NBSA cR-159,008

T

NASA Contractor Report 159008

NASA-CR-159008

19790010443

INTEGRATED TESTING AND VERIFICATION SYSTEM :
FOR RESEARCH FLIGHT SOFTWARE - DESIGN DOCUMENT

Richard N. Taylor

BOEING COMPUTER SERVICES COMPANY
Space and Military Applications Division
Seattle, Washington »98124

NASA Contract NAS1- 15253

‘February 1979 o . i!gﬁﬂu; { n:;s

f'::ﬁ 41 iOr(j

- LANGLEY R= SSEARCH CENTER
LIBRARY, NASA
HAMETON VIRGINIA

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton. Virginia 23665

INTEGRATED TESTING AND VERIFICATION SYSTEM

FOR RESEARCH FLIGHT SOFTWARE

Design Document

By Richard N. Taylor

Prepared Under Contract NAS1-15253

Boeing Computer Services Company
Space and Military Applications Division
Seattle, Washington 98124

For

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CONTENTS .

1.0 SUMMARY AND INTRODUCTION

1.1 Summary
1.2 Document Organization

1.3 Introduction
2.0 TS.\’NO_P:SI.S‘ OF DESIGN ACTiVITIES»_»‘
3.0 DESIGN FEATURES

3.1 Tool Integration and Modularity

3.2 System Database
3.3 HALMAT

3.3.1 Relating Verification Error Messages to

the Source Text
3.3.2 HALMAT Monitor File

3.4 Static Analysis

3.4.1 Unit/Scale Specifications and Algorithms

3.4.2 - Static Data Flow Analysis

3.5 Symbolic Execution
3.6 Dynamic Analysis

3.6.1 Assertion Facility

3.6.2 Assertion Language
3.6.3 Statistics Gathering Language

it

11

11
13
14

14
15
17

17
26

39
42

42
48
53

37
3.3

CONTENTS (Continued)

Documentation

Error Class/Detection Technique Chart

4.0 VERIFICATION TO REQUIREMENTS DOCUMENT

4.1
4.2

Verification -

Discussion of Investigations |

4.2.1 ISIS

4.2.2 FSIM
4.2.3 HALSTAT
4.2.4 FAST

" 4,2,5 HAL/S Problem Features

4.2.6 RNF

4,27 Interpre‘tive Computer Simulation

5.0 CONCLUSION

5.1

Appendix A:
Appendix B:
Appendix C:
Appendix D:
Appendix E:

Listing of Programs and Impiementation

Recommendations

Introduction to the SAMM Methodology
System Database

References

SAMM Diagrams

Integrated Testing and Verification System

for Research Flight Software

iii

Page

60
- 6l

63

63

e

65
66
66
66
- 67
69
69

71

71

A-1
B-1
C-1
D-1

Figure 1.2-1
Figure 1.2-2
Figure 1.2-3

Figure 1.2-4
Figure 1.2-5

Figure 2.1 L
Figure 3.4.2-1

Figure 3.4.2-2

- Figure 3.4.2-3
Figure 3.4.2-4

Figure A-1

Figure A-2

Table 1

LIST OF FIGURES

- Phased Approach to Software Development

Lifecycle Verification

System Overview - Management of the
Software Lifecycle and Data Flows
Source Code Verification and Testing
Module Verification Options

Basis for Integrated Verlfxcatlon Methodology . N i

A HAL/S Program Fragment ' ,

The paf for the Fragment In Figure 3.4. 2 1
Without the Starred Statement

The paf for the Fragment in Figure 3.4.2-1
The paf for the Program with "Suspect"
Synchronization

SAM‘\A Activity Cell with all Possible
Inputs and Outputs

Sample SAMM Diagram

LIST OF TABLES

Error Class/Detection Technique Chart

iv

-Page _

4a

3z

33
33

37

A-2
A-3

Page

62.1

SECTION 1.0
Summary and Introduction

1.1 _Summary. NASA Langley Research Center is developing the MUST

(Multipurpose User-oriented Software Technology) program to cut the cost of
producing research flight software through a system of software support tools.
Boeing Computer Services Company (BCS) has designed an integrated verification
and testing capability as part of MUST. Documentation, verification and test
options are provided with special attention on real-time, multiprocessing issues.
The needs of the entire software produétion cycle have been considered, with .

" efiective management and reduced lifecycle costs as'foremcst goals. .

Previous verification systems generally have utilized a single technique,
such as static or dynamic analysis. However, thorough examination of any one
program requires the use of several techniques. Besides providing a
comprehensive set of analytical techniques, the integrated capability BCS has
designed takes advantage of the complementary abilities of the different schemes
in a synergistic manner. A ‘one-tool-does-it-all" concept has not emerged
though. The need for a distributed set of tools became clear as the various usage
modes present in the MUST environment were modeled. No single sequence of
testing and analysis activities is optimally suited to all MUST requirements.
Rather, for detecting specific classes of errors under specific operating

constraints, a specific combination of analysis techniques is chosen.

The concern with multiprocessing issues is motivated by the increasing
sophistication of flight hardware and software, which present difficulties such as
protecting shared data. New research was conducted into the problem of
statically detecting such errors with encouraging results. Consequently,
capabilities have been included in the design for static detection of data flow
anomalies involving communicating concurrent processes. Some types of ill-
formed process synchronization and deadlock also are detected statically.

Although - the HAL/S language is the primary subject of this design, the
algorithms developed are readily applicable to "other languages. Full
implementation of the designed capabilities will provide the MUST user with
extremely powerful program development tools. Such programming environments
offer a very desirable and profitable alternative to the way software is typically

produced.

1.2 Document Organization. - The bulk of the design is represented by

SAMM diagrams, attached as Appendix D of this document. In discussion of this
design a synopsis of the design activities is presented in Section 2, followed by a

discussion of key features in Section 3, where a rationale for the design decisions

is aisc presented. Section 4 indicates how the design satisfies.the relevant items - = .

in* the requirements document, and explores some items marked in the -
requirements document as requiring further examination. Concluding remarks are

presented in Section 5.

Appendix A provides an introduction to the SAMM methodology, showing
how the diagrams are interpreted. Appendix B contains a presentation of the data
base envisioned as associated with the software development environment

provided by MUST. Appendix C contains the references.

1.3 Introduction. - Considered from the user's viewpoint the development of

software may be conviently decomposed into several phases, as indicated in
Figure 1.2-1. The end user determines his needs; those needs are translated into a
more formal specification and are analyzed. Preliminary design work produces‘
the basis of a solution to the problem. The solution is further refined at the

detailed design level. Lastly, actual code is produced to implement the solution,

. REQUIREMENTS PRELIMINARY DETAIL '
END USER > ANALYSIS *1 DESIGN > DESIGN ~ CODE

- Figure 1.2-1 Phased Approach to Software Development

2

Notice that "testing" has not been included as a separate phase in this
overview of the software lifecycle. Rather, it must be stressed that testing and
verification are pervasive activities taking place throughout the development
cycle. Such activities are indicated by the diagram of Figure 1.2-2. Each phase
must be verified for intérnal consistency, as well as checked to ensure that it, as
a refinement, successfully captures and develops the intent of its predecessor.
The process of verifying any given level back to the user requirements is termed
validation. Thus verification is not something which is "done" after a piece of
code is written; on the contrary, all the tasks associated with the creation and

maintenance of software are interwoven with various verification activities.

CONSISTENCY CONSISTENCY ~ CONSISTENCY CONSISTENCY

REQUIREMENTY PRELIMINARY DETAIL
END USER ANALYS!S DESIGN DESIGN CODE
REQUIREMENTS PRELIMINARY INCREMENTALLY CODE
VERIFICATION DESIGN DETAILED DESIGN

£ VERIFICATION

Figure 1.2-2 Lifecycle Verification

Figure 1.2-3 presents this view of the program development cycle in the
specific context of the MUST system. It is this overview which provides the
framework for the design of the individual verification and testing tools. Note
‘that management activities to control and guide the development of the software
are highlighted, with management providing direction at each phase. The basis
for effective management is total visibility into the developing system, and is
obtained through use of the system database, where each phase in the cycle uses
and contributes information to it. This database is the repository for all
information related to a software system. Note the correspondence between
Figure 1.2-3 and the root of the SAMM model titled "System Development." A

b

REQUIREMENTY
ANALYSIS

~-~—==
1 ' - SYSTEM
=5 R - DATA
£__2 , DESIGN | BASE
| SYSTEM | ————— '
i DATA : 3

L BASE_ o
il — — — —| MODULE
CREATION &
TEST [———
\ L — — —|INTEGRATION
AND

B
SYSTEM TEST

Figure 1.2-3 System Overview - Management of the

Software Lifecycle and Data Flows

As the primary purpose of this contract is to design tools which specifically
address the verification of HAL/S code, consider Figure 1.2-4. This figure
illustrates many of the activities which are associated with verifying a module of
source code. Internal verification, to be expanded upon shortly, is performed
first, detecting as many errors as possible. Next, the intermediate representation
of the program is targeted to the specific computer (or simulator) on which
execution is to take place. Test data is created to validate that the acceptance
criteria are met, then the program is executed. After execution, output values
are examined as well as several aspects of the program's performance. Analysis
may reveal the need for additional testing. If so, additional data is generated and -
the cycle repeats. (Figure 1.2-4 is related to SAMM node CC.)

HALMAT

'VERIFY
| INTERNALLY
Y
ACCEPTANCE
CRITERIA TARGET
HALMAT
‘l
GENERATE EXECUTE
TEST DATA
ADDITIONAL ///
TESTING ANALYZE
REQUIREMENTS BEHAVIOR !
: TEST COVERAGE,
REAL TIME

PERFORIMANCE,

EXECUTION TIME

CORRECTIONS

VALIDATE.
OUTPUT:

DATA VALUES
ASSERTICHNS

Figure 1.2-4 Source Code Verification and Testing

b4a

Several options are available to the user concerning the type and amount of
internal verification to be performed. Chapter 2 elaborates on the rationale
behind providing a variety of ways in which the verification and testing tools can
be combined. For the moment however, Figure 1.2-5 (a combination of SAMM
nodes CBC and CBCC) presents an overview of the facilities available to the user.
(As alluded to earlier, the verification tools operate on an intermediate represen-

tation of HAL/S, produced by the compiler, known as HALMAT.)

Several tools may be implemented to provide the facilities noted by each
box. Briefly we note that box A is not the full HAL/S compiler, but only the front
_half which checks the syntax, parses the program, and generates the: -
'HALMAT. Box B processes program assertions-(statements made to indicate the
intent and nature of the program) having program-wide significance.

/*ASSERT GLOBAL X =0 */; would be an assertion in this category. Box B
would insert the necessary monitors to check that this requirement will be met
throughout the program. If at any time it is violated, an informative message will
be produced. Non-data flow static analysis may involve the use of several tools to
perform its tasks, such as creation of helpful cross reference maps, checking for
mismatches of units among program variables (such as adding feet to meters), and
ensuring shared procedures are reentrant. Data flow analysis checks for errors
including wuninitialized variables and ill-coordinated procedures. Symbolic
execution determines the functional effect of a specified program path. Lastly, if
any program instrumentation is called for, it is inserted in the HALMAT at box F. -
Such instrumentation is the executable code required to perform verification

tasks during program execution.

The following sections explain the design more fully, and indicate the

hierarchical structure of the facilities.

SOURCE CODE

i

HAL/S

COMPLIER
. A

CREATE CALL NON DATA DATA FLOW SYMBOLI
FOon 1 —> > v %
INSTRUMENTATIEN | LO# STATIC " avncves] .
i RATIGN | ANALYSIS | ANALYSIS EXECUTION
 INSERT
MONITCRS
IF
DESIRED F

EXECUTION OFTIONS

Figure 1.2-5 Module Verification Options

SECTION 2.0
Synopsis of Design Activities

As explained more fully in Appendix A, BCS has developed the Systematic
Activity Modeling Methodology (SAMM) to aid in requirements analysis and the
formalization of preliminary design. This formalism was chosen as the vehicle for
expressing the preliminary design of the MUST verification and testing capability.
In so doing hierarchical relationships among activities are clarified, data flows

and dependencies are indicated, and critical functions are identified.

A SAMM mode! \prese'nts a hierarchical breakdown of an activity. ,Ailnitial

difficulty in using SAMM in the design of the verification and . testing capability =

was laid to inadequate consideration of the actual user modes which would be
present in the MUST environment. Once specific user tasks were identified
preliminary design proceeded smoothly. An outfall of this was a deepening of our
conception of how verification and testing tools should be integrated. Reference
1 [Osterweil, 1977] presents a scheme in which the techniques of static analysis,
symbolic execution, and dynamic analysis may be combined so as to provide a

single, comprehensive analysis tool.

