
3 1176 00130 9773

NASA Contractor Report 159oo8

NASA-CR- 159008

fq7 q Go l OLtq _

INTEGRATEDTESTINGAND VERIFICATIONSYSTEM

FORRESEARCHFLIGHT SOFTWARE- DESIGNDOCUMENT

Richard N. Taylor

BOEINGCOMPUTERSERVICESCOMPANY
Space and Military Applications Division
Seattle, Washington 98124

NASAContract NASI-i5253

February1979 [I_]{ ! _._?!/

rzj _ ! _Orq

LANGLEY RESEARCHCENTER
"' LIBRARY, NASA

HAM_[O£CLY'_tRGI_It_

NationalAeronautics and
Space Administration

LangleyResearchCenter
Hampton,Virginia23665





INTEGRATED TESTING AND VERIFICATION SYSTEM

FOR RESEARCH FLIGHT SOFTWARE

Design Document

By Richard N. Taylor

Prepared Under Contract NAS1-15253

Boeing Computer Services Company
Space and Military Applications Division

Seattl% Washington 98124

For

. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION



CONTENTS

page

1.0 SUMMARY AND INTRODUCTION 1

l. 1 Summary I

1.2 Document Organization 2

1.3 Introduction 2 .

2.0 SYNOPSIS OF DESIGN ACTIVITIES ..... - 7 " :

3.0 DESIGN FEATURES 11

3.1 Tool Integration and Modularity 11

3.2 System Database 13

3.3 HALMAT 14

3.3, 1 Relating Verification Error Messages to

the Source Text 14

3.3.2 HALMAT Monitor File 15

3.4 Static Analysis 17

3.4.1 Unit/Scale Specifications and Algorithms 17

3.4.2 Static Data Flow Analysis 26

3.5 Symbolic Execution 39

3.6 Dynamic Analysis 42

3.6.1 Assertion Facility 42

3.6.2 Assertion Language 48

3.6.3 Statistics Gathering Language 53

ii



CONTENTS (Continued)

3.7 Documentation 60

3.g Error Class/Detection Technique Chart 61

4.0 VERIFICATION TO REQUIREMENTS DOCUMENT 63

4.1 Verification 63

4.2 Discussion of Investigations .... 65

4.2.1 ISIS 65

4.2.2 FSIM 66

4.2.3 HALSTAT 66

4.2.4 FAST 66

4.2.5 HAL/S Problem Features 67

0.2.6 RNF 69

4.2.7 Interpretive Computer Simulation 69

5.0 CONCLUSION 71

5.1 Listing of Programs and Implementation
Recommendations 71

Appendix A: Introduction to the SAMM Methodology A-I

Appendix B: System Database B=I

Appendix C: References C=I

Appendix D: SAMM Diagrams D-I
m

Appendix E: Integrated Testing and Verification System

for Research Flight Software E=I

o**
111



LIST OF FIGURES

Figure 1.2-I Phased Approach to Software Development 2

Figure 1.2-2 Lifecycle Verification 3

Figure 1.2-3 System Overview - Management of the

Software Lifecycle and Data Flows #

Figure 1.2-t_ Source Code Verification and Testing t_a

Figure 1.2-5 Module Verification Options 6

Figure 2.1 Basis for Integrated Verification Methodology g

Figure 3.4.2-1 A HAL/S Program Fragment 32

Figure 3.4.2-2 The paf for the Fragment In Figure 3.t_.2-1

Without the Starred Statement 33

Figure 3.4.2-3 The pal for the Fragment in Figure 3.4.2-1 33

Figure 3.4.2-4 The pal for the Program with "Suspect"

Synchronization 37

Figure A-I SAMM Activity Cell with all Possible

Inputs and Outputs A-2

Figure A-2 Sample SAMM Diagram A-3

LIST OF TABLES

Table 1 Error Class/Detection Technique Chart 62.1

iv



SECTION1.0

Summary and Introduction

• l.l Summary. NASA Langley Research Center is developing the MUST

(Multipurpose User-oriented Software Technology)program to cut the cost of

producing research flight software through a system of software support tools.

• Boeing Computer Services Company (BCS) has designed an integrated verification

and testing capability as part of MUST. Documentation, verification and test

. options are provided with special attention on real-time, multiprocessing issues.

The needs of the entire software production cycle have been considered, with

• " 'effective management and reduced lifecycle costs as'foremost goals. , :..' : .: .

Previous verification systems generally have utilized a single technique,

such as static or dynamic analysis. However, thorough examination of any one

program requires the use of several techniques. Besides providing a

comprehensive set of analytical techniques, the integrated capability BCS has

designed takes advantage of the complementary abilities of the different schemes

in a synergistic manner. A "one-tool-does-it-all" concept has not emerged

though. The need for a distributed set of tools became clear as the various usage

modes present in the MUST environment were modeled. No single sequence of

testing and analysis activities is optimally suited to all MUST requirements.

Rather, for detecting specific classes of errors under specific operating

constraints, a specific combination of analysis techniques is chosen.

The concern with multiprocessing issues is motivated by the increasing

sophistication of flight hardware and software, which present difficulties such as

protecting shared data. New research was conducted into the problem of

. statically detecting such errors with encouraging results. Consequently,

capabilities have been included in the design for static detection of data flow

anomalies involving communicating concurrent processes. Some types of ill-

formed process synchronization and deadlock also are detected statically.

r



Although the HAL/S language is the primary subject of this design_ the

algorithms developed are readily applicable to other languages. Full

implementation of the designed capabilities will provide the MUST user with

extremely powerful program development tools. Such programming environments

offer a very desirable and profitable alternative to the way software is typically

produced.

1.2 Document Orl_anization. - The bulk of the design is represented by -

SAMM diagrams, attached as Appendix D of this document. In discussion of this

design a synopsis of the design activities is presented in Section 2, followed by a

discussion of key features in Section 3, where a rationale for the design decisions

is also presented. Section 4 indicates how the design satisfies_the relevant items -.- .<_:.

in the requirements document, and explores some items marked in the

requirements document as requiring further examination. Concluding remarks are

presented in Section 5.

Appendix A provides an introduction to the SAMM methodology, showing

how the diagrams are interpreted. Appendix B contains a presentation of the data

base envisioned as associated with the software development environment

provided by MUST. Appendix C contains the references.

1.3 Introduction. - Considered from the user's viewpoint the development of

software may be conviently decomposed into several phases, as indicated in

Figure 1.2-1. The end user determines his needs¿ those needs are translated into a

more formal specification and are analyzed. Preliminary design work produces

the basis of a solution to the problem. The solution is further refined at the

detailed design level. Lastly_ actual code is produced to implement the solution.

Figure 1.2-1 Phased Approach to Software Development

2

• IF



Notice that "testing" has not been included as a separate phase in this

overview of the software l!fecycle. Rather, it must be stressed that testing and

verification are pervasive activities taking place throughout the development

cycle. Such activities are indicated by the diagram of Figure 1.2-2. Each phase

must be verified for internal consistency, as well as checked to ensure that it, as

a refinement, successfully captures and develops the intent of its predecessor.

The process of verifying any given level back to the user requirements is termed

" validation. Thus verification is not something which is "done" after a piece of

code is written; on the contrary_ all the tasks associated with the creation and

maintenance of software are interwoven with various verification activities.

CON51STENCY CONSI STENC.Y_ CONSI STENCY" CONSI STENCY

I IPR .,M,q41 I I

REQU IRE,"IENTS PRELII'_INARY INCREMENTALLY CODE
VERIFICATION DESIGN DETAILED DESIGN

VERIFICATION VERIFICATION VERIFICATION

Figure 1.2-2 Lifecycle Verification

Figure 1.2'3 presents this view of the program development cycle in the

specific context o£ the MUST system. It is this overview which provides the

framework for the design of the individual verification and testing tools. Note

that management activities to control and guide the development o£ the software

are highlighted, with management providing direction at each phase. The basis

for effective management is total visibility into the developing system, and is

obtained through use of the system database, where each phase in the cycle uses

and contributes information to it. This database is the repository for all

information related to a software system. Note the correspondence between

Figure 1.2-3 andthe root of the SAMM model titled "System Development."





Figure 1.2-3 System Overview- Management of the

Software Lifecycle and Data Flows

As the primary purpose of this contract is to design tools which specifically

address the verification of HAL/S code, consider Figure 1.2-4. This figure

illustrates many of the activities which are associated with verifying a module of

. source code. Internal verification, to be expanded upon shortly, is performed

first, detecting as many errors as possible. Next, the intermediate representation

of the program is targeted to the specific computer (or simulator) on which

execution is to take place. Test data is created to validate that the acceptance

criteria are met, then the program is executed. After execution, output values

are examined as well as several aspects of the program's performance. Analysis

may reveal the need for additional testing.i If so, additional data is generated and

the cycle repeats. (Figure 1.2'4 is related to SAMM node CC.)

4



HAU'iAT

VERIFY

I NTERNALLY

ACCEPTANCE

CRITERIA TARGET

HALMAT

GENERATE EXECUTE CORRECTIONS

TEST DATA

ADDITIONAL / VALI!ATE.

TESTING ANALYZE OUTPUT:
REQUIREHENT_ BEHAVIOR:

TEST COVERAGE, DATA VALUES

- _ REAL TIME ASSERTIONS

PERFORI,IANCE,

EXECUTION TIME

Figure 1.2=# Source Code Verification and Testing

•Ca



Several options are available to the user concerning the type and amount of

internal verification to be performed. Chapter 2 elaborates on the rationale

behind providing a variety of ways in which the verification and testing tools can

be combined. For the moment however, Figure 1.2-5 (a combination of SAMM

nodes CBC and CBCC) presents an overview of the facilities available to the user.

(As alluded to earlier, the verification tools operate on an intermediate represen-

tation of HAL/S, produced by the compiler, known as HALMAT.)

Several tools may be implemented to provide the facilities noted by each

box. Briefly we note that box A is not the full HAL/S compiler, but only the front

half which checks the syntax_ parses the Program _ and generates : the:-

HALMAT. BOX B processes program assertions.(statements made to indicate the

intent and nature of the program) having program-wide significance.

/*ASSERT GLOBAL X =0 */; would be an assertion in this category. Box B

would insert the necessary monitors to check that this requirement will be met

throughout the program. If at any time it is violated, an informative message will

be produced. Non-data flow static analysis may involve the use of several tools to

perform its tasks_ such as creation of helpful cross reference maps, checking for

mismatches of units among program variables (such as adding feet to meters), and

ensuring shared procedures are reentrant. Data flow analysis checks for errors

including uninitialized variables and ill-coordinated procedures. Symbolic

execution determines the functional effect of a specified program path. Lastly, if

any program instrumentation is called for, it is inserted in the HALXIAT at box F.

Such instrumentation is the executable code required to perform verification

tasks during program execution.

The following sections explain the design more fully, and indicate the

. hierarchical structure of the facilities.

5



SOURCECODE

COMPLIER [
- A .,

ICREAToE_CALL_ DATA L_ { DATA FLOW I I-- [

,L','=,,r'.-;:.. _- ! _ I STATIC I _! _sy_t.IBOLIC

I'_"X_S_-_R_%__NALYSIS I I EXECUTION
/ HA/I/._ l C[ I [ D[ [ E
I REGIOt'AL I _ I ./'I -

EXECUTION OPTIONS

Figure 1.2-5 Module Verificatian Options

6



SECTION 2.0

Synopsis of Design Activities

As explained more fully in Appendix A,.BCS hasdeveloped the Systematic

Activity Modeling Methodology (SAMM) to aid in requirements analysis and the

formalization of preliminary design. This formalism was chosen as the vehicle for

expressing the preliminary design of the MUST verification and testing capability.

In so doing hierarchical relationships among activities are clarified, data flows

and dependencies are indicated, and critical functions are identified.

• A SAMM model presents a hierarchical breakdown of an activity.. Initial .,

difficulty in using SAMM in the design of the verification and:. testing capability ._

was laid to inadequate consideration of the actual user modes which would be

present in the MUST environment. Once specific user tasks were identified

preliminary design proceeded smoothly. An outfall of this was a deepening of our

conception of how verification and testing tools should be integrated. Reference

I [Osterweil, 1977] presents a scheme in which the techniques of static analysis,

symbolic execution, and dynamic analysis may be combined so as to provide a

single, comprehensive analysis tool.

Figure 2.1 presents the basis for the integration methodology proposed by

the paper. Static analysis begins by detecting several classes of errors.

Unfortunately some "errors" may be reported which in fact do not exist, since the

"error" lies on a path which is not executable. In addition, the static analyzer

may note statements at which an error might occur. This information can be

passed along to the symbolic executor for further analysis. Symbolic execution

may be able to determine whether or not a particular path is executable, and

indeed may show that a suspicious construct is definitely erroneous. In addition,

the symbolic executor could generate test data which would force program

execution down the erroneous (or any other requested) path. Thus a link exists to

the next phase: dynamic analysis. Using the generated test data, the program

may be executed. While execution is proceeding, information can be gathered

7



indicating the steps taken in the progression to the error, as well as reporting

conditions prevelant at the time of error.

To summarize the paper, the three techniques complement each other and

may be used in tandem. The generality and usability of the techniques vary

widely however, as does their execution cost. It was consideration of these

differences and the usage modes present in the MUST environment that led to our

revised concept of how the tools should be integrated.

½ I I E ISOURCE, _TATIC 8YtiBOLI.C_ " " DYNAMIC
TEXT ANALYSIS _ EXECUTION TESTING

• -.....

Figure 2.1 Basis for Integrated Verification Methodology

It now appears that when specific tasks in the creation and maintenance of a

program are identified, different analysis modes are required. Each mode is

subject to dfferent constraints: goal, thoroughness required, available budget and

time, degree of human interaction, and so forth. The synergistic combination of

techniques is still called for and profitable, but not all the techniques will be

required _or any one analysis task. Rather, for each task an appropriate subset of

the techniques will be combined which optimally addresses the problem.

This modeling activity has shown the need for small, modular facilities

which may be combined in a variety of ways to accomplish many different tasks.

Each combination would be configured to meet the constraints of differing goals

and environmental (resource) requirements. Some of the modular facilities which

have emerged are as follows: a facility to process "regional" assertions, a facility

for local assertions, a tool for extracting internal documentation, one for

answering simple questions about previously written code, several simple static

analysis tools (an auditor, a units and scale checker, a cross reference map

generator, and others), a data flow analysis too!, an execution time monitoring



package, and a facility for inserting run time monitors. Each tool meets a

particular need and, in conjunction with other tools, helps satisfy a global

verification requirement.

Another dominant feature of the design is the pervasive use of a machine

readable database of program related information. This database is begun with

the requirements phase, and is updated and maintained throughout the entire

. software lifecycle. As a repository for the growing knowledge about the nature

and solution of a given problem, the data base is a natural device for smoothing

the transitions from requirements to design to coding to maintenance. It is this

database which makes possible the verification and validation of each step in the

development cycle. Such a database also provides a secure foundation upon which--.- '. :

effective program management can be based.

The program data base concept was adopted early in the preliminary design

process, and is an outgrowth of research into software lifecycle costs performed

by members of the Systems and Software Engineering Laboratory.

As verification of real time, concurrent process software is a poorly

understood aspect of error detection called for in the requirements document,

preliminary design effort was spent in basic research of the problem. It was

believed that basic principles of error detection in this area must be understood

before designing the entire verification and testing capability, to avoid any later

requirement for restructuring, and so that an estimate could be obtained

concerning the promise of analysis in this area. Significaot results were obtained

indicating the techniques and principles discovered are harmonious with the error

detection techniques employed with single process programs.

In particular, it was discovered that the program flow graph for a system

may be augmented with special edges indicating the concurrent processing

" constraints. If slightly modified data flow analysis is applied to this graph (called

a process-augmented ilowgraph or pal) data flow anomalies occurring between

parallel processes can be detected. Importantly, this analysis can be performed

concurrently with the detection of single process errors. To date_ techniques for

9



detecting the following errors have been isolated: uninitialized shared

(COMPOOL) variables, some forms of uselsss synchronization, simple deadlock

situations_ and unsafe alteration of shared data. Substantial progress in this area

is anticipated as investigation continues.

Auxiliary design activities included extensive literature surveys on various

analysis techniques and further investigation into diverse topics, such as the

University of Texas FAST system, the HAL/S compiler operation, and the FSIM

compiler capability.

10



SECTION 3.0

Key Design Features

3.1 Tool Integration and Modularity. - The dominant characteristic of

designs represented by the SAMM formalism is that they are purpose-oriented.

Each task, or node, is present simply to fulfill the requirements of a higher level

activity. No activity is present "for its own sake." The result is that all the tools

included in the design function together for the purpose of creating better,

. cheaper flight software.

The usage scenarios considered during the preliminary design were the
• , - _ - ,

following: creating a newsoftware system, managing the development of a

software system, adding a new capability to an existing system, performing

"minor maintenance," documenting an existing system_ module test_ integration

test, and the development of software by a team of programmers. Initially each

scenario was examined separately, ' then jointly as similarities, dependencies, and

interrelationships were discovered.

The examination of the various user modes envisioned has resulted in the

isolation of several basic capabilities. In various combinations the capabilities

represent the environment required for each user mode. Within a particular usage

scenario, select capabilities may be side stepped in accordance with varioUs

constraints and desires. This integration and modularity of tools is particularly

evident in the tools provided for the verification and testing of HAL/S code. For

example, the instrumentation of global assertions within a module is separate

from the instrumentation of local assertions; instrumentation of multi-module

assertions is distinct as well. Static analysis and symbolic execution may both aid

in determining the placement of monitors (adding and deleting them); non-data

flow static analysis may be chosen apart from data flow static analysis. Several

- criteria may be involved in chosing a particular combination of tools. The type of

verification desired, execution time, memory requirements, run-time overhead_

and target machine capabilities may all af[ect the selection process. The

following are a few representative combinations:

II



1. Isolation of a particular9 relatively simple, "bug": dynamic analysis

with extensive assertion usage, placing most emphasis on the single

suspect module.

2. Initial verilication of a new piece of code: static analysis--both data

flow and non-data flow.

3. Broad based verification_ with few budget and time restrictions: static

analysis_ extensive symbolic execution, and assurance of full test

coverage through dynamic analysis.

/_. isolation of a difficult functional error (e.g., the program computes a ......... :

Slightly wrong value): symbolic execution of appropriate paths_ with

dynamic analysis.

5. Verification of a collection of previously (internally) verified modules,

now joined in a parallel processing environment: multi-process data

flow analysis and static checking of integration requirements, followed

by dynamic analysis of the concurrent process characteristics (such as

process queue snapshots and monitoring for parallel processing errors).

Such a philosophy pervades the design. As automated tools are eventually

required for requirements and design specification and analysis, such construction

will be desirable and possible there as well. Indeed, the types of analysis required

for such specifications will be very similar in nature to those required for actual
code.

The most important model presented in the SAMM diagrams of Appendix D

is that of creating a new software system. By extensively decomposing it_ the

scenarios of management, testing_ and team development are included. Adding a

new capability to a system may be modeled by emphasizing a particular path

through the system creation model and making a few minor modifications.

12



The same is true for "minor maintenance." That activity implies a small change

in the design (or requirements) of a module; coding changes are made, testing and

integration is performed and the system is released. Thus in Appendix D, only two

complete hierarchies are presented: system creation and documentation. Dupli- :

cation and excessive detail are thus avoided. , : .... :

3.2 System Database. - As introduced in chapter 2, the •concept of a

" comprehensive machine readable database of program related information is

inherent to the design presented. This database forms the basis for orderly

program development and effective program management. All the information

related to a particular program is present in this database. Documents, formal

specifications_ test data, program output, source code, and management reports• T

are all included. Such inclusiveness allows the rapid determination of any needed

program related information. The centrality of the information prevents wasted

effort in consulting separate sources. More importantly, the database may be

systematically monitored during program development to ensure that all the

components are generated in a timely manner. This is essential as the progression

from one phase of the software developruent cycle to the next is dependent upon

full information being available from the previous phase.

Such considerations may be carried further with the immediate observations

that communication among development team members is increased, visibility

into the developing system is promoted, analysis may be performed and reviewed

in a systematic manner, testing activities may be scrutinized for thoroughness,

and documentation may be readily distributed and updated. Clearly management

functions are enhanced and the efficiency of the development operation is

increased.

A less obvious but critical outflow of the use of the system database is in

the maintenance function. The term "maintenance" is used to describe a variety

of activities, usually everything occurring after the initial release of a piece of

software. Typically this includes alteration of requirements, followed by design,

coding, and testing functions. The use of the system database allows such

13



activities to proceed in an orderly manner as the information contained in the

database provides a complete history of the development process. Thus the e[fect

of small changes in the requirements may be readily traced on to the design, then

to the code_ and so forth. At each stage the historical information allows the

"maintainer" to determine the impact of proposed changes. Proper development

may then proceed.

A further discussion of these concepts in a general setting is found in

reference 2 Eosterweil, Brown_ and Stucki, 1978J.

3.3 HALMAT. An intermediate representation of the HAL/S language,

called HALMAT_ is used as the primary representation of the programs analyzed

by the various tools. In so doing_ the separate tools do not have to perform any

parsing_ thus saving much time and effort. Additionally, the tools are largely

isolated from syntax changes to the language.

3.3.1 Relatin_ Verification Error Messages to the Source Text. - All error

messages which the verification facilities produce should be related to the source

code, and phrased in a manner readily understood by the user. The listing

produced by Phase I of the compiler is excellent in format and content. Since it is

a "standard'! form, as possible all messages should be related directly to this

listing. Some information can be directly added to the listing by post-processing

it and adding new fields.

This all may be done bv working directly with tile HALMAT. There exists a

one to one mapping from the HALMAT "paragraphs" to the source statements.

Even HAL/S statements which do not geqerate any executable code (such as

declarations) create a HALMAT paragraph. Each paragraph contains a field with

the originating source statement number on it. The statement numbers also

appear on the listing.

To form comprehensible error messages the symbo! table is also required.

From it (and the other tables) the symbolic variable names created by the user

may be incorporated in the messages.

14



3.3.2 HALMAT Monitor File. - The design presented contains several tools

which may request that monitors be inserted into the program under analysis. In

addition, the integration philosophy employed allows the specification of moni-

tors to be successively refined. A specialized capability may reveal that certain

dynamic monitors are unnecessary, as the conditions prevailing at that point in

the program are known a priori.

• The medium upon which the analysis tools operate is HALMAT. The

monitors need to be placed within the HALMAT, and must therefore eventually be

• HALMAT. To allow the flexibility needed as indicated above, it is therefore

recommended that two files of information be kept in parallel. One file will be

the HALMAT produced as a result of program compilation, the other will be an

evolving file of monitors. When all analysis tasks are completed and the final set

of monitors is decided upon, the two files may be merged into a single file of

HALMAT. This file is then ready for code generation and execution.

One clear advantage of this scheme is that the internal pointers in the

program's HALMAT only need to be modified once. Execution of a statement in

the program may require the value of a previously computed expression. The

HALMAT contains a pointer to the statement where the expression was computed.

If a monitor is inserted between the expression evaluation and its use, the pointer

must be appropriately altered. With the proposed scheme this alteration will only

occur once: when the HALMAT and monitor files are merged. Any implementa-

tion restrictions concerning checksums or the number of paragraphs which may be

stored in single record may be met at this time as well.

HALMAT's paragraph notion allows the mapping between the monitor file

and the program file to be particularly simple. The SMRK instruction which

- delineates the HALMAT corresponding to a single source language statement

contains the number of that statement. Thus when the compiler places ASSERT

and KEEP statements on the monitor file, it may reference them to the HALMAT

by simply including the appropriate statement number in the monitor file. Some

monitors will definitely require mapping to specific HALMAT instructions,

though. In _his case a second level of mapping will be required: first, a pointer to

15



the proper paragraph, second, a pointer (offset) to the proper HALMAT statement

within the paragraph.

