2D Electrostatics and the Density of Quantum Fluids

Jakob Yngvason, University of Vienna with Elliott H. Lieb, Princeton University and Nicolas Rougerie, University of Grenoble

Yerevan, September 5, 2016

References

N. Rougerie, JY, *Incompressibility Estimates for the Laughlin Phase*, CMP **336**, 1109–1140 (2015), arXiv:1402.5799

N. Rougerie, JY, *Incompressibility Estimates for the Laughlin Phase, Part II*, CMP **339**, 263–227 (2015), arXiv:1411.2361

E.H. Lieb, N. Rougerie, JY, *A universal density bound for perturbations of the Laughlin liquid*, **preprint**

・ロト ・ 同ト ・ ヨト ・ ヨ

References

N. Rougerie, JY, *Incompressibility Estimates for the Laughlin Phase*, CMP **336**, 1109–1140 (2015), arXiv:1402.5799

N. Rougerie, JY, *Incompressibility Estimates for the Laughlin Phase, Part II*, CMP **339**, 263–227 (2015), arXiv:1411.2361

E.H. Lieb, N. Rougerie, JY, *A universal density bound for perturbations of the Laughlin liquid*, **preprint**

See also:

N. Rougerie, S. Serfaty, J.Y., *Quantum Hall states of bosons in rotating anharmonic traps, Phys. Rev. A* 87, 023618 (2013); arXiv:1212.1085

N. Rougerie, S. Serfaty, J.Y., *Quantum Hall Phases and the Plasma Analogy in Rotating Trapped Bose Gases, J. Stat. Phys*, **154**, 2–50 (2014), arXiv:1301.1043

イロト イ理ト イヨト イヨト

The Laughlin wave function

The Laughlin wave function, suggested by Laughlin in 1983 as a variational ansatz for the ground state of a 2D electron gas in a strong perpendicular magnetic field, has the form

$$\Psi_{\text{Laugh}}^{(\ell)} = C_{N,\ell} \prod_{i < j} (z_i - z_j)^{\ell} e^{-\sum_{i=1}^N |z_i|^2/2}$$

with ℓ odd ≥ 3 and $C_{N,\ell}$ a normalization constant. The factors $(z_i - z_j)^{\ell}$ strongly suppress a repulsive interaction between the particles.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Laughlin wave function

The Laughlin wave function, suggested by Laughlin in 1983 as a variational ansatz for the ground state of a 2D electron gas in a strong perpendicular magnetic field, has the form

$$\Psi_{\text{Laugh}}^{(\ell)} = C_{N,\ell} \prod_{i < j} (z_i - z_j)^{\ell} e^{-\sum_{i=1}^N |z_i|^2/2}$$

with ℓ odd ≥ 3 and $C_{N,\ell}$ a normalization constant. The factors $(z_i - z_j)^{\ell}$ strongly suppress a repulsive interaction between the particles.

This function is basic for the understanding of the FQHE. One can also consider such functions for bosons with ℓ is even and ≥ 2 .

In his 1983 paper Laughlin claimed that the 1-particle density of $\Psi_{\text{Laugh}}^{(\ell)}$ within its support is close to $(\ell \pi)^{-1}$.

In his 1983 paper Laughlin claimed that the 1-particle density of $\Psi_{\text{Laugh}}^{(\ell)}$ within its support is close to $(\ell \pi)^{-1}$.

Methaphoric picture of the *N*-particle density (not due to Laughlin!):

The particles change places randomly but in a correlated way, as tightly packed as the factors $(z_i - z_j)^{\ell}$ allow, like huddling emperor penguins during an Antarctic winter. Each "penguin" claims on the average an area $\ell \pi$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Laughlin's argument for the density $(\ell \pi)^{-1}$ is more mathematical. It is based on the "plasma analogy":

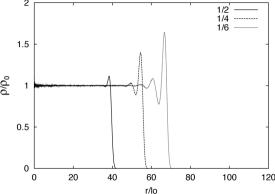
The *N*-particle density $|\Psi_{\text{Laugh}}^{(\ell)}|^2$ can be interpreted as the Boltzmann-Gibbs factor at temperature $T = N^{-1}$ of classical 2D jellium, i.e., a 2D Coulomb gas in a uniform neutralizing background. A mean field approximation leads to the claimed density.

Laughlin's argument for the density $(\ell \pi)^{-1}$ is more mathematical. It is based on the "plasma analogy":

The *N*-particle density $|\Psi_{\text{Laugh}}^{(\ell)}|^2$ can be interpreted as the Boltzmann-Gibbs factor at temperature $T = N^{-1}$ of classical 2D jellium, i.e., a 2D Coulomb gas in a uniform neutralizing background. A mean field approximation leads to the claimed density.