Figure 2.1 presents the basis for the integration methodology proposed by
the paper. Static analysis begins by detecting several classes of errors.
Unfortunately some "errors" may be reported which in fact do not exist, since the
"error" lies on a path which is not executable. In addition, the static analyzer
may note statements at which an error might occur. This information can be
passed along to the symbolic executor for further analysis. Symbolic execution
may be able to determine whether or not a particular path is executable, and
indeed may show that a suspicious construct is definitely erroneous. In addition,
the symbolic executor could generate test data which would force program
execution down the erroneous (or any other requested) path. Thus a link exists to
the next phase: dynamic analysis. Using the generated test data, tﬁe program

may be executed. While execution is proceeding, information can be gathered

indicating the steps taken in the progression to the error, as well as reporting

conditions prevelant at the time of error.

To summarize the paper, the three techniques complement each other and
may be used in tandem. The generality and usability of -the techniques 'vary
‘widely however, as does their execution cost. It was consideration of these
differences and the usage modes present in the MUST environment that led to our

revised concept of how the tools should be integrated.

SOURCE. ___,| STATIC _»| SYMBOLIC-} -~ 1" pymAMIC
TEXT . 7y ANALYSIS ™1 EXECUTION ™ TESTING

Figure 2.1 Basis for Integrated Verification Methodology

It now appears that when speéiﬁc tasks in the creation and maintenance of a
program are identified, different analysis mbdes are required. Each mode is
subject to diferent constraints: goal, thoroughness required, available budget and
time, degree of human interaction, and so forth. The synergistic combination of
techniques is still called for and profitable, but not all the techhiques will be
required for any one analysis task. Rather, for each task an appropriate subset of

the techniques will be combined which optimally addresses the problem.

This modeling activity has shown the need for small, modular facilities.
which may be combined in a variety of ways to accomplish many different tasks.
Each combination would be configured to meet the constraints of differing goals
and environmental (resource) requirements. Some of the modular facilities which
have emerged are as follows: a facility to process "regional" assertions, a facility
for local assertions, a tool for extracting internal documentation, one for
.answering simple questions about previously written code, several simple static
analysis tools (an auditor, a units and scale checker, a cross reference map

generator, and others), a data flow analysis tool, an execution time monitdring

péckage, and a facility for inserting run time monitors. Each tool meets a
particular need and, in conjunction with other tools, helps satisfy a global

verification requirement.

Another dominant feature of the design is the pervasive use of a machine
readable database of program related information. This database is begun with
the requirements phase, and is updated and maintained throughout the entire
software lifecycle. As a repository for the growing knowledge about the nature
and solution of a given problem, the data base is a natural device for smoothing
the transitions from requirements to design to coding to maintenance. It is this
database which makes possible the verification and _/alidation. of each step in the
. development cycle. Such a database also provides a secure foundation upon‘ which -

effective program management can be based.

The program data base concept was adopted early in the preliminary design
process, and is an outgrowth of research into software lifecycle costs performed

by members of the'Systems and Software Engineering Laboratory.

As verification of real time, concurrent process software is a poorly
understood aspect of error detection called for in the requirements document,
preliminary design effort was spent in basic research of the problem. It was
believed that basic principles of error detection in this area must be understood
before designing the entire verification and testing capability, to avoid any later
requirement for restructuring, and so that an estimate could be obtained
concerning the promise of analysis in this area. Significant results were obtained
indicating the techniques and principles discovered are harmonious with the error

detection techniques employed with single process programs.

In particular, it was discovered that the program flow graph for-a system
may be augmented with special edges indicating the concurrent processing
constraints. If slightly modified data flow analysis is applied to this graph (called
a process-augmented fldwgraph or paf) data flow anomalies occurring between
parallel processés can be detected. Importantly, this analysis can be performed

concurrently with the detection of single process errors.. To date, techniques for

9

detecting the following errors have been isolated: uninitialized shared
(COMPOOL) variables, some forms of uselsss synchronization, simple deadlock
situations, and unsafe alteration of shared data.. Substantial progress in this area

is anticipated as investigation continues.

Auxiliary design activities included extensive literature surveys on various
analysis techniques and further investigation into diverse topics, such as the
University of Texas FAST system, the HAL/S compiler operation, and the FSIM

compiler capability.

10

SECTION 3.0
Key Design Featurés

3.1 Tool Integration and Modularity. - The "dominant characteristic of

designs repfesented by the SAMM formalism is that they are purpose-oriented.
Each task, or node, is present simply to fulfill the requirements of a higher level
activity. No activity is present "for its own sake." The result is that all the tools
~included in the design function together for the purpose of creating better,
cheaper flight software. -

, . The usage scenarios considered- during the prelimina}_y‘l design were the .~
following: creatihg a new software systerﬁ, fnanagihg the déveloprﬁenf of a
software system, adding a new capability to an existing system, performing
"minor maintenance," documenting an existing system, module test, integration
test, and the development of software by a team of programmers. Initially each
scenario was examined separately, then jointly as similarities, dependencies, and

interrelationships were discovered.

The examination of the various user modes envisioned has resulted in the
isolation of several basic capabilities. In various combinations the capabilities
represent the environment required for each user mode. Within a particular usage
scenario, select capabilities may be side stepped in accordance with various
constraints and desires. This integration and modularity of tools is particularly
evident in the tools provided for the verification and testing of HAL/S code. For
example, the instrumentation of glo‘bal assertions within a module is separate
from the instrumentation of local assertions; instrumentation of multi-module
assertions is distinct as well. Static analysis and symbolic execution may both aid
in determining the placement of monitors (adding and deleting them); non-data
flow static analysis may be chosen apart from data flow static analysis. Several
criteria may be involved in chosing a particular combination of tools. The type of
verification desired, execution time, memory requirements, run-time overhead,
and target machine capabilities may all affect the selection process. The

following are a few representative combinations:

11

L.

2.

5.

Isolation of a partiéular, relatively simple, "bug": dynamic analysis
with extensive assertion usage, placing most emphasis on the single

suspect module.

Initial verification of a new piece of code: static analysis--both data

flow and non-data flow.

Broad based verification, with few budget and time restrictions: static
analysis, extensive symbolic execution, and assurance of full test

coverage through dynamic analysis.

Isolation of a difficult functional error (e.g., the program computes a’
slightly wrong value): symbolic execution of apprdpriate paths, with

dynamic analysis.

Verification of a collection of previouély (internally) verified modules,
now joined in a parallel processing environment: multi-process data
flow analysis and static checking of integration requirements, followed
by dynamic analysis of the concurrent process characteristics (such as

process queue snapshots and monitoring for parallel processing errors).

Such a philosophy pervades the design. A-s automated tools are eventually

required for requirements and design specification and analysis, such construction

will be desirable and possible there as well. Indeed, the types of analysis required

for such specifications will be very similar in nature to those required for actual

code.

The most important ‘model presented in the SAMM diagrams of Appendix D

‘is that of creating a new software system. By extensively decomposing it, the

scenarios of management, testing, and team development are included. Adding a

new capability to a system may be modeled by emphasizing a particular path,

through the system creation model and making a few minor modifications.

12

The same is true for "minor maintenance." That activity implies a small change
in the design (or requirements) of a module; coding changes are made, testing and
integration is performed and the system is released. Thus in Appendlx D, only two
: complete hierarchies are presented: system creation and documentation. Dupli- .

cation and excessive detail are thus avoided.

3.2 _System Database. - As introduced in chapter 2, the concept of a

comprehensive machine readable database of program related information is
inherent to the design presented. This database forms the basis for orderly
program development and effective program management. All the information
related to a particular program is present in. this database. Documents, formal
‘specifications, test data, program outpi;t_, scurce code, and management reports
are all included. Such inclusiveness allows the rapid determinatioﬁ of any needed
program related information. The centrality of the information prevents wasted
effort in consulting separate sources. More importantly, the database may be
systematically monitored during program development to ensure that all the
components are generated in a timely manner. This is essential as the progression
from one phase of the software development cycle to the next is dependent upon

full information being available from the previous phase.

Such considerations may be carried further with the immediate observations
that communication among development team members is increased, visibility
into the developing system is promoted, analysis may be performed and reviewed
in a systematic manner, testing activities may be scrutinized for thoroughness,
and documentation may be readily distributed and updated. Clearly management
functions are enhanced and the efficiency of the development operation is

increased.

A less obvious but critical outflow of the use of the system database is in
the maintenance function. The term "maintenance" is used to describe a variety
of activities, usually everything occurring after the initial release of a piece of
software. Typically this includes alteration of requirements, followed by design, -

coding, and testing functions. The use of the system'database'allows such

13

activities to proceed in an orderly manner as the information contained in the
database provides é complete history of the development process. Thus the effect -
of small changes in the requiréments may be readily traced on to the design, then
to the code, and so forth. At eéch stage the historical information allows the
"maintainer" to determine the impact of proposed changes. Proper development

may then proceed.

A further discussion of these concepts in a general setting is found in '

reference 2 [Osterwell Brown, and Stucki, 1978].

3 3 HALMAT. - An 1ntermed1ate representanon of- the HAL/S language, - |
called HALMAT, is used as the. primary representanon of the programs analyzed'

by the various tools. In so doing, the separate tools do not have to perform any
parsing, thus saving much time and effort. Additiohally, the tools are largely

isolated from syntax changes to the language.

3.3.1 Relating Verification Error Messages to the Source Text. - All error

messages which the verification facilities produce should be related to the source
code, and phrased in a manner readily understood Ey the user. The listing
produced by Phase I of the compiler is excellent in format and content. Since it is
a "standard" form, as possible all messages should be related directly to this
listing. Some information can be directly added to the listing by post-processing

it and adding new fields.

‘ This all may be done by working directly \vifh the HALMAT. There exists a
one to one mapping from the HALMAT "paragraphs" to the source statements.
Even HAL/S statements which do not generate any executable code (such as
declarations) create a HALMAT para’grapﬁ. Each paragraph contains a field with
the originating source statement number on it. The statement numbers also

appear on the listing.
To form comprehensible error messages the symbol table is also required.

From it (and the other tables) the symbolic variable names created by the user

may be incorporated in the messages.

14

3.3.2 HALMAT Monitor File. - The design presented contains several tools

which may request that monitors be inserted into the program under analysis. In
addition, the integration philosophy employed allows the specification of moni-
tors to be successively refined. A specialized capability may reveal that certain
dynamic monitors are unnecessary, as the conditions prevéiling at that point in

the program are known a priori.

. The medium upon which the analysis tool$ operate is HALMAT. The
monitors need to be placed within the HALMAT, and must therefore eventually be
HALMAT. To allow the flexibility needed as indicated above, it is therefore
recommended that two files of information be kept in par_a'llel. One file will be
the HALMAT‘pr‘oduce'd as a result of program‘compiiation,i the other will be én
evolving file of monitors. When all analysis tasks are ‘completed and the final set
of monitors is decided upon, the two files may 'be merged into a single file of
HALMAT. This file is then ready for code generation and execution.

One clear advantage of this scheme is that the internal pointers in the
program's HALMAT only need to be modified once. Execution of a statement in
the program may require the value of a previously computed expression. The
HALMAT contains a pointer to the statement where the expression was computed.
If a monitor is inserted betWeen the expression evaluation and its use, the pointer
must be appropriately altered. With the proposed scheme this alteration will only
occur once: when the HALMAT and monitor files are merged. Any implementa-
tion restrictions concerning checksums or the number of paragraphs which may be

stored in single record may be met at this time as well.

HALMAT's paragraph notion allows the mappmg between the monitor file
and the program file to be particularly simple. The SMRK instruction which
delineates the HALMAT corresponding to a single source language statement
contains the number of that statement. Thus when the compiler places ASSERT
and KEEP statements on the monitor file, it may reference them to the HALMAT
by simply including the appropriate statement number in the monitor file. Some
monitors will definitely require 'mapping to specific HALMAT instructions,

though. In this case a second level of mapping will be required: first, a pointer to -

15

the proper paragraph, second, a pointer (offset) to the proper HALMAT statement
within the paragraph.

The various "paragraphs" within the monitor file will evolve through several
stages. At any time the file may contain monitors in various stages of
"development." The monitor file will first emerge from the compiler (node
CBCAAB), and will contain a representation of the ASSERT and KEEP statements
encountered by the compiler. Such paragraphs will have expressions phased into
HALMAT, but will not contain the logic neceséary to implement the required
monitor. Node CBCB(C) performs this development. Later, the static analyzers

may insert monitors which are highly "developed" - checking for a very specific
crior. At a later point, these monitors may be removed, or "turned off." If a°

monitor is turned off, it does not necessarliy have to be removed - a switch may
be set. Some monitors may only be developed when system level testing is begun.
In such a case they will remain unexpanded throughout module test, and will be

skipped over during the merge phase between the HALMAT and monitor files.