The various "paragraphs" within the monitor file will evolve through several

stages. At any time the file may contain monitors in various stages of

"development." The monitor file will first emerge from the compiler (node

CBCAAB), and will contain a representation of the ASSERT and KEEP statements

encountered by the compiler. Such paragraphs will have expressions phased into

HALMAT, but will not contain the logic necessary to implement the required

monitor. Node CBCB(C) performs this development. Later_ the static analyzers

may insert monitors which are highly "developed" - checking for a very specific

error. At a later point, these monitors may be removed, or "turned off." If a

monitor is turned off_ it does not necessarliy have to be removed - a switch may

be set. Some monitors may only be developed when system level testing is begun.

In such a case they will remain unexpanded throughout module test, and will be

skipped over during the merge phase between the HALMAT and monitor files.

In summary_ the following tag fields are tentatively identified as being

associated with each monitor paragraph:

I. Pointer to SMRK instruction•

2. Offset to relevant HAL&1AT instruction

3. Active/Inactive (and what determined that)

4. Level (module, system9 et. al)

5. Monitor type (assert, keep, error monitor)

6. Development status

7. Monitor origin (which facility caused its creation)

Additional fields may be identified during later design phases. Not all fields may

be required on every monitor.

16

Ir



3._ Static Analysis.

3.4.1 Units/Scales Specifications and Al1_orithms.- The implementation of

this facility will follow the recommendations of reference 3 [Karr and Loveman,

197g] very closely. The following items need to be considered,

I) Basic principles and options available to the user

2) Specification of elementary units and scales

B) Specification of relationships among units and scales
t

4) Declarations of variables having unit/scale mode

5) Algorithms for checking/enforcing adherence to unit and scale com-

mensurateness or equality

6) Issues to be resolved

Subsequent correspondence in Communications of the ACM (October, 197g)

supports the design chosen. Previous implementations have been successful and

very helpful to a wide variety of users.

17



1• Basic Principles and Options Available to the User,

• Error detection will not inhibit code generation.

• There will be two basic operating modes, selected by a switch. In the

default mode the facility will require "corresponding" expressions to

have equal units. 11equality cannot be verified, commensurateness will
be checked.

Example:

DECLARE CONSTANT/*ELEMENTARY UNIT*/(l), feet, inches, volts9

watts_ amps;

/*UNIT_RELATIONS: Inches = 12" feet;

watt = volt*amp; */;

DECLARE /* UNIT: feet */fl, f2;

DECLARE /* UNIT: inches *1 il, i2;

DECLARE /* UNIT: volts*/v;

DECLARE /* UNIT: at-nps*/a;

DECLARE /* UNIT: watts*/w;

(1) fl = t_ feet;

(2) il = inches;

(3) f2 -- fl + il/12;

(O) f2 = fl + il/3;

(5) a = 0 amps;

(6) v = 5 volts;

(7) w = v a

(8) w = 16 v a

In statements (I), (2), (5), and (6) the units of the right side of the expression

exactly match the units of the left side: no error or message is generated.

18



In statement (3) the units of the expression il/12 _ be feet_ considering

the relation inches = 12. feet, but, as seen in statement (_) with expression il/3,

this is onlyan assumption. Does il/3 represent 4 times il converted to feet? Or

is it a logic error? In statements (7) and (8) the units of both expressions are

clearly watts - no ambiguity arises even though the factor 16 is involved.

Therefore_ we restate our principle as follows: If9 when manipulating the

" units of two expressions for comparison_ the application of a units relation

involving a constant is required_ only commensurateness will be assured_ not
equality.

Inches is commensurate with feet_ but not equal, Watts are equal (ancl thus

obviously commensurate) with volt-amps.

In any message indicating two expressions are commensurate but not equal,

the system will indicate what (unit-less) factor must be applied to guarantee

equality. In so doing the programmer may visually assure himself that such a

factor has or has not been applied.

\Ve note again that this is the default node. In optional mode it is assumed

that the programmer will not insert any conversion factors. The system will

determine what factorsy if any_ are required and insert them in the code

automatically. A notation will be provided indicating what factors have been
applied.

19



2. Specilicationof Elementary Unitsand Scales

A. Units

Two objectives are accomplished by the scheme for declaring elementary
units described below:

l) The domain of units to be used in the program is defined.

2) A device for manipulating units is provided: variables having a units

attribute may be safely initialized, and the units attributemay be

"stripped off" a value when required.

Scheme: Declarations of the following form must be included for each

elementary unit to be employed:

DECLARE CONSTANT/*ELEMENTARY UNIT*/

(identity value for the type of the unit)

type declaration, list of elementary unit names;

It is anticipated that the only types to be employed will be integer and scalar, and

the identity value will therefore be one.

Example:

DECLARE CONSTANT/*ELEMENTARY_UNIT*/(I)INTEGER, apples, oranges;

DECLARE CONSTANT/*ELEMENTARY UNIT*/(l.0)feet, meters:

In illustration of item 2), variables possessing these unit attributes may be

assigned values in the following (safe) manner:

f = 4 feet; -

m = 6.25meters;

x = 6 apples;

20



B. Scale

Elementary scale factors are declared differently from elementary units,
since there isnot a clear need for a facility like objective 2) above.

The declaration of elementary scales will appear as follows:

/_ ELEMENTARY_SCALE: list of integer scales,

where each integer is a power of 2 */

An integer variable declared to possess elementary scale 4 is to be

interpreted as possessing the value: (integer value)/4. In other words, there is an

implied binary point 2 bits from the right end of the integer word. -

Note: If Language Change Request #147 (FIXED type) is adopted and

implemented in the Langley HAL/S compiler there will be no need for this

facility.

21



3. Specification of Relationships Between Units and Scales

After all units/scales to be employed in a program have been declared,

relationships among them may be set forth. Such relationships are indicated by

the following statement: •

/_ RELATIONSHIPS: list of relations */_

Example: /* RELATIONSHIPS: feet = 12" inches,

watts = volt amps */_

Only simple aritlimetic relationships may be declared, involving only multiplica-

tion, division, and exponentiation. (Relations such as a=b+c do not normally have

much utility in eng!neering/scientific applications, with the possible exception of

conversion from °C to OF. If desired, however, efforts could be made to extend

the technique cited in reference 3 to allow this. The resulting algorithm may not

be as efficient or flexible, though. The impacts of such a change should be

care_ully considered.)

The utility of constant values in relationships is subject to the consider-

ations of Section I. Relationships bet_veen scales do not have this restriction.

/_ RELATIONSHIPS: 8=4"2 */ defines a valid, useful relationship. At the user's

request, default relationships such as this could be automatically defined.

22



_. Declaration of Variables Having Units/Scale Attributes

• Variables may have both units and Scale attributes,

• All scales and units must be declared before the variable is declared.

• No variable may have more than one unit attribute_ or more than one

scale attribute.

- • Declaration of variables having these attributes is accomplished by

inserting the special comments described below in with other attributes

• of a declaration.

Syntax: /*UNIT: arithmetic expression involvin_ previously declared unit(s)*/_

/*SCALE: previously declared scale */7

These declarations may be contained in a single comment if both scale and unit

attributes are requested,

Concerning the implementation of these features_ two vectors (in the sense of the

reference) will be associated with each variable- one containing units infor-

mation_ the other containing scale specifications.

23



.5. Algorithms.

The algorithms employed in the analysis task will be those of the reference.

No changes are anticipated.

For the default situation described in 1.1 the analysis algorithm acts within

the following framework.

check expression commensurateness_ ignoring any numeric factors;

if commensurate

then

if computed [actor/_ I

then

issue "factor required" message;

print factor needed
else

no factor needed

fi

else

print error message

fi

24



6. Issues to be Resolved

I) The scope of declarations of elementary scale/units and relationships.

Is the scope global?

Yes: The information is, in a sense, global knowledge;

Implementation would be simpler

Other possible mode attributes such as INTEGER, SCALAR

are global.

No: Variables are not global. Should their definable attributes
be.'?

It may be desirable to override "global knowledge."

"Yes" is contrary to the principle of information hiding-

incompatible code could result from 2 different program-
mers.

2) Should there be a facility for making "enforced remarks about expres-

sions" in the sense of the reference?

3) Ease of implementation of declaration processing. Some modifications

to the HAL/S compiler will clearly be required. Further investigation

into the compilers structure will be required to determine if the syntax

described above is suitable.

25



3.4.2 Static Data Flow Analysis. - The data flow analysis techniques

described in this design are due primarily to the work of Fosdick and Osterweil of

the University of Colorado. Most of their work, directed at the detection of errors

in FORTRAN programs, is directly applicable to HAL/S code. The construction of

the DAVE System to analyze FORTRAN programs has provided a test bed for

evaluation of the techniques and their effectiveness in detecting anomalous data

flow. The experience with DAVE allows the design of a capability for HAL/S tobe

approached from a knowledgeable position.

Several items may be noted about DAVE. First, the system detected an

interesting• class of •errors which was of definite benefit in verifying a program.

Often the errors detected were very "simple" - yet examination revealed that they

resulted from deeper problems in the program's construction.

Secondly, DAVE was constructed as an experimental program before some

important analysis algorithms were recognized. This revealed itself in the speed

and size of the system - it was big and slow. Students wrote much of the code, and

it evolved over a period of time. As a result, it is hard to modify to improve its

characteristics.

Thirdly, many of the error messages produced by DAVE referred to

phenomena which occurred only along unexecutable paths. The analyst was thus

faced with the chore of separating the true errors from the spurious. Often this

was simple, yet it represents an undesirable characteristic.

Lastly, DAVE has proved to be unwieldy in many production environments

simply because it requires the source input to be ANSI FORTRAN (1966). No

language extensions are allowed.

In designing the static analyzer for HAL/S_ we have taken cognizance of

these characteristics_ as well as recent advances made in the area. We may

therefore describe aspects of the design as follows. :

26



1. The static analyzer for HAL/S relies on the compiler to do all the

parsing required. The analyzer thus begins its chore with the creation of the

program flowgraphs, and the annotation of the program nodes with bit vectors

conveying information about the activities which transpire at the nodes (as

required by the analysis algorithm). Any language extensions or syntax changes

will thus have minimal impact upon the analyzer.

2. The most important part of the static analyzer is the algorithm

employed to detect the errors. The HAL/S analyzer will employ the so-called

. "parallel-bit" algorithms developed by Allen, Cooke, Hecht, Ullman, and others.

These algorithms and references to them may be found in reference 4 EFosdick

and Osterweil, 1976]. As a result, the time for analysis of a program Should be on

the order of its compilation time.

3. The expressive power of HAL/S is much greater than Fortran, so the

analysis techniques must be expanded in the appropriate areas. The two major

additions to the language (as far as static analysis is concerned) are the real-time,

concurrent processing statements and the NAME, or pointer variable, capability.

Of the two, the concurrent processing features present the greatest challenge.

The NAME facility is just another aspect of the aliasing problem.

In response to this, considerable effort was devoted to the concurrent

processing problems, resulting in a paper describing the results in reference 5

[Taylor and Osterweil, 1978]. The problem has many facets, but the prospect for

significant results is good. The design incorporates the initial results, and is

extensible allowing the inclusion of future results. See the later part of this

section for a full discussion o5 this research.

• 4. Since HAL/S is not a recursive programming language, the same

processing scheme may be taken as for FORTRAN programs: a "leaves-up"

• approach.

Thus the unresolved problem of applying static data flow analysis techniques

to recursive programs did not have to be addressed._

27



5. To prevent .the generation of spurious error messages, representing

phehomena occurring along unexecutable paths, the techniques of reference 6

[Osterweil, 1977bJ will be employed. These techniques use the parallel-bit

algorithms in the basic analysis tasks, but a new post process is added. A

substantial improvement in the quality of error messages produced is anticipated.

6. In order to generate the most helpful error messages and to provide

analysis paths for a symbolic executor, a post processor will be used to generate

all messages. The parallel-bit algorithm detects errors at nodes only. To relate

those errors to the paths along which they occur requires another technique:

depth first traversal. Though this procedure is slower than the parallel-bit

algorithms, the time penalty is only incurred when an error is discovered. Thus

this process should not present much overhead.

Irl summary_ the early analysis techniques have been improved during the

last few years and these improvements have been incorporated in the design.

28



Database Required For Static Analyzer

The static analyser's data base contains all the local information related to

its operation. This database would include items such as:

the flowgraphs (and pals)

- live, avail, gen and kill sets

parameter list information .

" program call graph.

These are internal in nature. In addition_ the HALMAT and symbol tables are

required for generating this information and producing the error messages. The

error messages themselves must be saved for later (possibly automatic) perusal.

These data objects are external in nature and will be contained in the ISIS9 or

system_ database,

The efficiency of the static analyzer and its overall capabilities depend to

some extent on the speed of accessing items stored in the internal database.

Since ISIS is not necessarily involved, it should be possible to optimize this

informations format and its retrieval. The ramifications of multi-level static

analysis (i.e. static analyzer on the module level, then on the program level, then

on the multi-process level) needs to be explored, as regards the internal database.

Static Verification Of Output Assertions

The assertion facility presented in the design contains a construct having

the following syntax:

/* ASSERT expression list OUTPUT */;

This specification gives a complete list of the expressions, usually variables,

which are "produced" or modified by a section of code. It is therefore implied

29



that only those expressions, and no others occurring in the current scope, will

occur in reference contexts following the OUTPUT assertion.

Such _n assertion can easily be checked using static data flow analysis. The

"reference sets" associated with each node in the program flowgraph indicate

which variables are used in each statement. Following an OUTPUT assertion

these sets may be checked to verify that no variables are referenced which have

been determined to be "dead" - by their absence from the OUTPUT list.

Such an assertion also provides a basis for strengthening the other anomaly

analyses performed by the static analyzer. More specifically, one of the

anomalies the static analyzer checks for is variables which are defined but not

subsequently referenced. In other words, useless computation is detected. Such a

situation cannot normally be classified as an error. It is only "suspect". The

presence of an OUTPUT assertion increases the number of places such anomalies

may be detected: without assertions the anomaly is detected upon exit from the

static scope of the variable in question. With the assertions the anomalies may be

detected at each OUTPUT specification.

In a similar manner static data flow analysis can be used to verify the

correctness of INVARIANT assertions. Static analysis can be used to verify such

assertions even in the case where the protected (invariant) region is executing in

parallel with another process. This analysis is performed by examining the

definition sets associated with the nodes in the program flowgraph. Where

multiple processes are active, all nodes which occur in the parallel sections are

examined.

30



Static Data Flow Analysis Of

Concurrent Process Software

To illustrate the new difficulties inherent in analysis of concurrent pro-

grams_ consider the HAL/5 program fragment in Figure (3.4.2-1). We actually

wish to consider two versions of this program: one including the statement

marked with the asterisk_ and one omitting it.

• The figure consists of a main program and two tasks, TI and T2. When

scheduled_ a task may execute in parallel with other tasks and any executing

programs_ subject to synchronization constraints. Note that in this example both

tasks reference global variable i. Task TI executes in parallel with the main

program_ initializing variable i in the process. Task T2 also executes in parallel

with the main program when it_ in turn_ is scheduled. Its correct execution

depends upon i having been properly initialized. Consider the version of the

program omitting the marked statement. Depending on the implementation, once

the schedule TI statement is executed, the system scheduler may elect to run

task TI to completion before any further statements in the main program are

executed. If so, all is well. If_ however, multiple processors are used or time

slicing is employed_ the main program may progress to the schedule T2 statement

before variable i has been initialized. The potential then exists [or T1, T2_ and

the main program to execute in parallel9 with variable i being referenced before it

is defined.

The presence of the wait statement resolves the difficulty by requiring

termination of T1 before T2 is scheduled) thereby assuring that i will be defined

before it is referenced.

In order to clearly distinguish tile essential difference between the two

" example programs_ and to form a basis on which we may formulate an analysis

algorithm, we introduce the concept of a process-augmented [lowgraph.

31



main: program;

declare inteser i;

t l:task;

i=O;

close t 1;

t2:task;

i = i+1;

close t2_

schedule t 1 priority (50);
g

*wait for tl;

schedule t2 priority (50);

close main;

Figure 3.4.2-1 A HAL/S Program Fragment

A process-augmented flowgraph (pal) is a graph representing a set of

communicating concurrent processes, formed from the individual process flow-

graphs joined by special edges (arrows) indicating all synchronization/communi-

cation constraints. In HAL/S, statements causing such constraints include

schedule, wait, task, and close. The special arrows join these statements to

appropriate points in the cooperating processes' graphs.

Specifically, to form the pal an arrow must be created for each ordered pair

of nodes of each of the types: (schedule, task) and (close, wait).

Returning to our example, Figure (3.4.2-2) is a pal for the program omitting

the wait statement, showing the three processes, TI, T2, and MAIN, all acting in

parallel. The pal of Figure (3.4.2-3) shows the synchronizing effect of including

the wait statement: TI must terminate before initiation of T2. This distinction,

as noted, is the basis for the error•

32



matn

schedule t 1
t 1

schedule t2

t=o •

tl i='i+l _, close main

close

closeVt2 -

Figure 3.q.2-2 The pa_ For The Fragment In Figure 3.Q.2-I "

Without The Starred Statement

main

schedul e t 1

t=0

close t 1
wait for tl

schedule t2

i=i+l

close t 2 closemain

" Figure 3.4.2-3 The pal For Tile Fragment InFigure 3.4.2=1

t

We now show that existing static analysis algorithms are able to detect the

error in our example by analyzing the pal and making special allowance Ior the

, specialedges. ,

33



As background, we briefly describe the operation of these algorithms. The

algorithms to be employed are described in (Fosdick & Osterweil, 1976). The

purpose of these algorithms is to infer global program variable usage information

from local program variable usage information, and then to infer documentation,

verification, and error detection results from the variable usage results. The

local variable usage is represented by attaching two sets of variables, gen and kill,

to each program flowgraph node. The global data usage is represented by

attaching two sets, live and avail, to each node. The algorithms presented in

(Fosdick & Osterweil, 1976) assure that, when they terminate" I) a variable v is in •

the live set for node n, if and only if there exists a path, p, from n to another node

n' such that v is in the gen set at n', but that v is not in the kill set of any node

along path p; 2) a variable v is in the avail set for node n, iif and only if, for every

path, p, leading up to n there exists a node n' such that v is in the gen set at n',
but v is not in the kill set for any node between n' and n.

As an example, let us see how this information can be used to determine the

possibility of an uninitialized reference to a variable v in a given program. We

begin by annotating the graph so that v is placed in the gen set of a node if and

only if v is defined at the node, and all variables v are placed in the kill set of the

program start node. For the purposes of this example let us also hypothesize the

existence of a ref set at each node. Let v be placed in the ref set of a node n if

and only if v is referenced at n. Now suppose the avail sets are computed. Next

compute ref(n)13 (ref(n)11 avail(n)). If this intersection set contains v at a node, n,

then whenever node n is executed there will be a possibility that there will be an

uninitialized reference to v. If the intersection is void, no uninitialized reference
can occur at n.

In (Fosdick & Osterweil, 1976) it is shown that many similar analytic results

can be obtained by appropriate selections of gen and kill. criteria and corre-

sponding interpretations of live and avail sets. "

Bearing this discussion in mind, let us now consider the pal of Figure

(3.4.2-2). Suppose the gen set for each node contained all variables defined at

that nod% the ref set of each node contained all variables referenced at that

34



node, and the kil____lset of the start node contained all variables. Now suppose the

avail sets are computed in such a way as'to insure the original definition - namely

that for all execution sequences leading ton, v was most recently in a gen, rather

than a kil._l,set. Then, if _..

ref(n) fl ref(n) navail(n)

is computed_ we find that i is in this intersection set for the node n representing

. thestatement referencing i. This indicates the possibility of an undefined

reference to i at n. This is the desired analytic capability.

Unfortunately the avail sets for nodes of a pal must becomputed somewhat

differently than for nodes of an ordinary flowgraph in order to assure the correct

function of the above analysis. In an ordinary single-process flowgraph, the avail

set at a node n must be given by:

(*) avail(n)--- [1 (kill(n' i) n avail (n'i)) u gen(n'i)
all

immediate

predecessors

Of n, n'.I

Algorithms for computing avail assure that this condition holds for all nodes upon

termination.

Now suppose that node n represents a wait statement in a pal. Then one

edge entering n must be a special synchronization edge. If a variable, v is

. initialized as a result o[ executing the process preceding that edge, then it is

certain that v must be initialized at n regardless of whether it has been initialized

- prior to execution of any other edges entering n. Hence we see that if w is a wait

node o[ a paf_ and w' is the node at the other end of the special edge entering w_

then for the purposes o5 this uninitialized variable reference analysis avail(w)

must be computed by:

35



avail(w) gen(w')(avail(w')) _ [ Egen(x) (avail(x))]]
all

predecessors

of W, X,

except w'

Similar adjustments must be made in order to assure that the other analytic

results on single process flowgraphs which are described in reference 4 (Fosdick &

Osterweil, 1976) can be obtained for concurrent Program paf's.

Similarly, there are more intricate adjustments which must be made in order

to correctly compute the live sets at schedule nodes of a pal Once made,

however many analytic results in reference 4 (Fosdick & Osterweil, 1976) which

employ live sets can also be obtained for concurrent program pal analysis.

Our peenmmary investigation indicates that the algorithms described in

reference 4!(Fosdick. & _-O_sterweil,_.1976) can be altered to compute live and avail

for pal's as described above without affecting their highly efficient execution

speeds.
_o

All of the above results are predicated upon the existence of the pal, yet

construction of the pal is not a trivial or insignificant activity. For our initial

studies we have chosen to consider only programs whose synchronization is carried

out entirely by the schedule and wait statements. Under this simplifying

assumption the construction of the pal is rather straightforward, involving

basically a depth-first search. It is important to note, however, that HAL/S

contains certain synchronization constructs for which pal construction is more

difficult, and in some cases impossible. Further research will be needed to

determine the largest subset of the language which is comfortably amenable to

static data flow analysis.

Our work has shown that the pal has additional significance as the basis for

detecting various process coordination errors. For example, consider the program

whose paf is presented• in Figure (3.4.2-4). The HAL/S program contains a

significant anomaly which •should be noted. If •during execution the else branch of '

36



if i>5

the if is taken, task T1 will not be scheduled, yet later the program will wait for

it. Strictly speaking this is legal in HAL/S and the wait will have no effect, but it

may be very indicative of a logic error. A reader of the program would likely

assume that TI was guaranteed to have been scheduled, else why wait for it? To

document such statement usage, and for detection of other similar errors, an

anomaly analysis is desirable.

Let us assume that the HAL/S program is represented by a paf. But now

suppose that the gen set of every node consists of the processes scheduled at that

node and the kill set of every node consists of the processes waited for at that

. node. Now consider the special synchronization edges to be no different than

other edges and determine the avail sets for the pal nodes. Clearly if a process is

not in the intersection of the avail and kill sets for some node n then it is possible

to wait at n for a process that has not been scheduled immediately prior.

Similar kinds of analysis can detect useless synchronization (waiting for an

event which is guaranteed to have transpired), erroneous synchronization (such as

37



waiting for a process guaranteed to not have even started), and scheduling a

process in parallel with itself.

Unscheduled, yet declared, processes are detected by using live analysis to

show the absence of any path from the start of a main program to the open node

of such process flowgraphs. Simple deadlock situations may be detected by

examining the pal for cycles involving (at least) two (close, wait) edges.

38



3.5 Symbolic Execution. - The design and recommended usage of the

symbolic executor presented in the SAMM dial_rams has been strongly motivated

by consideration of two existing symbolic executors. Clarke's ATTEST system

(reference 7) [Clarke, 1976] and Howden's DISSECT system (references 8,9)

[Howden, 1977_ Howden, 1978a] were both examined and experiences with them

evaluated. The result is basically an amalgam of the two, The guiding principles

here have been to define a tool which has a feasible implementation and, most

importantly, addresses an important user need.

Experience with ATTEST has shown that efforts to prove the executablity of

a given path by solving the associated system of constraints can meet with

success, though substantial effort is involved. Additionally, as a by-product of _

showing executability, test data can be automatically generated which will force

execution down the selected path. (Test values is a more precise term, as

formatting of the values into what is required by the input handler must be

performed manually.)

