2D Geometric Transformations

COMP 770
Fall 201I

A little quick math background

- Notation for sets, functions, mappings
- Linear transformations
- Matrices
- Matrix-vector multiplication
- Matrix-matrix multiplication
- Geometry of curves in 2D
- Implicit representation
- Explicit representation

Implicit representations

- Equation to tell whether we are on the curve

$$
\{\mathbf{v} \mid f(\mathbf{v})=0\}
$$

- Example: line (orthogonal to \mathbf{u}, distance k from $\mathbf{0}$)

$$
\{\mathbf{v} \mid \mathbf{v} \cdot \mathbf{u}+k=0\}
$$

- Example: circle (center \mathbf{p}, radius r)

$$
\left\{\mathbf{v} \mid(\mathbf{v}-\mathbf{p}) \cdot(\mathbf{v}-\mathbf{p})+r^{2}=0\right\}
$$

- Always define boundary of region
- (if f is continuous)

Explicit representations

- Also called parametric
- Equation to map domain into plane

$$
\{f(t) \mid t \in D\}
$$

- Example: line (containing \mathbf{p}, parallel to \mathbf{u})

$$
\{\mathbf{p}+t \mathbf{u} \mid t \in \mathbb{R}\}
$$

- Example: circle (center \mathbf{b}, radius r)

$$
\left\{\mathbf{p}+r[\cos t \sin t]^{T} \mid t \in[0,2 \pi)\right\}
$$

- Like tracing out the path of a particle over time
- Variable t is the "parameter"

Transforming geometry

- Move a subset of the plane using a mapping from the plane to itself

$$
S \rightarrow\{T(\mathbf{v}) \mid \mathbf{v} \in S\}
$$

- Parametric representation:

$$
\{f(t) \mid t \in D\} \rightarrow\{T(f(t)) \mid t \in D\}
$$

- Implicit representation:

$$
\begin{aligned}
& \{\mathbf{v} \mid f(\mathbf{v})=0\} \rightarrow\{T(\mathbf{v}) \mid f(\mathbf{v})=0\} \\
& \quad=\left\{\mathbf{v} \mid f\left(T^{-1}(\mathbf{v})\right)=0\right\}
\end{aligned}
$$

Translation

- Simplest transformation: $T(\mathbf{v})=\mathbf{v}+\mathbf{u}$
- Inverse: $T^{-1}(\mathbf{v})=\mathbf{v}-\mathbf{u}$
- Example of transforming circle

Linear transformations

- One way to define a transformation is by matrix multiplication:

$$
T(\mathbf{v})=M \mathbf{v}
$$

- Such transformations are linear, which is to say:

$$
T(a \mathbf{u}+\mathbf{v})=a T(\mathbf{u})+T(\mathbf{v})
$$

(and in fact all linear transformations can be written this way)

Geometry of 2D linear trans.

- 2×2 matrices have simple geometric interpretations
- uniform scale
- non-uniform scale
- rotation
- shear
- reflection
- Reading off the matrix

Linear transformation gallery

- Uniform scale $\left[\begin{array}{ll}s & 0 \\ 0 & s\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}s x \\ s y\end{array}\right]$

Linear transformation gallery

- Nonuniform scale $\left[\begin{array}{cc}s_{x} & 0 \\ 0 & s_{y}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}s_{x} x \\ s_{y} y\end{array}\right]$

$$
\left[\begin{array}{cc}
1.5 & 0 \\
0 & 0.8
\end{array}\right]
$$

Linear transformation gallery

- Rotation $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}x \cos \theta-y \sin \theta \\ x \sin \theta+y \cos \theta\end{array}\right]$

Linear transformation gallery

- Reflection
- can consider it a special case of nonuniform scale

$$
\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

Linear transformation gallery

- Shear $\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}x+a y \\ y\end{array}\right]$

$$
\left[\begin{array}{cc}
1 & 0.5 \\
0 & 1
\end{array}\right]
$$

Composing transformations

- Want to move an object, then move it some more

$$
-\mathbf{p} \rightarrow T(\mathbf{p}) \rightarrow S(T(\mathbf{p}))=(S \circ T)(\mathbf{p})
$$

- We need to represent S o T ("S compose T")
- and would like to use the same representation as for S and T
- Translation easy

$$
\begin{array}{r}
T(\mathbf{p})=\mathbf{p}+\mathbf{u}_{T} ; S(\mathbf{p})=\mathbf{p}+\mathbf{u}_{S} \\
(S \circ T)(\mathbf{p})=\mathbf{p}+\left(\mathbf{u}_{T}+\mathbf{u}_{S}\right)
\end{array}
$$

- Translation by \mathbf{u}_{T} then by \mathbf{u}_{S} is translation by $\mathbf{u}_{T}+\mathbf{u}_{S}$ - commutative!