In summary, the following tag fields are tentatively identified as being

associated with each monitor paragraph:

. Pointer to SMRK instruction -
Offset to relevant HALMAT instruction

Active/Inactive (and what determined that)

Level (module, system, et. al)
. Monitor type (assert, keep, error monitor)

Development status

. Monitor origin (which facility caused its creation)

Additional fields may be identified during later design phases. Not all fields may

be required on every monitor.

16

3.4 Static Analysis.

3.4.1 Units/Scales Specifications and Algorithms. ~ The implementation of.

this facility will follow the recommendations of reference 3 [Karr and Loveman,:

vl978] very closely. The folfowing items need to be considered.

1)
2)
3)
4)
.5)

6)

Basic principles and options available to the user

Specification of elementary units and scales

Specification of relationships among units and scales

Declarations of variables having unit/scale mode

Algorit_h'ms_ for checking/enforcing adherence to unit and scale com-
mensurateness or equality i ' o |

Issues to be resolved

Subsequeht correspondence in Communications of the ACM (October, 1978)

supports the .design chosen. Previous implementations have been successful and

very helpful to a wide variety of users.

17

(1)

(2) .

(3)
()
(5)
(6)
)
(8)

1.

Basic Principles and Options Available to the User.
Error detection will not inhibit code generation.

Thére will be two basic operating modes, selected by a switch. In the .
default mode the facility will require "corresponding" expreséions to

have equal units. If equality cannot be verified, commensurateness will

be checked.

Example:

' DECLARE CONSTANT /*ELEMENTARY_UNIT*/ (1), feet, inches, volts,

-~ watts, amps;
/*UNIT_RELATIONS: Inches = 12* feet;

watt = volt*amp; */;

DECLARE /* UNIT: feet */ {1, {2;
DECLARE /* UNIT: inches */ il, i%
DECLARE /* UNIT: volts*/ v;
DECLARE /* UNIT: amps*/ a;
DECLARE /* UNIT: watts*/ w;

fl = 4 feet;

il = inches;

2 =f1 +i1/12;
f2 = f1 +1i1/3;
a = 0 amps;

v = 5 volts;
w=va

w=16va

In statements (1), (2), (5), and (6) the units of the right side of the expression

exactly match the units of the left side: no error or message is generated.

18

In statement (3) the units of the expression i1/12 m_igmi be feet, considering
the relation inches = 12% feet, but, as seen in statement (4) with expression i1/3,
this is onli -an assumption. Does i1/3 represent 4 times il converted to feet? Or
is it a logic error? In stafements (7) and (8) the units of both expressions are -

clearly watts - no ambiguity arises even though the factor 16 is involved. -

Therefore, we restate our principle as follows: If, when manipulating the
units of two expressions for comparison, the application of a units relation
involving a constant is required, only commensurateness will be assured, not
equality.
Inches is commensurate with feet, but not'equal. Watts are equal (and thus

obviously commensurate) with volt-amps.

In any message indicating two expressions are commensurate but not equal,
the system will indicate what (unit-less) factor must be applied to guarantee
equality. In so doing the programmer may visually assure himself that such a

factor has or has not been applied.

We note again that this is the default node. In opﬁonal mode it is assumed
that the programmer will not insert any. conversion factors. The system will
determine what factors, if any, are required and insert them in the code
automatically. A notation will be provided indicating what factors have been

applied.

19

2. Specification of Elementary Units and Scales
A. Units

Two objecﬁves are accomplished by the scheme for declaring elementary

units described below:

1) The domain of units to be used in the program is defined.
2) A device for manipulating units is provided: variables having a units
attribute may be safely initialized, and. the units attributé-'_may be

"stripped off" a value when required.

* Scheme: Declarations of the following form must be included for each

elementary unit to be employed:

DECLARE CONSTANT /*ELEMENTARY_UNIT*/
(identity value for the type of the unit)

type declaration; list of elementary unit names;

It is anticipated that the only types to be employed will be integer and scalar, and

the identity value will therefore be one.

Example: -
DECLARE CONSTANT /*ELEMENTARY UNIT*/ (1)INTEGER, apples, oranges;
DECLARE CONSTANT /*ELEMENTARY UNIT*/ (1.0) feet, meters; |

In illustration of item 2), variables possessing these unit attributes may be

assigned values in the following (safe) manner:
f =4 feet;

m = 6.25 meters;

X = 6 apples;

20

B. Scale

Elernenfary- scale factors are declared differently from elementary units,

since there isnot a clear need for a facility like objective 2) above.
The declaration of elémentary scales will appear as follows:

/* ELEMENTARY_SCALE: list of integer scales,

where each integer is a power of 2 */

An integer variable declared to possess elementary scale 4 is to be

- interpreted as possessing the value: (integer value)/4. In other words, there is an

implied binary poin’_t.IZ bits from the right.end of the in_ieger werd. -
Note: If Language Change Request #147 (FIXED type) is adopted and

implemented in the Langley HAL/S compiler there will be no need for this

facility.

21

3, Specification of Relationships Between Units and Scales
After all units/séales to be employed in a program have been declared,
relationships .among them may be set forth. Such relationships are indicated by

the following statement:

/* RELATIONSHIPS: list of relations */;

Example: /* RELATIONSHIPS: feet = 12* inches,
watts = volt amps */;

Only simple arithmetic relationships may be declared, involving only multiplica-
tion, division, and exponentiation. (Relations such as a=b+c do not normally have
much utility in engineering/scientific applications, with the possible exception of
convéi'sion from °C to °F. If desired, however, efforts could be made to extend
the -technfque cited in reference 3 to allow this. The resulting algorithm may not
be as efficient or flexible, though. The impacts of such a change should be
cdrefully considered.)

The utility of constant values in relationships is subject to the consider-

ations of Section 1. Relationships between scales do not have this restriction.

/* RELATIONSHIPS: 8=4*2 */ defines a valid, useful relationship. At the user's

request, default relationships such as this could be automatically defined.

22

4, Declaration of Variables Having Units/Scale Attributes

'Varxables may have both units and scale attributes.
" All scales and units must be declared before the vanable is declared.
No variable may have more than one unit attribute, or more than one
scale attribute. |
e Declaration of variables having these attributes s accomplished by
inserting the special comments described below in with other attributes

of a declaration.

Syntax: /*¥UNIT: arithmetic expression involving previously declared unit(s)*/;
/*SCALE: previously declared scale */;

These declarations may be contained in a single comment if both scale and unit

attributes are requested.
Concerning the implementation of these features, two vectors (in the sense of the

reference) will be associated with each variable: one containing units infor-

mation, the other containing scale specifications.

23

5. Algorithms.

. The algorithms employed in the analysis task will be those of the reference.

No changes are anticipated.

For the default situation described in l., the analysis algorithm acts within

the following framework.
check expression commensurateness, ignoring any numeric factors;

if commensurate

then
if computed factor £1
then .
issue "factor required" message;
print factor needed
else
‘no factor needed
fi
else

print error message

24

6.

1)

2)

3)

Issues to be Resolved

The scope of declarations of elementary scale/units and relationships.

Is the scope glbbal?

Yes: The information is, in a Sense, global knowledge; .
Implementation would be simpler
_Other possible mode attributes such as INTEGER, SCALAR

are global.

~No: Variables are not global. " Should their definable attributes

be?

It may be desirable to override "global knowledge."
"Yes" is contrary to the principle of information hiding-
incompatible code could result from 2 different program-

mers.

Should there be a facility for making "enforced remarks about expres-

sions" in the sense of the reference?

Ease of implementation of declaration processing. Some modifications
to the HAL/S compiler will clearly be required. Further investigation
into the compilers structure will be required to determine if the syntax

described above is suitable.

25

3.4.2 Static Data Flow Analysis. - The data flow analysis techniques

described in this design are due primarily to the work of Fosdick and Osterweil of
the University of Colorado. Most of their work, directed at the. detection of errors
in FORTRAN programs, is directly applicable to HAL/S code. The construction of
the DAVE system to analyze FORTRAN programs ‘has provided a test bed for:
evaluation of the techniques and their effectiveness in detecting anomalous data
flow. The experience with DAVE allows the design of a capability for HAL/S to be

approached from a knowledgeable position.

Several items may be noted about DAVE. First, the system detected an
interesting class of errors which was of definite benefit in.verifying'a program.
Often the errors detected were very "simple" - yet examination revealed that they

resulted from deeper problems in the program's construction.

Secondly, DAVE was constructed as an experimental program before some -
important analysis algorithms were recognized. This revealed itself in the speed
and size of the system - it was big and slow. Students wrote much of the code, and
it evolved over a period of time. As a result, it is hard to modify to improve its

characteristics.

Thirdly, many of ~the error messages produced by DAVE referred to
phenomena which occurred only along unexecutable paths. The analyst was thus
faced with the chore of separating the true errors from the spurious. Often this

was simple, yet it represents an undesirable characteristic.

Lastly, DAVE has proved to be unwieldy in many production environments
simply because it requires the source input to be ANSI FORTRAN (1966). No

language extensions are allowed.
In designing the static analyzer for HAL/S, we have taken cognizance of

these characteristics, as well as recent advances made in the area. We may

therefore describe aspects of the‘design as follows. -

26

1. The static analyzer for HAL/S relies on the compiler to do all the
parsing required. The analyzer thus begins its chore with the creation of the
program- flowgraphs, and the annotation of the program nodes with bit vectors
conveying information about the activities which transpire at the nodes (as
required by the analysis algorithm). "Any language extensions or syntax changes

will thus have minimal impact upon the analyzer.

2. The most important part of the static analyzer is the algorithm
employed to detect the errors. The HAL/S analyzer will employ the so-called
"parallel-bit" algorithms developed by Allen, Cooke, Hecht, Ullman, and others.
These algorithms and referenceé to them may bé found in réferen'ce 4 [Fosdick :

and Osterweil, 1976]. As a result, the tlme for analysis of a program :,hould be on

" the order of its compilation time.

3. The expressive power of HAL/S is much greater than Fortran, so the
analysis techniques must be expanded in the appropriate areas. The two'major
additions to the language (as far as static analysis is concerned) are the real-time,
concurrent processing statements and the NAME, or pointer variable, capability.
Of the two, the concurrent processing features present the greatest challenge.

The NAME facility is just another aspect of the aliasing problem.

In response to ‘this, ‘considerable effort was devoted to the concurrent
processing problems, resulting in a paper describing the results in reference 5
[Taylor and Osterweil, 1978]. The problem has many facets, but the prospect for

significant results is good. The design incorporates the initial results, and is

“extensible allowing the inclusion of future results. See the later part of this

section for a full discussion of this research.

4, Since HAL/S is not a recursive programming language, the same

'processing scheme may be taken as for FORTRAN programs: a "leaves-up"

approach.

Thus the unresolved problem of applying static data flow analysis techniques

to recursive programs did not have to be addressed..

27

5. To prevent the generation of spurious error messages, representing
phenomena occurring along unexecutable paths, the techniques of reference 6
[Osterweil, 1977b] will be employed. These techniques use the parallel-bit
algorithms in the basic analysis tasks, hut a new post process is added.. A

substantial improvement in the quality of error messages produced is anticipated.

6. In order to generate the most helpful error messages and to provide
analysis paths for a symbolic execiitor, a post prOc'essor" will be used to generate
all messages. The parallel-bit algorithm detects errors at nodes only. To relate
those errors to the paths along which they occur requires another technique:
depth first traversal. Though this pr_o_ce'dure-iéf slower _than the parallel-bit
algorithms, the time .'p'enalvty is only inctrred when-an error is discovered. Thus

this process should not present much overhead.

In summary, the early analysis techniques have been improved during the
last few years and these improvements have been incorporated in the désign.

28

Database Required For Static Analyzer

The static analyser's data base contains all the local information related ‘to

.. its operation.. This databaée would include items such as: -

the flowgraphs (and pafs)

live, avail, gen and kill sets

parameter list information .

program call graph.

These are internal in nature. In addition, the HALMAT and symbol tablgs are
required for generating this information and producing the error messages. The
error messages themselves must be saved for later (possibly automatic) perusal.
These data objects are external in nature and will be contained in the ISIS, or

system, database.

The efficiency of the static analyzer and its overall capabilities depend to
some extent on the speed of accessing items stored in the internal database.
-Since ISIS is not necessarily involved, it should be possible to optimize this
informations format and its retrieval. The ramifications of multi-level static
analysis (i.e. static analyzer on the module level, then on the progrém level, then

on the multi-process level) needs to be explored, as regards the internal database.
Static Verification Of Output Assertions

The assertion facility pres‘énted in the design contains a construct having

the following syntax:
/* ASSERT expression list OUTPUT */;

This specification gives a complete list of the expressions, usually variables,

which are "produced" or modified by a section of code. It is therefore implied

29

that only those expressions, and no others occurring in the current scope, will

occur in reference contexts following the OUTPUT assertion.