Numerical calculations (O. Ciftja) show, however, that the density may be considerably larger than $(\ell \pi)^{-1}$ close to the edge. The result can thus only hold in a suitable weak sense in the limit $N \to \infty$.

< 日 > < 同 > < 回 > < 回 > < □ > <



The density as a Boltzmann-Gibbs factor

We denote $(z_1, ..., z_N)$ by *Z* for short and consider the scaled *N* particle probability density (normalized to 1)

$$\mu^{(N)}(Z) = N^N \left| \Psi_{\text{Laugh}}^{(\ell)}(\sqrt{N}Z) \right|^2.$$

We can write

$$\mu^{(N)}(Z) = \mathcal{Z}_N^{-1} \exp\left(-N \sum_{j=1}^N |z_j|^2 + 2\ell \sum_{i < j} \log |z_i - z_j|\right)$$

A D M A A A M M

The density as a Boltzmann-Gibbs factor

We denote $(z_1, ..., z_N)$ by *Z* for short and consider the scaled *N* particle probability density (normalized to 1)

$$\mu^{(N)}(Z) = N^N \left| \Psi_{\text{Laugh}}^{(\ell)}(\sqrt{N}Z) \right|^2.$$

We can write

$$\mu^{(N)}(Z) = \mathcal{Z}_{N}^{-1} \exp\left(-N \sum_{j=1}^{N} |z_{j}|^{2} + 2\ell \sum_{i < j} \log |z_{i} - z_{j}|\right)$$
$$= \mathcal{Z}_{N}^{-1} \exp\left(-\frac{1}{T} \mathcal{H}_{N}(Z)\right),$$

with $T = N^{-1}$ and

$$\mathcal{H}_N(Z) = \sum_{j=1}^N |z_j|^2 + \frac{2\ell}{N} \sum_{i < j} \log \frac{1}{|z_i - z_j|}$$

(日) (同) (三) (三)

The free energy functional

The probability measure $\mu^{(N)}(Z)$ minimizes the free energy functional $\mathcal{F}(\mu) = \int \mathcal{H}_N(Z)\mu(Z) + T \int \mu(Z) \log \mu(Z)$

for this Hamiltonian at $T = N^{-1}$.

The free energy functional

The probability measure $\mu^{(N)}(Z)$ minimizes the free energy functional

$$\mathcal{F}(\mu) = \int \mathcal{H}_N(Z)\mu(Z) + T \int \mu(Z)\log\mu(Z)$$

for this Hamiltonian at $T = N^{-1}$.

The $N \to \infty$ limit is in this interpretation a mean field limit where at the same time $T \to 0$. It is thus not unreasonable to expect that for large N, in a suitable sense

$$\mu^{(N)} \approx \rho^{\mathrm{mf}^{\otimes N}}$$

with a one-particle density ρ^{mf} minimizing a mean field free energy functional.

$$\mathcal{F}^{\rm mf}[\rho] = \int_{\mathbb{R}^2} |z|^2 \,\rho + \ell \int \int \rho(z) \log \frac{1}{|z - z'|} \rho(z') + N^{-1} \int_{\mathbb{R}^2} \rho \log \rho.$$

A rigorous estimate proving the convergence of the true 1-particle density to the mean field density ρ^{mf} was derived by Rougerie, Serfaty and JY in 2013:

Theorem (Comparison of true density and mean field density)

There exists a constant C > 0 such that for large enough N and any $U \in H^1(\mathbb{R}^2) \cap W^{2,\infty}(\mathbb{R}^2)$

$$\left| \int_{\mathbb{R}^2} \left(\mu^{(1)} - \rho^{\mathrm{mf}} \right) U \right| \le C (\log N/N)^{1/2} \|\nabla U\|_{L^1} + CN^{-1} \|\nabla^2 U\|_{L^{\infty}}.$$

Properties of the Mean Field Density

The picture of the 1-particle density arises from asymptotic formulas for the mean-field density. The latter is, for large N, well approximated by a density $\hat{\rho}^{\text{mf}}$ that minimizes the mean field functional without the entropy term.

Properties of the Mean Field Density

The picture of the 1-particle density arises from asymptotic formulas for the mean-field density. The latter is, for large N, well approximated by a density $\hat{\rho}^{\text{mf}}$ that minimizes the mean field functional without the entropy term.

The variational equation satisfied by this density is:

 $|z|^2 - 2\ell \hat{\rho}^{\rm mf} * \log |z| - C \ge 0$

with "=" where $\hat{\rho}^{mf} > 0$ and ">" where $\rho^{mf} = 0$.