Composing transformations

- Linear transformations also straightforward

$$
\begin{array}{r}
-T(\mathbf{p})=M_{T} \mathbf{p} ; S(\mathbf{p})=M_{S} \mathbf{p} \\
(S \circ T)(\mathbf{p})=M_{S} M_{T} \mathbf{p}
\end{array}
$$

- Transforming first by M_{T} then by M_{S} is the same as transforming by $M_{S} M_{T}$
- only sometimes commutative
- e.g. rotations \& uniform scales
- e.g. non-uniform scales w/o rotation
- Note $M_{S} M_{T}$, or S o T, is T first, then S

Combining linear with translation

- Need to use both in single framework
- Can represent arbitrary seq. as

$$
T(\mathbf{p})=M \mathbf{p}+\mathbf{u}
$$

$$
-\quad T(\mathbf{p})=M_{T} \mathbf{p}+\mathbf{u}_{T}
$$

$$
-\quad S(\mathbf{p})=M_{S} \mathbf{p}+\mathbf{u}_{S}
$$

$$
-\quad(S \circ T)(\mathbf{p})=M_{S}\left(M_{T} \mathbf{p}+\mathbf{u}_{T}\right)+\mathbf{u}_{S}
$$

$$
=\left(M_{S} M_{T}\right) \mathbf{p}+\left(M_{S} \mathbf{u}_{T}+\mathbf{u}_{S}\right)
$$

$$
\text { - e. g. } \quad S(T(0))=S\left(\mathbf{u}_{T}\right)
$$

- Transforming by M_{T} and \mathbf{u}_{T}, then by M_{S} and \mathbf{u}_{S}, is the same as transforming by $M_{S} M_{T}$ and $\mathbf{u}_{S}+M_{S} \mathbf{u}_{T}$
- This will work but is a little awkward

Homogeneous coordinates

- A trick for representing the foregoing more elegantly
- Extra component w for vectors, extra row/column for matrices
- for affine, can always keep $w=1$
- Represent linear transformations with dummy extra row and column

$$
\left[\begin{array}{lll}
a & b & 0 \\
c & d & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
a x+b y \\
c x+d y \\
1
\end{array}\right]
$$

Homogeneous coordinates

- Represent translation using the extra column

$$
\left[\begin{array}{lll}
1 & 0 & t \\
0 & 1 & s \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+t \\
y+s \\
1
\end{array}\right]
$$

Homogeneous coordinates

- Composition just works, by 3×3 matrix multiplication

$$
\begin{aligned}
& {\left[\begin{array}{cc}
M_{S} & \mathbf{u}_{S} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
M_{T} & \mathbf{u}_{T} \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathbf{p} \\
1
\end{array}\right]} \\
& \quad=\left[\begin{array}{c}
\left(M_{S} M_{T}\right) \mathbf{p}+\left(M_{S} \mathbf{u}_{T}+\mathbf{u}_{S}\right) \\
1
\end{array}\right]
\end{aligned}
$$

- This is exactiy me same as carrying around ivi ano u
- but cleaner
- and generalizes in useful ways as we'll see later

Affine transformations

- The set of transformations we have been looking at is known as the "affine" transformations
- straight lines preserved; parallel lines preserved
- ratios of lengths along lines preserved (midpoints preserved)

Affine transformation gallery

- Translation

$$
\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{ccc}
1 & 0 & 2.15 \\
0 & 1 & 0.85 \\
0 & 0 & 1
\end{array}\right]
$$

Affine transformation gallery

- Uniform scale

$$
\left[\begin{array}{lll}
s & 0 & 0 \\
0 & s & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{ccc}
1.5 & 0 & 0 \\
0 & 1.5 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Affine transformation gallery

- Nonuniform scale

$$
\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{ccc}
1.5 & 0 & 0 \\
0 & 0.8 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Affine transformation gallery

- Rotation

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta \\
0 & 0
\end{array}\right.
$$

$$
\left.\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

0.866
0.5
0
-0.5
$\left.\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$

Affine transformation gallery

- Reflection
- can consider it a special case of nonuniform scale

$$
\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Affine transformation gallery

- Shear

$$
\left[\begin{array}{lll}
1 & a & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{ccc}
1 & 0.5 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

General affine transformations

- The previous slides showed "canonical" examples of the types of affine transformations
- Generally, transformations contain elements of multiple types
- often define them as products of canonical transforms
- sometimes work with their properties more directly

Composite affine transformations

- In general not commutative: order matters!