Such an assertion can easily be checked using static data flow analysis. The
"reference sets" associated with each node‘ in the program flowgraph indicate
which variables are used in each statement. Following an OUTPUT assertion
these sets may be checked to verify that no variaf:les are referenced which have
been determined to be "dead" - by their absence from thé OUTPUT list.

~ Such an assertion also provides a basis for strengthening the other anomaly
analyses performed by the ’staAticr analyzer. More specifically, one of the
anomalies the static analyzer checks for is variables which are defined but not
subsequently referenced. - In other words, useless computation is detected. Such a
situation cannot normally be classified as an error. It is only "suspect”. The
presence of an OUTPUT assertion increases the number of places such anomalies
may be detected: without assertions the anomaly .is detected upon exit from the
static scope of the variable in question. With the assertions the anomalies may be

detected at each OUTPUT specification. -

In a similar manner static data flow analysis can be used to verify the
correctness of INVARIANT assértio_ns. Static analysis can be used to verify such
assertions even in the case where the protected (invariant) region is executing in
parallel with another process. This analysis is performed by examining the
definition sets associated with the nodes in the program flowgraph. Where
multiple processes are actiVe, all nodes which occur in the parallel sections are

examined.

30

Static Data Flow Analysis Of

Concurrent Process Software -

To illustrate the new difficulties inherent in analysis of concurrent pro-
grams, consider the HAL/S program fragment in Figure (3.4.2-1). We -actually
wish to consider two versions of this program: one including the statément

marked with the asterisk, and one omitting it.

The figure consists of a main program and two tasks, Tl and T2. When
scheduled, a task may execute in parallel with other tasks and any executing
progréms, subject to ’synchronization constraints. ‘Note that in this example both’
- tasks reference global vériable i- Task Tl executes in parallel with the main
program, initializing variable i in the process. Task T2 also executes in parallel
with the main program when it, in turn, is scheduled. Its correct execution
depends upon i having been properly initialized. Consider the version of the
program omitting the marked statement. Depending on the implementation, once
the schedule T1 statement is executed, the system scheduler may elect to run
task T1 to completion before any further statements in the main program are
executed. If so, all is well. If, however, multiple processors are used or time
slicing is employed, the main program may progress to the schedule T2 statement
before variable i has been initialized. The potential then bexists for Tl, T2, and
the main program to execute in parallel, with variable i being referenced before it

is defined.

The presence of the wait statement resolves the difficulty by requiring
termination of T1 before T2 is scheduled, thereby assuring that i will be defined

before it is referenced.
In order to clearly distinguish the essential difference between the two

example programs, and to form a basis on which we may formulate an analysis

algorithm, we introduce the concept of a process-augmented flowgraph.

31

main: program;
declare integer i;
tl:task;
i=0;

close tl;
t2:task;
i=i+l;

close t2;

schedule t1 pr_iority (50)

*wait for tl;

schedule t2 priority (50);

close main;

Figure 3.4.2-1 A HAL/S Program Fragment

A process-augmented flowgraph (paf) is a graph representing a set of
communicating concurrent processes, formed from the individual process flow-
graphs joined by special edges (arrows) indicating all synchronization/communi—
cation constraints. In HAL/S, statements causing such constraints include

schedule, wait, task, and close. The special arrows join these statements to

appropriate pbints in the cooperating processes' graphs.

Specificall'y, to form the paf an arrow must be created for each ordered pair
of nodes of each of the types: (schedule, task) and (close, wait).

Returning to our example, Figure (3.4.2-2) is a paf for the prograrﬁ omitting
the _v_ai_t statement, showing the three procésses, Tl, T2, and M‘AIN, all acting in
-parallel. The pat of Figure (3.4.2-3) shows the synchronizing effect of including
the wait statemént: " Tl must terminate before initiation of T2. This disﬁnction, |

as noted, is the basis for the error.

32

schedule t]

schedule t,

close main

Figure 3.4.2-2 The paf For The Fragment In Figure 3.4.2-1 -
Without The Starred Statement

main
g schedule t]
Y
i=0
close t] - 4
wait for t
) schedule t,
t .
2
i=i+1
close t2)
close main

Figure 3.4.2-3 The paf For The Fragment In Figure 3.4.2-1

We now show that existing static analysis algorithms are able to detect th_e
. error in our example by analyzing the paf and making special allowance for the
special edges.

33

As background, we briefly describe the operation of these algorithms. The
algorithms to be employed are described in (Fosdick & Osterweil, 1976). The
purpose of these algorithms is to infer global program variable usage information
from local program variable usage information, and then to infer documentation, -
verification, and error detection results from the variable usage results. The -
local variable usage is represented by attaching two sets of variables, gen and kill,
to each program flowgraph node. The global data usage is represented by

attaching two sets, live and avail, to each node. The algorithms presented in

(Fosdick & Osterweil, 1976) assure that, when fhey terminate: 1) a variable v is in
the live set for node n, if and only if there exists a path, p, from n to another node
- n' such that v is in the. g@_ set-at n', but that v is not in the kill set of any node
- along path p; 2) a variable v is in the avail set for node n, if and only if, for every-
path, p, leading up to n there exists a node n' such that v is in the gen set at n',

but v is not in the kill set for any node between n' and n.

As an example, let us see how this information can be used to determine the
possibility of an uninitialized reference to a variable v in a given program. We
begin by annotating the graph so that v is placed in the gen set of a node if and
only if v is defined at the node, and all variables v are placed in the Xill set of the
program start node. For the purposes of this example let us also hypothesize the
existence of a ref set at each node. Let v be placed in the ref set of a node n if

and only if v is referenced at n. Now suppose the avail sets are computed. Next

compute ref(n) N (ref(n) Navail(n)). If this intersection set contains v at a node, n,
then whenever node n is executed there will be a possibility that there will be an
uninitialized reference to v. If the intersection is void, no uninitialized reference

can occur at n.

In (Fosdick & Osterweil, 1976) it is shown that many similar analytic results
can be obtained by appropriate selections of gen and kill criteria and corre-

sponding interpretations of live and avail sets..
Bearing this discussion in mind, let us now consider the paf of Figure
(3.4.2-2). Suppose the gen set for each node contained all variables defined at

that node, the ref set of each node contained all variables referenced at that -

3

node, and the kill set of the start node contained all variables. Now suppose the
avail sets are computed in such a way as’to insure the original definition - namely
that for all execution sequences leading to n, v was most recently in a gen, rather .

than a kill, set. Then, if

ref(n) Nret(n) Navail(n)

is computed, we find that i is in this intersection set for the node n representing
the statement referencing i. This indicates the possibility of an undefined

reference to i at n. This is the desired analytic capability.

Unfortunately‘the avail sets for nodes of a'paf must be computed somewhat
differently than for nodes of an ordinary flowgraph in order to assure the correct
function of the above analysis. In an ordinary single-process flowgraph, the avail
set at a node n must be given by:

(*) avail(n) — n . (kill(n’i) n avail (n'i)) u gen(n")
all : '

immediate

predecessors

of n, n'i

Algorithms for computing avail assure that this condition holds for all nodes upbn

termination.

Now suppose that node n represents a wait statement in a paf. Then one
edge entering n must be a special synchronization edge. If a variaible, v is
initialized as a result of executing the process preceding that edge, then it is
certain that v must be initialized at n regardless of whether it has been initialized
prior to execution of any other edges entering n. Hence we see that if w is a wait
node of a paf, and w' is the node at the other end of the special edge entering w,
then for the purposes of this uninitialized variable reference analysis avail(w)

must be computed by:

35

avail(w) gen(w") (avail(w") N [[gen(x) (avail(x))]]
all
predecessors
of w, X,

except w'

‘Similar adjustments must be made in order to assure that the other analytic
results on single process flowgréphs which are described in reference 4 (Fosdick &

Osterweil, 1976) can be obtained for concurrent program paf's.

Similarly, there are more intricate adjustments Which must be made in order
to correctly.computé the live sets;a.t schedule node's of a pa-f.'.' _.'Onc:e_made,
however many analytic results in reference 4 (Fosdick & Osterweil,. 1976) which
employ live sets can also be obtained for concurrent’ program paf analysis.

Our preliminary investigation indicates that the algorithms described in
reference uf(Fosdick &;%sterweil, 1976) can be altered to compute live and avail
for paf's as described above without affecting their highly efficient execution

speeds.

All of the above results are predicated upon the existence of the paf, yet
construction of the paf is not a trivial or insignificant activity. For our initial
studies we have chosen to consider only programs whose synchronization is carried
out entirely by the schedule and wait statements. Under this simplifying
assumption the construction of the paf is rather étraightforward, in’volving
basically a depth-first search. It is important to note, however, that HAL/S
contains certain synchronization constructs for which paf construction is more
difficult, and in some cases impossible. Further research will be needed to
determine the largest subset of the language which is comfortably amenable to

static data flow analysis.

Our work has shown that the paf has additional significance as the basis for
detecting various process codrdination errors. For example, consider the program
whose paf is presented in Figure (3.4.2-4). The HAL/S program contains a
significant ahorﬁaly which should be noted. If during execution the else branch of .

36

- scheduie Ti

wait for T1

close Po

~ Figure 3.4.2-4

the if is taken, task Tl will not be schedruled, yet later the program will wait for
it. Strictly speaking this is legal in HAL/S and the wait will have no effect, but it
- may be very indicative of a logic error. A reader of the program would likely
assume that Tl was guaranteed to have been scheduled, else why wait for it? To
document such statement usage, and for detection of other similar errors, an

anomaly analysis is desirable.

Let us assume that the HAL/S program‘ is represented by a paf. But now
suppose that the gen set of every node éonsi_sts of the processes scheduled at that
node and the kill set of every node consists of the processes waited for at that
node. Now consider the special synchronization edges to be no different than
other edges and determine the avail sets for the paf nodes. Clearly if a process is
not in the intersection of the avail and Kill sets for some node n then it is possible

to wait at n for a process that has not been scheduled immediately prior.

Similar kinds of analysis can detect useless synchronization (waiting for an

event which is guaranteed to have transpired), erroneous synchronization (such as

37

waiting for a process guaranteed to not have even started), and scheduling a

process in parallel with itself.

Unscheduled, yet declared, processes are detected by using live analysis to
show the absence of any path from the start of a main program to the open node
of such process flowgraphs. Simple deadlock situations may be detected by

examining the paf for cycles involving (at least) two (close, wait) edges.

33

3.5 Symbolic Execution. - The design and recommended usage of the

symbolic executor presented in the SAMM diagrams has been strongly motivated
by considerafio_n of two existing symbolic executors. . Clarke's ATTEST. system
- (reference 7) [Clarke, 1976] and Howden's. DISSECT system (references 8,9)
: [Howden, 1977; Howden, 1978a] were both examined and experiences with them -
~ evaluated. The result is basically an amalgam of the two. The guiding principles
here have been to define a tool which has a feasible implementation and, most

importantly, addresses an important user need.

Experience with ATTEST has shown that efforts to prove the executablity of

a given path by solving the associated system of constraints can meet with

success, though substantial eifort is involved. Additionally; as a by-product of ‘-

showing executability, test data can be automatically generated which will force
execution down the selected path. (Test values is a more precise term, as
formatting of the values into what is required by the input handler must be

performed manually.)

ATTEST has also served as a testing ground for data and program structure.
A "standard" algebraic manipulation package was employed in the program . This
experience will prove valuable when implementation of the MUST system is

undertaken.

Howden's DISSECT system has been beneficial in indicating the user
features which are most valuable in controlling the executor, and in providing
overall perspective on the utility of such systems. With regard to user features,
the design presented contains many different areas in which the user may interact
and control actionvs. Specification of paths, Adata values to use, and output desired
are all under user control. The DISSECT system is regarded as the model in this
area. Refinements and revisions to DISSECT's abilities will be required, of

.course, as the symbolic executors design is deepened.

Concerning perspective, the DISSECT system was carefully evaluated after

its construction to see how well it detected programming errors in comparison

with other techniques. In a later paper (reference 10) [Howden,,l‘)’/'Sb],' Howden : -

examined -error deteciion schemes in general for their efficacy, through a series
39

of experiments. The result of both these considerations was that, in the presence
of a suite.of error detection tools (such as static and dynamic arialyzers), symbolic
executors did not detect significantly more errors thanthe combination of the
other tools. One cannot concldde from this, however, - that symbolic executors
have no place in a programming environment. It does indicate that the tasks

should be carefully chosen to which symbolic executors are put.

