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The Laughlin wave function

The Laughlin wave function, suggested by Laughlin in 1983 as a

variational ansatz for the ground state of a 2D electron gas in a strong

perpendicular magnetic field, has the form

Ψ
(`)
Laugh = CN,`

∏
i<j

(zi − zj)`e−
∑N

i=1 |zi|2/2

with ` odd ≥ 3 and CN,` a normalization constant. The factors

(zi − zj)` strongly suppress a repulsive interaction between the

particles.

This function is basic for the understanding of the FQHE. One can also

consider such functions for bosons with ` is even and ≥ 2.

Such a function describes a highly correlated state of a quantum fluid.

It is important to understand the robustness of the built-in correlations

when the system is perturbed by an external potential V .
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The density of the Laughlin quantum fluid

In his 1983 paper Laughlin claimed that the 1-particle density of Ψ
(`)
Laugh

within its support is close to (`π)−1.

Methaphoric picture of the N -particle density (not due to Laughlin!):

The particles change places randomly but in a correlated way, as

tightly packed as the factors (zi − zj)` allow, like huddling emperor

penguins during an Antarctic winter. Each “penguin” claims on the

average an area `π.
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The plasma analogy

Laughlin’s argument for the density (`π)−1 is more mathematical. It is

based on the “plasma analogy”:

The N -particle density |Ψ(`)
Laugh|

2 can be interpreted as the

Boltzmann-Gibbs factor at temperature T = N−1 of classical 2D

jellium, i.e., a 2D Coulomb gas in a uniform neutralizing background. A

mean field approximation leads to the claimed density.

Numerical calculations (O. Ciftja) show, however, that the density may

be considerably larger than (`π)−1 close to the edge. The result can

thus only hold in a suitable weak sense in the limit N →∞.
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The density as a Boltzmann-Gibbs factor

We denote (z1, . . . , zN ) by Z for short and consider the scaled N

particle probability density (normalized to 1)

µ(N)(Z) = NN
∣∣∣Ψ(`)

Laugh(
√
NZ)

∣∣∣2 .
We can write

µ(N)(Z) = Z−1N exp

−N N∑
j=1

|zj |2 + 2`
∑
i<j

log |zi − zj |



= Z−1N exp
(
− 1

THN (Z)
)
,

with T = N−1 and

HN (Z) =
N∑
j=1

|zj |2 +
2`

N

∑
i<j

log
1

|zi − zj |
.
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The free energy functional

The probability measure µ(N)(Z) minimizes the free energy functional

F(µ) =

∫
HN (Z)µ(Z) + T

∫
µ(Z) logµ(Z)

for this Hamiltonian at T = N−1.

The N →∞ limit is in this interpretation a mean field limit where at the

same time T → 0. It is thus not unreasonable to expect that for large

N , in a suitable sense

µ(N) ≈ ρmf⊗N

with a one-particle density ρmf minimizing a mean field free energy

functional.

Fmf [ρ] =

∫
R2

|z|2 ρ+ `

∫ ∫
ρ(z) log

1

|z − z′|
ρ(z′) +N−1

∫
R2

ρ log ρ.
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The mean field limit

A rigorous estimate proving the convergence of the true 1-particle

density to the mean field density ρmf was derived by Rougerie, Serfaty

and JY in 2013:

Theorem (Comparison of true density and mean field density)
There exists a constant C > 0 such that for large enough N and any
U ∈ H1(R2) ∩W 2,∞(R2)∣∣∣∣∫

R2

(
µ(1) − ρmf

)
U

∣∣∣∣ ≤ C(logN/N)1/2‖∇U‖L1 + CN−1‖∇2U‖L∞.
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Properties of the Mean Field Density

The picture of the 1-particle density arises from asymptotic formulas

for the mean-field density. The latter is, for large N , well approximated

by a density ρ̂mf that minimizes the mean field functional without the

entropy term.

The variational equation satisfied by this density is:

|z|2 − 2`ρ̂mf ∗ log |z| − C ≥ 0

with “=” where ρ̂mf > 0 and “>” where ρmf = 0.