Properties of the Mean Field Density

The picture of the 1-particle density arises from asymptotic formulas for the mean-field density. The latter is, for large N, well approximated by a density $\hat{\rho}^{\text{mf}}$ that minimizes the mean field functional without the entropy term.

The variational equation satisfied by this density is:

 $|z|^2 - 2\ell \hat{\rho}^{\rm mf} * \log |z| - C \ge 0$

with "=" where $\hat{\rho}^{mf} > 0$ and ">" where $\rho^{mf} = 0$.

Applying the Laplacian gives

 $1 - \ell \pi \,\hat{\rho}^{\rm mf}(z) = 0$

where $\hat{\rho} > 0$. Hence $\hat{\rho}^{\text{mf}}$ takes the constant value $(\ell \pi)^{-1}$ on its support.

To allow for a response of the Laughlin state to an external potential V we consider the extended Laughlin phase, $\mathcal{L}_{\ell,N}$, defined as the space of square integrable wave functions of the form

$$\Psi = \phi(z_1,\ldots,z_N) \Psi_{
m Laugh}^{(\ell)}$$

with ϕ holomorphic and symmetric.

To allow for a response of the Laughlin state to an external potential V we consider the extended Laughlin phase, $\mathcal{L}_{\ell,N}$, defined as the space of square integrable wave functions of the form

$$\Psi = \phi(z_1,\ldots,z_N) \Psi^{(\ell)}_{ ext{Laugh}}$$

with ϕ holomorphic and symmetric.

The space $\mathcal{L}_{\ell,N}$ consist exactly of functions that

- belong to the LLL
- vanish at least as (z_i − z_j)^ℓ as z_i and z_j come together, to avoid a strong repulsive interaction.

Minimizing in $\mathcal{L}_{\ell,N}$ the expectation value of the physical many-body Hamiltonian with a contact interaction leads to a variational problem of a special kind where only the integral of the density against the potential enters. Changing *V* changes the optimal prefactor ϕ , and thus deforms the density distribution. However, we claim that

The density of any function in $\mathcal{L}_{\ell,N}$ is still bounded above by $(\pi \ell)^{-1}$ (in a suitable weak sense).

Minimizing in $\mathcal{L}_{\ell,N}$ the expectation value of the physical many-body Hamiltonian with a contact interaction leads to a variational problem of a special kind where only the integral of the density against the potential enters. Changing *V* changes the optimal prefactor ϕ , and thus deforms the density distribution. However, we claim that

The density of any function in $\mathcal{L}_{\ell,N}$ is still bounded above by $(\pi \ell)^{-1}$ (in a suitable weak sense).

In other words: The prefactor can only shift or decrease the density, not increase it.

We refer to this property as the **incompressibility** of the extended Laughlin phase.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Main Theorem

Define

$$E_{\ell}(V,N) = \inf\left\{\int V(z)\mu^{(1)}(z)dz : \Psi \in \mathcal{L}_{\ell}^{N}\right\}$$

and the 'bathtub energy'

$$E_{\ell}^{\text{bt}}(V) = \inf \left\{ \int V(z)\rho(z)dz : 0 \le \rho \le (\ell\pi)^{-1}, \ \int \rho = 1 \right\}.$$

イロト イ団ト イヨト イヨト

The Main Theorem

Define

$$E_{\ell}(V,N) = \inf\left\{\int V(z)\mu^{(1)}(z)dz : \Psi \in \mathcal{L}_{\ell}^{N}\right\}$$

and the 'bathtub energy'

$$E_{\ell}^{\rm bt}(V) = \inf\left\{\int V(z)\rho(z)dz : 0 \le \rho \le (\ell\pi)^{-1}, \ \int \rho = 1\right\}$$

Theorem (Optimal incompressibility bound) For any $V \in C^2(\mathbb{R}^2)$

 $\liminf_{N \to \infty} E_{\ell}(V, N) \ge E_{\ell}^{\mathrm{bt}}(V).$

Moreover, V is radially symmetric, monotonously increasing and polynomially bounded, equality holds and is asymptotically achieved for the Laughlin wave function.

 demonstrates the strong resistance of the Laughlin wave function against compression

< A >

- demonstrates the strong resistance of the Laughlin wave function against compression
- justifies the neglect of disorder and/or small external electric field

- demonstrates the strong resistance of the Laughlin wave function against compression
- justifies the neglect of disorder and/or small external electric field
- justifies Laughlin's argument for Hall conductivity 1/l since an electric current moves charges transversally but cannot accumulate them

- demonstrates the strong resistance of the Laughlin wave function against compression
- justifies the neglect of disorder and/or small external electric field
- justifies Laughlin's argument for Hall conductivity 1/l since an electric current moves charges transversally but cannot accumulate them
- provides a clear sign for a transition from a BEC regime to a FQHE regime in a rotating Bose gas

The general Gibbs-Boltzmann factor

The first step in a proof of the theorem is to write the N-particle density as

$$\mu^{(N)}(Z) = \frac{1}{\mathcal{Z}_N} \exp\left(-\frac{1}{T}\mathcal{H}(Z)\right)$$

where $T = \frac{1}{N}$.