We believe that while the symbolic executor should be built with capabilities
to perform automatic error detection, the user should ‘have'the potential to be
heavily involved in the process. An example of such involvement is to have the
executor indicate all output values which are affectéd by a given Vi.nput value, or,
for a gi\}en output, display all the inbputs which ére involved in its computation. In
the latter example the user would be involved in aiding the identification of all
paths (or classes of paths) which lead to the output. The system presented allows
these types of activities in addition to the more classical functions of Symbolic

executors.

The possibilities of using a symbolic executor to analyze and refine "error"
messages coming from the static anaylzer do not seem as promising as was once
hoped. Experience with DISSECT, for example, indicated that pathwise checking
for division by zero errors was not profitable. Significant user interaction is
required to examine most of these questionable errors. The design we present
allows for the symbolic executor to examine these situations, but further research
and experience will be required to evaluate this more fully. We believe that using
a symbolic executor to check the functional effect of paths in the manner
described above, and in the classical sense (printing formulas and performing
algebraic manipulations, in contrast to only printing simple variables which are

"affected"), will prove most valuable.

One feature is present in the design which has no direct analogue in either
ATTEST or DISSECT. A machine sfate resulting from partial execution of actual
code may be passed to the stbolic executor to (at least partially) specify the
values to be used during symbolic execution. Further analysis of this features

“utlity and the difficulty of implementing it is recommended. - Such aralysis wii! be

40

possible when the details of the executor's styru'cture are worked out. Note that
this type of facility begins to blur the distinction between a symbolic executor
-and an interactive debugger. Further analysis of the similarities between the two

tools is recommended.

41

3.6 Dynamic Analysis.

3.6.1 Assertion Facility.

Design Principle

The Assertion and Statistics Gathering Languages (statements) designed are
general and powerful. Some of the features are totally new to such lénguages; to
our knowledge a system of this scope has not been implemented anywhere. "_I'heb
decision to adopt such a broad design is based upon our principle that it is crucial
to anticipate future needs and make appropriate provisions for them. Indeed, the
syntax is incompletely defined - further consideration and experience with the

provided features will dictate their completion.

Basic features will be implemented at first. As experience guides, addition-
al features will be supported; with their implementation and integration beihg-
able to proceed smoothly. The syntax will require no revision and previously
instrumented programs will not require any changes. In fact, programs may
contain assertions which reference (hitherto) unsupported features. Such asser-
tions serve as important documentation. - When the support features they require

are provided; they then assume their role as active monitors.

The basic ideas contained in the design were obtained from two primary -
sources: reference 11 [Stucki, 1976] and reference 12 [Chow, 1976]. Bo'th contain
excéllént expositions of the utility of assertions and provide many examples.
Chow provides several examples of specialized assertion functions which may be
defined. Some of these would require special impleinentation, but their semantics
are harmonious with the design presented. Thus they are candidates for future

inclusion in the assertion language.

Implementation

The stipport of the designed features will certainly take place in phases.

Four major factors are involved.

42

First is the problem of determining a suitable instrumentation schema for
any given. facility. For most of the facilities descrlbed this 'is straightforward.
Difficulties arise though, for example, in consideration: of the INVARIANT clause. .
If such a clause is used in a concurrent process program, guaranteeing the
invariance of shared data may be very difficult. Perhaps more important is the

problem of discovering efficient instrumentation schemas.

The instrumentation required to implement the histogram-type information
could be provided in several ways. One alternative is to utilize the execution
monitor, as opposed to inserting special probes dlrectly in the code. The. dpfault
compiler mode generates calls to the execution monitor followmg each HAL/S
statement. The monitor performs any duties associated with the real time
aspects of the program, among other things. Since the "hook" to each statement
is thus automa_xtica'lly provided, the monitor could be modified to gather the
histogram information. Such modification is not recommended, however. Un-
necessary overhead would result, controlling the extent of histogram-gathering
would be difficult, and dependencies would be placed on using the monitor - which
may be undesirable on many target computers. Much greater flexibility and

economy is achieved through the direct insertion of probes.

Another decision governs the nature of the probes which are inserted. Inline
code may be creéted, or a procedure call may be used. Inline code executes
faster, but may incur a size penalty in the object program. Global declarations to
support the instruments must be supplied, and some run time flexibility may be
sacrificed. Subroutine calls are smaller, require less "declaration" effort, and
greatly increase flexibility over in-line code. The execution time penalty

associated with procedure invocation may be prohibitive in many cases, however.

In light of these considerations, it is recommended that in-line code be used
' predomixlantiy, but that the ability to 'userprocedure.calls should not be precluded.
Since the cost of procedure invocation may vary significantly from implementa-
tion to implementation (and language to language), it is also recommended that
timing studies be undercaken to aid in determ-mng the pronel mxrture of

techniques. User Cuntroi over the type of instrumentation to be utllxzed is an

important option.

43

Regardless of the scheme used to implement the histogram-type facilities,
two concerns must be kept in mind. It must be guaranteed that regardless of
where program termination occurs statistics will still be captured and the

interfaces with the file system must satisfy overall efficiency requirements.

Second in the list of major implementation factors is the problem of
translating the assertions into the instrumentation required. Parsing of the
assertion itself is a problem, as sophisticated expressions may be present. Clearly
the use of compiler routines is mandafed, and this should be readily accomplished .
as the routines to pull the'assertion out of thé comment brackets will be included
within the compiler. The .compiler procedures to ‘pa}se exp’ressiqné_ will thus be
available. Examination of the compiler structure will be required to determine if
‘this is truly feasible. (The seinantic actions may be too closely tied to the

parsing.)

Third, as noted in the description of the assertion syntax, the problem of
"specification" or denotation arises. This is with regard to path specification and
"quantifier completion'. The facilities which are desired to present such capabili-

ties must be determined. This will be discussed later.

Lastly, the problem of adding the new HALMAT (which 'represents the
instrument) to the existing HALMAT (which represents the program) must be
closely considered. No significant difficulties are anticipated, rather, care must
be exercised to ensure that all pointer references, counters, and .so forth in

HALMAT's triple structure are maintained in a consistent manner.
Restrictions and Capabilities

Much of the generahty prov1ded by the assertion and statistics gathermg
statements arises from the ability to invoke a function, in the general sense; as a
part of expression evaluation. Sophisticated, tailor-made functions may be -,
provided to perform a variety of checking activities. "These functions may be
catalogued and saved for use on many different classes of software. x or example;

certain functions might be parucularuv usefui when veruymg real- tlme software,

by

(Note that the real time clock may be referenced). The instrumentation of such
functions would allow their execution to take pllace in "zero time" in a simulation
environment. To fully simulate a real time -\program, though, the timing of
external interrupts must be adjusted to compensate for the increase in actual

execution time.

The caveat associated with this capability is that the functions which are
called must not have any side-effects. A program must execute with instrument-
ation identically as without. Enforcement of this rule will necessitate restrictions

on the compositon of the functions.
A list of supborting capébilities follows:

1. The .assertion processor(s) will accept a control file as secondary input.
This will allow information such as selective instrumentation commands to
override commands embedded in the source text.” Information regarding standard

"assertion functions" to be used may also be supplied.

2. The selective instrumentation capabilities allow, for example, only one
module of a multi-module program to be instrumented. Even if execution halts in
an uninstrumented module, the statistics from the instrumented module must still

be gathered (assuming the instrumented module is executed at least once).

3. Standard functions may be .provided to query aspects of the operating
environment. These queries allow the program to assert that it is operating under
the conditions for which it Was designed. Such functions may concern physical
(hardware) characterisitics or software support. These functions will necessarily
be implementation dependent. (For example, an assertion may be made about the

target machines word size).

~ 4. The post processor, which prepares reports containing the statistics
gathered during execution, should allow information gathered from several test
runs to be presented in a single report. Summaries of the statistics obtained from

each run shculd be obtainable as well.

45

5. The facilities which actually insert the instrumentation should provide an
indication of which assertions/keeps qciﬁally_ generated monitors. In addition, for
any given set of instruments the facilities should attemp~t to estimate at least the
increase in program size caused by inserting the instruments into the.program, if

not a timing estimate too.

6. If relevant aspects of the output from test runs are retained in the system
data base, a facility may be provided which will monitor thé progress of the
testing activities. = Test coverage may be considered, as well as examination of
the number of assertions violated per run. It would then be possible to use
software rellablhty models to estimate tne quallty of -the software. See reference
13 [Lloyd -2nd Lipow, 1977], chapter 17, or reference 1k [Sukert, 1977] for a

consideration of this..

46

Notation

The ‘grammar used to describe the assernon and statistics gathering

languages is a variant of BNF, described below. -

i) Nonterminals are underlined, e.g., assert statement

iil) Terminals composed of Latin letters are printed in uppef case, e;g.',
ASSERT

iii) Termmals composed of special characters are prlnted in bold face, €.8ey

- Q)
iv) Items which are optional are enclosed in pareﬁtheses, e.g., (GLOBAL)
v) Items suffixed with an asterisk (*) may appear zero or more times
vi) Items suffixed with :;.1 plus sign (+) may appear one or more times
vii) multiple productions corre;ponding to a single non-terminal are listed

on successive lines. The non-terminal and the ::= sign only appear

on the first production.

e.g., value = comparison

path expression

47

3.6.2 Assertion Language

assert statement ::= I* (s Eecxal label) ASSERT (GLOBAL) ext-logxcal -exp-list
-l-/,

ext-logical-exp-list ::= ext-logical-exp (; ext-logical-exp)*

ext-logical-exp ::= value (relop value)*

expression list INVARIANT (TO special label)

expression list (NOT) IN range+
expression list OUTPUT '

value ::= comparison

‘path expression L - L .

quantifier comparison

expression list ::= expression (, expression)*

relop ::= conditional AND
conditional OR

quantifier ::= FORALL quantifier completioh

EXISTS quantifier completion

quantifier completion ::= to be determined

range ::= (constant (: constant))

path expression ::= PATH special label WAS path
PATH path

path ::= to be determined

end ASSERT stmt ::= /* END ASSERT special label */;

invariant mark ::= /* END VARIANT sgecial label */;

statistics value ::= spécial label ((name))

Context Sensitive Rules

1. No two ASSERT statements may have the same sgecia'l label.
2. No two invariant mark statements may have the same special label.
3. Multiple ASSERT GLOBAL/ END ASSERT statements are possible, and nesting

is not required. As the system is used and feedback obtained, such a requirement

may be added later. A
4. The GLOBAL key\'old may "0t be used in COﬂjUnCtIOP w1th the TO s Eeaa
label clause, nor the OUTPUT clause. _

48

Semantics

-

‘1. "Any and all ASSERT statements may be labeled with a Dewey_decimal-
number. Their instrumentation may be controlled by an external mechanism which
references these numbers. If no lébel is given to an ASSERT statement, .its
instrumentation may only be controlled by a binary switch. This "external
mechanism" is a user supplied function to the assertion processor (SAMM node
CBCD).

2. The ASSERT GLOBAL statement - specifies a list of conditions which
‘must continuously hold over a range of the program. This range is demarcated by
the ASSERT statement and the END ASSERT statement whose special labels
match. If no such END ASSERT statement exists or if the ASSERT statement is
unlabeled, the assertion applies to all program text following the ASSERT

statement in the current static scope (at the procedure, task, or program level).

3. A series of logical conditions may be expressed in a single ASSERT
statement. If the GLOBAL keyword is present, all the logical conditions must hold

throughout the range of the assertion.

4, Contradictory assertions may be specified for the same program region.
By definition, if both are instrumented, an assertion violation will be reported

whenever that region of code is executed.

5. Each extended logical expression which is checked may include condi-
tional operands (tokens such as CAND and COR may be appropriate). In the

conditional expression A conditional and B, B will be evaluated if and only if A is

true. In the conditional expression A conditional or B, B will be evaluated if and

only if A is false. Evaluation proceeds from left to right, with no parenthetical
nesting. By using such expressions dynamic control o.ver assertion evaluation is
achieved. (Indeed, if the first part of the expression is evaluable at compile time,

a more efficient form of instrumentation may be possible.)

49

6. "Threshold" control may be achieved in a similar manner. The special'
value VIOLATE (special label) may be used within any comparison in an assertion.
Its value is the number of times the referenced assertion has been violated. If no

reference is provided, the number of violations of the current assertion is taken.

7. Special values COUNT (special label) and statistics value may also be

used within any extended logical expression. COUNT refers.to the execution count
of the referenced KEEP statement (if no reference. is provided, the COUNT of a
hypothetical KEEP COUNT statement which immediately precedes the ASSERT is

used.) statistics value allows the value of any HAL/S expression which is saved in

a KEEP to be referenced in an assertion. The optional name which follows the _
label allows a particular value to be referenced out of several saved at the KEEP
(there may have been a list of’expreséions to KEEP). The name supplied must be
textually identical to one of the expressions listed in the KEEP.