Applying the Laplacian gives

1− `π ρ̂mf(z) = 0

where ρ̂ > 0. Hence ρ̂mf takes the constant value (`π)−1 on its

support.
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The Extended Laughlin phase

To allow for a response of the Laughlin state to an external potential V

we consider the extended Laughlin phase, L`,N , defined as the space

of square integrable wave functions of the form

Ψ = φ(z1, . . . , zN )Ψ
(`)
Laugh

with φ holomorphic and symmetric.

The space L`,N consist exactly of functions that

belong to the LLL

vanish at least as (zi − zj)` as zi and zj come together, to avoid a

strong repulsive interaction.
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The effect of the prefactor φ

Minimizing in L`,N the expectation value of the physical many-body

Hamiltonian with a contact interaction leads to a variational problem of

a special kind where only the integral of the density against the

potential enters. Changing V changes the optimal prefactor φ, and

thus deforms the density distribution. However, we claim that

The density of any function in L`,N is still bounded above by (π`)−1 (in

a suitable weak sense).

In other words: The prefactor can only shift or decrease the
density, not increase it.

We refer to this property as the incompressibility of the extended

Laughlin phase.
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The Main Theorem

Define

E`(V,N) = inf

{∫
V (z)µ(1)(z)dz : Ψ ∈ LN`

}
and the ‘bathtub energy’

Ebt
` (V ) = inf

{∫
V (z)ρ(z)dz : 0 ≤ ρ ≤ (`π)−1,

∫
ρ = 1

}
.

Theorem (Optimal incompressibility bound)

For any V ∈ C2(R2)

lim inf
N→∞

E`(V,N) ≥ Ebt
` (V ).

Moreover, V is radially symmetric, monotonously increasing and

polynomially bounded, equality holds and is asymptotically achieved

for the Laughlin wave function.
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Why is a density bound important?

demonstrates the strong resistance of the Laughlin wave function

against compression

justifies the neglect of disorder and/or small external electric field

justifies Laughlin’s argument for Hall conductivity 1/` since an

electric current moves charges transversally but cannot

accumulate them

provides a clear sign for a transition from a BEC regime to a

FQHE regime in a rotating Bose gas
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The general Gibbs-Boltzmann factor

The first step in a proof of the theorem is to write the N -particle density

as

µ(N)(Z) =
1

ZN
exp

(
− 1

T
H(Z)

)
where T = 1

N .

The classical Hamiltonian is now of the form

H(Z) =

N∑
j=1

|zj |2 +
2`

N

∑
1≤i<j≤N

log
1

|zi − zj |
+W(Z).

with

W(Z) := − 2

N
log
∣∣∣φ(√N Z

)∣∣∣ .
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Special φ

A mean field analysis, using a theorem of Diaconis and Freedman, is

possible for a subclass of wave functions in LN` , namely for φ of the

form
N∏
j=1

f1(zj)
∏

(i,j)∈{1,...,N}

f2(zi, zj),

The method extends, with some additional complications, to more

general φ:

N∏
j=1

f1(zj)
∏

(i,j)∈{1,...,N}

f2(zi, zj) . . .
∏

(i1,...,in)∈{1,...,N}

fn(zi1 , . . . , zin).

with n fixed, or not growing too fast with N ).
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General φ

For general φ(Z), the potentialW(Z) is a genuine N -body interaction,

and a mean field approximation is at present out of reach.

However,W(Z) has the important property of being superharmonic in

each variable, i.e..

−∆ziW(Z) ≥ 0

for each zi.

Using this property one can apply a different method to obtain an

optimal incompressibility bound for all functions in LN` .

The method is based on 2D electrostatics and the analysis of a

Thomas-Fermi model of a special kind.
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A crucial property of H(Z)

With these methods it can be proved that the density of the points z0i in

a minimizing configuration Z0 for H(Z) is, for large N , bounded by

(π`)−1.

More precisely: Define

ρ0(z) =
1

N

N∑
j=1

δ(z − z0i ).