The general Gibbs-Boltzmann factor

The first step in a proof of the theorem is to write the N-particle density as

$$\mu^{(N)}(Z) = \frac{1}{\mathcal{Z}_N} \exp\left(-\frac{1}{T}\mathcal{H}(Z)\right)$$

where $T = \frac{1}{N}$.

The classical Hamiltonian is now of the form

$$\mathcal{H}(Z) = \sum_{j=1}^{N} |z_j|^2 + \frac{2\ell}{N} \sum_{1 \le i < j \le N} \log \frac{1}{|z_i - z_j|} + \mathcal{W}(Z).$$

with

$$\mathcal{W}(Z) := -\frac{2}{N} \log \left| \phi\left(\sqrt{N} Z\right) \right|.$$

Special ϕ

A mean field analysis, using a theorem of Diaconis and Freedman, is possible for a subclass of wave functions in \mathcal{L}_{ℓ}^{N} , namely for ϕ of the form

$$\prod_{j=1}^{N} f_1(z_j) \prod_{(i,j) \in \{1,\dots,N\}} f_2(z_i, z_j),$$

3 > 4 3

< 47 ▶

A mean field analysis, using a theorem of Diaconis and Freedman, is possible for a subclass of wave functions in \mathcal{L}_{ℓ}^{N} , namely for ϕ of the form

$$\prod_{j=1}^{N} f_1(z_j) \prod_{(i,j) \in \{1,\dots,N\}} f_2(z_i, z_j),$$

The method extends, with some additional complications, to more general ϕ :

$$\prod_{j=1}^{N} f_1(z_j) \prod_{(i,j)\in\{1,\dots,N\}} f_2(z_i,z_j) \dots \prod_{(i_1,\dots,i_n)\in\{1,\dots,N\}} f_n(z_{i_1},\dots,z_{i_n}).$$

with n fixed, or not growing too fast with N).

For general $\phi(Z)$, the potential $\mathcal{W}(Z)$ is a genuine *N*-body interaction, and a mean field approximation is at present out of reach.

< 🗇 🕨

For general $\phi(Z)$, the potential $\mathcal{W}(Z)$ is a genuine *N*-body interaction, and a mean field approximation is at present out of reach.

However, $\mathcal{W}(Z)$ has the important property of being superharmonic in each variable, i.e..

 $-\Delta_{z_i}\mathcal{W}(Z) \ge 0$

for each z_i .

< ロ > < 同 > < 回 > < 回 >

For general $\phi(Z)$, the potential $\mathcal{W}(Z)$ is a genuine *N*-body interaction, and a mean field approximation is at present out of reach.

However, $\mathcal{W}(Z)$ has the important property of being superharmonic in each variable, i.e..

 $-\Delta_{z_i}\mathcal{W}(Z) \ge 0$

for each z_i .

Using this property one can apply a different method to obtain an optimal incompressibility bound for all functions in \mathcal{L}_{ℓ}^{N} .

The method is based on 2D electrostatics and the analysis of a Thomas-Fermi model of a special kind.

A crucial property of $\mathcal{H}(Z)$

With these methods it can be proved that the density of the points z_i^0 in a minimizing configuration Z^0 for $\mathcal{H}(Z)$ is, for large N, bounded by $(\pi \ell)^{-1}$.

< ロ > < 同 > < 回 > < 回 >

A crucial property of $\mathcal{H}(Z)$

With these methods it can be proved that the density of the points z_i^0 in a minimizing configuration Z^0 for $\mathcal{H}(Z)$ is, for large N, bounded by $(\pi \ell)^{-1}$.

More precisely: Define

$$\rho^0(z) = \frac{1}{N} \sum_{j=1}^N \delta(z - z_i^0).$$

There exists a nonnegative bounded function $\tilde{\rho}^0$ of integral 1 such that

$$\tilde{\rho}^0(z) \le \frac{1}{\pi\ell} (1 + o(1))$$

and for any differentiable function f on \mathbb{R}^2

$$\int_{\mathbb{R}^2} \left(\rho^0 - \tilde{\rho}^0 \right) f \to 0$$

in the limit $N \to \infty$.