8. pafh expressions allow assertions to be made about execution paths

previously taken and kept, or predictive assertions about what path will be followed
after checking of the assertion. Further discussion of this facility may wait until a
suitable notation for specifying a path is adopted. Such a mechanism must allow a
convenient, useful path specification to be made before program compilation.

Decisions about what is done when subroutines are called will have to be made.

- 9. quantifiers on comparisons allow the formation of assertions with the
power of the first order predicate calculus. Such assertion capability is very useful
in efforts to formally demonstrate program correctness. As far as instrumented
assertions are concerned, however, substantial effort must be expended to deter-

mine what restrictions should be placed upon quantifier completion in order to

guarantee feasible instrumentation.

10. The INVARIANT (TO special label) clause specifies that none of the
expressions listed in the statement will vary-in value as long as control remains

within the scope of the invariant assertion. The invariant mark statement may be

used to define the end of the region throughout which the value of the expressions
must remain constant. The special label found on +he TO <lauze and the invariant -

mark must be identical. If no such mark is found, or if the TO special -

50

l_ab_e{ phrase is omitfed, the end of the current local .scope (at the procedure, task,
or program level) is used. If control enters the -scope of the invariant without
"passing through" the ASSERT statement, the value of the expressions must be the
same as (invariant to) the value of the expressmns the last time the ASSERT was
executed. The INVARIANT (TO special label) clause allows assertions which may
check for parallel processing errors. (The clause is also useful for indicating what
variables are input-only to a routine. This allows protection of global variables
used in internal scopes. Procedure parameters are already protected through the
formal parameter/ASSIGN mechanism.) If several shared variables are being
referenced in a supposedly critical region, they should not be updated concurrently.
They must remain INVARIANT to the end of the critical regxon. Efficient
implementation of this feature for such concurrent processing applxcatlons will
require significant study if such checking is performed dynamically. Static verifi-

cation is the preferred technique.
11 The IN range specification indicates that each value specified in the
expression list must lie within one of the ranges provided. A range may consist of

a single value.

12. The expression list OUTPUT specification gives a compleie list of the

expressions, usually variables, which are "produced" or modified by a section of
code. It is therefore implied that only those expfessions,v and no others originafing
in the current scope, will occur in reference contexts in the same (static) scope
following the OUTPUT assertion. The scope of the OUTPUT specification is from
the beginning of the program unit (procedure, task, or program) to the OUT'PUTV

assertion.

51

3.6.3 Statistics Gathering Language -

statistics statement ::= /* (special label) KEEP GLOBAL function list *s

/*(sg' ecial label) KEEP svalue list (qualifier) */;
end keep statement ::= /* END KEEP special label */;

special label ::= integer (. integer)* (.)

function list ::= function (, function)*
function ::= COUNT ((stmt-type list))

normal function

- svalue list :2= svalue (, svalue)*

svalue ::= expression
COUNT
PATH ((integer))
qualifier ::= IF comparison
s‘tmt-type list ::= stmt-type (, stmt-type)*
stmt-type 2= ALL
~ ASSIGN
CALL
CANCEL
DOCASE
DOLOOP
EXIT
FILE
GOTO
IF
ONERROR
OFFERROR
READ
RESET
RETURN
SCHEDULE
SENDERROR
SET

52

SIGNAL
TERMINATE
UPDATE

WAIT

WRITE

Context Sensitive Rules
1. No two KEEP statements may be labeled with the same number.

2. - Multiple .-KEEP GLOBAL / END KEEP pairs are pbssiblﬂe, and nesting is
not required. As the system is used and feedback obtained, such a requirement

may be added.
Semantics

1. All KEEP statements mayAbe labeled with a dewey-decimal number. As
such they are individually named and their instrumentation may be controlled in a
sophisticated manner by an external mechanism (directives td the KEEP statement
processor). If they are unlabeled their instrumentation may be controlled by 6nly a

single (binary) switch.

2. The KEEP GLOBAL statement specifies a list of functions which are to
be applied to every (applicable) statement within the textual scope defined by the
KEEP GLOBAL statement and the END KEEP statement whose special labels
match. If no matching'END KEEP is found, such a statement is generated at the

end of the current textual scope (at the procedure, task, or program level).

3. The functions which may be applied at each (appropriate) statement are
as follows:

COUNT -~ provides a count of the number of times each statement was

executed. The stmt-type list qualifier allows the user to restrict the types of

statements for which this information.will be kept. The default is ALL

statements.

53

normal function - this is a general HAL/S_ function which will be called after

the execution of each statement. This provision is in keeping with the overall
criterion of providing ‘a_ gen‘eral.syntax. Implementation restrictions, as
previously mentioned, are almost certain. At least three special values may
be referred to in the function definition: COUNT, VALUE, and STMTTYPE.
COUNT refers to the execution count for the current statement. VALUE
refers to the value, if any, for the current statement. VALUE is defined as

follows.

Statement-type Value

- Assignment the value assigned to the left side of the assignment'
I the value of the comparison
STMTTYPE refers to the statement types enumerated under stmt-type above.

4. If GLOBAL is not specified, the KEEP statement refefs only to the
program state defined at the point of the KEEP.

5. svalue may be any computable expression (including HAL/S normal
functions) and is subject to the rules provided for functions in rule 3 above.
COUNT has the same meaning as noted above, but may not be qualified. Thus it

refers only to the number of times control passed through the KEEP statement.

6. Specification of PATH will cause a record to be kept of the execution
path taken from the KEEP statement until an END KEEP statement is encountered
which has a matching special label. If the PATH is qualified with an integer n, the
path record will be limited to a maximum of n statements. Only the first n

statements encountered will be retained.
7. If a KEEP statement has a qualifier phrase, the information requested

will be kept only if the condition is met. Evaluation of the condition is subject to

the extensions and restrictions applied to normal functions in rule 3 above. -

54

Rationale

The ‘primary motivation for the-provision' of the KEEP statements is to allow
assertions to reference previous values of variables. . The second motivation is to
allow the user to control to some extent the information which will be produced as
a "histogram" of the programs execution. This histogram normally contains

execution counts, but may include other items as well.

The keeping of voluminous amounts of detail concerning a programs execu- -
tion hisfory is most closely associated with debugging systems. Such systems have
a decidely different fiavor than' the dynamic analysis system ¢6nsidered hefe. As
the preliminary design includes a debugger (SAMM node CCCD), facilities for
production of such information are not included in this specification. Necessarily
the line drawn between the two is somewhat arbitrary, but we believe the

distinction drawn is a useful one.

55

1)

2

3)

4)

5)

6)

Sample Usages of the Assertion and Statistics Gathering Facility

/* ASSERT A=B+C; D> 6; F(X)1=0 */;
Three simple arithmetic relations which ‘must be true at the point of

assertion placement.

/* ASSERT A>5 CAND F(X) = F(Z) */;

Two arithmetic relationships. The second relationship is checked (causing

evaluation of the functions) if and.only if A>5.

/% ASSERT A>5CAND B<0 COR C=0 */;
Three arithmetic relationships. B < 0 is evaluated if A > 5. C=0 will be
evaluated if the value of the entire expression to the left of the COR is.

false. The chart below indicates all possible evaluation/value combinations.

A>5 B<O - C=0 Assertion valve
T T : unevaluated T
T F T T
T F F F
F unevaluated T T
F unevaluated F F

/* ASSERT VIOLATE<5 CAND F(X)=0 */;
F(X) will only be compared with zero if this assertion has not been violated

more than 4 times.

/* ASSERT GLOBAL X>0 */;
X must remain positive from the assertion through the end of the current

scope (either procedure, task, or program end).

/* 1 ASSERT GLOBAL X >0 */; .
: X must remain povmve threughout this xegxon

/% END AGSERT 1 */

56

7)

8)

9)

10)

11)

12)

13)

14)

15)

/* ASSERT A, B,C INVARIANT TO 3.1 %/
: A,B,C must remam unchanged in thxs region

/* END INVARIANT 3.1 */

/* ASSERT X+Y INVARIANT */;
The value of the expression X+Y must remain constant until the end of the

current procedure, task, or program.

/* ASSERT X IN (1:6)(12) */
The condition 1< X <6 or X=12 must be satisfied.

/* ASSERT X,Y OUTPUT */;
Only variables X and Y will occur in reference contexts below this point in

the current textual scope (procedure, program, or task).

/* 1.1 KEEP X */ .

The current value of X is retained for later use in an assertion.

/* ASSERT L.1(X) =X */;
Asserts that- the last value of X stored at KEEP 1.1 is equal to the current

~value of X.

/* ASSERT 1.1 () =X */;
Same as example 12). This syntax is valid if KEEP 1.1 only retained variable
X.

/* KEEP GLOBAL COUNT */;
An execution frequency count is kept for all statements occurring after the

KEEP until the end of the current scope (procedure, program, or task).

/* KEEP GLOBAL COUNT (READ, WRITE, FILE) */;
An execution frequency count is kept on all input-output statements

occuring after the KEEP until the end of the current scope.

57

16)

17)

18)

/* KEEP COUNT IF FLAG */; | |
A selective execution count will be kept for this statement. The count will

be incremented only when variable FLAG has the value TRUE. -

/* KEEP X IF F(X)>5 */;
The value of X will be retained only if F(X)>5.

/* ASSERT X<0 COR SPECIAL_ERROR_HANDLER(X)*/;
This example illustrates how special processing may be performed on

assertion violation. If X is not iess than zero then (presurnably) something

‘has gone awry in the program. In order to gather as much inférmation ‘as

possible a user-supplied function is called which may, for example, print out

a helpful message.

58

3.7 Documentation. - Virtually all of the tools presented in the design have,

as part of their duties, the productidn of different aspects of documentation., The
most obvious facﬂities in this area are the non-data flow static analysié (cross .
reference generator, call graph, code auditor-,‘etc.); the .comment extractor, and
the assertion facilities. The system data base is the common repository of -all-
documentation produced. A powerful user interface to it allows such documenta-

tion, generated by diverse tools, to be accessed in an efficient manner.

Rather than restate here all the particular documentation items generated,
the reader is referred to the SAMM diagrams and the descriptipn of the assertion
facility. Improvements to the HAL/S co_mpiler' are noted undér non-data flow
static analysis. (In generai the corﬁpiler was judged as producing excellent cross
reference maps and other information associated with compilation. This evalua-
tion was based on reviewing the HAL/S 360 User's Guide and test programs run on
the 360/370 compiler. The differences in output between the NASA-LRC

compiler and the 360 compiler were not considered.)

59

3.8 Error Class/Detection Technique Chart. - Table I contains a chart Baving

on the vertical axis a list of errors commonly occuring during the development of
large software 5ystems. The horizontal. axis contains a list of automated tools
useful in the detection of such errors. At the intersection of each error and tool,
an indication is provided as to how well the tool is suited to detecting the
particular error. An empty intersection indicates the tool is not likely to directly
aid in the detection of the particular error. Along each row of the chart (which
corresponds to a single error) the tools which are appropriate for the error
detection are ranked as to their ability. One tool is often more powerful (in a
loose sense) than others, and will detect a higher percentage of the particular

error in a given systern. ' c BT
This chart is useful for several purposes.

1. It is a guide to choosing the best strategy for detecting a particular

class of errors.

2. It is a guide to choosihg an implementation strategy. By écanning the
columns of the chart, each tool can be examined as to how many error classes it is
suitable for detecting. If the errors are weighted as to importance, and the

~efficacy of the tool is taken into account, an assessment of the "value" of the tool
may be made. This value may be used in determining which tools are the most

important to implement.

3. The chart gives ‘an indication as to which errors are particularly
difficult to detect. For some errors very few tools are appropriate, and those
tools which are appropriate may not be very effective. Areas for further research

in the development of tools are therefore highlighted.

'Though these utilities are not to be overly deprecated, several consider-

ations must be kept in mind when using the chart.

60

l. The error classification scheme used on the vertical axis .is not
universally accepted, nor does it necessarily reflect the major categories which
exist on any given project. The scheme used is based mostly on-a study performed
by TRW for RADC (reference 15) [Thayer, et. al, ‘1976]. It is the .culmination of.
examination of five large software development projects in the DOD environment.
As such it probably is relevant to flight software projects, though there are
clearly several exceptions. The classifications have been modified slightly to

reflect the additional characteristics of flight software.

2. The list of tools which are rated is not exhaustive. A single tool may
also require several programs for an implementation. Good and bad implementa- -
tions exist for each tool as well. It is assumed here that all the implementations -

are "good" ones.

3. Any tool acting in a stand-alone capacity is not nearly as effective as a
tool embedded in a verification environment. The power of an environment is
greater than the "sum" of the powers of the components, due to the effect of

working together. The chart attempts to rate the tools largely independently.