rotate, then translate

translate, then rotate

Composite affine transformations

- Another example

scale, then rotate

rotate, then scale

Rigid motions

- A transform made up of only translation and rotation is a rigid motion or a rigid body transformation
- The linear part is an orthonormal matrix

$$
R=\left[\begin{array}{cc}
Q & \mathbf{u} \\
0 & 1
\end{array}\right]
$$

- Inverse of orthonormal matrix is transpose
- so inverse of rigid motion is easy:

$$
R^{-1} R=\left[\begin{array}{cc}
Q^{T} & -Q^{T} \mathbf{u} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
Q & \mathbf{u} \\
0 & 1
\end{array}\right]
$$

Composing to change axes

- Want to rotate about a particular point
- could work out formulas directly...
- Know how to rotate about the origin
- so translate that point to the origin

$$
M=T^{-1} R T
$$

Composing to change axes

- Want to scale along a particular axis and point - Know how to scale along the y axis at the origin
- so translate to the origin and rotate to align axes

$$
M=T^{-1} R^{-1} S R T
$$

Transforming points and vectors

- Recall distinction points vs. vectors
- vectors are just offsets (differences between points)
- points have a location
- represented by vector offset from a fixed origin
- Points and vectors transform differently
- points respond to translation; vectors do not

$$
\begin{aligned}
& \mathbf{v}=\mathbf{p}-\mathbf{q} \\
& T(\mathbf{x})=M \mathbf{x}+\mathbf{t} \\
& T(\mathbf{p}-\mathbf{q})=M \mathbf{p}+\mathbf{t}-(M \mathbf{q}+\mathbf{t}) \\
& \quad=M(\mathbf{p}-\mathbf{q})+(\mathbf{t}-\mathbf{t})=M \mathbf{v}
\end{aligned}
$$

Transforming points and vectors

- Homogeneous coords. let us exclude translation
- just put 0 rather than I in the last place

$$
\left[\begin{array}{ll}
M & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]\left[\begin{array}{l}
\mathbf{p} \\
1
\end{array}\right]=\left[\begin{array}{c}
M \mathbf{p}+\mathbf{t} \\
1
\end{array}\right] \quad\left[\begin{array}{cc}
M & \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]\left[\begin{array}{l}
\mathbf{v} \\
0
\end{array}\right]=\left[\begin{array}{c}
M \mathbf{v} \\
0
\end{array}\right]
$$

- and note that subtracting two points cancels the extra coordinate, resulting in a vector!
- Preview: projective transformations
- what's really going on with this last coordinate?
- think of R^{2} embedded in R^{3} : all affine xfs. preserve $z=I$ plane
- could have other transforms; project back to $z=1$

More math background

- Coordinate systems
- Expressing vectors with respect to bases
- Linear transformations as changes of basis

Affine change of coordinates

- Six degrees of freedom

$$
\left[\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
0 & 0 & 1
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{ccc}
\mathbf{u} & \mathbf{v} & \mathbf{p} \\
0 & 0 & 1
\end{array}\right]
$$

Affine change of coordinates

- Coordinate frame: point plus basis
- Interpretation: transformation changes representation of point from one basis to another
- "Frame to canonical" matrix has frame in columns
- takes points represented in frame
- represents them in canonical basis

$$
\left[\begin{array}{ccc}
\mathbf{u} & \mathbf{v} & \mathbf{p} \\
0 & 0 & 1
\end{array}\right]
$$

- e.g. [0 0], [l 0], [0 I]
- Seems backward but bears thinking about

Affine change of coordinates

- A new way to "read off" the matrix
- e.g. shear from earlier
- can look at picture, see effect on basis vectors, write down matrix
$\left[\begin{array}{ccc}1 & 0.5 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
- Also an easy way to construct transforms
- e. g. scale by 2 across direction (1,2)

Affine change of coordinates

- When we move an object to the origin to apply a transformation, we are really changing coordinates
- the transformation is easy to express in object's frame
- so define it there and transform it

$$
T_{e}=F T_{F} F^{-1}
$$

$-T_{e}$ is the transformation expressed wrt. $\left\{e_{1}, e_{2}\right\}$
$-T_{F}$ is the transformation expressed in natural frame

- F is the frame-to-canonical matrix [$u \vee p$]
- This is a similarity transformation

Coordinate frame summary

- Frame = point plus basis
- Frame matrix (frame-to-canonical) is

$$
F=\left[\begin{array}{ccc}
\mathbf{u} & \mathbf{v} & \mathbf{p} \\
0 & 0 & 1
\end{array}\right]
$$

- Move points to and from frame by multiplying with F

$$
p_{e}=F p_{F} \quad p_{F}=F^{-1} p_{e}
$$

- Move transformations using similarity transforms

$$
T_{e}=F T_{F} F^{-1} \quad T_{F}=F^{-1} T_{e} F
$$