Jakob Yngvason (Uni Vienna)

An auxiliary TF model

The proof of the *crucial property* is based on a study of an auxiliary Thomas-Fermi model.

An auxiliary TF model

The proof of the *crucial property* is based on a study of an auxiliary Thomas-Fermi model.

For fixed points $x_i \in \mathbb{R}^2$ ("nuclei") we define a functional of functions $\sigma(\cdot)$ on \mathbb{R}^2 ("electron density") by

$$\mathcal{E}[\sigma] = -\int V_{\text{nucl}}(x)\sigma(x)\,dx + D(\sigma,\sigma)$$

with

$$V_{\text{nucl}}(x) = \sum_{i=1}^{n} \log \frac{1}{|x - x_i|},$$
$$D(\sigma, \sigma') = \frac{1}{2} \int \int \sigma(x) \log \frac{1}{|x - x'|} \sigma'(x') \, dx \, dx'$$

and the conditions

$$\int \sigma(x) \log(1+|x|) dx < \infty, \qquad 0 \leq \sigma(x) \leq 1, \qquad \int \sigma(x) dx = n.$$

• There exists a unique minimizer, $\sigma^{\rm TF}.$

イロト イ団ト イヨト イヨト

- There exists a unique minimizer, $\sigma^{\rm TF}$.
- The minimizer has compact support.

э.

- There exists a unique minimizer, $\sigma^{\rm TF}$.
- The minimizer has compact support.
- Apart of a set of measure zero, σ^{TF} takes only the values 0 or 1.

- There exists a unique minimizer, $\sigma^{\rm TF}$.
- The minimizer has compact support.
- Apart of a set of measure zero, σ^{TF} takes only the values 0 or 1.
- The TF equation holds:

$$\Phi^{\mathrm{TF}}(x) = \begin{cases} \geq 0 & \text{if } \sigma^{\mathrm{TF}}(x) = 1\\ 0 & \text{if } \sigma^{\mathrm{TF}}(x) = 0 \end{cases}$$

where

$$\Phi^{\mathrm{TF}}(x) = V_{\mathrm{nucl}}(x) - \log \frac{1}{|\cdot|} * \sigma^{\mathrm{TF}}(x)$$

is the electrostatic potential.

- There exists a unique minimizer, $\sigma^{\rm TF}.$
- The minimizer has compact support.
- Apart of a set of measure zero, σ^{TF} takes only the values 0 or 1.
- The TF equation holds:

$$\Phi^{\mathrm{TF}}(x) = \begin{cases} \ge 0 & \text{if } \sigma^{\mathrm{TF}}(x) = 1\\ 0 & \text{if } \sigma^{\mathrm{TF}}(x) = 0 \end{cases}$$

where

$$\Phi^{\mathrm{TF}}(x) = V_{\mathrm{nucl}}(x) - \log \frac{1}{|\cdot|} * \sigma^{\mathrm{TF}}(x)$$

is the electrostatic potential.

The derivation of these properties requires some effort because the TF model is of a singular type and standard methods have to be modified,

Jakob Yngvason (Uni Vienna)

2D Electrostatics

According to the TF equation the support of $\sigma^{\rm TF}$ is the same as the support of the potential $\Phi^{\rm TF}$ which is continuous away from the 'nuclei'. Denote by

 $\mathcal{B}(x_1,\ldots,x_n)$

the open set where Φ^{TF} is strictly larger than 0. The support is the closure \overline{B} and Φ^{TF} is zero on the boundary ∂B .

According to the TF equation the support of σ^{TF} is the same as the support of the potential Φ^{TF} which is continuous away from the 'nuclei'. Denote by

 $\mathcal{B}(x_1,\ldots,x_n)$

the open set where Φ^{TF} is strictly larger than 0. The support is the closure \overline{B} and Φ^{TF} is zero on the boundary ∂B .

Important properties:

• The area of $\mathcal{B}(x_1, \ldots, x_n)$ is equal to n.

< ロ > < 同 > < 回 > < 回 >

According to the TF equation the support of σ^{TF} is the same as the support of the potential Φ^{TF} which is continuous away from the 'nuclei'. Denote by

 $\mathcal{B}(x_1,\ldots,x_n)$

the open set where Φ^{TF} is strictly larger than 0. The support is the closure \overline{B} and Φ^{TF} is zero on the boundary ∂B .

Important properties:

• The area of $\mathcal{B}(x_1, \ldots, x_n)$ is equal to n.

•
$$\mathcal{B}(x_1,\ldots,x_{n-1}) \subset \mathcal{B}(x_1,\ldots,x_n).$$

< ロ > < 同 > < 回 > < 回 >

According to the TF equation the support of σ^{TF} is the same as the support of the potential Φ^{TF} which is continuous away from the 'nuclei'. Denote by

 $\mathcal{B}(x_1,\ldots,x_n)$

the open set where Φ^{TF} is strictly larger than 0. The support is the closure \overline{B} and Φ^{TF} is zero on the boundary ∂B .