4. The ratings given in the chart are very subjective. In addition, some of
the tools described have never been implemented in anything more than prototype
form (e.g., design simulation). The ratings therefore represent educated esti-
mates, considering both confirmed results from existing tools, and aniticipated

results from planned tools.

5. Several of the tools require intelligent use, and such use is assumed in
the ratings. As an example, program assertions are potentially very powerful, but
the programmer must employ much thought and care when creating them in order

to realize their benefit.

6. The chart does not provide an effective guide to the use of tools during
-program development. Specifically, detection of errors during requirements
analysis is substantially more cost effective than detecting them during design.

Cetection of errors during ‘design is substantially more cost effective than

61

~ detecting them during coding. The same is true when comparing coding to’the
traditional concept of testing. Thus using "effective" tools at coding time is no
substitute for proper analysis of requirements or design. Lastly, the class a

particular error falls into is not normally known until after it has been detected. .

62

1°29

E
\ 3
2
o
»
w
. L2
Requirements and Static Analysis Tools '2' Dynamic Analysis Tools
Design Analysis . €
Tools o
“
&
2
5 S
8 5z ¥ o 5 = E om
= T § B g . 5 - .8 o Z £ 8
$s |53 &%ss 3 £ g 23
g 252 (52862 CFE 8 g g 2 T &
s & 2 £ a8 295858 20 3 o . 2 89
& Q T ™ L S 2 o w & 8
£ 2 @ o ® 5 3 P 8 538 4% 8 215 8§ 2 € 3
L e e ¢ S s Y S 8 & e w - e = Qle 2 © 1
3 2 2 2 g 2 2 £ 8 E 5 =« § &5 8 -:E, g g e 2 5
s w2 e 8 = 3 < - - S w 17y T 8
€ 8 8 o S & 553 #8848 = 8 3l €« 8 & E
A COMPUTATIONAL ERRORS
A1 Incorrect operand in equation v 1 Vv v 3 v Vv 1 v v
A2 Incorrect use of parenthesis V4 2 1 v
A-3 Sign convantion etror Vi v v 1
A-4 Units or data conversion error 2 V4 1 3 v v
A-5 Computation produces an over/funder flow 2) 1
A6 Incorrectfinzccurate equation used Vv o2 v 1 1
A-7 Precision loss due 1o mixed mode 2 Vv 1 v
A-8 Mising compitation 2 VvV v 1 2 V4
A9 Rounding or truncation error 1 2 v :
B LOGIC ERRORS X
B-1 Incorrect operand in logical expression VARVAR v Vv 3 2 v 3 ‘
B2 Logc activites out of sequence. VARV v 1 3 v 2
8-3 Wrong variable being checked v vV N4 v o2 Vv 1 3
B4 Mising!ugic or condition tests \/ \/ 1 v 3 1 2 \/ \/
8-5 Toomany/few stuternents in loop v 1 v 2 3 1 3 ' v
8.6 Loup iterated incorrect number of times v Vv v Vv 1 1 2 .
{inclucing endless loop) .
B-7 Dugphzate logic VAR V4 2 2 i
C DATA INPUT ERRORS
C-1 Invalid inpuxreadfrom'correctdatafile . \/ \/
€2 Input read from incorrect data file v4 v v v
C-3 Incorrect input format \/
- €4 Incorrect format statement referenced V4 v vV v
C5 End of fite encountered prematurely v Vv
C-6 Endof file missing v Vv

Table 1. Error Class/Detection Technique Chart

(A

Symbolic Execution|

Reguirements and Static Analysis Tools Dynamic Analysis Toals
Design Analysis
Tools
8
8 " S
5 8 X 5 = 2.
b T8 B E | E) 8 5 E
S5 |3S23.88 23 3 3 < %3
.= c 8 o S 0O X o o o <
2 g = 2286 29C 25 € & 3] 2 e 8
§ < 2 E 5 ¢ =20 5 & £ 4 3 w -
E o S ™ M S 2 Y o e & § 2
£ g & B % & P e e o F 8 5 =le 8 = =
g ¢ ¢ 2 gL ¢ e 5 8¢ 2 = 9|8 € 8§ E §
539 9 o @ 2 2 # 2 E T . T L F t(E 8 = & S
g s s o 8§ 6 ¢ § 5 8 5 8 & @ El§ & &8 £ & .
€ acs & &S5 S5SaF 8838 & = Gl < 2 & =
D DATA HANDLING ERRORS
D-0 Data file not rewound before reading 2 1 v v 2
D-1 Datasinitiatization not done Vv 2 v 2 1/ 3|2 N4
D-2 Data initiatization done improperly : v 2 1 v
D-3 Variable used as a flag or index not set properly - VARVARY) Vv 3 2 1 2
D4 Vanable riferred 10 by the wrong name A Vv v 1V v
D5 Bit manipuiation done incorrectly \/ \/
D6 Incorrect variable type 1 VAR 2 v
D-7 Data packing/unpacking error 1 3 2 V4 Vv
D-8 Sorterror 2 3 1 \/
D9 Subscripting error Vv 2 N4 3 2 \/ 1
E DATA OUTPUT ERRORS
E-1 Data written on virong channel 1 Vv 2 v RV 3 Vv
E-2 Data written according to the wrong format 1 v 2 v 3
E-3 Data written in vrong format 1 VA v 3
E-4 Data written with wrong carriage control Vv v o1 v 2
E-5 - Incomplrete or missing output 1 v Vv v 3 2 v v
E-6 Output field size too smiall) 2 v Vv v 1
E-7 Line count or pige einct problem 2 \/ 1 \/ 3
E-8 Outputgarblid or musteading 1 \/ 2. \/ 3 \/
F INTERFACE ERRORS
F-1 Wrong subroutine catled 1 v Vv 1 2 v 2 v
F-2 Call to subroutine not made or made in wrong V4 1 v 2 2 3
place .
F.3 Subroutine arguments not consistent-in type, 1V v Vv 1 Vv
units, order, etc. '
F4 Subrouting catled is nonexistent 2 2 N4 1 .
F.5 Software/data base interface error 2 Vv Vv 2y v
F-6 Software user interface error Vv v 3 Vv v
F-7 Sofiware/software interfsce error 2 3 v i 1 v

Table I Error Class/Detection Technique Chart (Continued)

€°29

T 3
8
5
o
«
x
w
. 's .
Requirements and Static Analysis Tools ‘g Dynamic Analysis Tools
Design Analysis s H
Tools &
-
£
a
8
- _§ 2 Q
§ ‘g o . o = :7: B
= E é § g - z 2 Q 3 % > &
g 5 > N = ¥ 22 2% S s -
. e € = &« 2 8 9 >3 x O -4 3
z g = 288629058 e &y % g s 8
c c 2 2 > 8 o O §5 & 4 3 = 3 w s 8
@ £ A w5 = w 2 « 2 w O 9 o “ $ & ®
£ S & < 8 . % e 5 > w. ¢ 2l & 5 8 2
13 S e ¥ s 8 T =@ § 0 g4 B8 56 2 0 €& %
L e € € e v 8 8 £ 2 n o= 312 ¢ 0o £ %
5 5 5 & e 2 2 4 2 E. 2 . T % 0B € 8 = & 3
§¢ ¢ 3 38 58 & s ;5 g% s &8 Els 3 § 3 &
g aadad S ad SR 83848 £ = als 4 & & =
G DATA DEFINITION ERRORS
G-1 Datanot properly defined/dimensioned Vv 3 V4 2 Vv 1 v
G-2 Datareferenced is out of proper range- Vv Vv V]33 1 V4
G-3 Databeing referenced at incorrect location v Vv v Vv 3 1V 2 v
G-4 Datapointers not incremented properly 2 2 V4 1]V 2 v
H DATA BASE ERRORS
H-1 Datanot initislized in data base 1 2 3 v Vv 2 VAR v
H.2 Datainitialized to incorrect value 3 v 2 1 v
H-3 Dataunits are incorrect 2 3 1 V4 v
| OPERATION ERRORS ¢
I-1 Operating system error {vendor supplied) \/
122 Hardware error
1-3 Operator error .
1.4 Testexecution error
15 User misunderstanding/error 1 2
1.6 Contiquration control error 1 2 3
J OTHER _
J-1 Time limit exceeded 3 1 1 2
J-2 Corestorage limit exceeded N4 1 1
33 Output line imit exceeded 1 \/
J-4 Compilution error i \/
35 Code or design inefficient/not necessary 1 Vv v 3 2 \/
J6& Design nonresponsive to requirements 1
J-7 Software nut compatible with project 1

standards

Table | Efror Class/Detection Téchnique Chart (Continued)

4'29

Requirements and
Design Analysis

Static Analysis Tools

Symbolic Execution

Dynamic Analysis

Tools
L
Qa
S
b @ O
~ 5 X 3 - 2
g £ ¢ 22 2 . 3 N I
s € s 56 &% 52 . % T I Z 8
> 8 > %x =2 3¢ x5 % = g 2 < & 3
; c o 9 a O =2 2 0 g
“ o > & u § s C E @ @ g 2
- o 3 ‘5 € € 8 c 2 & § £ 2 x e y o
@ c E 2 ah o2 2 <« 2 5 O 8 u w 5§ €
E c 7 oY 5 3 3% 3 > o © L)lwe € § 52
g . 2 e ® Ty 52 § g H g3 5|8 & 8§ E B
S B &6 o o 5 - E © é v > % @ a1= € - s O
g2z (3¢ 8Fs§ g2 o8 E|s 3 8 5 &
) - I & 5§55 a+- S8 88 £ = Al &~ & E
K DOCUMENTATION ERRORS
K-1 User manual \/
K.2 Interfzce specification 1 2 3
K:3 "Design specitication v V4
K4 Requirements specification v v .
K-5 Test cucumentation ’
L REAL-TIME (MONITOR .
INTERACTION) ERARORS B
L1 Hiegal use of shared variables 1 v v Vv 2 \/
L2 Synchronization errors 1 2V Vv o2 v v 3
L3 Deadlock 1 v 2 / v 3

Table 1 Error Class/Detection Technique Chart (Continued)

.

SECTION 4.0

Verification To Requirements Document

To ensure that a preliminary design satisfies the requirements document,
the two must be compared. As specification techniques and automated tools
which address this level of specification come of age, such verification will
become increasingly automated and precise. For the present however, an
informal comparison must suffice and is thus presented below. The comparison is
presented by referencing the section numbers of the functional requirements from
~ the requirements document and the applicable nogdes from the preliminary design,
_in conjunction with any discussion. Unless otherwise notedb the node names are
from the SAMM decomposition of "System Creation." Those requirements which

relate directly to the detailed design are not discussed here.”

4.1 Verification. - The following paragraphs begin with the requirements

document paragraph number. Since only the functional requirements are
considered, and since requirements relating only to the ‘detailed design are not

relevant here, the paragraph numbers are not necessarily consecutive.

4.1.1 All the tools and usage modes will be callable through the 1SIS user
interface, with the possible exception of the interactive tools They may
require their own user interface. Adequate . documentation and HELP
messages will be provided, but without being burdensome. '

4.1.2 Only nodes CCC, Execute and Debug, and CBCCC, Execute
Symbolically, are largely designed towards an interactive environment.
Batch usable debugging and symbolic execution features will be present,
‘however.

4.2.2.1 Addressed by node D, Integration of Modules.into' System.

4.3.2.1 The HAL/S environment has been specifically addressed (note the
emphasis on the use of HALMAT). No language alterations to HAL/S have
been proposed. The assertion, units, and statistics specifications are ac-
complished through the use of specially processed (and formatted) com-
ments. An enhancement will therefore be required to the HAL/S front end
(represented in the diagrams by node CBCAAB).

63

4,3,2,2 See Section 4.2.5 of this document. Note, however, that substantial
success in attacking the aliasing problem may be made through the use of
instrumentation. See reference 16 Huang, 1978 . - '

4.3.3.1 With the use of node CBCAA, the LRC-HAL/S compiler front end,
all existing documentation features are retained and will not be duplicated.

4.3.3.2 HALMAT, and augmentation thereof, is used as a primary data
object in the design. The bulk of verification activities work from the
HALMAT directly., HALMAT has not been altered in any way. See Section
3.3.2 of this document. ' '

4.3.4.2 Used in node C, of the Document Existing System model.

4.3.5 The targeting of HALMAT to a specific object machine is not
specified in the prelimirary design. (With the exception of the interactive-
debugger and operating system interfaces (such as files needed in collecting
run time statistics) verification actlvmes are generally mdependent of a
particular code generator.)