There exists a nonnegative bounded function ρ̃0 of integral 1 such that

ρ̃0(z) ≤ 1

π`
(1 + o(1))

and for any differentiable function f on R2∫
R2

(
ρ0 − ρ̃0

)
f → 0

in the limit N →∞.
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An auxiliary TF model

The proof of the crucial property is based on a study of an auxiliary

Thomas-Fermi model.

For fixed points xi ∈ R2 (“nuclei”) we define a functional of functions

σ(·) on R2 (“electron density”) by

E [σ] = −
∫
Vnucl(x)σ(x) dx+D(σ, σ)

with

Vnucl(x) =

n∑
i=1

log
1

|x− xi|
,

D(σ, σ′) = 1
2

∫ ∫
σ(x) log

1

|x− x′|
σ′(x′) dx dx′

and the conditions∫
σ(x) log(1 + |x|)dx <∞, 0 ≤ σ(x) ≤ 1,

∫
σ(x)dx = n.
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Basic properties

There exists a unique minimizer, σTF.

The minimizer has compact support.

Apart of a set of measure zero, σTF takes only the values 0 or 1.

The TF equation holds:

ΦTF(x) =

{
≥ 0 if σTF(x) = 1

0 if σTF(x) = 0

where

ΦTF(x) = Vnucl(x)− log
1

| · |
∗ σTF(x)

is the electrostatic potential.

The derivation of these properties requires some effort because the TF

model is of a singular type and standard methods have to be modified.
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model is of a singular type and standard methods have to be modified.
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The support of σTF

According to the TF equation the support of σTF is the same as the

support of the potential ΦTF which is continuous away from the ‘nuclei’.

Denote by

B(x1, . . . , xn)

the open set where ΦTF is strictly larger than 0. The support is the

closure B̄ and ΦTF is zero on the boundary ∂B.

Important properties:

The area of B(x1, . . . , xn) is equal to n.

B(x1, . . . , xn−1) ⊂ B(x1, . . . , xn).

For a single nucleus at xi, B(xi) is the disc with center at xi and

radius π−1/2.
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The “exclusion rule” for minimizing configurations

Consider a classical jellium Hamiltonian with an additional

plurisuperharmonic term:

H(x1, . . . , xN ) =
π

2

N∑
i=1

|xi|2 +
∑

1≤i<j≤N
log

1

|xi − xj |
+W (x1, . . . , xN )

with W symmetric and superharmonic in each variable xi.

Proposition (Exclusion rule for minimizers)

If (x01, . . . , x
0
N ) is a minimizing configuration for H, then for all

1 ≤ n ≤ N − 1,

x0i /∈ B(x01, . . . , x
0
n) for i = n+ 1, . . . , N.
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Proof of the exclusion rule

Fix x0j , j 6= i = n+ 1 and consider the function

F (x) = H(x01, . . . , x
0
n, x, x

0
n+2, · · ·x0N )

We show that if x ∈ B(x01, . . . , x
0
n) ≡ B then there is a x̂ ∈ ∂B such that

F (x̂) < F (x).

Adding and subtracting a term log 1
|x| ∗ 1B we can write

F (x) = Φ(x) +R(x)

with

Φ(x) =
n∑

i=1

log
1

|x− x0i |
−
∫
B

log
1

|x− x′|
dx′

and

R(x) =
π

2
|x|2 +

∫
B

log
1

|x− x′|
dx′ +

N∑
i=n+2

log
1

|x− x0i |
+W (x) + const.
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Proof of the exclusion rule (cont.)

Now Φ is precisely the TF potential corresponding to ‘nuclear charges’

at x0i , . . . x
0
n. Hence Φ > 0 on B and zero on the boundary ∂B.

The first two terms in R are harmonic on B when taken together. (The

Laplacian applied to the first term gives 2π and to the second term

−2π on B.) The other terms are superharmonic on B. Thus, R takes its

minimum on the boundary, so there is a x̂ ∈ ∂B with R(x) ≥ R(x̂). On

the other hand, Φ(x) > 0 = Φ(x̂) so F (x) > F (x̂).

