3.1 Overlap Populations and Density of States etc.

Resonance Integral and Coulomb Parameter Revisited

Expectation value \rightarrow mean or average quantity associated with some operator for a system described by a normalized wavefunction

$$
E_{\text {avg. }}=\int \psi^{*} \hat{H} \psi d \tau=\langle\psi| \hat{H}|\psi\rangle
$$

For some system $<c_{1 i} \varphi_{1}+c_{2 i} \varphi_{2}+\ldots\left|H_{i}^{\text {eff }}\right| c_{1 i} \varphi_{1}+c_{2 i} \varphi_{2}+\ldots>$
expanding this equation gives 2 kinds of integrals:

1) $c_{\mu i} c_{\mu i}<\varphi_{\mu}\left|H_{i}^{\text {eff }}\right| \varphi_{\mu}>=H_{\mu \mu}=\boldsymbol{\alpha}$
2) $c_{\mu i} c_{v i}<\varphi_{\mu}\left|H_{i}^{e f f}\right| \varphi_{v}>=H_{\mu \nu}=\boldsymbol{\beta}$

Coulomb parameter

numerically equivalent to VOIP!!

NOTE: using Extended Hückel MO model, the Wolfsberg-Helmholtz formula estimates

$$
\begin{aligned}
\beta=1 / 2 K S_{\mu \nu}\left(\alpha_{\mu}+\alpha_{v}\right) & \\
& \text { where } K=1.75-2.00 \\
& \text { and } \boldsymbol{S}_{\mu \nu} \text { is the overlap integral }
\end{aligned}
$$

Valence Orbital Ionization Potentials (VOIPs): VOIPs are weighted potentials!
Recall: There are 15 microstates for 2 electrons in 3 degenerate orbitals

The weighted average of these gives 0.60 eV above the energy of the lowest microstate.

This is the AVERAGE ground state energy or VOIP. Section 3.1-1

Overlap Intergral $\quad S_{i j}$

- Consider the plot of a wavefunction χ, for an electron in a 1 s orbital, as a function of distance from the nucleus (i.e., the radial part of the wavefunction):

FIGURE 1.1. Radial part of the wavefunction for a $1 s($ a) and $2 p$ (b) orbitals showing an arbitrary cutoff beyond which $R(r)$ is less than some small value. The surface in three dimensions defined by this radial cutoff is shown in (c) for the $1 s$ orbital and in (d) for the $2 p$ orbital.

Source: "Orbital Interactions in Chemistry" Albright, Burdett, Whangbo, WileyInterscience, NY, 1985.

- Now consider the overlap of two such wavefunctions χ_{μ} and $\chi_{v}: S_{\mu \nu}=<\chi_{\mu} \mid \chi_{\nu}>$

$$
=\int_{\chi_{\mu}}^{*} \chi_{\nu} \mathrm{d} \tau
$$

written as in 1.8. According to the sign convention of 1.1, the overlap integrals in 1.9 and $\mathbf{1 . 1 0}$ are given by equations 1.15 and 1.16 , respectively. This simply shows

$$
\begin{align*}
\left\langle\chi_{\mu} \mid-\chi_{\nu}\right\rangle & =(-1)\left\langle\chi_{\mu} \mid \chi_{\nu}\right\rangle=-S_{\mu \nu} \tag{1.15}\\
\left\langle-\chi_{\mu} \mid-\chi_{\nu}\right\rangle & =(-1)^{2}\left\langle\chi_{\mu} \mid \chi_{\nu}\right\rangle=S_{\mu \nu} \tag{1.16}
\end{align*}
$$

- Chemists talk in terms of classes of overlap: $\sigma, \pi, \delta, \ldots$
- Consider the σ - bonding between two s-orbitals. Compare to the σ - bonding between an s- and a p- orbital:

I. II

1.12

Angular Dependence of $S_{i j}$

- In general, the overlap integral between any two orbitals can be defined as the sum of three components ...

$$
S_{\mathrm{AB}}=S_{\sigma} \mathrm{F}_{(\sigma, \theta, \varphi)}+S_{\pi} \mathrm{F}_{(\pi, \theta, \varphi)}+S_{\delta} \mathrm{F}_{(\delta, \theta, \varphi)}
$$

FIGURE 1.4. Angular dependence of the overlap integral for some commonly encountered pairs of atomic orbitals.

Orbital Overlap Populations - MOOPs and COOPs

- For a polyatomic molecule with ORTHONORMAL molecular orbitals ψ_{i} derived from atomic orbitals φ_{μ} :

$$
\psi_{i}=\sum_{\mu} c_{i \mu} \phi_{\mu}
$$

- If the orbital contains n_{i} electrons $\left(n_{i}=0,1,2\right)$:

1. $\quad P_{\mu \mu}=\sum_{i} n_{i} c_{i \mu}^{2}$
gives the net electron population of an atomic orbital φ_{μ}.
2. $\quad P_{\mu \nu}=\sum_{i} 2 n_{i} c_{i \mu} c_{i \nu} S_{\mu \nu}$
gives the overlap population between two atomic orbitals φ_{μ} and φ_{ν} located on two atoms A and B in the molecule.
3. $q_{\mu}=P_{\mu \mu}+\frac{1}{2} \sum_{v(\neq \mu)} P_{\mu v}$
gives the gross electron population of φ_{μ}