ATTEST has also served as a testing ground for data and program structure.

A "standard" algebraic manipulation package was employed in the program. This

experience will prove valuable when implementation of the _IUST system is

undertaken.

Howden's DISSECT system has been beneficial in indicating the user

features which are most valuable in controlling the executor, and in providing

overall perspective on the utility of such systems. With regard to user features_

the design presented contains many different areas in which the user may interact

and control actions. Specification of paths, data values to use, and output desired

are all under user control. The DISSECT system is regarded as the model in this

area. Refinements and revisions to DISSECT's abilities will be required, of

. course, as the symbolic executors design is deepened.

Concerning perspective, the DISSECT system was carefully evaluated after

its construction to see how well it detected programming errors in comparison

with other techniq_:e s. In a 'ater paper (refe:ence 101 rHowden, l_tSbJ, Ho_vden :

examined error detection schemes in general for their efficacy, through a series

39



of experiments. The result of both these considerations was that, in the presence

of a suite of error detection tools (such as static and dynamic analyzers), symbolic

executors did not detect significantly more errors than the combination of the

other tools. One cannot conclude from this, however, that symbolic executors

h.ave no place in a programming environment. It does indicate that the tasks

should be carefully chosen to which symbolic executors are put.

\re believe that while the symbolic executor should be built with capabilities

to perform automatic error detection, the user should have the potential to be

heavily involved in the process. An example of such involvement is .to have the

executor indicate all output values which are affected by a given input value9 or,

for a given output_ display all the inputs which are involved in its computation. Irl

the latter example the user would be involved in aiding the identification of all

paths (or classes of paths) which lead to the output. The system presented allows

these types of activities in addition to the more classical functions of symbolic

executors.

The possibilities of using a symbolic executor to analyze and refine "error"

messages coming from the static anaylzer do not seem as promising as was once

hoped. Experience with DISSECT_ for example, indicated that pathwise checking

for division by zero errors was not profitable. Significant user interaction is

required to examine most of these questionable errors. The design we present

allows for the symbolic executor to examine these situations, but further research

and experience will be required to evaluate this more fully. \Ve believe that using

a symbolic executor to check the functional effect of paths in the manner

described above, and in the classical sense (printing formulas and performing

algebraic manipulations, in contrast to only printing simple variables which are

"affected")_ will prove most valuable.

One feature is present in the design which has no direct analogue in either

ATTEST or DISSECT. A machine state resulting from partial execution o[ actual

code may be passed to the symbolic executor to (at least partially) specify the

values to be used during symbolic execution. Further analysis of this features

" utlity and the 4ifficul*.y of implementing it .;s recoknme_.ded. _Such analysis wii! be: ........

_0



possible when the details of the executor's structure are worked out, Note that

this type of facility begins to blur the distinction between a symbolic executor

and an interactive debu_er. Further analysis o£ the similarities between the two
tools is recommended.

41



3.:.6 Dynamic Analysis.

3.6.1 Assertion Facility.

Design Principle

The Assertion and Statistics Gathering Languages (statements) designed are

general and powerful. Some of the features are totally new to such languages; to

our knowledge a system of this scope has not been implemented anywhere. The

decision to adopt 3uch a broad design i3 based uPon our principle that it is crucial

to anticipate future needs and make appropriate provisions for them. Indeed, the

syntax is incompletely defined - further consideration and experience with the

provided features will dictate their completion.

Basic features will be implemented at first. As experience guides, addition-

al features will be supported, with their implementation and integration being

able to proceed smoothly. The syntax will require no revision and previously

instrumented programs will not require any changes. In fact, programs may

Contain assertions which reference (hitherto) unsupported features. Such asser-

tions serve as important documentation. When the support features they require

are provided, they then assume their role as active monitors.

The basic ideas contained in the design were obtained from two primary

sources: reference I1 [Stucki, 1976] and reference 12 [Chow, 1976]. Both contain

excellent expositions of the utiiity of assertions and provide many examples.

Chow provides several examples of specialized assertion functions which may be

defined. Some Of these would require special implementation, but their semantics

are harmonious with the design presented. Thus they are candidates for future

inclusion in the assertion language.

Implementation

The support of the designed _ea_ures will certainly take place in phases.

Four major _actors are involved.

42



First is the problem of determining a suitable instrumentation schema for

any given facility. For most of the facilities described, this is straightforward.

Difficulties arise though, for example, in consideration of the INVARIANT clause.

If such a clause is used in a concurrent process program, guaranteeing the

invariance of shared data may be very difficult. Perhaps more important is the

problem of discovering efficient instrumentation schemas.

The instrumentation required to implement the histogram-type information

could be provided in several ways. One alternative is to utilize the execution

monitor., as opposed to inserting special probes directly in the code. The default

compiler mode generates calls to the execution monitor following each HA'L/S

statement. The monitor performs any duties associated with the real time

aspects of the program, among other things. Since the "hook" to each statement

is thus automatically provided, the monitor could be modified to gather the

histogram information. Such modification is not recommended, however. Un-

necessary overhead would result, controlling the extent of histogram-gathering

would be difficult, and dependencies would be placed on using the monitor - which

may be undesirable on many target computers, kluch greater flexibility and

economy is achieved through the direct insertion of probes.

Another decision governs the nature of the probes which are inserted. Inline

code may be created, or a procedure call may be used. Inline code executes

faster, but may incur a size penalty in the object program, Global declarations to

support the instruments must be supplied, and some run time flexibility may be

sacrificed. Subroutine calls are smaller, require less "declaration" effort, and

greatly increase flexibility over in-line code. The execution time penalty

associated with procedure invocation may be prohibitive in many cases, however.

In light of these considerations, it is recommended that in-line code .be used

predominantly, but that the ability to Use procedure calls should not be precluded,

Since the cost of procedure invocation may vary significantly from implementa-

tion to implementation (and language to language), it is also recommended that

timing studius be undertaken to aid in .determ'_,ning the propel mi×ture of

. techniques. User o_ntro| over the type of instrumentation to be utilized is an

important option.

43



Regardless of the scheme used to implement the histogram=type facilities)

two concerns must be kept in mind, It must be guaranteed that regardless of

where program termination occurs statistics will still be captured and the

interfaces with the file system must satisfy overall efficiency requirements,

Second in the list of major implementation factors is the problem of

translating the assertions into the instrumentation required. Parsing of the

assertion itself is a problem9 as sophisticated expressions may be present. Clearly

the use of compiler routines is mandated9 and this should be readily accomplished

as the routines to pull the assertion out of the comment brackets will be included

withb, the compiler. The compiler procedures to parse expressions wili thus be

available. Examination of the compiler structure will be required to determine if

this is truly feasible. (The semantic actions may be too closely tied to the

parsing.)

Third_ as noted in the description of the assertion syntax_ the problem of

"specification 'r or denotation arises. This is with regard to path specification and

"quantifier completion". The facilities which are desired to present such capabili-
ties must be determined. This will be discussed later:

Lastly9 the problem of adding the new HALMAT (which represents tile

instrument) to the existing HALMAT (which represents the program) must be

closely considered. No significant difficulties are anticipated_ rather, care must

be exercised to ensure that all pointer references, counters, and so forth in

HALMAT's triple structure are maintained in a consistent manner.

Restrictions and Capabilities

Much of the generality provided by the assertion and statistics gathering

statements arises from the ability to invoke a function, in the general sense, as a

part of expression evaluation. Sophisticated_ tailor-made functions may be

provided to perform a variety of checking activities. These functions may be

catalogued and saved for use on many different classes of software. For exampl%

certain ful;_tions might be pa.rticulariiy useful when Verifying real-time ooftware.

44



(Note that the real time clock may be referenced). The instrumentation of such

functions would allow their execution to take place in "zero time" in a simulation

environment. To fully simulate a real time program9 though_ the timing of

external interrupts must be adjusted to compensate for the increase in actual ....

execution .-time.

The caveat associated with this capability is that the functions which are

called must not have any side-effects. A program must execute with instrument-

ation identically as without. Enforcement of this rule will necessitate restrictions

on the compositon of the functions.

A list of supporting capabilities follows:

I. The assertion processor(s) will accept a control file as secondary input.

This will allow information such as selective instrumentation commands to

override commands embedded in the source text. Information regarding standard

"assertion functions" to be used may also be supplied.

2. The selective instrumentation capabilities allow_ for example_ only one

module of a multi-module program to be instrumented. Even if execution halts in

an uninstrumented module, the statistics from the instrumented module must still

be gathered (assuming the instrumented module is executed at least once).

3. Standard functions may be provided to query aspects of the operating

environment. These queries allow the program to assert that it is operating under

the conditions for which it was designed. Such functions may concern physical

(hardware) Characterisitics or software support. These functions will necessarily

be implementation dependent. (For example, an assertion may be made about the

target machines word size).

4. The post processor_ which prepares reports containing the statistics

gathered during execution_ should allow information gathered from several test

runs to be presented in a single report. Summari, es of the statistics obtained from

each run should be obta:,nable _s well,



5. The facilities which actually insert the instrumentation should provide an

indication of which assertions/keeps actually, generated monitors. In addition, for

any given set of instruments the facilities should attempt to estimate at least the

increase in program size caused by inserting the instruments into the program, if

not a timing estimate too.

6. If relevant aspects of the output from test runs are retained in the system

data base, a facility may be provided which will monitor the progress of the

testing activities. Test coverage may be considered, as well as examination of

the number of assertions violated per run. It would then be possible to use

software reliability models to estimate the quality of the software. See reference

13 [Lloyd and Lip0w, 1977], chapter 17, or reference 14 [Sukert, 1977] for a

consideration of this.

46



Notation

The grammar used to describe the assertion and statistics gathering

languages Jsa variant of BNF, described below.

i) Nonterminals are underlined_ e.g., assert statement

ii) Terminals composed of Latin letters are printed in upper case, e.g.,

ASSERT

iii) Terminals composed of special characters are printed in bold face, e.g.,

()

i

iv) Items which are optional are enclosed in parentheses, e.g., (GLOBAL)

v) Items suffixed with an asterisk (*) may appear zero or more times

vi) Items suffixed with a plus sign (+) may appear one or more times

vii) multiple productions corresponding to a single non-terminal are listed

on successive lines. The non-terminal and the ::- sign only appear

on the first production.

e.g., value ::: comparison

path expression

_7



3.6.2 Assertion Language

assert statement ::=I* ( special label ) ASSERT ( GLOBAL ) ext-lo_ical-exp-list

*I;

ext-logical-exp-list ::= ext-logical-exp ( ; ext-logical-exp )*

ext-logical-exp ::= value ( relop value )*

expression list INVARIANT ( TO special label )

expression list ( NOT ) IN range+

expression list OUTPUT

value :1= comparison

path expression - - .

quantifier comparison

expression list ::= expression (, expression )*

relop ::= conditional AND
conditional OR

quantifier ::= FORALL quantifier completion

EXISTS quantifier completion

quantifier completion ::= to be determined

range ::= ( constant ( : constant ))

path expression ::= PATH special label WAS path

PATH path

path :'=to be determined

end ASSERT strut ::=/* END ASSERT special label */;

invariant mark ::=/* END VARIANT special label */;

statistics value ::= special label ( ( name ) )

Context Sensitive Rules

1. No two ASSERT statements may have the same special label.

2. No two invariant mark statements may have the same special label.

3. Multiple ASSERT GLOBAL/ END ASSERT statements are possible, and nesting

is not required. As the system is used and feedback obtained9 such a requirement

may be added later.

4. The GLOBAL keywo, d may i,o_ be used in conjunction with the TO special

label clause, nor the OUTPUT clause,

48



Semantics

I. Any and all ASSERT statements may be labeled with a Dewey decimal

number. Their instrumentation may be controlled by an external mechanism which

references these numbers. If no label is given to an ASSERT statement, its

instrumentation may only be controlled by a binary switch. This "external

mechanism" is a user supplied function to the assertion processor (SAMM node

CBCD).

2. The ASSERT GLOBAL statement speci[ies a list o[ conditions which

must continuously hold over a range of the program. This range is demarcated by

the ASSERT statement and the END ASSERT statement whose special labels

match. If no such END ASSERT statement exists or i[ the ASSERT statement is

unlabeled , the assertion applies to all program text following the ASSERT

statement in the current static scope (at the procedure_ task_ or program level).

3. A series of logical conditions may be expressed in a single ASSERT

statement. If the GLOBAL keyword is present_ all the logical conditions must hold

throughout the range of the assertion.

4. Contradictory assertions may be specified for the same program region.

By definition_ i[ both are instrumented_ an assertion violation will be reported

whenever that region of code is executed.

5. Each extended logical expression which is checked may include condi-

tional operands (tokens such as CAND and COR may be appropriate). In the

conditional expression A conditional and B, B will be evaluated if and only if A is

true. In the conditional expression A conditional or B_ B will be evaluated if and

only if A is false. Evaluation proceeds from left to right, with no parenthetical

nesting. By using such expressions dynamic control over assertion evaluation is

achieved. (Indeed 9 if the first part of the expression is evaluable at compile time_

a more e[ficient form of instrumentation may be possible.)

49



6. "Threshold" control may be achieved in a similar manner. The special

value V[OLATE ( special label ) may be used within any comparison in an assertion,

Its value is the number of times the referenced assertion has been violated. If no

reference is provided_ the number of violations of the current assertion is taken.

7. Special values COUNT ( special label ) and statistics value may also be

used within any extended logical expression. COUNT refers to the execution count .

of the referenced KEEP statement (if no reference is provided_ the COUNT of a

hypothetical KEEP COUNT statement which immediately precedes the ASSERT is

used.) statistics value allows the value of any HALiS expression which is saved in

a KEEP to be referenced in an assertion. The optional name which follows the

label allows a particular value to be referenced out of several saved at the KEEP

(there may have been a list of expressions to KEEP). The name supplied must be

textually identical to one of the expressions listed in the KEEP.

8. path expressions allow assertions to be made about execution paths

previously taken and kep% or predictive assertions about what path will be followed

after checking of the assertion. Further discussion of this facility may wait until a

suitable notation for specifying a path is adopted. Such a mechanism must allow a

convenient, useful path specification to be made before program compilation.

Decisions about what is done when Subroutines are called will have to be made.

9. .quantifiers on comparisons allow the formation of assertions with tile

power of the first order predicate calculus. Such assertion capability is very useful

in efforts to formally demonstrate program correctness. As far as instrumented

assertions are concerned_ however, substantial effort must be expended to deter-

mine what restrictions should be placed upon quantifier completion in order to

guarantee feasible instrumentation.

10. The INVARIANT (TO special label) clause specifies that none of the

expressions listed in the statement will varyin value as long as control remains

within the scope of the invariant assertion. The invariant mark statement may be

used to define the end of the region throughout which the value of the expression3

must remain constant. The special label found on *.beTO dau_e and the invariant

mark must be identical. If no such mark is found_ or if the TO special

50



label• phrase is omitted, the end of the current local scope (at the procedure, task,

or program level) is used. If control enters the scope of the invariant without

"passing through" the ASSERT statement, the value of the expressions must be the

same as (invariant to) the value of the expressions the last time the ASSERT was

executed. The INVARIANT (TO special label) clause allows assertions which may

check for parallel processing errors. (The clause is also useful for indicating what

variables are input-only to a routine. This allows protection of global variables

used in internal scopes. Procedure parameters are already protected through the

formal parameter/ASSIGN mechanism.) If several shared variables are being

referenced in a supposedly critical region_ they should not be updated concurrently.

They must remain INVARIANT to the end of the critical region. E[ficient

implementation of this feature for such concurrent processing applications will

require significant study if such checking is performed dynamically. Static verifi-

cation is the preferred technique.

I1. The IN _ specification indicates tl_at each value specified in the

expression list must lie within one of the ranges provided. A range may consist of

a single value.

12. The expression list OUTPUT specification gives a complete list o£ the

expressions, usually .variables, which are "produced" or modified by a section of

code. It is therefore implied that 0nly those expressions_ and no others originating

in the current scope_ will occur in reference contexts in the same (static) scope

following the OUTPUT assertion. The scope of the OUTPUT specification is from

the beginning of the program unit (procedure, task, or program) to the OUTPUT
assertion.

51



3.6.3 Statistics Gathering Language

statistics statement ::=/* ( special label ) KEEP GLOBAL function list */;

/* ( specia! label ) KEEP svalue list ( qualifier ) "1 ;

end keep statement ::=/* END KEEP special label */;

special label ::= inteser (. integer )* (.)

function list ::= function ( _function )*

function ::= COUNT ( ( strut-type list ) )

normal function

svalue list ::= svalue ( _svalue )*

svalue ::= expression

COUNt
PATH ((inteser))

qualifier'..-=IFcomparison

strut-type list ::= stmt-type ( _strut-type )*

strut-type ::= ALL
ASSIGN

CALL

CANCEL

DOCASE

DOLOOP

EXIT

FILE

GOTO

IF

ONERROR

OFFERROR

READ

RESET

RETURN

SCHEDULE

SENDERROR

SET

52



SIGNAL

TERMINATE

UPDATE

WAIT

WRITE

. Context Sensitive Rules

" 1. No two KEEP statements may be labeled with the same number.

2. Multiple KEEP GLOBAL / END KEEP p_irs are possible, and nesting is

not required. As the system is used and feedback obtained, such a requirement

may be added.

Semantics

I. All KEEP statements may be labeled with a dewey-decimal number. As

such they are individually named and their instrumentation may be controlled in a

sophisticated manner by an external, mechanism (directives to the KEEP statement

processor). If they are unlabeled their instrumentation may be controlled by only a

single (binary) switch.

2. The KEEP GLOBAL statement specifies a list of functions which are to

be applied to every (applicable) statement within the textual scope defined by the

KEEP GLOBAL statement and the END KEEP statement whose special labels

match. If no matching END KEEP is found_ such a statement is generated at the

end of the current textual scope (at the procedure, task, or program level).

3. The functions which may be applied at each (appropriate) statement are

as follows:

COUNT - provides a count of the number of times each statement was

executed. The stmt-type list qualifier allows the user to restrict the types of :'

statements for which this information._iH be kep:. Tl_e default is ALL

statements.

_3



normal function - this is a general HAL/S function which will be called after

the execution of each statement. This provision is in keeping with the overall

criterion of providing a general syntax. Implementation restriction% as

previously mentioned, are almost certain. At least three special values may

be referred to in the function definition: COUNTy VALUE, and STMTTYPE.

COUNT refers to the execution count for the current statement. VALUE

refers to the value, if any_ for the current statement. VALUE is defined as

follows.

Statement-typ_e Value ..

Assignment the value assigned to the left-side of the assignment

If the value of the comparison

STMTTYPE refers to the statement types enumerated under strut-type above.

#. If GLOBAL is not specified) the KEEP statement refers only to the

program state defined at the point of the KEEP.

5. svalue may be any computable expression (including HAL/S normal

functions) and is subject to the rules provided for functions in rule 3 above.

COUNT has the same meaning as noted above, but may not be qualified. Thus it

refers only to the number of times control passed through the KEEP statement.

6. Specification of PATH will cause a record to be kept of the execution

path taken from the KEEP statement until an END KEEP statement is encountered

which has a matching special label. If the PATH is qualified with an integer n, the

path record will be limited to a maximum of n statements. Only the first n

statements encountered will be retained.

7. If a KEEP statement has a qualifier phrase, the information requested
B

will be kept only if the condition is met. Evaluation of the condition is subject to

the extensions and restrictions applied to normal functions in rule 3 above.
i

54



Rationale

The primary motivation for the-provision •of the KEEP statements is to allow

assertions to reference previous values of variables,. The second motivation is to

allow the user to control to some extent the information which will be produced as

a "histogram" of the programs execution, This histogram normally contains

execution counts_ but may include other items as well.e

• The keeping of voluminous amounts of detail concerning a programs execu- "

tion history is most closely associated with debugging systems. Such Systems have

a decidely different fiavor than the dynamic analysis system Considered here. As

the preliminary design includes a debugger (SAMM node CCCD), facilities for

production of such information are not included in this specification. Necessarily

the line drawn between the two is somewhat arbitrary9 but we believe the

distinction drawn is a useful one.

55



Sample Usages of the Assertion and Statistics Gathering Facility

1) /* ASSERT A=B+C; D > 6; F(X)-I=0 *];

Three simple arithmetic relations which must be true at the point of

assertion placement.

2) /* ASSERT A >5 CAND F(X) = F(Z) */;

Two arithmetic relationships. The second relationship is checked (causing

evaluation of the functions) if and.only if A _>5.

3) /*ASSERT A>SCANDB<0CORC=0 */;

Three arithmetic relationships. B < 0 is evaluated if A > 5. C=0 will be

evaluated if the value of the entire expression to the left of the COR is

false. The chart below indicates all possible evaluation]value combinations.

A >5 B< 0 C = 0 Assertion valve

T T unevaluated T

T F T T

T F F F

F unevaluated T T

F unevaluated F F

4) /* ASSERT VIOLATE<5 CAND F(X)=0 */;

F(X) will only be compared with zero if this assertion has not been violated

more than _ times.

5) /* ASSERT GLOBALX>0 */;

X must remain positive from the assertion through the end of the current

scope (either procedure, task, or program end).

6) /* I ASSERT GLOBAL X>0 */;
X must remair, po._i_ive threugh6u_ this reglon

/_ END ASSERT 1 */

56



7) I* ASSERT A)B,C INVARIANT TO 3.1 */_
: A,B,C must remain unchanged in this region

/* END INVARIANT 3.1 */

g) /* ASSERT X+Y INVARIANT */_

The value of the expression X+Y must remain constant until the end of the

current procedure, task, or program.

9) /* ASSERT X IN (1:6)(12) */

The condition I__X_<6 or X=I2 must be satisfied.

10) /* ASSERT X,Y OUTPUT */)

Only variables X and Y will occur in reference contexts below this point in

the current textual scope (procedure, program) or task).

II) 1" I.I KEEP X */

The current value of X is retained for later use in an assertion.

12) /* ASSERT I.I(X) = X */;

Asserts that the last value of X stored at KEEP I.I is equal to the current

value of X.

13) /* ASSERT 1.1 () =X */;

Same as example 12). This syntax is valid if KEEP 1.1 only retained variable

x,

14) I* KEEP GLOBAL COUNT */_

. An execution frequency count is kept for all statements occurring after the

KEEP until the end of the current scope (procedure, program, or task).

15) 1" KEEP GLOBAL COUNT (READ, WRITE) FILE) */i

An execution frequency count is kept on all input-output statements

occuring after the KEEP until the end of the current scope.

57



16) /_ KEEP COUNT IF FLAG *1;

A selective execution count will be kept for this statement. The count will

be incremented only when variable FLAG has the value TRUE.

17) /* KEEP X IF F(X)>5 */;

The value of X will be retained only if F(X) >5.

18) [* ASSERT X<0 COR SPECIAL_ERROR_HANDLER(X)*/;

This example illustrates how special processing may be performed on

assertS.on violation. If X isnot less than zero then (presumably) something

has gone awry in the program. In order to gather as much inf6rmation as

possible a user-supplied function is called which may_ for example9 print out

a helpful message.

58



3.7 Documentation. - Virtually all of thetools presented in the design have,

as part of their duties, the production of different aspects of documentation. The

most obvious facilities in this area are the non-data flow static analysis (cross

reference l_enerator, call graphi code auditor, etc.), the comment extractor, and

the assertion facilities. The system data base is the common repository of all

documentation produced. A powerful user interface to it allows such documenta-

tion, generatedby diverse tools, to be accessed in an efficient manner.
o

Rather than restate here all the particular documentation items generated,

the reader is referred to the SAMM diagrams and the description of the assertion

facility. Improvements to the HAL/S compiler are noted under non-data flow

static analysis. (In general the compiler was judged as producing excellent cross

reference maps and other information associated with compilation. This evalua-

tion was based on reviewing the HAL/S 360 User's Guide and test programs run on

the 360/370 compiler. The differences in output between the NASA-LRC

compiler and the 360 compiler were not considered.)

