of 𝑔W and 𝑔* with a smooth window function.  It gives better looking 
transforms. 

 
Figure A4.  A window function has been applied to the cosine. 

 
Note that in the upper two panels of this figure I used Matlab’s fftshift function to move 
the center of the waveforms to the center of each plot; but I changed the labeling of the x-axis 
to run from -40 to +39, rather than from 1 to 80. 
 
Scaling the DFT 
 
Once we start using integer values of x and u for the DFT, we have to keep in mind the 
relationship between the integer values and real-world quantities.  For example, let x index 
the pixels of a micrograph.  Then one unit in x corresponds to a pixel size dx, e.g. 1.7 Å.  When 
we take the DFT to get the result in terms of the spatial frequency u, one unit in u corresponds 
to a frequency of du = 1/(Ndx), that is 1/(size of the micrograph).  So for example if N=1024 
then du = 5.7 × 10:?	Å:W.  We can choose the integer u values to range from –N/2 to N/2-1 
and therefore correspond to real-world spatial frequencies of about -0.3 to 0.3 inverse 
angstroms, that is +1/(2dx).  The maximum accessible frequency, 1/(2dx) is called the Nyquist 
frequency. 