Important properties:

• The area of $\mathcal{B}(x_1, \ldots, x_n)$ is equal to n.

•
$$\mathcal{B}(x_1,\ldots,x_{n-1})\subset \mathcal{B}(x_1,\ldots,x_n).$$

• For a single nucleus at x_i , $\mathcal{B}(x_i)$ is the disc with center at x_i and radius $\pi^{-1/2}$.

The "exclusion rule" for minimizing configurations

Consider a classical jellium Hamiltonian with an additional plurisuperharmonic term:

$$H(x_1, \dots, x_N) = \frac{\pi}{2} \sum_{i=1}^N |x_i|^2 + \sum_{1 \le i < j \le N} \log \frac{1}{|x_i - x_j|} + W(x_1, \dots, x_N)$$

with W symmetric and superharmonic in each variable x_i .

The "exclusion rule" for minimizing configurations

Consider a classical jellium Hamiltonian with an additional plurisuperharmonic term:

$$H(x_1, \dots, x_N) = \frac{\pi}{2} \sum_{i=1}^N |x_i|^2 + \sum_{1 \le i < j \le N} \log \frac{1}{|x_i - x_j|} + W(x_1, \dots, x_N)$$

with W symmetric and superharmonic in each variable x_i .

Proposition (Exclusion rule for minimizers) If (x_1^0, \ldots, x_N^0) is a minimizing configuration for H, then for all $1 \le n \le N - 1$,

$$x_i^0 \notin \mathcal{B}(x_1^0, \dots, x_n^0) \quad for \quad i = n+1, \dots, N.$$

Proof of the exclusion rule

Fix x_j^0 , $j \neq i = n + 1$ and consider the function

$$F(x) = H(x_1^0, \dots, x_n^0, x, x_{n+2}^0, \dots, x_N^0)$$

We show that if $x \in \mathcal{B}(x_1^0, ..., x_n^0) \equiv \mathcal{B}$ then there is a $\hat{x} \in \partial \mathcal{B}$ such that $F(\hat{x}) < F(x)$.

<ロト < 回 > < 回 > < 回 > .

Proof of the exclusion rule

Fix x_j^0 , $j \neq i = n + 1$ and consider the function

$$F(x) = H(x_1^0, \dots, x_n^0, x, x_{n+2}^0, \dots, x_N^0)$$

We show that if $x \in \mathcal{B}(x_1^0, \dots, x_n^0) \equiv \mathcal{B}$ then there is a $\hat{x} \in \partial \mathcal{B}$ such that $F(\hat{x}) < F(x)$.

Adding and subtracting a term $\log \frac{1}{|x|} * \mathbb{1}_{\mathcal{B}}$ we can write

 $F(x) = \Phi(x) + R(x)$

with

$$\Phi(x) = \sum_{i=1}^{n} \log \frac{1}{|x - x_i^0|} - \int_{\mathcal{B}} \log \frac{1}{|x - x'|} dx'$$

and

$$R(x) = \frac{\pi}{2}|x|^2 + \int_{\mathcal{B}} \log \frac{1}{|x - x'|} dx' + \sum_{i=n+2}^{N} \log \frac{1}{|x - x_i^0|} + W(x) + \text{const.}$$

Now Φ is precisely the TF potential corresponding to 'nuclear charges' at $x_i^0, \ldots x_n^0$. Hence $\Phi > 0$ on \mathcal{B} and zero on the boundary $\partial \mathcal{B}$.

Now Φ is precisely the TF potential corresponding to 'nuclear charges' at $x_i^0, \ldots x_n^0$. Hence $\Phi > 0$ on \mathcal{B} and zero on the boundary $\partial \mathcal{B}$.

The first two terms in R are harmonic on \mathcal{B} when taken together. (The Laplacian applied to the first term gives 2π and to the second term -2π on \mathcal{B} .) The other terms are superharmonic on \mathcal{B} . Thus, R takes its minimum on the boundary, so there is a $\hat{x} \in \partial \mathcal{B}$ with $R(x) \ge R(\hat{x})$. On the other hand, $\Phi(x) > 0 = \Phi(\hat{x})$ so $F(x) > F(\hat{x})$.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Now Φ is precisely the TF potential corresponding to 'nuclear charges' at $x_i^0, \ldots x_n^0$. Hence $\Phi > 0$ on \mathcal{B} and zero on the boundary $\partial \mathcal{B}$.