_9



3.8 Error Class/Detection Technique Chart. - Table I contains a chart having

on the vertical axis a list of errors commonly occuring during the development of

large software systems. The horizontal axis contains a list of automated tools

useful in the detection of such errors. At the intersection of each error and tool,

an indication is provided as to how well the tool is suited to detecting the

particular error. An empty intersection indicates the tool is not likely to directly

aid in the detection of the particular error. Along each row of the chart (which

corresponds to a single error) the tools which are appropriate for the error

detection are ranked as to their ability. One tool is often more powerful (in a

loose sense) than others, and will detect a higher percentage of the particular

error in a given system.

This chart is useful for several purposes.

I. It is a guide to choosing the best strategy for detecting a particular

class of errors,

2. It is a guide to choosing an implementation strategy. By scanning the

columns of the chart, each tool can be examined as to how many error classes it is

suitable for detecting. II the errors are weighted as to importance, and the

efficacy of the tool is taken into account, an assessment of the "value" ol the tool

may be made. This value may be used in determining which tools are the most

important to implement.

3. The Chart gives an indication as to which errors are particularly

difficult to detect. For some errors very few tools are appropriate, and those

tools which are appropriate may not be very effective. Areas for further research

in the development of tools are therefore highlighted.

Though these utilities are not to be overly deprecated, several consider-

ations must be kept in mind when using the chart.

6O



1. The error classification scheme used on the vertical axis is not

universally accepted, nor does it necessarily reflect the major categories which

exist on any given project. The scheme used is based mostly on a study performed

by TRW for RADC (reference 15) [Thayer, et. al, 1976]. It is the culmination of

examination of five large software development projects in the DOD environment.

As such it probably is relevant to flight software projects, though there are

. clearly several exceptions. The classifications have been modified slightly to

reflect the additional characteristics of flight software.

2. The list of tools which are rated is not exhaustive. A single tool may

also require several programs for an implementation. Good and bad implementa-

tions exist for each tool as well. It is assumed here that all the implementations

are "good" ones.

3. Any tool acting in a stand-alone capacity is not nearly as effective as a

tool embedded in a verification environment. The power of an environment is

greater than the "sum" of the powers of the components, due to the effect of

working together. The chart attempts to rate the tools largely independently.

4. The ratings given in the chart are very subjective. In addition, some of

the tools described have never been implemented in anything more than prototype

form (e.g., design simulation). The ratings therefore represent educated esti-

mates, considering both confirmed results from existing tools, and aniticipated

results from planned tools.

5. Several of the tools require intelligent use, and such use is assumed in

the ratings. As an example, program assertions are potentially very powerful, but

• the programmer must employ much thought and care when creating them in order

to realize their benefit.

6. The chart does not provide an effective guide to the use of tools during

program development. Specifically, detection of errors during requirements

analysis is substantially more cost effective than detecting them during design ....

I_etec_ion of errors du:ir, g dest_n is substantially more co_t effectivethan :_:

61



detecting them during coding. The same is true when comparing coding to the

traditional concept of testing. Thus using "effective" tools at coding time is no

substitute for proper analysis o[ requirements or design. Lastly_ the class a

particular error _alls into is not normally known until a_ter it has been detected.

62



U4
• .U

Requirements and Static Analysis Tools ._ Dynamic Analysll ToolsDesign Anafysis .
Tools

,=

A COMPUTATIONAL ERRORS

A-1 Incorrect operand in equation _/ 1 _/ ._ 3 %/ 2 %/ I _ %/A.2 Incorrect use uf parentne_is %/ 2 1

A-3 S;gnconvention e,ror 'J _/_ %/ 10% A-4 Un,ts or data conve,;io,_ error 2 I 3 %/ %/
A-5 Computat_un producns an over/under flow 2 1

A-6 Incorrect/inaccurate equ:_tion used %/ 2 %/ 1 1

A-7 Precision fast; d,J,.*to mixed mode 2 %/ 1A-8 Mi:s;nr;c.:,,,,r':._at,,,,', 2 %/ %/ 1 %/ 1. 2
A.9 Rou!_dine. or t,unc.ltiot= error 1 2 %/

B LOGIC ERRORS

B-' Incorrectoperand inlogicalexpression _,_1 _ %/3 2 %/3 " "B-2 Log:c a_;hVll,:s ,xJt of sequel+ce. 2 1 " 3 %/ 2

B'3 Wr°ng va"able l'_'n'l checked %/ _/ %/ _/ _ 2 %/ 1 3

B-5 Too manyllew st_t_rnents in loop 1 _ 2 3 1 3B.6 Loop ite,at,,d inco,r,:ct ,,umber of times _/ %/ %/ 1 1 2 _/
(ir_:lu_,nt} m,Jh:ss loop) .

B.7 Ouph':ate Iou;c %/ 1 %/ 2 2 i

C DATA INPUT ERRORS

C-1 Inval;d input read from correct data file _ _/ %/
c._ _n,_,rea,_'ramincorrectdota_,_e ,,/ ,,/ %/ %/
C.3 Incorrect =npu_.format %/

c_ Incorrect_o,m,tstatement,e,erenced %/ %/%/_/ %/
C.5 End of file encountered prematurely

C-6 Endoff,lemi_smg _ _

Table I. Error Class/Detection Technique Chart



tu
u

Requirements and Static Analysis Tools _ Dynamic Analysis ToolsDesign Analysis
Tools E

, i

e,,

o _ o ,_ _ _ = ° _ _ _ o o" _ .- "-

D DATA HANDLING ERRORS

D-0 Data file not rewound before reading 2 1 %/ %/ 2

O-i Oata'initiati,ation not done %/ 2 %/ 2 %/ 1%/ , :3 2 V_ '
D.2 Data initialization done improperly %/ " %/ . 2 1 %/
D-3 Variable used as a flag or index not set properly " %/ %/ %/ %/ 3 2 1 2

0% 0-4 Va,,able r,:f*.4red 1o |,y the wrong name %/ 2 %/ %/ I %/ %/
D.S s,,m..,;_,_,+a,,,_.,f,,n_i,_co._ctlv %/ %/
O.6 Incorrect variable type 1 %/ 1 2 %/

D-7 Data pa_king,'unpacking error 1 3 2 %/ %/

D-8 So,t,:r,or 2 3 1 %/
D-9 Subs(:rlptingerror %/ 2 %/ 3 2 %/ 1

E DATA OUTPUT ERRORS

E-' Da,a wt,ttt:r, on wfon_ channel ' _/2 ,_ ,%/ , _ %/
E-2 Dala written accord,_g to the wrong format 1 V V2 3

E.3 Data written in wrong format 1 _ 2 /_ 3E.4 Data v,_itt*;r, with wrong carriage control %/ 1 2

E.5 Incon,ph, te o, mi,sing output 1 _/ _/ _/ 3 2 %/%/
E-6 Output field size too small 2 v V V 1

E-7 .Linecountorp_g_.ej,:ctprob,em 2 _ I _ 3E.8 Output Gurt,T,.,I (;r m,sh:;,d,Hg 1 2 ' 3 %/

I: INTEHFACE EIIRORS

F-2 Call to sut)routine not m_,Je or made in wrong %/ 1 v 2 2 3
place

F-:3 Subroutineargumentsnotconsistent.intype. ' %/ %/ %/ I %/units,order, etc.

F-4 Subroutlnc called is nonexistent 2 2 %/ %/ _/ 1 "

F-5 Softv,_re,'data base interface error 2 _/ %/ 2 "_, %/

F.6 Sof_,'_areuserinterfacecrror %/ 1%/ 2 _ 3 %/F-7 Software/software interface error 2 3 "; 1

Table I Error Class/Detection Technique Chart (Continued)



g

uJ
u

Requirements end Static Analysia Tools o Dynamic Analytll Tools
Design Analysis

Tools

I

(3

.=- _,_ _ O = .5

o
G-2 Data referenced is OUt nf proper range. _/ •_/ %/ 2 2 3 '11

G-3 Data being referencedat incorrect location _/ _/ _/ _ 3 1 _/ 2 ._.
G-4 Data potnters not inclemented properly 2 2 %/ I %/ 2O_

• H DATA BASE ERRORS

H-1 Data not in,t;alized in data base 1 2 3 %/ _ 2 %/_/ ',_/ 1 %/
H.2 Data initialized to incorrect value 3 " %/ 2 1 %/.
H-3 Data units are incorrect 2 3 %/ '. 1 %/ %/

I OPERATION ERRORS •

I-1 Operahng system error (vendor supplied) %/1.2 Hardw,_re err_r

1-3 Operator errnr
|.4 Test execution error

1.5 User m=sunderst ending/err or 1 2

I-6 Con!igurahon control error 1 2 3

J OTHER

J-1 Time hmit exceeded 3 1 1 . 2

J.2 ,Core $tora3e limit exceeded %/ 1 1

J-3 Output hne limit exceeded 1 %/
J-4 Comp_h, tion error . %/

J-5 Co_Jeor de;igninefficient/not necessary 1 %/ %/' 3 2 %/
J-6 Design nonre;ponsive to requirements 1

J-7 Software nut compatible with project I
standards

Table I Error Class/Detection Technique Chart (Continued)



==
uJ

Requirements and Static Analysil Tools _ Dynamic Analy$|l
Deign Analysis

Tools

= 8 , 6 _ "_ _ _o ._-= _

..... _ _ _ _ _ _ _ _ _ = - - 6_" ¢, ,', _' 8 _ 0 _ _ 8 _, a - ,_
o_ _ DOCU_ENVATIO_E_O_SI%)

"_' K-1 User manual
K.2 In'.erface s_ecification 1 2 3

K-3 ' Des_3nspec,fic,:tion %/ %/
K-4 Requ;rc.ments _pecification _/
K-5 Test (_()cLln'_.'elt;Jllon

L REAL-;I'IM E (_'.ONITOR

INTERACTION} ERRORS , '

L,2 Svn,chtomzat,on e,rot$ 1%/ _ 2 _ _/ 3 "k.3 Duadkack 1 2 3

TaMe I Error Class!Detection Technique Chart (Continued)



SECTION #.0

Verification To Requirements Document

To ensure that a preliminary design satisfies the requirements document,

the two must be compared. As specification techniques and automated tools

which address this level of specification come of age, such verification will

become increasingly automated and precise. For the present however, an

informal comparison must suffice and is thus presented below. The comparison is
,F

presented by referencing the section numbers of the functional requirements from

the requirements document and the applicable _.odes from the preliminary design,

in conjunction with any discussion. Unless otherwise noted the node names are

from the SAMM decomposition of "System Creation." Those requirements which

relate directly to the detailed design are not discussed here.

4.1 Verification. - The following paragraphs begin with the requirements

document paragraph number. Since only the functional requirements are

considered, and since requirements relating only to the detailed design are not

relevant here, the paragraph numbers are not necessarily consecutive.

4.1.1 All the tools and usage modes will be callable through the ISIS user
interface, with the possible exception of the interactive tools. They may
require their own user interface. Adequate documentation and HELP
messages will be provided, but without being burdensome.

4.1.2 Only nodes CCC, Execute and Debug, and CBCCC, Execute
Symbolically, are largely designed towards an interactive environment.
Batch usable debugging and symbolic execution features will be present,
however.

4.2.2.1 Addressed by node D, Integration of Modules into System.

4.3.2.1 The HAL/S environment has been specifically addressed (note the
emphasis on the use of HALMAT). No language alterations to HAL/S have
been proposed. The assertion, units, and statistics specifications are ac-
complished through the use of specially processed (and formatted) com-
ments. An enhancement will therefore be required to the HAL/S [ront end
(represented in the diagrams by node CBCAAB).

63



.

#.3.2.2 See Section #.2.5 of this document. Note, however_ that substantial
success in attacking the aliasing problem may be made through the use of
instrumentation. See reference 16 Huang, 1978.

#.3.3.1 With the use of node CBCAA, the LRC-HAL/S compiler front end_
all existing documentation features are retained and will not be duplicated.

4.3.3.2 HALMAT, and augmentation thereof, is used as a primary data
object in the design. The bulk of verification activities work from the
HALMAT directly. HALMAT has not been altered in any way. See Section
3.3.2 of this document.

4.3.$.2 Used in node C, of the Document Existing System model.

$.3.5 The targeting of HALMAT to a specific object machine is not
specified in the preliminary design. (With the exception of the interactive
debugger and operating system interfaces (such as files needed in coJlect!ng
run time statistics) verification activities are generally independent of a
particular code generator.)

5.1.I Maps will be produced at node CBCAAA, the compiler, and at node
CBCCAB, generate cross-reference maps.

5.1.2 Node CBCCAEC, Annotate Type Coercions.

5.1.3 Node CBAC, answer questions about specified code segments, and
node B_ extract internal documentation, of the Documentation SAMM
model. J

5.1.#-6Nodes CBCCAF, Document Real-Time Aspects,and CBCCAEC,
generatecross-referenceMaps.

_.1.7Node CBAC, answerquestionsaboutspecifiedcodesegments.

5.1.8Node CBCCAFA, checksharedroutinesforreentrancy.

5.2.1-5,5.2.8 Node CBCC_ performinternalverification,withadditional
requirementsforruntimechecks.

5.2.6,7,9 Node CBCCAA, check Units/Scalecorrectness,and node
CBCCAEB, checkterminationconditions.

5.2.10 Nodes CCB, targetHALMAT, and DA, Check for recompilation
requirements.

5.3.1Node CBCD, instrumentationandlevelson localassertions.

6#



5.3.2 Monitors calls are created several places, but they are actually
inserted at node CBCD. Some monitors would be required in the run time
executive itsel[, which is not modeled in these SAMM diagrams. The
HALMAT monitor file contains the set of monitor calls.

5.3.3 Node CBCD, instrumentation and levels on local assertions ....

5.3.t_ Node CBCCAC, generate timing estimate for specified paths.

5.4 Node CCCD, Interactive Debugging.
t

4.2 Discussion of Investigations.

4.2.1 ISIS. - The relational database capabilitics of ISiS referred to in the

requirements document were discovered to be nominal, if existent at all.

Consequently no assumption has been made in the design concerning such a

feature. The multilevel file structure provided by ISIS will satisfy most

requirements of the system database. Additional requirements can be met using

data structures internal to the file structure.

Examination of ISIS's capabilities to invoke analysis tools was difficult, as

little or no documentation was available. Indeed, it was discovered that the

design of that capability was not complete, nor was its implementation. One of

our original intentions was to create a prototype system, using stubs for the tools,

to gain experience with the ISIS environment and evaluate the user-friendliness of

the entire system (how convenient the required user interaction would be). This

was impossible though, due to the state of implementation and documentation.

Probably the most disturbing discovery about ISIS was that it was designed

to invoke batch tools alone. In order to invoke an interactive tool, either the ISIS

environment will have to be exited, the tool environment entered, and then back

to ISIS, or some other scheme used. Since interactive tools largely provide their

own environment, this is not too severe. Simple things, however, like correcting

rnistyped input, may vary significantly. These are important from a human

engineering standpoint. More importantly, the question of data and database

manipulation arises. This is important considering the centrality o_ the system

(IS!S) database. ._ clean interface may prove dlfIicult to achieve, and the

65



interface will be lost. Once the ISIS implementation is completed, examination

will be required to determine all the implications.

4.2.2 FSIM. FSIM's capabilities were carefully examined and were

discovered to be based on a single, simple, technique. In order to regulate

concurrent and real time processes the compiler associates with each HAL/S

statement an estimate of that statements execution time. During compilation a

call to the run time monitor is inserted after the code corresponding to each

statement. The monitor, when called, adds the estimate of the just-executed

statement to its current simulated clock time. That clock forms the basis for

scheduling processes and all other activities associated with real time events.

Though the main purpose of the clock is in real time control, clearly an estimate

of the total execution time for another target machine is available by a suitable

scaling of the estimates. Before any execution is performed an estimate of the

execution time of any specified path could be formed by simply adding the

estimates associated with the statements along that path. Such a capability is

included in the design presented. Similarly, performance characteristics of a

progtam in various run time environments may be obtained by simply changing the

set of monitor routines; no alteration to the target program is required once the

monitor calls have been inserted.

_.2.3 HALSTAT. - Several experiments were performed using Intermetric's

HALSTAT tool. No surprising capabilities were observed. The tool seems

s_rangely conceived as it provided both high and low level information side by

side, viz. a code audit function listing the frequency of occurrence of each type

of HAL/S s_atement along with a load map. Many of the features provided are

specific to IBM architecture. The preliminary design attached contains the same

functions, but separated into several tools and made available only under

appropriate user selected environments.

4.2._ FAST. - Due to a series of misunderstandings and complications, the

University o5 Texas FAST ststem was evaluated only through reading the available

literature (references 17 and 18) [3ohnson, 1977] [Browne and 3ohnson, 1978].

Man}' of the basic _apabilifies of FAST are recognized as valuable and are

contained in the prelim:nary design. Specifically, the abifity to make language-

66



oriented queries about a given program seems quite useful. Queries can be made,

for example, about all the reference occurrences of a particular identifier. These

types of queries are frequent while modifying existing pieces of code. SAMM

node CBAC is the tool which performs these actions_ and is designed to act in a

role supportive of modification activities. Thequery-type abilities of FAST are

considered the basic specifications of this tool. This tool is regarded as having a

low implementation priority_ and more detailed specifications for it may wait

" until such time as they are considered important.

One significant finding from the investigations conducted is that the

analysis capabilities of the current implementatien-of FAST are not very

impressive. FAST does not even attempt to detect initialization errors on an

interprocedural basis because the current algorithm would be prohibitively slow.

Indeed, intraprocedural detection of this error in noted in the documentation

[3ohnson, 1977] as being very inefficient. This finding strengthens our conviction

that the functional capabilities of tools must be carefully chosen. Implementing

sophisticated analysis tasks with inappropriate algorithms is foolish. (Extravagent

claims about the implementation ease of particular tools must also be examined.)

4.2.5 HAL/S Problem Features. - Several features of HAL/S have been

identified as presenting difficulties for the analysis tools which have emerged

during the design process. These features are described below. It is important to

note that only those features which present problems to the designed tools are

presented, not features which may, for example_ present difficulties to a

particular coding methodology. Further, the designed tools operate on an

intermediate representation (HALXIAT) of the source programs. Therefore,

problems which are strictly syntactical are precluded outright. If more analysis

tools are designed later on_ additional problem-causing constructs may be

identified.

I. Real time, concurrent processing statements. These constructs pose a

whole new class of problems for existing analysis techniques. Static analysis_

symbolic execution, and dynamic analysis are all affected. The problems are by

67



no means unsolvable, however. They simply require that existing techniques be

extended. Such extensions have begun as work supporting this design effort. In

particular, significant extensions to static analysis techniques have emerged.

Within this general classification, the TERMINATE statement presents the

greatest difficulty. Its use will significantly hinder analysis activities. It is

recommended that the use of the statement be highly restricted, if not prohibited.

Cyclic scheduling of processes also presents some difficulties. Our research

activities have temporarily ignored this feature until problems with the basic

facilities have been resolved. We do not recommend this feature be deleted_

however_ as it appears quite useful. Rather, it should be noted as" inhibiting

analysis activities, until further research expands the capabilities of the tools.

2. Aliasing. Aliasing is the referencing of a single object by more than

one name. Aliasing can hinder static data flow analysis under certain circum-

stances. For example, if an arrayed variable is indexed with a value which has

been read in, analysis is hindered (reference 4) [Fosdick and Osterweil, 1976] .

The forms of aliasing in HAL/S which present the greatest difficulties to static

analysis are the NAME feature and global variables. The situation with

global variables is similar to FORTRAN COMMON blocks. As such) this problem

is well understood. FORTRAN does not have any analogue to the NAME feature)

however, and it therelore represents a new difficulty which requires additional

investigation. As Huang, (reference 16) indicates9 aliasing presents little problem

for dynamic analysis, so the complementary use of techniques seems an

appropriate resolution of the problem.

m

3. Side effects. HAL/S functions may cause side effects when evaluated.

Since functions may be evaluated as the result of processing ASSERT and KEEP

statements, and since such statements must not cause any side effects, restric-

tions on function composition will be required in these contexts. Enforcement of

these restrictions will require additional analysis.

68



Though this difficulty only exists as a result of the assertion language

designed_ i-t is regarded as a fundamental problem with HAL/S which should be

evaluated Jn other lights. A general prohibition of side effects may be a wise
rule.

4.2.6 RNF. - The University of Illinois text processor -RNF- was used during

" the period of the contract to produce interim reports and documents. This

experience allowed a close look at its features. For our purposes_ RNF was useful

for producing medium size documents (40 pages or so). Larger documents would

seem to be best handled by breaking them into smaller sections and processing

each section separately (thus reducing CPU time through a course of several

edits).

The documentation and command set are reasonable but not extravagant.

Several errors exist in the implementation_ howeveG and processing speed is not

blinding. Remedies in these areas and extensions (e.g., superscripts and sub-

scripts) are in progress at the University of Illinois. When the enhanced version is

distributed it should prove a very useful tool for maintaining and producing readily

available documentation. The importance of providing documentation tools such

as RNF must be stressed: timely_ up-to-the-minute information is critical during

software development_ use, and modification.

4.2.7 Interpretive Computer Siinulator. - Only a very few of the verification

facilities presented in the design require any knowledge of the final (machine)

representation of the code. The interactive debugger is clearly implementation

dependent_ as are the file system interfaces required by run-time monitors (both

for error checking and assertion/statistics processing). Any activities associated

with the run-time monito G such as process queue snapshot generation9 are also

implementation dependent. With the exception of the interactive debuggeG these

dependencies are straightforward, and their resolution should be clear.* No undue

69



requirements are thus placed on any Interpretive Computer Simulator (ICS)

utilized. Since interactive debuggers and ICS's serve similar purposes it is not

anticipated that cooperation will be required. If cooperation is required, a
suitable interaction should be achievable with some effort.

* All verification tool-generated monitors are contained directly in the code.

7O



SECTION _.0

Conclusion

BCS believes the design presented adequately satisfies the requirements of

the MUST environment. The design presented takes cognizance of problems

associated with software production through its entire lifecycle. It is sufficiently

flexible and well designed that as additional capabilities are added, such as those

• supporting the automation and formalization of requirements and design

activities, their integration may proceed smoothly. Careful choice of such tools

should be made, however, to ensure that the progression from one phase to *.he

next may be made naturally, with the ability to directly trace all design decisions

between phases.

The proposed programming environment, when implemented, will provide

features substantially more powerful than those found in almost any existing

software production environment. Utilization of the tools will be natural_ will

increase productivity, improve software quality_ and lower costs.

5.1 Listing of Programs and Implementation Recommendations. - The SAMM

model of the system development and documentation processes contain many

nodes which correspond to program units. Some of these nodes are decomposed

below the program level (in the SAMM model) to indicate their internal structure.

Below is a list of all the programs identified, followed by a brief description

(usually just the title of the SAMM node). Listing the programs separately does

not imply that all the tools must be invoked separately: many of the tools can be

grouped and would be invoked as a system (such as those listed under the heading

of "non-data flow static analysis"). Specifying programs allows an indication of

implementation options. There are a few tools which are not found as specific

nodes in the SAMM models, but which are discussed in the text of this document.

They are described as well.

Clearly, some of the tools contained iD the design are of greater importance

than others. These tool-value relationships should be reflected in the order in

7r



which the tools are implemented. Our primary conviction is that implementation

of the static and dynamic analysis tools should proceed immediately. These tools

offer best beneflt/cost ratio. Experience with prototype systems in this area

(DAVE9 PET) and studies by Howden_ as mentioned earlier_ have brought us to this

conclusion. Those tools which are more specialized or less powerful should have a

lower priority. Further investigation into design of some of the listed tools will

increase their value, of course. The symbolic executor is the most notable

lnember of this category. Also involved in an implementation Wotild be provision

Of general support capabilities_ such as a manager for the database described in

Appendix B.

In the following list of programs a priority number is attached to those

verification tools which operate on HAL/S or HALMAT. Those with priority 1 are

deemed most important, Requirements and design oriented tools are not ranked,

nor are the utility non=verification tools (such as the cornpiler or loader).