- Overlap populations are a useful device to describe total electronic interactions between a given pair of atoms:

For example: Molecular Orbital Overlap Population (MOOP) for benzene

$$
\begin{aligned}
& \psi_{\left(a_{2 u}\right)}=\frac{1}{\sqrt{6}}\left(\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}+\phi_{5}+\phi_{6}\right) \\
& P_{12\left(a_{2 u}\right)}=(2)(2)\left(\frac{1}{\sqrt{6}}\right)\left(\frac{1}{\sqrt{6}}\right) S_{\pi}=\frac{2}{3} S_{\pi}
\end{aligned}
$$

$$
\begin{aligned}
& \psi_{\left(e_{18}\right)}=\frac{1}{\sqrt{12}}\left(2 \varphi_{1}+\varphi_{2}-\varphi_{3}-2 \varphi_{4}-\varphi_{5}+\varphi_{6}\right) \\
& P_{16\left(e_{1 g}\right)}=0+(2)(2)\left(\frac{2}{\sqrt{12}}\right)\left(\frac{1}{\sqrt{12}}\right) S_{\pi}=\frac{2}{3} S_{\pi}
\end{aligned}
$$

therefore $1 / 3 S_{\pi}$ per orbital of the $e_{1 g}$ set
likewise $\quad P_{(e 2 u)}=-1 / 3 S_{\pi}$ and $P_{(b 2 g)}=-2 / 3 S_{\pi}$
**HOMEWORK: Prove this to yourself! **

Benzene:

Crystal Orbital Overlap Potential

- The COOP is intended to show more clearly the bonding character of the orbitals at different energy levels.

Figure 2.3 Basic properties of the electronic structure of the π orbitals of the infinite one-dimensional chain $(-\mathrm{CH}-)_{n}$. Shown in (a) is the dispersion of the band, the variation in the energy with k. (b) The density of states, $\rho(E)$. (c) The crystal orbital overlap population (COOP) curve for this density of states. (b) and (c) should be compared with that for benzene in Figure 1.8.

Orbital Overlap Populations Revisited

- Consider a 2-orbital problem:

$$
\Psi_{a}=c_{i a} \varphi_{i}+c_{j a} \varphi_{j}
$$

- If there are N electrons in ψ_{a}, we can write the charge distribution as:

$$
\begin{array}{r}
N \psi_{a}^{2}=N c_{i a}^{2} \phi_{i}^{2}+N c_{j a}{ }^{2} \phi_{j}^{2}+2 N c_{i a} c_{j a} \underbrace{\phi_{i} \phi_{j}}_{\downarrow} \\
\operatorname{recall}\left\langle\phi_{i} \mid \phi_{j}\right\rangle=S_{i j}
\end{array}
$$

- If the atomic and molecular orbitals are normalized:

$$
\text { Then: } \begin{aligned}
& <\psi_{a} \mid \psi_{a}>=1 \\
& <\varphi_{i} \mid \varphi_{i}>=1 \\
& <\varphi_{j} \mid \varphi_{j}>=1
\end{aligned}
$$

Therefore, if we integrate the above charge distributions equation over all space:

$$
N=\underbrace{N c_{i a}{ }^{2}}_{\substack{\text { charge } \\
\text { on } \phi_{i}}}+\underbrace{N c_{j a}{ }^{2}}_{\substack{\text { charge } \\
\text { on } \phi_{j}}}+\underbrace{2 N c_{i a} c_{j a} S_{i j}}_{\begin{array}{c}
\text { MULLIKEN } \\
\text { OVERLAP } \\
\text { POPULATION! }
\end{array}}
$$

Normalization

Since $\quad\left\langle\psi_{a} \mid \psi_{a}\right\rangle=\int(c_{i a}{ }^{2}{\stackrel{\phi}{\phi_{i}}}_{\left\langle\phi_{i} \mid \phi_{i}\right\rangle=1}^{i}+c_{j a}{ }^{2} \overbrace{\phi_{j}{ }^{2}}^{\left\langle\phi_{j} \mid \phi_{j}\right\rangle=1}+2 c_{i a} c_{j a} \underbrace{\phi_{i} \phi_{j}}_{S_{i j}=\left\langle\phi_{i} \mid \phi_{j}\right\rangle}) d \tau=1$

THEN

$$
c_{i a}^{2}+c_{j a}^{2}+2 c_{i a} c_{j a} S_{i j}=1
$$

In a bonding orbital $\quad S_{i j}>0$

$$
\text { and } c_{i a}^{2}+c_{j a}^{2}=1-2 c_{i a} c_{j a} S_{i j}<1
$$

In an antibonding orbital $\quad S_{i j}<0$

$$
\text { and } c_{i a}^{2}+c_{j a}^{2}=1-2 c_{i a} c_{j a} S_{i j}>1
$$

Conclusion:
In EHMO theory, it is possible to have orbital coefficients greater than unity!
These will appear in higher lying (empty) antibonding combinations.