The first two terms in R are harmonic on \mathcal{B} when taken together. (The Laplacian applied to the first term gives 2π and to the second term -2π on \mathcal{B} .) The other terms are superharmonic on \mathcal{B} . Thus, R takes its minimum on the boundary, so there is a $\hat{x} \in \partial \mathcal{B}$ with $R(x) \ge R(\hat{x})$. On the other hand, $\Phi(x) > 0 = \Phi(\hat{x})$ so $F(x) > F(\hat{x})$.

Altogether we have shown that in a minimizing configuration (x_1^0, \ldots, x_N^0) of H, no x_i^0 can lie in any TF set \mathcal{B} defined by other points in the configuration.

・ロト ・ 四ト ・ ヨト ・ ヨト

A density bound

The essential fact needed for the proof of our Main Theorem is the following density bound for configurations satisfying the exclusion rule:

Proposition (Exclusion rule implies a density bound) For R > 0 let n(R) denote the maximum number of nuclei that a ball B(R) of radius R can accomodate while respecting the exclusion rule, *i.e.*, such that

 $\{x_1,\ldots,x_n\} \subset B(R) \text{ implies } x_i \notin \mathcal{B}(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n).$

Then

$$\limsup_{R \to \infty} \frac{n(R)}{\pi R^2} \le 1.$$

A density bound

The essential fact needed for the proof of our Main Theorem is the following density bound for configurations satisfying the exclusion rule:

Proposition (Exclusion rule implies a density bound) For R > 0 let n(R) denote the maximum number of nuclei that a ball B(R) of radius R can accomodate while respecting the exclusion rule, i.e., such that $\{x_1, \ldots, x_n\} \subset B(R)$ implies $x_i \notin \mathcal{B}(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)$. Then n(R)

$$\limsup_{R \to \infty} \frac{n(R)}{\pi R^2} \le 1.$$

The proof is somewhat tricky. It is indirect and makes use of bounds on the gradient of $\Phi^{\rm TF}$ and of Newton's theorem for its circular averages.

Jakob Yngvason (Uni Vienna)

2D Electrostatics

Consequences for $\mathcal{H}(Z)$

After scaling,

$$x \to z = \sqrt{\frac{\pi\ell}{N}} x,$$

the density bound applies to the Hamiltonian

$$\mathcal{H}(Z) = \sum_{j=1}^{N} |z_j|^2 + \frac{2\ell}{N} \sum_{1 \le i < j \le N} \log \frac{1}{|z_i - z_j|} + W(Z).$$

イロト イ理ト イヨト イヨト

Consequences for $\mathcal{H}(Z)$

After scaling,

$$x \to z = \sqrt{\frac{\pi\ell}{N}} x,$$

the density bound applies to the Hamiltonian

$$\mathcal{H}(Z) = \sum_{j=1}^{N} |z_j|^2 + \frac{2\ell}{N} \sum_{1 \le i < j \le N} \log \frac{1}{|z_i - z_j|} + W(Z).$$

Using the "cheese theorem" one shows that for a minimizing configuration $Z^0=(z_1^0,\ldots,z_N^0)$ the empirical measure

$$\rho^{0}(z) = \frac{1}{N} \sum_{j=1}^{N} \delta(z - z_{i}^{0})$$

is approximated in the weak sense by by an absolutely continuous distribution $\tilde{\rho}^0$ of integral 1 satisfying the bound

$$\tilde{\rho}^0(z) \le \frac{1}{\pi \ell} (1 + o(1)).$$

A (10) A (10)

The perturbed Hamiltonian

To prove the Main Theorem (energy lower bound in terms of the 'bathtub' energy) we have to consider a perturbed Hamiltonian

$$\mathcal{H}^{\varepsilon}(Z) = \mathcal{H}(Z) + \varepsilon \sum_{i=1}^{N} U(z_i)$$

with $\varepsilon > 0$ and $U \in C^2(\mathbb{R}^2)$ of compact support.

To prove the Main Theorem (energy lower bound in terms of the 'bathtub' energy) we have to consider a perturbed Hamiltonian

$$\mathcal{H}^{\varepsilon}(Z) = \mathcal{H}(Z) + \varepsilon \sum_{i=1}^{N} U(z_i)$$

with $\varepsilon > 0$ and $U \in C^2(\mathbb{R}^2)$ of compact support.