Altogether we have shown that in a minimizing configuration

(x01, . . . , x
0
N ) of H, no x0i can lie in any TF set B defined by other points

in the configuration. 2
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A density bound

The essential fact needed for the proof of our Main Theorem is the

following density bound for configurations satisfying the exclusion rule:

Proposition (Exclusion rule implies a density bound)

For R > 0 let n(R) denote the maximum number of nuclei that a ball

B(R) of radius R can accomodate while respecting the exclusion rule,

i.e., such that

{x1, . . . , xn} ⊂ B(R) implies xi /∈ B(x1, . . . , xi−1, xi+1, . . . , xn).

Then

lim sup
R→∞

n(R)

πR2
≤ 1.

The proof is somewhat tricky. It is indirect and makes use of bounds on

the gradient of ΦTF and of Newton’s theorem for its circular averages.
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Consequences for H(Z)

After scaling,

x→ z =

√
π`

N
x,

the density bound applies to the Hamiltonian

H(Z) =

N∑
j=1

|zj |2 +
2`

N

∑
1≤i<j≤N

log
1

|zi − zj |
+W (Z).

Using the “cheese theorem” one shows that for a minimizing
configuration Z0 = (z01 , . . . , z

0
N ) the empirical measure

ρ0(z) =
1

N

N∑
j=1

δ(z − z0i )

is approximated in the weak sense by by an absolutely continuous
distribution ρ̃0 of integral 1 satisfying the bound

ρ̃0(z) ≤ 1

π`
(1 + o(1)).
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The perturbed Hamiltonian

To prove the Main Theorem (energy lower bound in terms of the

‘bathtub’ energy) we have to consider a perturbed Hamiltonian

Hε(Z) = H(Z) + ε

N∑
i=1

U(zi)

with ε > 0 and U ∈ C2(R2) of compact support.

We claim that if Zε is a minimizing configuration of Hε, then the

empirical measure

ρε(z) =
1

N

N∑
j=1

δ(z − zεi )

is approximated in the weak sense by by a continuous distribution ρ̃ε

of integral 1 satisfying the modified bound

ρ̃ε(z) ≤ 1

π`
(1 + o(1))(1 + 1

4ε‖∆U‖∞).
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The perturbed Hamiltonian (cont.)

The proof of the last statement is essentially the same as for the

unperturbed Hamiltonian. We add and subtract

ε

4

N∑
i=1

‖∆U‖∞|zi|2

and use that U(z)− 1
4‖∆U‖∞|z|

2 is superharmonic, so that

ε

N∑
i=1

(
U(zi)− 1

4‖∆U‖∞|zi|
2
)

can be absorbed in W .

The change of |z|2 to
(
1 + ε

4‖∆U‖∞
)
|z|2 has the same effect as

dividing ` by
(
1 + ε

4‖∆U‖∞
)
.
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Proof of the Main Theorem

The free energy of the perturbed Hamiltonian is

F ε
N := inf

{
Fε
N [µ], µ ∈ P(R2N )

}
where the free energy functional on the space P(R2N ) of probability

measures on R2 is

Fε
N [µ] :=

∫
R2N

Hε(Z)µ(Z)dZ +N−1
∫
R2N

µ logµ

Formally,
∫
Uµ(1) is the derivative at ε = 0 of the free energy. The Main

Theorem is proved via estimates on F ε
N . The entropic part tends to

zero as N →∞ so
∫
Uµ(1) is essentially the integral of U against the

empirical measure for a minimizing configuration of Hε(Z).
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Conclusions and outlook

We have derived a rigorous density bound showing that the

Laughlin wave function behaves as an incompressible liquid

whose response to perturbations by external fields is very rigid.

The method of proof is based on the study of a 2D Thomas Fermi

model of a special kind. The method has potential applications for

2D Coulomb systems and in random matrix theory.

For certain radial potentials, upper bounds for the energy have

also been derived, using trial functions of the form
N∏
i=1

f(zi)Ψ
(`)
Laugh(z1, . . . , zN ).

An important challenge is to prove, for all reasonable external

potentials, that the ground state in the extended Laughlin phase

always has this form.
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