SAMM Designator Priority Description

A Check internal consistency of requirements

specification

BB Check internal consistency of system

design

BC Verify preliminary design to requirements

CAB Perform internal verification of module

design (if the samenotation is used for

system level design_ this will be the same

tool as BB).

CAC Verify module design to requirements

(which is the system design)

CADA Check module design consistency

CADC Simulate design

CBB Verify module code to design

CBAC 3 Answer qu_.-t.;ens about specified code

segments (a lang,Ja_e intelligent text _ditor)

72



SAMM Desisnator Priority Description

CBCB I Create monitor calls from assertions having

regional significance

CBCDIDD I Instrument HALMAT for module/system

tests

CBCAAA/D Perform basic HAL/S to HALMAT translation.

CBCAAB 1 Process (translate to monitors) local assertions

- and keep statements

CBCCB/DCB 1 Perform data flow analysis

CBCCC/DCC 2 Perform symbolic execution

The next eleven programs belong in the group "Non data flow static analysis"

CBCCAA I Check correct program use of units and

scale

CBCCAB 1 Generate cross reference maps that are

not produced by the compiler

CBCCAC 2 Generate pathwise estimate of execution
time

CBCCAD 2 Check programming standards adherence/Warn

of use of dangerous constructs

CBCCAEA 1 Generate program call graph

CBCCAEB 3 Check that all loops alter their termination
conditions

CBCCAEC 1 Annotate listing with all type coercions

performed

• CBCCAEE 3 Generate program unit complexity measures

CBCCAFA 1 Check shared routines for reentrancy

" CBCCAFB ! Document the processes which are "dependent"

CBCCAFC 2 Check dependent processes for unforeseen
effects when terminated

(End of non-data flow static analysis) . '

73



SAMM Desisnator Priority Description

CCB/EB Target HALMAT to executable/simulation

code

CCCA Load and produce load maps

CCCB Monitor HAL/S execution (System monitor)

CCCD 2 Debug/Test Interactively

CCDBAA 1 Post-process Histogram/History File

DA 2 Check for recompiiation requirements

and merge modules into a single __ystem

DB 1 Expand Calls for system level assertions/keeps

*B 2 Extract internal documentation

_C Generate flowchart-

* - Node belongs Icothe Document Existing Sys1:em model

- 2 Test Harness - composed of nodes CCA,

CCC9 CCDBA_ CCDA (Create test data,

Execute_ Check test coverage, Check

output values). This operation may also

require a file cornparator.

2 Data Base monitor (Reports to management

on which parts of the data base are empty_

which tools have not been run_ etc.)



INTRODUCTION TO THE SAMM METHODOLOGY

Appendix A

SAMM (reference 19) [Stephens and Tripp, 1978] is a BCS developed

formalism whose purpose is to model a system through a layered structure of

activities and data flow. A SAMM representation is primarily composed of a tree

structure, which describes the context of a diagram in a system, and an activity

diagram, describing the activity data flow relationships of a system. The

functional activities of a system are focussed upon, and these activities are

hierarchically decomposed, resulting in the tree structure. Data values flow

between boxes (called cells or tree nodes) which represent the activities.

SAMM diagrams indicate the tree structure (hierarchical decomposition)

through the systematic use of node labels. Each node in the tree is uniquely

labeled in such a way that the designation of each node indicates its parent node,

as follows. Each individual node in the tree may only be decomposed into a

maximum of six subnodes, indicated by the letters A-F. The subnodes of the root

node are labeled by single letters (indicating the 5irst level of decomposition).

Thus they may be designated A, B, C, D, E, and F. If node A is further

decomposed into seven nodes, their designators will be AA, AB, AC, and so on to

AF. Two letters indicates the second level of decomposition. The designators of

tile ancestral nodes of a given activity are thus explicit. For example, node

BCAD has as its immediate parent node BCA, Whose parent is BC, whose parent is

B, whose parent is the Root.

Data items in SAMM diagrams are indicated by a name and number. Only

. data numbers are used when indicating flow among activity cells; .they are

correlated to the data names in the Data Table (part I o5 the Activity Data Flow

- Diagram). Data items transput by an activity are o5 two categories: "forward"

and "Ieedback." Forward output items exit the activity cell from the right,

forward input items enter the cell from the top. Feedback output exits from the

left_ and feedback input enters from the bottom. See Figure A-I. Feedback

A-I



FORWARD

l INPUTFEEDBACK
OUTPUT

FORWARD
OUTPUT

FEEDBACK lINPUT

Figure A-1 SAMM Activity Cell With All Possible

Inputs and Outputs

items allow the modeler to depict data flow loops and mutual dependencies. With

data flow paths connecting the nodes of the hierarchical breakdown, a directed

graph is formed. Figure A-2 contains a sample SAMM diagram consisting of four

activities and eight data items. Items I and 7 are external inputs; item 6 is an

external output.

The formalism chosen is amenable to automated input9 data management,

and verification. BCS is currently creating tools to perform such tasks. One such

tool is SIGS (SAMM Interactive Graphics System), which allows graphical entry

and manipulation of SAMM diagrams. In addition to utilizing the easy entry and

automatic checking facilities, the designer may sit at a graphics terminal and

experiment with a design, considering several design alternatives. For each

alternative the consequences and requirements associated with the changes are

easily perceived. SIGS and the SAMM methodology are excellent tools for
m

capturing requirements, and thus represent a potential candidate for inclusion in

the MUST environment. InclUsion would substantially aid in the automation of

node A, Analyze Requirements, of the attached model of "System Creation."

The SAMM methodology used in the accompanying forms is slightly modified from

that described in the reference. A,s noted aho\,e_ SAMM fonusses, on *he

hi_rarch_cr.l breakdewn of activitics. A breakdown of data objects is inherent

A-2



i 7

ACTIVITY
2 3

A

ACTIVITY B

g__l j ACTIVITY

C

ACTIVITY D ] 6

Figure A-2 Sample SAM_I Diagram

in this as well, but the logical structure of the system data may not conveniently

" conform to the tree structure. At least it may be difficult to grasp all the data

relationships present in the tree structure. Thus a data base model has been

" developed as well, and is presented in Appendix B. The non-standard notation

arises when referencing this database. Feedback input items which appear "out of

A-3



thin air" denote information being used from the database. Database inputs enter

activity cells _rom the bottom; outputs (which are only entered in the database

and do not immediately participate in the model) exit from the right. Such

notation is only used where standard SAMM conventions would be awkward or

unduly lengthy.

!

A-O



SYSTEM.DATABASE

AppendixB

The database envisioned as associated with the MUST programming

environment is described below. The ad hoc notation used is for tutorial purposes,

. resembling a Pascal type definition. The keywords employed are taken from

Pascal and have similar semantics. Comments are enclosed in braces ({)). Words

in upper case are either reserved keywords, such as TYPE, RECORD, and END, or

reference defined types, such as INTEGER, TEXT, and FOLDER. Types are not

necessarily defined before they are used. Words in lower case are identifiers, and

are used as field identiiiers, type names, and variable names.

Examples:
TYPE {keyword}

mytype = {type being defined}
RECORD {keyword} _

code: [field identifier}

CODE; {type defined elsewhere]
count: {field identifier]

INTEGER; Itype defined elsewhere (in this
case by the system)}

END; {keyword - end of definition of mytype}
yourtype = [type being defined }

MYTYPE; [type defined elsewhere, namely,
right above }

The database is described through the definition of type SYSTEM DATA

BASE. Not all types referenced in its definition have been fully defined. The

reader's intuition is relyed upon to provide an adequate definition for those types

which fall in this category. Some types obviously have a fuller definition than

others, such as CRITERIA, but to dwell on them would divert attention from the

basic goal of this presentation.

B°I



TYPE system data base =
RECORD

system requirements: REQUIREMENTS;[see expansion below }
design:
RECORD

document: DOCUMENT;
formal statement:

RECORD
number of modules: INTEGER ;
module: ARRAY [l..number of modules] OF

RECORD
requirements: REQUIREMENTS;
design: DESIGN;{see expansion below} -

END {module record} ;
integration: IDAP; {how the modules are held

together and interact.
(overall design) }

END {formal statement record} ;
decisions: HISTORY;
management: FOLDER;
acceptance criteria: CRITERIA [which pertains to the

design as a whole};
simulation: SIMULATION {of the whole design } ;

END {design record } ;
modules: ARRAY [l..number of modules] OF

RECORD
documentation: CODE DESCRIPTION;
code: CODE; {expanded below}
test driver: CODE;
results: ARRAY [l..number of test cases] OF

RECORD
purpose: TEXT;
input: INPUT;
output: OUTPUT;

END [results record}
END {modules record}

integration: CODE DESCRIPTION {same type of documentation
as found in the modules record, but here at a

higher level and (possibly) with some
additional items} ;

B-2



system test:
RECORD

management= FOLDER;
number of test scenarios: INTEGER
transput: ARRAY [l..number of test scenarios] OF

RECORD

purpose: TEXT;
input: INPUT;
output: OUTPUT_
number of configurations: INTEGER ;

{A configuration is a collection of module intermediates
. (possibly at different levels) which together form a

complet% coheren% system. The number of configurations
is a function of the number of intermediates per module9
where each intermediate corresponds _o a different
level of instrumentation. }

system performance: ARRAY [l..num of configurations]OF
RECORD

configuration description: _
ARRAY [l..number of modulesJ OF INTEGER
{Where the integer is the number of the

intermediate chosen}

nmOnitor/performance data: OUTPUT {system level}_
odule level performance stored at module

level in modules.code.lower levels.etc.
END {performance record }

END {transput record}
END {system test record }

END {system data base record }

code =
RECORD

source: HAL/Si
first intermediate= HALMAT{output from the first half of

the compiler }_
basic monitor file = MONITOR FILE;
lower levels: TARGET CODE_

END

target code =
RECORD

number of intermediates: INTEGER Ieach corresponds to
different levels of instrumentation which have been

inserted}
intermediates: ARRAY [l..number of intermediates]OF

RECORD

description: TEXT [indicating what instrumentation
has been inserted, Note that intermediate code

resulting from the expansion of assertions at the
integration step is stored her% as well as levels
expanded solely at the module level }7

B-3



intermediate: HALMAT ;
target:

RECORD

nUmber of targets: INTEGER {This structure level

reflects the MUST environment option of targeting
a single HALLS program to several object machines.
This level of structure is optional and may well
be omitted};

targets: ARRAY [l..number of targets] OF
RECORD

code: LOWL {an unspecifiedlow level
language};

perf: PERFORMANCE {thisisthe output
specific to a particular machine/OS/
instrumentation combination_ and is
described below};

load info: LOADRELATEDOUTPUT; {such as
maps}

END ttargets record} ;
END {target record} ;

END {intermediates record } ;

END {targetcode record definition };

performance =
RECORD

{number of test cases: INTEGER ;

data: ARRAY [l..number of test cases] OF
MONITORING INFO; depending on the program, such as if

there are parallel or real time features, this could
contain some stuff normally found in modules [ ].
results ; }

END {performance record} ;

code description =
RECORD

decisionsi HISTORY;
management: FOLDER;
external: TEXT;
internal: TEXT;
flowchart: GRAPH;
static analysis:

RECORD

non-data flow: TEXT and GRAPHs;
data flow: TEXT;

END {staticanalysisdocuments };
END {documentation record } ;

B-4



requirements =
RECORD

document: DOCUMENT;
_ormal statement: SAMM [or similar vehicle.which must be

relatable to the design vehicle(s)};
management: FOLDER;
acceptance criteria: CRITERIA;

END _requirements record } ;

design =
RECORD
document: DOCUMENT;

. formal statement: IDAP {or similar vehicle which must be
relatable to the requirements and code
vehicles };

decisions: HISTORY;
management: FOLDER;
acceptance criteria: CRITERIA;
simulation: SIMULATION OUTPUT

END {design record };

history = TEXT; {which indicates how the current level of specification
was arrived at from the previous level, including why
particular choices were made}

folder = TEXT; {all management related information governing development
of this particular phase, such as reviews, status
reports_ action items, and the like }

B-5





REFERENC ES

Appendix C

I. [Osterweil, 1977a] "A Methodology for Testing Computer Programs,"

Proceedings AIAA Conference on Computers in Aerospace, Los Angeles,
a

California, pp. 52-62 (October, 1977).

2. [Osterweil, Brown, and Stucki, 1978] "ASSET: A Lifecycle Verification and

Visibility System," in Proceedings COMPSAC 78, Chicago, Illinois pp. 30-35

(November, 1978).
m

3. [Karr and Loveman, 1975] Karr, Michael and Loveman, David B.,

"Incorporation of Units into Programming Languages," Communications of

the ACM, Vol. 21, No. 5, pp. 385-391, (May, 1978).

4. [Fosdick and Osterweil, 1976] Fosdick, Lloyd D. and Osterweil, Leon 3, "Data

Flow Analysis in Software Reliability," Computing Surveys, Vol. 8, No. 39pp.

305-330, (September, 1976).

5. [Taylor and Osterweil, 1978] "A Facility for Verification, Testing, and

Documentation of Concurrent Process Software," in Proceedings CO_IPSAC

78, Chicago, Illinois, pp. 36-41 (November, 197S).

6. [Osterweil, 1977b] Osterweil, Leon 3, "The Detection of Unexecutable

Program Paths Through Static Data Flow Analysis," Department of

. Computer Science Technical Report No. CU-CS-110-77, University of

Colorado; Boulder, Colorado, (May, 1977).

b

7. [Clarke, 1976] Clarke, Lori A., "A System to Generate Test Data and

Symbolically Execute Programs," IEEE Transactions on Software

Engineering, Vol. SE-2, No. 3, pp. 215-222, (September, .1976).

C-I



8. [Howden, 1977] Howden, William E., "Symbolic Testing and the DISSECT

Symbolic Evaluation System," IEEE Transactions on Software Engineering,

Vol. SE-3, No. % pp. 266-278, (3uly_ 1977).

9. [Howden, 1978a] Howden, William E., "DISSECT- A Symbolic Evaluation and

Program Testing System," IEEE Transactions on Software Engineering, Vol.

SE-%No. 1, pp. 70-73, (3anuary, 1978).

10. [Howden,1978b]Howden,WilliamE., "Functional Program Testing,"
Proceedings COMPSAC 78, Chicago, Illinois, pp. 321-325, (November, 1978).

II. [Stucki, 1976] Stucki, L. G., "The Use of Dynamic Assertions to Improve

Software Quality, MDC G6588, McDonnell Douglas Astronautics Company-

West, November, 1976.

12. [Chow, 1976] Chow, T. S., "A Generalized Assertion Language," Proceedings of

the 2nd International Conference on Software Engineering, San Francisco,

CA, pp. 392-399 (October, 1976).

13. [Lloyd & Lipow, 1977] Lloyd, D. K., and Lipow, M., Reliability: Manasement,

Methods, and Mathematics. Second edition, published by the authors,

Redordo Beach, CA, 1977.

14. [Sukert, 1977] Sukert, A. N., "A Multi-Project Comparison o5 Software

Reliability Models," Proceedings, 1977 Computers in Aerospace Conference,

L.A., CA, pp. 413-421, (October, 1977).

15. [Thayer, et. al., 1976] Thayer, T. A., Lipow, M., Nelson, E. C., "Software

Reliability Study," TRW-SS-76-03, TRW Defense and Spare Systems Group;

Redondo Beach, California, (March, 1976).

16. [Huang, 1978] Huang, 3. C., "Detection of Data Flow Anomaly Through the

Use ef Program !nstrumentatien," Technical Report UH-CS-T8-%

Department of Computer Science, University of Houston (3uly, 1978).

C-2



17. [Johnson, 1977] 3ohnson, David B., "Program Analysis with the Aid of a Data

• Management System," Masters' thesis, Department• of computer Science,

The University of Texas at Austin, (August, 1977).

18. [Browne_ & 3ohnson, 1978] Browne, 3. C. and 3ohnson, David B., "FAST - A

Second Generation Program Analysis System_" Proceedings of the 3rd

International Conference on Software Engineering., Atlanta, Georgia, pp.

142-148, (May, 1978).

19. [Stephens and Tripp, 1978]"Requirements Expression and Verification Aid,"

Proceedings 3rd International Conference on Software Engineering_ Atlanta,

Georgia_ pp. 101-108 (May, 1978).

20. [3ohnson, M. S._ 3ohnson9 Mark Scott, "The Design and Implementation of a

Run-Time Analysis and Interactive Debugging Environment," Doctoral

thesis_ Department of Computer Science, University of British Columbia_
1978.

C-3



J

!_f'_ SAMM DIAGRAMS
Appendix D

D-1



Illpl lldf.I ,,M_'. II iJ,.i .v, ! ,. _,JMI,ANV I

I
I

ACTIVITY - DATAFLOWDIAGRAM I ,cT,v,TvOES,GNATORROOTJ

T,TL_ SYSTEMCREATION i

!AI I'TRACE, DATADESCR'PT,ON _r- _ "

DA_ D . _ l
Initial concept

Requirementsspecification Manage System 'i 12 12
3 Requlrementsrevision specification L Development 21 12

• 4 Preliminarydesign and module

• requirements (r
Analyze

5 Preliminarydesign revision Requirements

requi rements L #_I(

6 Modules t •

7 Module revision requirements I fDesign System_'_
8 System (HALMATlevel) 3_ and JIdentify

9 "Results"based module revision '_, Modules 4,1_
requirements

10 System acceptance criteria

11 Module acceptance criteria Create Module

12 Managerial guidance and oversight,

user input

13 Design acceptancecriteria _ _ "es
14 Executable level of system tegrate Modul:=L.._-

15 Generated test data Lint°
System

16 Machine state resulting from partial I _ '>

.execution(for use by the symbolic

executor) 9 6 Target and

Test System•

j
PREPAHED BY DATE R[VIEWED BY DATL /APPROVED BY DATE

RE_ DOCUMENT 10S67 M'$AMM)

CO t000 10IS ORIG. _7e



DATA DESCRIPTIONS ......
NODE ROOT TITLE SYSTEM CREATION

DATA RELATED ACTIVITIES

I_ TYPE DESCRIPTION SOURCE DESTINATION

The acceptancecriteria which are generatedby several

activities in this SAHH chart are very important. As a system

is created many functions are written as a part of the imple-

mentation. Each layer of decompositionintroduces a new set

of functions,which together comprise the functions of the

previous level. Each of these functionsrequires testing to

guarantee that it produces the desired result. In order to

enable this testing, as each function is defined, at every

level of decomposition,a set of acceptancecriteria needs

to be defined for that function. Thetotality of these

criteria enable effective, thorough testing when the code is

produced. (They are useful for.testingat higher levels, too,

of course.)

,L • • •



.:, , ,., ..... :, ,,., ,,

AC1IVI1"Y- DATA FLOWDIAGRAM fACT_VITYOES,GNATO. M
TITLE

MANAGESYSTEMDEVELOPMENT 1 •
i

DATAID IRAJ:E DATADESCR{PTION f

1 ] Initial concept f Monitor

2-5 Record of important decisions made Requirements 2 ........

(design issues) at each step - key _ Activity AJ 6

spots to watch, etc. # 11 i'
6-10 12 Managerial approval/input into each f Monitor _'_

process (controllingdecisions) I Design IActivity 3 •
11 db System requirements _
12 db Design # 12 ,.

I•3. db Modules [] - documentation, f Monitor "_.

i •Module
performance information, and results Creation ' C) 414 db Integration _,_ : 8

- 14 db System test t13 _,

f tlonitor
."| Module

. . Integration 5 9

14

f Monitor _ .....
., , System i .

Testing I '10,
. 15

;
i

I

PR_:PARED BY DATE REVIEWED BY DATE APPROVED BY DATE ,_

REF. DOCUMENT 10167 (SAMM)

CO 1000 1015 ORIG. 2/78



.._.._ A {,:TIV I TY [._E$1GNATOR

.:

ACYIVITY- DATAFLOWDIAGRAM A

ANALYZEREQUII_EMLNTS 1/ 1 "

T; TRACE DATA DE',;(;RIPTION f"- _I 12 Managerialguidanceconveyinginitial f Create

Requirements| ?j .....conceptand requirements SpecificationJ _Z 2"

2 2 Requirementsspecification _ _w/ =-_3 Inconsistency- basedrevision

requirements _ Check

4 3 Designbasedrevisionspecifications Internal
Consistency

5 10 Systemacceptancecriteria _#

6 Acceptancebasedrevision

_ Generate 1

specifications 6 Acceptance

Criteria Cj 5_



ACTIVITY DESCRIPTIONS
NODE A TITLE ANALYZEREQUIREMENTS

ACTIVITY RELATED DATA
_ I III[ I I ]

ID DESCRIPTION D SOURCE DEST NAME

J

B In the currentsystemconfigurationthis

is a humanactivity.As more capabilitiesare

addedto theMUST environment,this should

becomeautomated.A requirementspecification

tool suchas SAMMallowssuch automation.

ia_,[_'H,o<..<<...o,,.,<......<I



{,OMPAt4_-
/

a.,, "" .......... : '"' J ACTIVIT'_;E$1GNATOR
ACTIVITY - DATA FLOWDIAGRAM

TITLE

DESIGN SYSTEMAND IDENTIFY MODULES I'9L I
" 1,9 9,7

DATAIDI TRACE DATADESCRIPTION
I

i.] 2 Requirementsspecification ,(Create. I

2 4 Module requirements and integration _ Preliminary |, , |

specification (preliminarydesign) 2

3 Inconsistencybased revisions '

4 Verificationbased revisions

5 5 Module design based revisions

6 3 Requirementsrevision specifications

7 10 System acceptance criteria

(requirements level) . ." 4 ,.^f Verify _

8 II Module acceptance criteria IPreliminaryDesigrl

12 Management oversight and review _v Requirement_j
9 !

•10 ] 13 Design acceptance criteria

11 ' Acceptance based revision Modu]erequirements 11 'and)tanceDesignCriteria '
AcceptanceCriteria

1
I

REF. DOCU,_fENT 10167 {SAMM)

CO I000 I01E ORIG. 2/78



r

ACTIVITY DESCRIPTIONS
NODE B TITLE DESIGNSYSTEMANDIDENTII_ MODULES

ACTIVITY RELATEDDATA

ID DESCRIPTION ID SOURCE DEST NAME

B,C As in the case of requirements analysis

these activities are currently human

performed. As capabilities are added,
these should become automated.



ACTIVITY DESIGNATORACTIVITY - DATAFLOWDIAGRAM C

DATADESCRIPTION f .

1. 4' Preliminarydesign and module 6 ---Lf " eAJ Z 9 _!_i

requirements _- Design Modul !i

2 Module design
I:

3 6 Module code (HALMAT level) ,, i!

4 "Testbased" code revision _ _ I'l
specifications evelop Module 3, IZ

5 Code development based design BJ

revision specifications _ C_ I:

!
6 5 Module design based revision }
' specifications 4 Test Module

7 7 Integration based revision

specifications

8 9 "Results" based revision

• specifications

5 Design level module acceptance

criteria

l I0 11 Module acceptance criteria

(requirementslevel)

11 12 Managerialparameters input/controlling

12 I Generated testdata

i

I

13 I Machine state (at intermediatepoints

I ofexecution - for use by symbolic

executor) _ j

PREPARED BY DATE REVIEWED BY DATE JAPPROVEDBY DATE 7, 8

RE_ DOCUMENT 10167 fSAMM) j }

CO 1_6 1015 ORIG. _78 !



ACTIVITY- DATAFLOWDIAGRAM I ACTIVITYDEslGNATOR

T,TI_ J CA
DESIGN HODULE

1 ]

_'ATAID TRACE DATA.__DES(:IIIPTION _.

