3.1 Overlap Populations and Density of States etc.

Resonance Integral and Coulomb Parameter Revisited

Expectation value — mean or average quantity associated with some operator for a
system described by a normalized wavefunction

E,, =[io* Hydt =(y|H|yp)

For some system < c;ig; + c2i02 + ... | HY | cropr + campz + ... >

expanding this equation gives 2 kinds of integrals:

1) cuicui <@y | HY | o> = Hy=a Coulomb parameter

numerically equivalent to VOIP!!

2) cucu<ou HY|p,> = H,=p Resonance integral

NOTE: using Extended Hiickel MO model, the Wolfsberg-Helmholtz formula estimates
B="KS, (0, + a)

where K =1.75-2.00
and S, is the overlap integral

Valence Orbital Ionization Potentials (VOIPs): VOIPs are weighted potentials!

Recall: There are 15 microstates for 2 electrons in 3 degenerate orbitals
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Overlap Intergral Sy

* Consider the plot of a wavefunction y, for an electron in a 1s orbital, as a function of
distance from the nucleus (i.e., the radial part of the wavefunction):
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FIGURE 1.1. Radial part of the wavefunction for a 1s (a) and 2p (b) orbitals showing an arbi-
trary cutoff beyond which R(7) is less than some small value. The surface in three dimensions
defined by this radial cutoff is shown in (c) for the 1s orbital and in (d) for the 2p orbital.

Source: “Orbital Interactions in Chemistry” Albright, Burdett, Whangbo, Wiley-
Interscience, NY, 1985.

* Now consider the overlap of two such wavefunctions y, and y,: S, = <y,

= IXu*Xv dt
xl’
XF XV
1.6 Do g
XF, Xy XF, Xy 'Xp, Xy
1.8 1.9 .10

written as in 1.8. According to the sign convention of 1.1, the overlap integrals in
1.9 and 1.10 are given by equations 1.15 and 1.16, respectively. This simply shows

(Xul—Xv>=(" 1) (Xu|Xv>=_Suu (1.15)
(_XuI_Xu)=(_l)2 <XMIXV>=Suv (1.16)
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¢ Chemists talk in terms of classes of overlap: o, «, 9, ...

* Consider the o- bonding between two s-orbitals. Compare to the o- bonding between
an s- and a p- orbital:
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Angular Dependence of S;;

* In general, the overlap integral between any two orbitals can be defined as the sum of
three components ...
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FIGURE 1.4. Angular dependence of the overlap integral for some commonly encountered
pairs of atomic orbitals. -3



Orbital Overlap Populations - MOOPs and COOPs

* For a polyatomic molecule with ORTHONORMAL molecular orbitals y; derived
from atomic orbitals ¢, :

wi = zci‘u u

u

¢ If the orbital contains #; electrons (n; =0, 1, 2) :

L. P, = Enicfu

1

gives the net electron population
of an atomic orbital ¢,.

2. PW = E2n[.cwchW

gives the overlap population between two
atomic orbitals ¢, and ¢, located on two atoms A
and B in the molecule.

— 1
3. q,u - Ru,u + 2 Ruv
v(=u)

gives the gross electron population of ¢,

e Qverlap populations are a useful device to describe total electronic interactions
between a given pair of atoms:

For example: Molecular Orbital Overlap Population (MOOP) for benzene
6

1
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therefore 1/3 S, per orbital of the e, set
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likewise Py =-1/38, and Puog=-2/3S;

**HOMEWORK: Prove this to yourself! **

Benzene:
- MOOP
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Crystal Orbital Overlap Potential

* The COQP is intended to show more clearly the bonding character of the
orbitals at different energy levels.
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Figure 2.3 Basic properties of the electronic structure of the 7 orbitals of the infinite one-dimensional
chain (-CH-),. Shown in (a) is the dispersion of the band, the variation in the energy with k. (b) The
density of states, p(E). (c) The crystal orbital overlap population (COOP) curve for this density of states.
(b) and (c) should be compared with that for benzene in Figure 1.8.
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Orbital Overlap Populations Revisited

* Consider a 2-orbital problem:

.
.

Y,
Vo = Ciapi + Cjap)

¢ ——-°

Yy -’

* [fthere are N electrons in y, , we can write the charge distribution as:

N¢a2 = NCia2¢i2 + cha2¢j2 + 2NCiaCja¢i¢j
e

recall <¢l. ‘¢j> =S,

e [f the atomic and molecular orbitals are normalized:

Then: <Wilwa> =1
<gilgi> =1
<@ile>=1

Therefore, if we integrate the above charge distributions equation over all space:

N=Nc,’ +cha2 +2Nc,c.. S,
_ﬁ/—_/

ia ia~ ja™~'ij
—_ —
charge charge ~ MULLIKEN
on ¢; on ¢, OVERIAP
POPULATION'!
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Normalization

(g1 (9/]#)-1

PO R

Since f(cza i ]a ¢j + 2czac]a ¢z¢] )dT = 1
——
Sy=(4]#))

THEN Ciio ¥ Cio T 2¢CacaS; = 1
In a bonding orbital Si; >0

and C,‘az + Cjaz =1-2 Cia Cja Sl] <1
In an antibonding orbital S <0

and C,‘az + Cjaz =1-2 Cia Cja Sl] > 1
Conclusion:

In EHMO theory, it is possible to have orbital coefficients greater than unity!

These will appear in higher lying (empty) antibonding combinations.
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