We claim that if Z^{ε} is a minimizing configuration of $\mathcal{H}^{\varepsilon}$, then the empirical measure

$$\rho^{\varepsilon}(z) = \frac{1}{N} \sum_{j=1}^{N} \delta(z - z_i^{\varepsilon})$$

is approximated in the weak sense by by a continuous distribution $\tilde{\rho}^{\varepsilon}$ of integral 1 satisfying the modified bound

$$\tilde{\rho}^{\varepsilon}(z) \leq \frac{1}{\pi\ell} (1+o(1))(1+\frac{1}{4}\varepsilon \|\Delta U\|_{\infty}).$$

A B F A B F

The proof of the last statement is essentially the same as for the unperturbed Hamiltonian. We add and subtract

$$\frac{\varepsilon}{4} \sum_{i=1}^{N} \|\Delta U\|_{\infty} |z_i|^2$$

and use that $U(z) - \frac{1}{4} ||\Delta U||_{\infty} |z|^2$ is superharmonic, so that

$$\varepsilon \sum_{i=1}^{N} \left(U(z_i) - \frac{1}{4} \|\Delta U\|_{\infty} |z_i|^2 \right)$$

can be absorbed in W.

The proof of the last statement is essentially the same as for the unperturbed Hamiltonian. We add and subtract

$$\frac{\varepsilon}{4} \sum_{i=1}^{N} \|\Delta U\|_{\infty} |z_i|^2$$

and use that $U(z) - \frac{1}{4} ||\Delta U||_{\infty} |z|^2$ is superharmonic, so that

$$\varepsilon \sum_{i=1}^{N} \left(U(z_i) - \frac{1}{4} \|\Delta U\|_{\infty} |z_i|^2 \right)$$

can be absorbed in W.

The change of $|z|^2$ to $\left(1 + \frac{\varepsilon}{4} \|\Delta U\|_{\infty}\right) |z|^2$ has the same effect as dividing ℓ by $\left(1 + \frac{\varepsilon}{4} \|\Delta U\|_{\infty}\right)$.

The free energy of the perturbed Hamiltonian is

$$F_N^{\varepsilon} := \inf \left\{ \mathcal{F}_N^{\varepsilon}[\mu], \quad \mu \in \mathcal{P}(\mathbb{R}^{2N}) \right\}$$

where the free energy functional on the space $\mathcal{P}(\mathbb{R}^{2N})$ of probability measures on \mathbb{R}^2 is

$$\mathcal{F}_{N}^{\varepsilon}[\mu] := \int_{\mathbb{R}^{2N}} \mathcal{H}^{\varepsilon}(Z) \mu(Z) dZ + N^{-1} \int_{\mathbb{R}^{2N}} \mu \log \mu$$

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The free energy of the perturbed Hamiltonian is

$$F_N^{\varepsilon} := \inf \left\{ \mathcal{F}_N^{\varepsilon}[\mu], \quad \mu \in \mathcal{P}(\mathbb{R}^{2N}) \right\}$$

where the free energy functional on the space $\mathcal{P}(\mathbb{R}^{2N})$ of probability measures on \mathbb{R}^2 is

$$\mathcal{F}_{N}^{\varepsilon}[\mu] := \int_{\mathbb{R}^{2N}} \mathcal{H}^{\varepsilon}(Z)\mu(Z)dZ + N^{-1}\int_{\mathbb{R}^{2N}} \mu \log \mu$$

Formally, $\int U\mu^{(1)}$ is the derivative at $\varepsilon = 0$ of the free energy. The Main Theorem is proved via estimates on F_N^{ε} . The entropic part tends to zero as $N \to \infty$ so $\int U\mu^{(1)}$ is essentially the integral of U against the empirical measure for a minimizing configuration of $\mathcal{H}^{\varepsilon}(Z)$.

(日)

Conclusions and outlook

 We have derived a rigorous density bound showing that the Laughlin wave function behaves as an incompressible liquid whose response to perturbations by external fields is very rigid.

Conclusions and outlook

- We have derived a rigorous density bound showing that the Laughlin wave function behaves as an incompressible liquid whose response to perturbations by external fields is very rigid.
- The method of proof is based on the study of a 2D Thomas Fermi model of a special kind. The method has potential applications for 2D Coulomb systems and in random matrix theory.

Conclusions and outlook

- We have derived a rigorous density bound showing that the Laughlin wave function behaves as an incompressible liquid whose response to perturbations by external fields is very rigid.
- The method of proof is based on the study of a 2D Thomas Fermi model of a special kind. The method has potential applications for 2D Coulomb systems and in random matrix theory.
- For certain radial potentials, upper bounds for the energy have also been derived, using trial functions of the form

$$\prod_{i=1}^{N} f(z_i) \Psi_{\text{Laugh}}^{(\ell)}(z_1, \dots, z_N).$$

An important challenge is to prove, for all reasonable external potentials, that the ground state in the extended Laughlin phase always has this form.

Jakob Yngvason (Uni Vienna)