I I Module re(lulrement'; f

Z 2 Module (le_J0,spe(:ificatlon Create Design Z Z Z ........ 2_;
3 6 Module design based revision \. A_ -

specifications

4 Revision requirements- internal f _'_

:____Perform Interna' .5 Revision requirements- verification Verification
to requirement _._ B_

6 Revision requirements- verification

to other modules l

7 7 Revision requirements- integration _ I Verify to
q Requirements

8 8 Revision requirements- results %,,._ C_

9 10 Requirementslevel module acceptance

criteria 6 C_eck Consistency_
| with other |

10 9 Module design acceptancecriteria i Mndule/Simula._ I

• |

• t

I

PI_EPARt D fdy UATE IREV|EWED SY DATE IAPPROVED By DATE 7,8
REF. DOCUMENT I0167 {$AMM)

CO 1030 1016 ORIG. 2/78

s



€_4JOI_€. f I .a_',,lS ,I '.} .V. J',_,JM,'^pJV . i

i ACTIV|TY DESIGNATOR . IAC!IVITY - DATA FLOWDIAGRAM CAD ......
TITLE

• i
CIIECKCONSISTINCYWITIIOTIIERFIODULES/SIMULATE 11 1 1 I"D__AT.A.ID TRACE DA1A DES(;RIPTION r-

?. 2 Subject module design //rCheck
2 Additionalmoduledesigns 3 / ConsistencYIDesign

(previouslycreated) _yntactic,Stat_c_

3 6 requirementsC°nsistencybasedrevision 2_

requirements (

4 6 Simulationbasedrevision HoldModule

Designs B) 2 ,

4

,i

PREPAFI'E{) BY DATE JR{VIEWED BY OATE ]APPROVED By OATE 1

REF, [_OCUMENT 10167 {$AMM) ,_
. CO 100C 1015 ORIG. 2,/78

...

I
I



w • t •

ACTIVITY DESCRIPTIONS
,NODE CAD TITLE CIIECKC01(SISTENCY/SIMULATE

ACTIVITY RELATED DATA
q

ID DESCRIPTION ID ISOURCE DEST NAME

IB This activityexplicitlymodelsa functionof the

systemdatabase. Similar"activities"aremodelled

implicitlyelsewherein the design.

_ I_,'*'tNw_,CUe,'PLaIiImW_,€|$mC J



!

ACTIVITY- DATAFLOWDIAGRAM J CB
rlT[I ......................................

DEVELOPMODULE 1,9 i I _ 9

A f [)ATA DESCRIPTION f L •
] 2 Module design specification f Create Code_ .,

(includingtest l ' I.
2 3 IIALMAT -- driver if needed)'l 3 _ I_
3 Source code (tlAL/S) _ AJ - I,

4 " Revisionrequirements- internal ,, i'

consistencybased _ /f Verify _ I
to 1

Revisionrequirements- Design
verificationto designbased Bj ;

6 4 Revisionrequirements- testbased

• ocessSource
7 5 Designrevisionrequirements 4 , code;Verify

9 11 Managerialparametersinput/controlling _%Internally C) _
10 3 HALMATMonitorFile for system

testing

11 12 Generatedtestdata

12 13 Machinestatefrom incomplete

execution

,',,,,'^,,,,,., ,,^,, J,,,v. w,,,.Y ,,^:, I ^,.,...v,. ,,, ,,A,, 6 12
RI_ I.XJ('UML,VI IOIG7 (SAMM)

((I I(H_I €'lit, l_llli, J/lll



• t , i

_.,. ,r....... ,.

ACT;VITY- DATAFLOWDIAGRAM i ACTIVITYDESIGNATOR

TITLE l CBA
CREATECODE

DAI'I IC TRACE DATA DES(:RIPTION f

} I Designspecification f -

3 Sourcecode (HAL/S) __ WriteCodeAJI--__ .

Queriesaboutcodeusage 3,E b_

4 Internaldocumentation,answersto

codeusagequestions _ Holdfor allCode5 01d code to be used,library

functions L Modules B)J '
I !

6 7 Designrevisionrequirements

7 All existentcode (t_nswerQuesti°nh
,8 Requestsfor internaldocumentation 4 _ AboutSpecified_

9 9 Managerialoversight _k.Code Segments]. £J
!0 4 Internalconsistencybasedrevision

requirements

i] 5 Verificationto designbasedrevision

requirements

12 6 Test basedrevisionrequirements

pRIpANIb ................UY UArE IMIVIEWEU UY DATE _APPMOVLL) BY UATI 10,11,12 J
REF, 13OCUMtNI 10167 ISAMMI ..............

I II IIlINI Ifllta l)llll, J/Ill



_..IL

i
ACTIVITY DESCRIPTIONS .....

NODE CBA TITLE CreateCode i

ACTIVITY RELATEDDATA
t -- i

ID DESCRIPTION SOURCE DEST NAME
ii i 1

B The actionsof the data basemodelledexplicitly.

i

C This activitywill providefunctionslike thatof the I

Universityof TexasFASTsystem. Particularquestionsabout t

the usageof variables,fables,and the likemay be asked. In i

addition,internaldocumentationsof routines(libraryfunctions)

may be referenced.Note thatthisactivityis only an

intelligenttexteditor. Analysiscapabilitiesare foundin i
i

othertools,suchas the staticanalysersand the symbolic i-
executor, i

H

7',

t

r

I"

l J ! #



I i o !
!

"' ............. '"' "' .......... ' I AcTIvITY DESIGNATOR

ACTIVITY- DATAFLOWDIAGRAM ............................. I CBC
TbTk_

PROCESSSOURCECODE;VERIFYINTERNALLY i| .7I " 7 7

DATA ID TRACE DATA DES(_RIPIION ,_ I _ :

i 3 Sourcecode (HAL/S) CompileHALiS } I2 HALMAT to I_ lln
n 2

3 Furtherexpanded|{ALMATMonitorFile HALMAT J_'ff-Y-I

5 4 Compilererrormessages

6 4 Verificationbasedrevision ¢_.reateCallsFrnm_
l"" •"""l

requirements --I Regional

7 9 Managerialinput(controllingpara- _%._AssertiOns BJ--
meters,suchas whichassertionlevels

"L

to process,or whichverification _erform Internal) 12toolsto use) |Verification
8 ExpandedHALMATMonitorFile \ cj
9 2 InstrumentedHALMAT

o)
i0 InitialHALMATMonitorFile (contains Instrument

i HALMAIfor
,. parsedassertions,units,and history I ModuleTests ).,1]statements) ---

11 10 HALMATMonitorFile containing

monitorinformationto be expanded

at systemlevel

12 11 Generatedtestdata

13 12 Machinestatefrom.partialexecution



ACTIVITY," DESCRIPTIONS, ".... t
NOD[ CBC TITLE L

l

ACTIVITY RELATED DATA i

m

IO DESCRIPTION ID SOURCE DEST NAME

t,
D This activity "merges" the HALMAT and the HALMAT Monitor

File HALMAT level instructionswhich implement the I
|

active (or selected)monitors are inserted,into the
i

program HALMAT.

I

T

/1:_*_"]1......:°"""_"""'*I

,i
t i ! •



t i o

_ , . • _..

lid d

': ...... " "" " '"" """ I AC_|VITY DESIGNATOR

ACTIVITY- DATAFLOWDIAGRAM I CBCA
TITLE ...........

COMPILEHAL/S to IIALMAT

'
DATA IO TRACE DATA [)ES(,FJlPIION F

i ! Source code (HAL/S)
2 2 HALMAT CompiIe

3 5 Errormessagesand sourcelisting

4, tempIPr°cedure/Pr°gram/Task/C°mp°°lates 4_ HO 'B_

5 10 " InitialHALMATMonitorFile (parsed Id Templates

assertions,units,and history

information)

..... I__

,.,,PA,,ubY u4-] j

HLVI|WI U BY DAT| APPROV_IJ Hy UAT|

REF. L)OCUM,_NT 10167 (SAMM)

CO IOOO IlJl$ OHIG. 2/78



ACTIVITY DESCRIPTIONS
NODE CBCA TITLE C0_IPILEHAL/S '

ACTIVITY RELATEDDATA !i

ID DESCRIPTION rD SOURCE DEST NAME "

A This "first half" compilation only i_
generates HALVAT,the symbol tables, and ;,

module templates needed for later compilations, i
Further targeting of the code to the J

executable level is performed by later activi-

ties. Thus the traditional concept of a

"compiler" is altered here.

I

I

i

!

|

i ! , w



L i w • !

.............................................I
ACTIVITY- DATAFLOWDIAGRAM Act,v,tYDES,GNATORCBCAA .....

TITLL

COMPILE (FIRSTIIALF) 11

DAT_ IZ.. TRACE DATA DESCRIPTION r _

f Perform _
I I Sourcecode: IIAL/Sincludingnew 6,7 ----I Basic L

features _-:[11AL/S--_HALMA_ ) 2_ ' "" 3,4New features(filteredout)
ASSERTSand KEEPS(andENDS)

3 2 Stock HALMAT 6 s
4 4 Templates _

5 Intermediaterepresentationof 5

asserts,keeps,etc.

containspointersintoHALMAT

5 3 Errormessages(Syntaxerrors)

7 3 Programsourcelisting

llAII

REt L,'OCUMENT 10167 ISAMM)

(.U |O(jj IOtb OHl[J. 2/l_J



ACTIVITY DESCRIPTIONS li
NODE CBCAA TITLE ;tG• li

ACTIVITY • RELATED DATA _

ID DESCRIPTION SOURCE DEST NAME l _,1 i i

A Slightly modified Intermetrics/LRCcompiler (filters out

special comments for further processing). ,i:

B Uses compilerproceduresto crackspecialcommentsintoa

secondfile- The statementsare not instrumentedhere,they

are only brokendown intoa moremanageablerepresentation.



DATA DESCRIPTIONS
NODE CI_CAA TITLE

DATA RELATED ACTIVITI ES

Ib FYPE DESCRIPTION SOURCE DESTINATION
5 This file willcontain HALMAT representingthe expressions

contained in the assert/keep statements,plus pointers/flags

and so forth indicating the nature of the statement.

|



"_;........... ' '' ,' ' , ", ACTIVITY DESIGNATOR

ACTIVII¥- DATAFLOWDIAGRAM CBCB _ r

TilL!

CREATECALI.SFROMREGIONALASSERTIONS 1,71 2 I .

DA'r.'kID TRACE DAIA DES(;RIPTION t#''- _ .... _' !#

7I'. ,I 102. HALMATPrepr°cessedassert/keepstatements L_IgnIT1cancell6ndAssert/KeepS_with_Gl°bali_I _ _ i{3 I Assert/keepwith regionalsignificance Ay _

4 HALMATstatements(#'s)whichrequire

• i nst rumentati on Determine
• 5 8 Instruments mappedto HALMAT I Relevant HALMATI_

6 8 Preprocessed assert/keeps with --_Statements. B_/ _ 1' ""
regional ones "marked" as "done"

7 7 Controlling switch: perform expansior (Emit Psuedo-
• or not I Instrumentati°n I

i_Mappedto HALMAT) o
cJ

Delere
. Regional

Call 6

HEF, DOCUMENT I0167 ($AMM)

L () |IH*II IIIIf, ()lllil _/lll



• i I d

ACTIVI_ - DATA FLOWDIAGRAM
TITLE

PERFORMINTERNALVERIFICATION
i I

E DATA DFS(:RIP]ION

IIALMAT Perform
Call graph Non-Ddta Flow 5
Specifications of paths along which Static Analys

an error is su_ected to exist .,

Managerial input (controlling _ Perform _3,
parameters) Data Flow 5,11
Expanded HALMATMonitor File (calls Analysis B

for instrumentation may be added or

deleted as the analysis proceeds) F Perform

fError messages and documentation SymbolicL !
comprising revision requirements Execution CJ

for the code
HALMATMonitor File

Generated test data (for a specified

program path)

Annotated program flowgraph

Machine state from partial execution

NOTE Use o symbolic executor to examine this path

is po. sible, and therefore indicated, llowever

signi ;icant human interaction with the executo_

is re( uired and its utility is questionable.

......... i. .......

,'HtPA,,, [, U, L/AT_"J I
REf. L)OCItMINI 10167 (.TAMM) ...................

| (I IIXbll IlJIf, II,Jqll, _/111



'_+' ' '"' '...... ' '""'"" [ A(,.IIVITY DESIGNATOR

ACTIVITY- DATAFLOWDIAGRAM I CBCCA ....
""' 1,9,

PERFORMNON-DATAFI.OWSTATICANALYSIS i_2_7| 1 I0 112 L_15' m

DATA ID TRACE DATA DES(:RIPTION "- " k

Check _ i
1 1 HALMAT 3 Units/Scale I"2 9 Processedunits/scaledeclarations _-

vectorsassociatedwith variables C°rrectnessAJ 4 I
matricesof relationships _6 ,. i'

3 6 Errormessages 8 Generate

4 5 Specificationfor applicationof con- _ .JCrossReference! " I

versionfactorsto HALMAT L Maps B .) i

5 db Annotatedsourcelisting

( -.6 db Source listing 11 Generate
7 4 Directives:coerceautomaticallyor not . Timing

Estimate
6 Crossreferencemaps C,

9 4 Machineinstructiontimespecifications

CI0 4 Path specification 13 Check
11 6 Timingestimate _ Standards

Adherence
12 4 Codingstandardsspecifications " D

13 6 Violationreport,statisticalsummary 6

14 6 Documentation 20,
-i7 Perfon_]

15 4 Managerialinput :F- Miscellaneous

StaticAnaly _Ig16 2 Callgraph

17 6 Errormessages,documentation

11; Listingof sharedvariables 14 /Document/Check
" I Real-Time19 5 Monitorsto add Lo llahn,_t .

Aspects21) 6 l'r'c_gr,,m €:(mlp]c,x i l.y ii.,d'.urP';

',,._ j

l l .......I'III I'AIII II II¥ IIAII Ill VIIWl II IIY |_AI AI'I'II|IVI 11 II¥ flAIl

gEl:.. DOCIJMENT 10167 ($AMM)

CO |000 |_15 ORIG. 2/78



ACTIVITY DESCRIPTIONS
NODE CBCCA TITLE PERFORMNON-DATAFLOWSTATICANALYSIS

ACTIVITY RELATED DATA
i m, ,

ID DESCRIPTION ID SOURCE DEST NAME

D Thisauditorshouldbe able to checka varietyof standards,

including:

presenceof assertions(especiallyrange-typeassertions)
comments

controlstructure

programsize

programcomplexity

languageconstructswhichhavesemanticambiguities

(asnotedby Pratt)

prohibitedlanguageconstructs

syntaxconventions,such as certaindeclarationforms

and completeexpressionparenthesization



OUTPUT-CONDITIONS DESCRIPTIONS .....

NODE CBCCA TITLE

ACTIVITY OUTPUT INPUT CC CONDITIONCODEDEFINITIONS

A 4 1,2,7 1 1 User selected option. Pro-
grammermust not have included
an___conversion factors in his
statements. All will be
supplied by the system.



BO[ IN(; Cr)MPU ff n %|RVIC[ %C(jMPANy J

ACTIVITY DES GNATOR

ACTIVITY - DATAFLOWDIAGRAM CBCCAB '
TITLE

GENERATECROSSREFERENCEMAPS

l_ i

DATA [D TRACE [)ATA [)1 ,_;(:IIIPi'I(IN

1 I Sy,;_-ol-tai)le and IIAI.MAT (f Generate
2 8 Lock group membership map *- ---J Lock and Event

3 8 Event variable map _ariable MapsAJ4 18 List of shared variables

5 8 Shared data map f

5 [ Generate J-_ Shared Data

Map B

I



ACTIVITY DESCRIPTIONS
, NODE CBCCAB TITLE GENERATECROSSREFERENCEMAPS

ACTIVITY RELATED DATA

ID DESCRIPTION SOURCE DEST NAME

A Lockgroupmembershipsand eventvariablemaps are easyto

generateand are an additionto the mapsprovidedby the

compiler. (Anadequatemap for COMPOOLvariablesis givenby

the compilerin termsof the declaration/templates,the block

summaries,and the variablecrossreferencemap.)

B This map will indicatethe globalvariablesnot belongingto

LOCKgroupswhichare usedby processes(TASKs)which potentiall)

operatein parallel.

The informationproducedby activitiesA and B couldeasilybe

addedonto the sourcelistingproducedby the compiler.

The EventSchedulingStatementCrossReferenceis fairlywell

providedby theblocksummarycreatedby the compiler. The

blocksummarydoesnot referenceactualstatementnumbers,

however. Two possibilitiesexist: a facilitycouldbe provided

here to performthisand providea map for theentireprogram,

or the compilercouldbe slightlymodifiedto augmentthe block

summary.



ACTIVITY. DATAFLOWDIAGRAM AC+,V'+YOES,GNATORCBCCAE
TITL_

PERFORMMISCELLANEOUSSTATICANALYSIS
m i

)ATAICTRACEII HALMAT DATADESCRIPTION, 7 _ f Generate _ • " _.
2 16 Call graph ; -_ Call .......
3 17 Indication(heuristic)as to whether _ Graph A) 2"

loopterminationconditionsare

alteredin the rangeof the loop t"_ Check _'_

3 Termination i
4 17 Warningsas to coercionsperformed _- Conditions p
5 db Sourcelisting k._ Altered Bj
6 db Sourcelistingwith annotationslike4

7 17 procedures,Err°rmessageS:etc,recursion,.unused _-4 i_f AnnotateTypeC_y
8 17 Errormessages Coercions

9 15 Managerialinput: monitorsdesired

10 19 Monitorsto applyto HALMAT _f_8 Checkfor
I_. 20 Programunitcomplexitymeasures _T Miscellaneous

(in the senseof "softwarescience") " _. Errors D.) 10

/_ Generate
_J I Complexity |
•- I Measuresof |

k_ZrogramUnits_

I'IIII /_}III_ IIY I_AI ll,lVllW|. IIY l)All IAI'I'.UVal) .v " "---l';,_'i_-
! !

Iii 1. IJcb(:L'Mt Ni IO 161 (SAMM/

{ 11 IIHHP I'lit, Illllh _/11|



• o,
t

ACTIVITY DESCRIPTIONS
NODE CBCCAE TITLE

ACTIVITY RELATED DATA

ID DESCRIPTION SOURCE DEST NAME /
i

A Generate call graph. "

After graph generation, it shouldbe analyzed for cycles

(indicating recursion). Possible additional analysis could

check for procedures not used, procedures not defined, etc.

These errors are likely best detected elsewhere, however -

the compiler, data flow analysis.

The call graph could, alternatively to the scheme presented,

be generated from analysis of the listing produced by the

compiler: "combine" the contents of the compilation layout

with the block summaries. This would be faster, though

possibly inadequate for multiple compilation units.



ACTIVITY DESCRIPTIONS
NODE CBCCAE TITLE

ACTIVITY RELATED DATA

ID DESCRIPTION ID SOURCE DEST NAME

D This activity will check for (at least) the following errors/
error-prone conditions:

I. Paths through a function block which end on a close,
instead of a return.

2. A variable used twice in the same subroutine call or

function call.

3. Using an aligned minor structure with a DENSEBIT

terminal as part of an ASSIGN parameter.

4. More than one unlatched event variable in a logical

product of multiple event variables.

5. Scalars compared with an equality relation.

Monitors generated (optionally):

1. Check relative size of numerator and denominator

in divisions.

2. Check for overflow possibilities (machine dependent -

may be better suited elsewhere).



l_rlritj(, _.oe_put! n _f _Vl( I_ _(_MPANY

' ', l'. '"I' "J ".

ACTIVITY- DATAFLOWDIAGRAM A::TIVITY (JESI(.;NATOR

.., CBCCAF
D()CUMF.NTREALTIME ASPECTS

1_6_ 1 115
IRAC ..............[)ATA [_[S(:I_IP!ION f

I I IIALMAT , . F CheckShared_

2 14 Indication of reentrancy for _---_ Routines for]shared routines Reentrancy Ay .?
3 14 Documentationof whichroutinesare

dependent 3 jf Document---'_--4 14 Documentationindicatingeffects ._ I Dependent

of any terminateson dependent {_ ProcessesB
processeswhichuse sharedvariables

/_heck Dependent_
5 18 Listof what variablesare shared 4 ]Processes for ]

. 6 16 .Callgraph [ Termination]
_,. Effects C_/

Ib • 4r



ACTIVITY DESCRIPTIONS
NODE CBCCAF TITLE

ACTIVITY BELATED DATA

ID DESCRIPTION ID SOURCE DEST NAME
A Check shared routines for reentrancy

Activities include:

1. Determinewhich routines should be reentrant

2. Check those routines for reentrancy

- ensure they only call reentrant routines

- ensure that all global data modified is locked

- warn about statically declared variables

internal update blocks and inline functions should

declare no data



i1,11 itl,. d IIMI_I II Ii '.1 ilVll I ', i i IMI.AIII

...... . .., ...,

ACTIVITY- DATA FLOWDIAGRAM - "'°'
I

I
|iTLI

PERFORM DA_A FL()W ANALY_I _ 1,8 / 2,g 10

1 1 HALMAT _'-_!_-eateDataBas-_

2 2 Call graph (possibly non-existent) for each l 3_ 3_3_ 3%
3. 11 Program unit database: flowgraph _Program UnitAy

plus sets (gen, kill, null)

4 Processing order, control information _f Determine5 List of errors detected!node I Reprocessing F6 3 Paths on which errors may lie {_ Order B
7 7 Helpful user oriented error messages

8 4 Provision for non-existent program _pply parallel-_ '
units |bit Algorithms _.._ .

9 4 Select quality of analysis: inter --Lt° Each Uni_.j_--
5

proc, intra proc, multi proc

fGenerate
I0 5 HALMATMonitor File (to check OUTPUT 7 IError Messages,|

and INVARIANT assertions at least) _ L Warnings D J _I

I " I .........I'111I'AI{I II IIY I_AII III VIIWIII llY I_All AI'I'IIIiVI II IIY llAII

Itl/, L_)f:IIMINI 10167 [3"AMMI

I || IIl_Jl! Illlh IIh;I. J/Ill



.......... ' I ACTIVITY DESIGNATOR

ACTIVITY - DATAFLOWDIAGRAM J CBCCC ......
TITLE

PERFORMSYMBOLICEXECUTION f " 12,9_ 13,1DATAID TRACE DATADESCI_IPTION

I I HALMAT(program specification) Specify l '
, li, ii '

Determination of what to do on _ -'I C°ntr°llingl-_ _ L1,
.branching, loops, etc. L Inf°rmati°nJ _ '

3 The statement to execute 1 F h4 Values to be used in statement Get Next
I I Statement .'

execution I L In Path g

5 Updates to computation state: J
3_

statement pointer and data values

6 Computation state I _ Specify _.. .

7 Specification of output desired "i £Values To USecJ 4" .

8 8 Output/Erro r messages

9 3 (Possibly incomplete) path specifica-

tion from static analyzers | l_xecute Statemen_
l / ' and /

I0 12 Specification of machine state | _impli_ Resulting[-'_

(from partial execution) _ • _ Expressi°nsD_' - L
ii I0 Generated test data (to force

execution of a specific path) k6 _6 _ Update

12 5 HALMAT Monitor File .I_ _ L Co_tion

L
13 11 Program flowgraph

B Generate

RE_ _CUMENT lOl6l ($AMM)



ACTIVITY DESCRIPTIONS
NODE CBCCC TITLE PERFORMSYMBOLICEXECUTION

ACTIVITY RELATED DATA

ID DESCRIPTION SOURCE DEST NAME

This breakdownspecifiesan incrementalsymbolic

executor:path selection,valuespecification,

outputgeneration,and constraintsolvingcan all

occurafter"execution"of each statement.As such

it allowshighlyinteractiveuse,yet may alsobe

used in batchmode givenadequatecontrolsand path

specifications.

ii:{o!,-]I.o_.o°.._.....-I



i11 _1 ipl,, r ,,f#l,+lll rl ,,i ilviJ i, i ,iwAr,Atl i_ rI
' ACTIVITY DESIGNATORIACTIVI]Y - DATA FLOWDIAGRAM CBC(;CA

flTLL

SPECIFY CONTROLLIP£GIIIFORMATION
1 5

,ATAI__T,ACE.......... !)ATA.{.!E.___!.|,IPIION

I g (i'ossiblyincomI_leLe)path _ _A

._,pecifications Control

2 6 Machine state (instructionpointer Actions 9"

and data values)

3 8 0utput/Errormessages f "_

Constraintson followinga Determinepath||

particular path \Possibilitiesy _ _ 6_
5 12 HALMAT Monitor File

( -,6 List of potential paths " _ Attempt i I
• 7 Feasibilityof a particularpath I To Solve I _,,l )

8. 2 Path specification ""_C 7 _ 10

9 7 Specificationof desired output

10 11 Test data requi.redto force

execution of a particularpath )

11 Monitor file update requirements 8,1

12 8 Indication of verified assertions ' ..
• /r Determine if

12 |monitors are
Iconsistent with

• _achine State

5

REF. [..'OCUMENT 10167 {$AMM)

CO 1000 10|5 ORIG. 2,/78



"' ' " "' .... " ;" "' I A_71VITY DESIGNATOR

ACTIVITY - DATAFLOWDIAGRAM I CBCD .............
TITLE

INSTRUMENTATION,et al
9_2 2

DATAID TRACE DATADESCRIPTION f-' 7J. _'_

1 3 Instrument file(parallelto HALMAT) f Perform

LCompile-Time|
2 , 2 HALMAT Evaluation of ) 3",
3 "Pared-down"instrument file (only Instruments#wl 8

selected instrumentswill be

inserted) FCreate HALMAT_

7 7 Controlling/overriding input _ Necessary to

_. Instrument B4 HALMATwhich represents the

instrument [5 F5 Updated HAUIAT (pointers changed) Merge the
6 9 Fully updated HALMAT _ Instrumentwith _

8 11 Instruments(calls)which could not/ L the HALMAT C_ 6

need not be expanded at this level -

will be expanded at system level

9 7 Precompiledassertion procedures

I . j

PREPARED 6Y OATF IREVIEWED BY r_ATE JAPPROVED By DATE
REF. DOCUMENT 101_7 fSAI/tM)

CO IOOO 1015 ORIG. 1Z/7,3



.,11_Pdz,r t,MJqJ.. ,,I f4vv.i,, (.i,_*;.APjv [

I
J

'_f " ' "'"" " ' ' ' ........ ' | ACTIVITY DESIGNATOR

ACTIVITY - DATAFLOWDIAGRAM 1 CC
TilL|

TEST MODUIF.

_AT'̂D2_^CE.................[2AJ_,_L,_S,J_!!P,(,Nr e[ 2 ...2,10I,1

• I 11 Managerial input /r "_ , IL
Create

2 3 IIALMAT(includesinstrumentation) Test

3 I Test data Data A) 3

I4 Executablecode
_P

6 Requirementsfor additional test data Target

HALMAT Bj4_,I i

7 4 Code revision specifications

8 9 Module acceptance criteria

9 13 Partial machine state for use by _T i I
9 1 -"--- E/DEBUG 1 1

symbolic executor ( _nteracti velYc_ -10 12 Generated test data (from symbolic

executor) .

17. Mapping of variables to target machine F

"symbols". (Required along with the <7 6 L Analyze' Results ) ._symbol table contained in the HALMAT, D

for generation of post-mortemdumps)

PR! PAFIt.L) UY OAT- iREVIEWEU0Y L)ATI; I APPROVED BY DATE
I I

REF. DOCUMENT I0167 ($AMM)

CO 1000 1015 OR'G. 2-/78



ACTIVITY DESCRIPTIONS
NODE CC TITLE Test Module

ACTIVITY RELATED DATA

ID DESCRIPTION SOURCE DEST NAME

Three aspects of this activity, nodes A, C, and D are the basic

constituents of an automatic test harness. Several sets of

test data/acceptance criteria may be supplied to it. Each case "

will be executed and the results automatically checked for

correctness. Such an apparatus is especially useful during

retesting which is required as the result of program modifica-
tions.

B Given HALMAT and a specificationofthe desired target machine

this activity will generate executablecode, produce a load map,

and perform any static checkingrequired at the target machine

level. Thus many HALSTAT- type functions are included here. " ........

C The interactive debugging of any program will be dependent on the

target machine supporting such activities. Instrumentation to

support such actions may be inserted at any of the previous in-

strumentation steps. In addition to providing the "standard"

functional capabilities expected of interactive debuggers,

the interactive debugger should be of sufficient sophistication



ACTIVITY DESCRIPTIONS
NODE CC (continued) TITLE Te-_t Module

ACTIVITY RELATEDDATA

IDI DESCRIPTION ID SOURCE DEST NAME

to allowthe user to specify:

l) an (arbitrary)pointto beginexecution.

2) a pointat whichto haltexecution.

3) initialvaluesfor all variables.

4) Whichvariablevaluesto displaywhenexecutionhalts.

Sucha capabilitywill greatlyfacilitateeffectivefunctional

testing.



.... " .......... ' .... I ACTIVITY DESIGNATOR

ACTIVITY - DATA FLOWDIAGRAM I CCC •.............
TITLE

EXECUTEANDDEBUGINTERACTIVELY 11 11,121 13

DA[A IDj TRACE DATADESCRIPTION f'- _'_i '

I 4 Executable code ("relocatable f"

binary") ! Load - 3AJ2 Load image _,. -
3 5 Load.output-documentatiQn

4 System control over executing fMonitor HAL/S'_ : ,
, program Execution |._

k_ (System) BJ 4_ 85 Machi ne/program state

6 Calls to system monitor _ ..

7 Revised machine/program state f "_.

• _) _
8 5 Raw performance/histogram/history Execute 5_ g

data/post-mortem dump _. _ -
,b

9 5 Program output : " _,
I0 S Performance/execution characteristic " f=

output (trace/session transcript) k.Z._ Interactive: , . Debug
II 2 Symbol table (from HALMAT) k_ _ I0

12 Ii Mapping of. symbol table to target

machine symbols

13 3,10 Test data

k. /
PR|PAHt. D I:lv UAT[ REVIEWED Ely DATE APPROVED BY DATE

REf,, _CUMEIIIT 10167 _SAMM)

CO 1000 1015 OP_G.2/78



D t • ,

ACTIVITY DESCRIPTIONS '
NODE CCC TITLE ExecutelDebugInteractively

ACTIVITY RELATED DATA

.,.ID DESCRIPTION SOURCE DEST NAME

D Interactivedebuggers h,lvebeen around for some time and they

are well understood. No "novel" features are planned for this

debugger, except the ability to aid in transferingthe machine

state resulting from partial execution to the symbolic executor.

For an excellent considerationof interactivedebuggingsystems,

includingan extensive annotated bibliography, see (Johnson,M.S.

1978). When the design for this debugger is embarked upon the

basic principlesguiding the design of the total environmentmust

be held paramount: the facilities of the tool should not over-

lap those of another, capabilities should not appear which would

better occur elsewhere, and the user modes it will appear in must

be remembered. It is our contention that the presence of a suite

of verificationtools, notably static and dynamic analysis,will

remove much of the need for interactivedebuggers.

Themost profitableuse of the interactivedebuggerwill be in

performingfunctionaltesting. Someof the acceptancecriteria

receivedby nodeCCA,CreateTest Data,may onlyrequirethata

relativelysmallportionof code be executed. If the debugger

allowsthe user to startexecutionat (almost)any location



ACTIVITY DESCRIPTIONS _"_
NODE CCC TITLE

ACTIVITY RELATED DATAi ml

ID DESCRIPTION I ID SOURCE DEST NAME

I(usinga sufficientset of usersuppliedinitialdatavalues),

stopexecutionat any point,and displayvaluesat arbitrary

points,thensuchtestingcan be performedeasilyand cheaply.



• e • p

•i, . "_............... | ACT|VITY DESIGNATOR

ACTIVITY- DATAFLOWDIAGRAM ] CCD ....
TITLE

ANALYZERITSIJI.TS 1,2L4,7

DATA ID! TItACE [.)A[A [}IS(:I{II'II()N f

---i-- I--_ --0_6U;vafursa";-n;_";sa_es ____
3 Check Output I2 8 Acceptance criteria _--

3 7 Coderevision specifications (_alues+Messag_
4 5 Behavioral information

5 7 Coderevision specifications _

6 6 Additional testing requirements 5,6_ Analyze

7 I Managerial input Behavior B

PREPARED bY DATE JREVIEWED BY DATE JAPPROVED BY DATE
1 I

REF. DOCt.,'MENT 10167 ($AMM)

CO 10DO I01E, ORIG. 2,/78



i
I_J

........ ALTIVI rt' DE.51(_NATORACTIVITY-DATA FLOW DIAGRAM CCDB
TIILI • ..............

ANALYZE BEIIAVIOR(PERFORMANCE)

1,7_ 2,7 l 3,7DATAIDITRACE DATADI:;(;I{IPIION f

i 4 llistograrns(frequencycount, branch 4 (r Check -_ Jpaths, statistics)+ variable maximum _-----J Test Coverage J .

and minimums _,ariableEvolut_o_2 4 Process queue snapshots

3 4 Simulated time output 5 f Analyze
4 6 Additional testing requirements _ |Process Queue|I Evolution I

5 5 Code revision requirements - _._ BJ

parallel processing schedules

6 5 Code revision (optimization) 6 _ Analyze _

requirements _ t Simulation

7 7 Hanagerial input Time C

.I

J

PRt.PARLU BY UATE JNEVOEWED BY OATE JAPPROVtOBY DATE
I I

REI:. DOCUMENT iO ;67 (SAMM)

CO I000 1015 OR:G. 2/78



i_(Jlip_t,{ f,_,.uu. ,,i ,€it ! ,, U,r_I.^NV

ACTIVIW-DATAFLOWDIAGRAM IAcTtvaTvDEsl_NA_°"CCDBA .............
TITLE

CHECKTEST COVERAGE,VARIABLEEVOLUTION i 2 2
DATA ID[ iRACE DATA DESCRIPTION f

1 I 1 Raw histogram/historyinformation F f

i Post Process2 7 Managerialinput Histogram/History4 _ 4_
3 db Programsourcelisting _. File Aj - -
4 Annotatedsourcelisting _3

5 , 4 Requirementsfor additionaltests 5 f Check
thoroughnessof
Path Executions

Bj
,r

5 deck Adequacy

iVariablelHistoryiEvolution•

I

I ....

PREPARED BY DATE REVIEWED BY DATE APPROVED BY DATE

REF. DOCUMENT 10167 (.SAMMJ

CO 1000 |015 oRIrj. 22'78



ACTIVITY DESCRIPTIONS
NODE CCDBA TITLEm

ACTIVITY RELATEDDATA

ID DESCRIPTION ] I SOURCE DEST NAME

A The source listing produced by the compiler is an excellent

document to be annotated with the histogram information.

Multiple statements per line are broken up to several lines,

all statements are pretty printed, and the format is uniform.

• 6 • ,



I
d l_Ml'11fl If

I

.... ' ........ ' ' I' A(.:IiVITY DESIGNATOR

ACTIVITY - DATAFLOWDIAGRAM [ D ..............."T'TT"L',"
INTEGRATEFI{)DIJI.ESI_IT0SYSTEM ..

DAI _) TRACE ..!)AIA [)['.;(:_{IPIK)N ,_ 1,91_9,12 9 9 '.
T..

6 HALMAT of each module if Check For
5 __] Recompilation I

Collection of modules forming system _- |Requirements/ } 2 2 2

Further altered HALMAT Monitor File _ Merge A j/ -
8 HALMAT ready for execution as a

'L
complete system fExpand Calls i

7 Recompilationrequirementsdue to Ifor System Level ___
I

Assertions
factors

as "independenttesting L B2 _-
such

used outdated module templates"

6 7 Verificationbased revision 6 Perform

requirements 4. | Internal

8 Expanded HALMAT Monitor File _LVerificati°nC 10

g 12 Managerial input/controlling

parameters f Instrument

• l HALMAT l

10 15 Generated test data £for System Test)11 16 Machine state from partial . 4 ._

execution

12 6 HALMATMonitor Files

!

PREPARED BY . DATE {REVIEWED BY DATE IAPPROVED BY DATE Ii
REf..DOCUJENT 10767($AMM)
CO 1000 rOlE, OHIG. 2/7B



J ALTIVIT¥ L+E$1GNATOR
ACTIVITY - DATA FLOWDIAGRAM DA

TITII

DATA ID I TRACE DATA DES(:R]PTION "

1 HALMATfor each module /- ' "
II Out Modul

Procedure template "equivalents" I Procedure | i N
_Descriptions;(true description of procedures)

Procedure templates

5 List of mismatched procedure/ f Pull Out

templates=>recompilation/revision L Templates
requirements Used

5 List of modules which may be safely

merged 4 _ Compare _5
6 2 System of legally merged modules ___ escriptions

7 9 Directions as to merger (e.g., _D J
override) - may be unnecessary or

undesirable _" Merge !J

ItEF. DOCUMENT 10167 tSAMM)

CO 1OOO IO15 OR_, 2/78



"_................. "' [ AL'TIVITY DESIGNATOR "

ACTIVI_ - DATA FLOWDIAGRAM I DC .........
TITLE

PERFORM INTERNALVERIFICATION

• 1,4,101 I,_ I

DATAIDi TR CE DATADESCRIPTION _f (

1 _ IIALMATfor all modules
8 Perform

2 . System call graph _-----i Non-Data Flow _5
3 Specificationsof system paths on _Static Analys_sJ _-

H _

which errors are suspected to exist

4 9 Managerial input 7 _ Perform _3,

5 3 Refined HALMATMonitor File < Data Flow
6 6 ( Analysis

7 6 IErr°r messages and documentation ,
comprising revision requirements

86 _ )Execution

6 Perform
9 10 Generated test data <, Symbolic

10 8 HALMATMonitor File C

11 11 Machine state from incomplete

execution

P"EP',,,O.Y _ATE{.EVIEWEO8Y OATE{,:_PP,OVEO._' oA,a 11
RE/:.. DOCUMENT 10167 (SAMM)

CO 10OOtOI50_'G, 2/'78



ACTIVITY DESCRIPTIONS
NODE DC TITLE PERFORNINTERNALVERIFICATION :

ACTIVITY RELATED DATA

ID DESCRIPTION ID SOURCE DEST NAME i i

The structureand p_rposeof thisactivity

closelyresemblesthatof node CBCC. The

furtherbreakdownof thisnode and its re-

lateddata itemswillcloselyfollowthat of

CBCC.

a:[=_.....,...............-"I



....... ' ' [ A_IIVIIY DESIGNATOR

ACTIVITY - DATA FLOWDIAGRAM J E
TIIL E

TARGET AND TEST SYSTEM 1,9 1,2

A' ,IDJ TRACE DATA DESCRIPTION

J

I

Hanagerial input Test

HALHAT comprising system Scenario

Executablecode

5 Test data
Target

6 Output . HALMAT

7 9 Module revision requirements I B

8 Requirementsfor additional I

test data i /"

9 15 Generated test data 10 i |iiExecute/Debug

10 16 Machine state at a specified point i _, nteractivelyI
of computation(for use by symbolic i

executor) 7 8 Analyze
+" Results

D ., .

REI DOCUMENT I0167 (SABM)

CO 1000 1076 ORIG. 2/78



ACTIVITY DESCRIPTIONS
N(')I)[:. [ TITLE TARGETArIDTEST SYSTEM

ACTIVITY RELATED DATA
ram,

ID DESCRIPTION SOURCE. DEST NAME

Furtherdecompostionof the activitiesand

data itemsassociatedwith thisnodewill

closelyparallelthatwith nodeCC, ModuleTest.

See thatnode for details.

mo{.,_',¢o,.'putlAi,(Av.O($ _NC J



,i w i

ll_Jiitlc. e, ,i.ql,url ii ..i i**,_.! ,. i, Jr,{i,ANv

'_....... " ...... ' _ ACTIVITY UESIGNATOR

ACTIVITY- DATA FLOWDIAGRAM I ROOT ""
TITLE

DOCUMENTEXISTING SYSTEM 11 1 1
DATAIDI TRACEi DATADESCRIPTION ,L

1 Source code _-

2 Listing L•List Code . -3 Internal documentation 2

4 Flowchart

5 Compiler documentation _ _tet;aaC_ _ .6 Augmented HALMAT I

_k, Documentation I 37 Static analysis information _j
8 Load map(s) ..

Generate
Flowchart _J

• C 4

,
F Perform "
] Non-Data Flow J ._

LStati c Analy_iJ 7

larget HALMAT _
to Produce _--_

Load Map(s)FJ 8

_ 1 )
PP,I:PARED Fly DATE ]REVIEWED BY DATE IAPPROVED BY DATE

I I
REF. DOCUMENT 10167 ($AMM,/

CO 10(30 I015 ORIG. 2/78



ACTIVITY DESCRIPTIO NS
NODE Root TITLE Document Existing System i

ACl IVITY RELATED DATA ,,

ID DESCRIPTION ! ID ISOURCE DEST NAME

B This activity will extract specially marked comments

(such as /** or cc)which comprise various levels of internal

)rogram documentation. Several levels of documentation may exist-

system, task, procedure, and local. If conventions are adopted

regarding the formatting of the various levels, under user control

this activity will extract and print the desired comments. A

more sophisticated capability could be designed which would, for

example, print the comments and

transfer conditions associated with a particular path through

a program. The path specification would be the same format as

used for the timing estimate and the symbolic executor.



APPENDIX E

INTEGRATED TESTING AND VERIFICATION SYSTEM

FOR RESEARCH FLIGHT SOFTWARE

REQUIREMENTS DOCUMENT

Contract Number NASI - 15253

May, 1978

Prepared by:
4

Boeing Computer Services Company
Space & Military Applications Division

P.O. Box 24346

Seattle, Washington 98124

E-I



CONTENTS

Pa__2
1.0 PROBLEM STATEMENT E-5

2.0 GOAL E-5

3.0 AUDIENCE E-5
4

3.1 Programmers E-5

3.2 Program Managers E-5

4.0 ENVIRONMENT E-6

4.1 User Community E-6

4.1.1 Problem Orientation E-6

4.1.2 Interactive and Batch Operation E-6

4.2 Research Flight Hardware and Software E-6

4.2. I Hardware E-6

0.2.2 Software E-7

4.3 MUST E-7

4.3.1 Interactive Software Invocation System - ISIS E-8 .

4.3.2 HAL/S E-8

0.3.3 HAL/S Compiler System E-9 .

4.3.4 Documentation Capabilities E-10

4.3.5 Meta-Assembler E-10

4.3.6 Interpretive Computer Simulator E-10

4.3.7 HALSTAT " E-10

E-2



CONTENTS (Continued)

5,0 FUNCTIONAL CAPABILITIES _ .. • E-II

5.1 Documentation E-I 1

5'1.1 Cross Reference Map E-II

" 5.1.2 Implicit Type Conversion E-12

5.1.3 Extractiori of Internal Documentation E-12

5.1.# Process Dependency Documentation E-12

5.1.5 Event Scheduling Statement Cross Reference E-12

5.1.6 Call Graph E-12

5.1.7 Query Facility E-13

5.1.8 Reentrancy Notation E-13

5.2 Verification E-13

5.2.1 Detection of Illegal Data usage E-13

5.2.2 Detection of Unexecutabie Code E-16

5.2.3 Deadlock Detection E-16

5.2.4 Illegal COMPOOL Data Usage in a

Multitask Environment E-17

5.2.5 Data Inconsistencies Resulting From the

Termination of Dependent Processes E-19

5.2.6 Units Specification E-20

5.2.7 Scaling and Precision Specification E-20

5.2.8 Violation of Language Restrictions E-21

•5.2.9 Alteration of Termination Conditions E-21

" 5.2.10 Consistency of the Load Module E-21

5.3 Testing E-21
/

E-3



CONTENTS (Continued)

5.3.1 Histogram Coverag_ _ E-21

5.3.2 General Monitoring E-21

5,3.3 Assertions E-22

5.3.4 Timing Assessment E-2q

5.t_ Debugging Tool E-24

6.0 DESIGN/IMPLEMENTATION PLAN E-25

6.1 Simple Documentation E-25

6.2 Local Information E-26

6.3 Multi-Procedural Information E-26

6.4 Separate Compilation/Multi-Processing

Information E-26

6.5 Debugging/Performance Estimate E-27

6.6 DifIicult Issues E-27



1.0 PROBLEM STATEMENT

The .production of reliable software is in general) a difficult) slow) and

expensive process. Tools and methodologies addressing .this issue are recent,

often fragmentary, and restricted in scope and applicability. Production of

reliable flight software js more difficult yet, as real time and multi-task

requirements compound the problem. Advanced tools are required to aid in the

, timely production of reliable) real time) flight systems.

2.0 GOAL

The study's goal is to benefit the NASA researcher by designing a unified set

of automated tools within the MUST programming environment to aid in the

documentation, verification, and testing of flight software.

3.0 AUDIENCE

3.1 Programmers. The capabilities provided by the verification system will

be of greatest utility to programmers writing the flight software. All capabilities
will be of interest.

3.2 Program Managers. Program managers will primarily be interested in

aspects of the documentation produced, though the generic verification capabil-

ities will be of interest as well, as they may in principle' be applied to

requirements and design analysis. This latter ability is not considered fundamen-

tal to the problem at hand, but the algorithms employed by this work will be

, directly applicable in the verification of a suitable specification language.

. Documentation features of interest include statistics charting a program's

execution history and an indication of coding practices employed in terms of some

predefined parameters.

E=5



4.0 ENVIRONMENT

Several environmental considerations will affect the design of the verifica-

tion and testing system. First are the characteristics of the user community.

Second are the general characteristics of research flight hardware and software.

Third are the characteristics of the MUST program and its constituents.

€.1 User Community.

4.1.1 Problem Orientation. The users of the MUST system are researchers

devoted to addressing particular NASA problems. As engineers and programmers

they are familiar with computing concepts and may effectively use sophisticated

tools without extensive "handholding."

4.1.2 Interactive and Batch Operation. Most users will heavily utilize the

interactive features of MUST; thus the verification and testing capability should

be oriented this way. Batch usage is still preferred by some, however, so the

capabilities must be effectively usable in both modes.

4.2 Research Flight Hardware and Software.

t4.2.1 Hardware.

4.2.1.1 Flight Computers. Flight computers tend to be small, one-of-a-

kind machines, though more advanced machines are appearing. They olten have

little supporting software and place tight space and time constraints on applica-

tions programs. Assembly language coding is most olten the rule and absolute

patches are by no means unknown. Floating point features are often absent, or if

present, unacceptably slow. Thus the use of hardware real arithmetic is often

circumvented by soItware fixed point computations which invite scaling and

precision errors.

4.2.1.2 Grouno Based Systems. Large general purpose computer systems

are available to NASA researchers for ground based support. MUST is hosted on

E-6



such a system (a large CDC machine supporting the programming language

Pascal).

_.2.2 Software.

4.2.2.1 Research Orientation. Since the subject software is research

oriented, rapid evolution is common, with the attendant requirement of constantly

updated documentation. Further, rapid evolution requires the rapid production of

correct code. Often a multidisciplinary team of researchers will address a single

problem. Utilizing the verification and testing capabilities should aid in the

smooth integration of independently produced pieces of software.

4.2.2.2 Real Time Constraints. Supporting flight operations requires the

software to operate within strict real time bounds. For example, on board

equipment may produce a signal which must be processed ten times a second.

Many such constraints may reside within a large system, requiring complex

scheduling of functions.

4.2.2.3 Parallel Operations and Data Pools. In response to real time

constraints, or for logical clarity, a system may be constructed with several

independent, possibly parallel, modules accessing a common data base. A typical

model might involve navigation, guidance, and display modules, while the data

base would contain global parameters, such as position, attitude, and speed.

Programming concerns would include data base consistency and proper ordering of

module executions, as each module needs the guarantee that the data base is fully

updated when accessed, and that necessary information is present and correct.

The actual implementation of such a system may involve a single processor being

time shared among the modules, or each module executing on a separate

processor.

4.3 MUST. The above considerations have, of course, been the motivational

and guiding forces in the design of the MUST programming _nvironment, in which

this verification and testin_ _ystem will be imbedded. Its important components

are described below.

E-7



4,3,1 Interactive Software Invocation System - ISIS, The use.of ISIS as the

primary user interface,-invoking tools and managing data, makes it an important

point of integration, •-Since the user sees MUST, and therefore the verification and

testing capability, ¢-hrough ISIS, the design and use of the system must be

consistent with the _ISIS philosophy, presenting no implementation or invocation

peculiarities, The output produced by various aspects of the verification and

testing facility wil] be entered, for example, as books in an ISIS library.

The relational data base capabilities of ISIS may prove to be especially

useful in holding representations of a user program. As luther descriptions of ISIS

become available, this will require investigation.

4.3,2 HAL/S.

.g_

. 4.3.2.1 General Charactersitics. The HAL/S language is by far the largest

environmental concern. As the prime programming language of the MUST

environment, the verification and testing system will be closely focussed on it.

Particular attention will be paid to the real time features of HAL/S, as real time

issues and shared data pools are critical in flight software, as noted above. These

general characteristics will most profitably be addressed within the specific

semantics of the HAL/S language and run time environment, yet the algorithms

developed and used will be general in character. This is a natural approach, but is

e.speciaIly important in view of the fact that the new Department of Defense

programming language may be adapted for NASA use within a few years. The

NASA standard version of HAL/S is used by MUST. Any language additions or

alterations will require coordination with the language standard control group.

@

4.3.2.2 Language Richness. The HAL/S language is quite rich in program-

ming constructs - perhaps too rich. Several constructs have somewhat awkward

semantics, and special cases are frequent. Examination of the [ant_uage feature_

will be necessary, therefore, to see if any pose particularly difficult problems for

the verificat.ion and testing capability, such as adversely affecting the detection
• o | _ .71_* o

of Jcertain:c:l_'sses of errors. On this basis a decision will be made as to whether

the" verification capability should take cognizance of those identified features.

An example in this category is the NAME facility. Either spurious error tnessages

E-g
.. _-_e "_

•_-_--_



will be generated or some error_henomena may be missed if names are used

without restraint. The problem is_one of aliasing, and no satisfactory solution yet

exists.

4.3.2.3 Implementation Dependent Features. Several language limitations

and operations are implementation defined, such as the exact operation of the

real time executive. Implications of this when concerned with the validity of

identical HAL/S programs running on different machines will be examined.

4.3.3 HAL/S Compiler System.

F"

4.3.3.1 Checkin_ and Documentation. Some checking and documentation

features exist as normal parts of the compiler. Unless there is strong reason to

act otherwise, these capabilities should be retained and not duplicated. As an

_example, the Symbol and Cross Reference Table lists all points where variables

are referenced.

!
r" i

: 4.3.3.2 HALMAT. The HAL/S compiler systems produce a fairly high level

intermediate language, HALMAT. This language may well be suitable as a

primary input to .the capability, allowing most of the verification and testing

functions to be separate from the verification and testing compiler internals) but

still utilizing the compiler's syntax analysis capabilities. HALMAT currently has

several unused operation codes which may be utilized by the verification

capability to communicate new high level "statements," such as assert) to the

analysis modules. Doing so should require only minor changes to the compiler.

4.3.3.3 Pascal Impleme.ntacidfi: .... The portion of the compiler which

generates HALMAT has been translated by NASA-Langley from the original

XPL/360 version to CDC Pascal. Comprehensive documentation is available for

this implementation.

_.3.3.4 Functional Simulation = FSIM. Though not a part of the NASA

Pa_scaJ based HALiS compiler) FSIM _.s available on some Intermetrics compilers.

Some of i[s features_ such as provisio n of an execution •time estimate) seem quite

useful. FSIM)s full capabilities will be examined to see if it should be interfaced

E-9



with the verification and testing facility, or if perhaps the most valuable features

should be made a part of the verification features directly.

#.3.# Documentation Capabilities.

4.3.4.1 RNF. RNF is the Pascal based text processing system used by

MUST. RNF provides extensive features for formatting text into justified "

paragraphs, pages, lists, and so forth. A simple macro facility is also included.
4

4.3.t_.2 Graphical Code Representative. A Pascal based facility provides

another component of the documentation system. Given a description of (almost)

any programming language and a program written in that language, the system

will produce a structured flowchart of that program. Some interface/modifica-

tion of this system may be required, if, for example, assertions or unit specifica-

tions are to appear in the diagrams.

4.3.5 Meta - Assembler. MUST's meta-assembler is a facility which might

allow HALMAT to be targeted to several different computers. Verification and

testing functions which are closely tied to specific implementations may require

interface with the meta-assembler, or possibly knowledge of what the meta-

assembler actually produces.

4.3.6 Interpretive Computer Simulator. This system allows a bit-by-bit

simulation of an actual target program to be run on the large computer hosting

MUST. Some of the run time tests may be suitable for inclusion here, and

statistics could be gathered from a simulation run. Further examination of the

system's capabilities and potential will be required.

4.3.7 HALSTAT. Since in-line code and absolute patches may still be used

in the MUST/HAL environment, cognizance should be taken of tools available to

analyze the consistency of actual load modules. Such a tool, HALSTAT, has been

produced by Intermetrics. In its current form it may not.be suitable for direct

inclusion in the system, but its capabilities bear close exam';nation.

E-10



S.0 FUNCTIONAL CAPABILITIES

Functional capabilities can be broadly divided into the three categories of

documentation, verification, and testing. This division is based upon the type of

information produced, and not necessarily on the verification and testing methods

used. Indeed, detection of certain types of errors may involve the interaction of

" several different verification and testing capabilities, or the use of existing tools,

such as the compiler.

5.1 Documentation. Note that some capabilities here may already be

provided by the compiler system; inclusion here is for completeness sake, and does

not imply duplication.

5.1.1 A Cross Reference Map. This is a table which for every variable and

label, shows the location and nature of every reference and definition. As such it

should be a useful aid to debugging and desk checking, as well as a tool for

standards checking.

HAL/S has a number of functional classes of variables. Special prominence

shall be given to each of the classes below. Each of these specialized cross

references is intended to focus attention on a different aspect of the programVs

structure and functioning. As such they should facilitate specialized debugging,

testing and analysis of the program.

5.1.1.1 LOCK Group Variables. All variables of each LOCK group will be

listed. For each variable there will be a list of the UPDATE blocks accessing the

variable.

5.1.1.2 COMPOOL Variables. All variables of each COMPOOL will be
..

listed. Points of reference and definition for each variable will be enumerated.

5.1.1.3 EVENT Variables. All accesses to each EVENT variable will be

listed.

E-II



5.1.1.4 Unprotected Shared Data. Notation will be produced for all

variables which are shared among processes, yet which do not belong to a LOCK

group or a COMPOOL.

5.1.2 Implicit Type Conversions. DocOmentation will be produced to

describe cases where operand types are not properly matched and are auto"

/ matically coerced into matching. Often such coercions are not intended by the

programmer and produce erroneous results. Hence this documentation is intended

to call to the programmer's attention possible unexpected consequences of

existing code.

$.1i3 Extraction of Internal Documentation. A facility for extracting

imbedded commentary and reformatting it into external documentation will be

supplied. Internal commentary may take the form of comment statements or

assertions. The assertion capability is outlined m a later section of this

document.

$.1.4 Process Dependency Documentation. A representation will be given

indicating the dependencies of program and task processes. A dependent process

may continue to exist only as long as its parent; if the parent terminates, so does

the dependent, wl_ether or not it is finished. As discussed later, this may cause

errors. A clear statement of such dependencies will enable the programmer to be

aware of all the process interrelationships.

5.1.5 Event Schedulin_ Statement Cross Reference. A table will be

provided showing where all event scheduling statements appear in a body of

program text. The event scheduling Statements are: SCHEDULE_ TERMINATE,

WAIT, and CANCEL. If a programmer or afialyst is shown where all of these

statements are located, it becomes easier to grasp and analyze the real time
Q

structures of the program. Thus this documentation should aid debugging, desk ....

checking and test design.

5.1.6 Call Graph. A representation of the calling structure o2 the program
will be given. This representation will show where each procedure is called_ and

what procedures are used within a given procedure.

E-12



p

5.1.7 Query Facility, A feature will be provided enabling the programmer

to assess the impact of proposed coding changes, in the Sense of knowing what

modules/procedures will be affected by changing a given piece of code. This

feature may also be used to determine what sections of code were executed in

establishing the values of a given set of variables at a given point in the program.

This query facility is thus a more sophisticated 'version of the call graph

" mentioned above_ enabling the user to obtain more detailed information in

response to more detailed requests. The exact capabilities to be provided will be

" determined later. The University of Texas FAST system will be examined as a
source of model features,

5.1.8 Reentrancy Notation. All procedures used in a multiprocessing

situation will be examined for reentrancy. Any characteristics which inhibit

reentrancy will be noted. This checking will involve examination of sub-

proceduresusedand anyupdate blocks present.

5.2 Verification. Verification is the process of proving the absence or

showing the presence of program errors. No technique exists (or can exist) to

fully verify a program, but the following classes of errors will be detected.

5.2.1 Detection of lllegal Data Usage. This includes errors such as

referencing an undefined variabl% and definition/redefinition anomalies.

5.2.1.1 Detection of Undefined Variables.

Example:

PROC" PROCEDURE;

" DECLARE INTEGER, I, 3 INITIAL (1);

3 -I;
w

CLOSE PROC;

E-13



Variable I is referenced before it is defined; possibly the programmer meant the

declaration to be: DECLARE INTEGER, J) I INITIAL (1);• The reference to the

undefined variable I would be caught by simple static analysis.

5.2.1.2 Definition/Redefinition Anomalies. An example definition!redefi-

nition anomaly follows:

PROCI: PROCEDURE;

DECLARE INTEGER, K, L) M, N;

DECLARE ...

K=M+I;

L=N+M;

K = (M+N) L;

CLOSE PROCI ;

The assignment statement K = M + I; is useless in this context, as K is redefined

two statements later, without being referenced in between. The presence of such

a statement does not make the program erroneous, but it does suggest the

computation performed is not the one intended• Since this anomaly would be

flagged as a result of a static analysis scan, the programmer would be wise to

review the code in question.

Definition/Undefinition anomalies can take several forms and involve

variables in virtually ali classes. All such errors will be detected•

5.2.1.3 Illegal Data Usage Across Procedure Boundaries. The above data

flow anomalies) u3ing an undefined variable ,',nd definlng/redefining a variable)
4,

can be detected by the static analyzer across precedure boundaries as well. Full

E-lt_



recognition is made of a program's branching logic. The above examples are

illustrative only, and do not reflect the complexity of errors which are detectable.

The following program illustrates how an error may occur across procedure

boundaries.

FOO: PROGRAM;

• DECLARE INTEGER, I9 J, N;

m

BAR: PROCEDURE ASSIGN (X);

DECLARE INTEGER, X;

X=X+l;

WRITE (5) 'THIS IS THE', X, '-TH TIME';

CLOSE BAR;

I=0;

READ (4) N;

A: IF N>0 THEN

CALLBAR ASSIGN (I);

ELSE

CALL BAR ASSIGN (3);

3=0;

B: CALL BAR ASSIGN (3);

o

=.

GOTO A;

CLOSE FOO;

Suppose -1 .is tl,e first value read for variable N. Then in tile statement labeled A,

BAR will be called with 3 as its argument• 3 is uninitialized at this point, and

E-15



BAR has not been called before. Thus the assignment statement in BAR

references an undefined variable. Static analysis willdetect this and flag it as a

possible error• The call to BAR at B is correct however_ as 3 is deSined at this

point_ regardless of the value read for N• No error flag will be raised at that

point.

5•2.2 Detection of Unexecutable Code. A programmer may unknowingly

create a section o5 code to which there is no pathj either when originally writing a

program or performing maintenance on an existing program. Static analysis

coupled with symbolic execution can detect a large number o5 these situations.

Consider the following code :Eragment:

DO FORI=I TO10;

IfI= 10 THEN GOTO OUT;

END;

X=X+I0;

OUT: Y =Y +i0;

Clearly the statement X = X + 10_ is unexecutable, This condition will be

detected by the verlSication and testing capability. It should be noted, however_

that not all unexecutable paths will be detected, as this is precluded by

theoretical results (namely_ that the halting problem is unsolvable).

5.2.3 Deadlock Detection. A HAL/S multitask program may be written so

that a cyclic wait (deadlock) situation occurs, Consider the following example,

E-16



DECLARE EVENT LATCHED, EVI_ EV2;

TI: TASK;

/* some computation */

RESET EV2;

WAIT FOR EVI;

. SET EV2;

CLOSE TI;

. T2: TASK;

1'* somewhat less computation */

RESET EVI;

WAIT FOR EV2;

SET EVI;

CLOSE T2;

SET EVI;

SET EV2;

SCHEDULE TI PRIORITY (50);

SCHEDULE T2 PRIORITY (50);

Depending upon the actions of the real time executive, events EV2 and EVI may

be reset by tasks TI and T2 (respectively) "simultaneously." In the absence of

external influences, both tasks will wait indefinitely, essentially for each other.

This simple example of potential deadlock can be detected statically, as can some

more complex examples. For some situations, however, symblic execution may be

required to attempt to generate conditions under which deadlock can occur.

Other examples may require instrumentation for monitoring these conditions at

• run time. This distribution of error detecting, capabilities among several

verification and testing tools is expected to be common in the facility designed.

5.2.4 Ille_al.Compool Data Usage in a Multitask Environment. A group of

processes may be structured such that compool data is properly defined and used

only if the processes execute in a certain order. THe possible existence of

conditions under which this ordering could be violated will be noted.

E-17



Example:

COMMON: COMPOOL;

DECLARE INTEGER, I, 3;

CLOSE COMMONI

BAZ: PROGRAM;

DECLARE INTEGER, M, N;

/ _ compool template also included */

INIT: TASK;

I=0;

CLOSE INIT;

USE: TASK;

I=I+ I;

CLOSE USE;

READ (4) M, N;

SCHEDULE INIT PRIORITY (M);

SCHEDULE USE PRIORITY (N);

CLOSE BAZ;

In this example the scheduling of INIT and USE depend upon variables M and N. If

N > M, USE will execute first, causing an un_nitialized variable to be used. As

with deadlock, the detection of this type of error will be distributed among

several functions. Compool data membership and usage is documented, as are the

statements controlling the execution of processes. Static detection of ordering

requirements will generate a message, and run time instrumentation may be

inserted to check for actual violation.

E-18



5.2.5 Data Inconsistencies Resulting From the Termination of Dependent

Processes. The program will be examined to see what types of errors may occur

when the parent of a dependent process is terminated, causing its sons to be

terminated as well. Warnings of inconsistencies in shared data which may arise

will be provided. The following example indicates such an inconsistency.

ONE OF TWO: PROGRAM;

UPDATE POSITION: TASK;

• /* reference compool */

CLOSE UPDATE_POSITION;

TERMINATE;

CLOSE ONE_OF_TWO;

DATA BASE: COMPOOL;

CLOSE DATA_BASE;

TWO OF TWO: PROGRAM;

NAVIGATION: TASK;

/*_ reference compool */

CLOSE NAVIGATION;

CLOSE TWO OF_TWO;
E-15



Suppose -that task UPDATE_POSITION is executing when its parent,

ONE OF_TWO, reaches the TERMINATE statement. If the task is only partially

done_ the data base will be left in an indeterminate state. If TWO_OF-TWO's

NAVIGATION task then accesses the data base, erroneous results will ensue.

Warning of such a _situation will be provided by the static analysis, and run time

checks may by inserted for monitoring.

5.2.6 Units Specification. A facility will be added to the HAL/S language

(possibly as a specially processed comment) to allow the programmer to specify in

what units the value of a variable is assumed to be stored. This declaration will

be specified at the point of normal declarations. Checking for consistency will be

performed at procedure bondaries; checking may be attempted during expression

evaluation.

Example:

Declare speed integer/* units: feet/second */;

Declare velocity /* units: furlongs/fortnight *I;

Declare height/* units: cubits */

5.2.7 Scaling and Precision Specilication. On machines with inadequate or

non-existant floating point units, scaler computation may be performed using

fixed point quantities where the programmer keeps track of the implied decimal

(or binary) point. The declaration of this convention will be done in a manner

analogous to the units specification. Checking of proper scaling and precision will

be performed throughout expression evaluation as Well as across procedure

invocation boundaries.

A sample declaration might appear as follows:

Declare float3 integer I+ scale: 3 +/;

implying that float3 has three digits to the right of an implied binary point. Only

variables with compatible scales could be added and subtracted. In assignment

context the resulting scale from expression evaluatlon would be checked [or

compa*.ibilily with the declared scale of the receiving variable.

E-20



The precise form of the declaration will be determined later.

5.2.g Violation of Language Restrictions. Language violations which will be

checked here include division by zero and exceeding the maximum subscript of a

matrix. Of course it may not be possible to completely verify that these will not

occur be[ore actual program execution_ for some instances run time monitors will
v

be required.

t

5.2.9 Alteration of Termination Conditions. A common programming error

is the writing of infinite loops, when such action is not intended. This often

occurs because the variables involved in the termination condition are not altered

during execution of the body of the loop. A check will be made to verify that

such a change is possible; if not_ a warning message will be printed. It should be

stressed that such checking will not be infallible in the detection of infinite loops_

it will only be an aid.

5.2.10 Consistency of the Load Module. Since a HAL/S load module may be

a collection of several separately compiled programs and data pools, checks will

be made to guarantee that uniform .descriptions of compools and common

procedures are used by all programs, This is especially important in view of the

:[act that non-HAL code may be present, including some absolute patches. In

addition, a reference map will be produced showing the locations of all variables..

The HALSTAT tool will be carefully examined for guidance when considering the

provision of these features.

5.3 Testing. Testing includes all activities taken at or near run time.

5.3.1 Histogram Coverage. A histogram will be produced showing the

execution frequency for all statements of a program, untested statements are

thus apparent, and an indication of branch paths taken will be provided. (This

information serves as an important guide to optimization as well.)

5.3,.2 General Monitoring, Many capabilities are possible in this classifi-

cation_ with the following being among the most important.

E-21



5.3.2.1 Event Variable Activity. A report would be produced indicating at

what times_ with respect to the real time clock, the values of event variables

changed, and to what values they were changed. Since program and task names

have process events associated with them_ this report would also indicate the

times of their entering and departing the process queue.

$.3.2.2 Process Queue Snapshots. At specified intervals or times a snapshot

would be produced showing what processes were currently in the queue_ and in

what state: active9 wait_ ready_ or stall. If stalled_ an indication would be given

as to the condition causing the stall.

5.3.2.3 Selective Variable Monitoring. At each point of change a message

would be produced indicating the new value• of the variable and the statement

number causing the change.

5.3.2.4 Selective Procedure Invocation Monitoring. A report similar to

variable monitoring would be produced, but indicating what procedures had been

called, from where, and the values of the parameters.

5,3.3 Assertions. Assertions are statements which allow the user to

describe the expected behavior of a program. As "statements," they could be

inserted in HAL/S programs as specially processed comments or even as a new

HAL/S statement type. The actual syntax will be decided upon during the design

phase. The basic assert statement, possibly phrased as assert< boolean

expression>, when instrumented, is semantically equivalent • to the executable
statement:

IF NOT <boolean expression> THEN send errori:j;

where errori: j corresponds to assertion_violation. A simple use of this assert
statement might appear as follows:

E-22



CALL SUBI ASSIGN (X)_

Y = I_.0N.33_

ASSERT(X+Y <_3)i

Z=J/(X+Y);
"11,

11

Presumably when the code was written the programmer was aware that his

calculations "guaranteed" X + Y <3. Indicating that by an assert statement

documents his understanding while inserting a check for errors which may have

arisen due to later modifications (such as to SUBI), misunderstandings, imple-

mentation errors, and so forth.

More advanced assertion statements will allow checking of a range of

variables and values, and over a program region. An assertion in this category

might appear as assert global values (x,y) (1:10)i indicating that if the values of

variables x and y ever deviate from the range 1 to 10 in any region of the

program, the assertion has been violated. The instrumentation for such as

assertion would involve checking the values of x and y at each point they are

changed, to assure they lie in the proper interval.

The actual design of the specific assertion statements to be implemented is

a requirement of the study. Of a particular interest to the real time programmer

will be assertions involving event variables, to assert (and thus check for) proper

event sequencing. Note that the error handling capabilities provided by HAL/S

may enable much of the assertion checking instrumentation to be implemented
Q

within the HAL/S language.

Overall, the assertion facility should contain the following features.

E-23



I) The notion of a region over• which the assertion is valid. This may be a

single statements or an entire procedure. The translator must determine all

the relevant points at which to check the assertion.

2) Levels of assertions. The ability to suppress checking _instrumentation) of

assertions below a certain level should be provided as a compile-time option.

it

3) Some quantifiers which may apply to the boolean expression. The full power

of first-order predicate calculus would be desirable, but at least a "V" should

be supplied.

4) An "invariant" clause, to allow statements such as assert x+y invariant; for a

specified region.

5) A threshold concept. The user would be enabled to specify a limit on the

number of times a particular assertion may be violated, before some drastic

action (such as terminating the program) is taken.

5.3.4 Timin_ Assessment. A capability will be provided for estimating the

execution time of a given program on a given machine. Input would be required,

of course, describing the target machine.

5.4 Debugsing Tool. The verification tools provided are envisioned as

interfacing with a program debugging tool. Such a tool would permit the

generation of program snapshots, setting of checkpoints, and dynamic alterazion

of variable values. The tool will be highly interactive, but shall be usable from

batch as well. Additional capabilities may be added as the design of the tool and

its relationship to the verification facility is elaborated. (Some of the functional

capabilities listed above, such as variable evolution tracing, may be included as

part of the debugging tool.)

E-24



6.0 DESIGN/IMPLEMENTATIONPLAN

It is not envisioned that all the above capabilities will be implemented at

once. A phased implementation is anticipated, with increasingly powerful (and

thus increasingly expensive) verification capabilities being added at each step.

With this in mind_ the capabilities have been divided into six categories9 based

upon utility of the features to the user and the scope of analysis required. The

categorization is not rigid_ in that the distinction between some categories for

• certain features is somewhat arbitrary. A first implementation would almost

certainly go beyond implementing only Category one; most likely the •first three
i

categories would be produced.

The design of the verification and testing capability will accommodate

such an implementation. The design produced should be easily amenable to

expansion or contraction of capabilities. Thus_ for example, if only category one

and two features were desired, the implementation should succeed well without

the presence of any category three capabilities. The categories are hierarchical,

however, in that an implementation of category four could assume the presence of

the first three.

6.1 Simple Documentation.

Cross reference maps

• Variable

Lock Group
COMPOOL

Shared Data

Event Scheduling Statements

Process dependency

" Implicit type conversions

Extraction of internal documentation

Call graph

E-25



6.2 Local Information,

Histograms

Symbolic post-mortem dump

Local assertions: boolean expressions

levels

• threshold
v

quantifiers

Intraprocedural detection of:

uninitialized variables

definition/redefinition anomalies

Run time monitors for zero division_ overflow_ etc.

Variable and procedure monitoring

Scaling specification and intra-procedural checking

Simple detection of unexecutable code

6.3 Multi-Procedural Information.

Units specifications and interprocedural checking

Scale specifications and interprocedural checking

Interprocedural checking of:
uninitialized variables

definition/redefinition anomalies

Regional assertions

Load module analysis

6,4 Separate Compilation/Multi-Processing Information,

FAST-like query facility

Reentrancy _hecking

Illegal COMPOOL usage

Termination of dependant processes

Event chronology

E-26



Queue snapshots

Simple Deadlock detection

6.5 Debugging/Performance Estimates.

General debugging system"

breakpoints

traces

variable alteration

Check of termination conditions

Timing estimate

6.6 Difficult Issues.

Refinement of above analysis;

Unexecutable code

Definition/redifinition anomalies

Uninitialized variables

Deadlock detection

COMPOOL usage

Violation of language rules

E-27



.Z"



tr
JI

!

I



4'

I