5.1.1 Maps will be produced at node CBCAAA, the compiler, and at node
CBCCAB, generate cross-reference maps.

5.1.2 Node CBCCAEC, Annotate Type Coercions.

'5.1.3 Node CBAC, answer questlons about specified code segments, and

node B, extract mternal documentation, of the Documentation SAMM
model. :

5.1.4-6 Nodes CBCCAF, Document Real-Time Aspects, and CBCCAEC,
generate cross-reference Maps.

5.1.7 Node CBAC, answer questions about specified code segments.
5.1.8 Node CBCCAFA, check shared routines for reentrancy.

5.2.1-5, 5.2.8 Node CBCC, perform internal verification, with additional
requirements for runtime checks.

5.2.6,7,9 Node CBCCAA, check Units/Scale correctness, and node
CBCCAEB, check termination conditions. '

5.2.10 Nodes CCB, target HALMAT, and DA, check for recompilation
requirements.

5.3.1 Node CBCD, instrumentation and levels on local assertions.

64

'5.3.2 Monitors calls are created several places, but they are actually
inserted at node CBCD. Some monitors would be required in the run time
executive itself, which is not modeled in these SAMM dxagrams. The
HALMAT monitor file contains the set of monitor calls. o
5.3.3 Node CBCD, instrumentation and levels on local assertions.

5.3.4 Node CBCCAC, generate timing estimate for specified paths.

5.4 Node CCCD, Interactive Debugging.

4.2 Discussion of Investigations.

4.2.1 ISIS. - The relational database'_cépabilities of ISIS‘Eeferreq to in the
requirements document were discovered to be nominal, if existent at all.
Consequently no assumption has been made in the design concerning such a
feature. The multilevel file structure provided by ISIS will satisfy ‘most
requirements of the system database. Additional requirements can be met using

data structures internal to the file structure.

Examination of ISIS's capabilities to invoke analysis tools was difficult, as
little or no documentation was available. Indeed, it was discovered that the
design of that capability was not complete, nor was its implementation. One of
our original intentions was to create a prototype system, using stubs for the tools,
to gain experience with the ISIS environment and evaluate the user-friendliness of
the entire system (how convenient the required user interaction would be). This

was impossible though, due to the state of implementation and documentation.

Probably the most disturbing discovery about ISIS was that it was designed
to invoke batch tools alone. In order; to invoke an interactive tool, either the ISIS
environment will have to be exited, the tool environment entered, and then back
to ISIS, or some other scheme used. Since interactive tools largely provide their
own environment, this is not too severe. Simple things, however, like correcting
mistyped input, may vary significantly. These are important from a human
engineering standpoint. More importantly, the question of data and database: -
manipdlation arises. This is i‘mpo_rtant.considerin'g the centralify of the system

(ISIS) catabase.” A clean inierface may prove difticult to achieve, and the

65

interface will be lost. Once the ISIS implementation is completed, examination

will be required to determine all the implications.

4.2.2 FSIM. - FSIM's capabilities were "carefully examined and were
discovered to be based on a single, simple, technique. In order to regulafe
concurrent and reél time processes' the compiler associates with each HAL/S
statement an estimate of that statements execution time. During compilation a
call to the run time monitor is inserted after the code corresponding to each
statement. The monitor, when called, adds the estimate of the just-executed
statement to its current simulated clock time. That clock forms the basis for
scheduling processes and all other activities associated with real time events.
Though the main purpose of the clock is in real time control,. rlearly an estimate .
of the total execution time for another target machine is available by a suitable
scaling of the estimates. Before any execution is performed an estimate of the
execution time of any specified path could be formed by simply 'adding the
estimates associated with the statements along that path. Such a capability is
included in the design presented. Similarly, performance characteristics of a
progtam in various run time environments may be obtained by simply changing the
set of monitor routines; no alteration to the target prrogram is required 0nce the

monitor calls have been inserted.

4.2.3 HALSTAT. - Several experiments were performed using Intermetric's
HALSTAT tool. No surbrising capabilities were observed. The tool seems
strangely conceived as it provided both high and low level information side by
side, viz. a code audit function listing the frequency of occurrence of each type
of HAL/S statement along with a load map. Many of the features provided are
specific to IBM architecture. The preliminary design attached contains the same
functions, but separated into several tools and made available only under

appropriate user selected environments.

4.2.4 FAST. - Due to a series of misunderstandings and complications, the
University of Texas FAST ststem was evaluated only through reading the available
literature (references 17 and 18) [Johnson, 1977] [Browne and Johnson, 1978].
Many of the basic ~apabilities of FAST are recognized as valuable and are:

contained in the preliminzry design. Specificaily, the ability to make language-

66

oriented queries about a given program seems quite useful. Queries can be made,
for example, about all the reference occurrences of a particular identifier. These
types of queries are frequent while modifying existing pieces of code. SAMM .
node CBAC is the tool Which performs these actions, and is deéignéd to,act in a
role supportive of modification activities: The query-type abilities of FAST »ar.e
considered the basic specifications of this tool. This tool is regarded as having a
low implementation priority, and more detailed specifications for it may wait "-

until such time as they are considered important.

One significant finding from the investigations conducted is that the
analysis capabilities of the current impiementaticn;of FAST are not very;
impressive. FAST does not even atterhpt' to detect ‘initialization errors on an
interprocedural basis because the current algorithm would be prohibitively slow.
Indeed, intraprocedural detection of this error in noted in the documentation
[Johnson, 1977] as being very inefficient. This finding strengthens our conviction
that the functional capabilities of tools must be carefully chosen. Implementing
sophisticated analysis tasks with inappropriate algorithms is foolish. (Extravagent

claims about the implementation ease of particular tools must also be examined.)

4.2.5 HAL/S Problem Features. - Several features of HAL/S have been

identified as presenting difficulties for the analysis tools which have emerged
during the design process. These features are described below. It is important to
note that only those features which present problems to the designed tools are
presented, not features which may, for example, present difficulties to a
particular coding methodology. Further, the designed tools operate on an
intermediate representation (HALMAT) of the source programs. Therefore,
problems which are strictly syntactical are precluded outright. If more analysis
tools are designed later on, additional problem-causing constructs may be

identified.
1. Real time, concurrent processing statements. These constructs pose a

whole new class of problems for existing analysis techniques. Static analysis,

symbolic execution, and dynamic analysis are all affected. The problems are by

67

.no means unsolvable, however. They simply require that existing techniques be
extended. Such extensions have begun as work supporting this design effort. In

particular, significant extensions to static analysis techniques have emerged.

Within this general classification, the TERMINATE statement presents the
greatest difficulty. Its use will significantly hinder analysis activities. It is

recommended that the use of the statement be highly restricted, if not prohibited.

Cyclic scheduling of processes also presents some difficulties. Our research
activities have temporarily ignored this feature runtil problems with the basic
facilities have been resolved. We. do not reéommend this‘f'eature be - deleted,
"howeve'n as it appears ciuite useful. .Rather, it should be noted as- inhibiting_ :

analysis activities, until further research expands the capabilities of the tools.

2. Aliasing. Aliasing is the referencing of a single object by more than
one name. Aliasing can hinder static data flow analysis under certain circum-_
stances. For example, if an arrayed variable is indexed with a value which has
been read in, analysis is hindered (reference 4) [Fosdick and Osterweil, 1976] .
The forms of aliasing in HAL/S which present the greatest difiiculties to static

analysis are the NAME feature and global "’ variables. ‘The situation with

global variables is similar to FORTRAN COMMON blocks. As such, this problem
" is well understood. FORTRAN does not have any analogue to the NAME feature,
however, and it therefore represents a new difficulty which requires additional
investigation. As Huang, (reference 16) ihdic’ates, aliasing presents little problem
for dynamic analysis, so fhe complementary use of techniques seems an

appropriate resolution of the problem.

A 3. Side effects. HAL/S functions may caQse side effects when evaluated.
Since functions may be evaluated as the result of processing ASSERT and KEEP
statements, and since such statements must not cause any side effects, restric-
tions on function composition will be required in these contexts. Enforcement of

these restrictions will require additional analysis.

68

Though this difficulty only exists as a result of the assertion language
designed, it is regarded as a fundamental problem with HAL/S which should be
evaluated in other lights. A general prohibition of side effects may be a wise

rule.

4.2.6 RNF. - The University of Illinois text processor ~-RNF- was used during
the period of the contract to produce interim reports and documents. This
ekperience allowed a close look at its features. For our purposes, RNF was useful
for producing medium size documents (40 pages or so). Larger d'ocumcn;'rcs would
seem to be best handled by breaking them into smaller sections aﬁd proceésing
each section separately (thus reducing CPU iime through a course of several

edits).

The documentation and command set are reasonable but not extravagant.
Several errors exist in the implementation, however, and processing speed is not -
blinding. Remedies in these areas and extensions (e.g., superscripts and sub-
scripts) are in progress at the University of Illinois. When the enhanced version is
distributed it should'prove a very useful tool for maintaining and producing readily
available documentation. The importance of providing documentation tools such
as RNF must be stressed: timely, up-to-the-minute information is critical during '

software development, use, and modification.

4.2.7 Interpretive Computer Simulator. - Only a very few of the verification

facilities presented in the design require any knowledge of the final (machine)
representation of the code. The interactive debugger is clearly implementation
dependent, as are the file system interfaces required by run-time monitors (both
for error éhecking and assertion/statistics processing). Any activities associated
with the run-time monitor, such as process queue snapshot generation, are-also
implementation dependent. With the exception of the interactive debugger, these

dependencies are straightforward, and their resolution should be clear.* No undue

69

requirements are thus placed on any Interpretive Computer Simulator (ICS)
utilized. Since interactive debuggers and ICS's serve similar purposes it is not
anticipated that cooperation will be required. If cooperation is required, a

suitable interaction should be achievable with some effort.

* All verification tool-generated monitors are contained directly in the code.

70

SECTION 5.0
C_onclu.sion

BCS believes the design presented adequately satisfies the requirements of
the MUST environment. The design presented takes cognizance of problems
associated with software production through its entire lifecycle. It is sufficiently
flexible and well designed that as additional capabilities are added, such as those.
“supporting the automation and formalization of requirements and design
activities, their integration may pfoc’eed smoothly. Careful choice of such tools
should be made, however, to ensure that the progression from one phase to the -
next may be made naturally, with the ability to directly trace all design decisions

between phases.

The proposed programming environment, when implemented, will provide
features substantially more powerful than those found in almost any existing
software production environment. Utilization of the tools will be natural, will

increase productivity, improve software quality, and lower costs. '

5.1 Listing of Programs and Implementation Recommendations. - The SAMM _

model of the system development and documentation processes contain many
nodes which correspond. to program units.. Some of these nodes are decomposed
below the program leve! (in the SAMM model) to indicate their internal structure.
Below is a list of all the programs identified, followed by a brief description
(usually just the title of the SAMM node). Listing the programs separately does
not imply that all the tools must be invoked separately: many of the tools can be
grouped and would be invoked as a system (such as those listed under the heading .
of "non-data flow: static analysis"). | Specifying glrograms allows an indication of
imp!ementatioh options. There are a few tools which are not found as specific
nodes in the SAMM models, but which are discussed in the text of this document.

They are described as well.

- Clearly, some of the tools contained ir the design are of greater importanceé. - -

than others. These tool-value relationships should be reflected in the order in -

71

which the tools are implemented. Our primafy com)ict’ion is that implementation
of the static and dynamic analysis tools should proceed immediately. These tools
offer best ’-behe‘fit/cost ratio. - Experience with prototype systems in this area
(DAVE, PET) and studies by Howden, és mentioned earlier, have brought us to this
conclusion. Those tools which are more specialized or less powerful should have a
lower priority. Further invest’igaﬁo'n into design of some of the listed tools will
increase their value, of course. The symbolic executor is the most notable
member of this category. Also involved in an imp‘le"men'tationk wotild be provision
of general support capabilities; such as d@ manager for the database described in

~ Appendix B.

In the following list of programs a priority number is attached to those
verification tools which operate on HAL/S or HALMAT. Those with priority 1 are
deemed most important: Requirements and design oriented tools are not ranked,

rior are the utility nori-verification tools (such as the compiler or loader).

SAMM Designator Priotity Description
A Check intetnal consistency of requirements
’ specification _ |
BB_ » Check internal 'co‘nsistehcy of system
design |
BC ' | | Verify preliminary design to requirements
CAB Perform internal verification of module

design (if the same notation is used for
system level design, this will be the same
tool as BB).

CAC Verify modulé desigri to reqUii‘re'm'ents
(which is the system design)

CADA Check module design consistency

CADC | - Simulate design |

CBB vVerify module code to design

CBAC 3 Answer questichs about specified code

segments (a languagé intelligent text éditor)

72

SAMM Designator Priority

- CBCB
CBCD/DD

CBCAAA/D
CBCAAB

CBCCB/DCB
CBCCC/DCC

Description

Create monitor calls from assertions having

" regional significance

Instrument HALMAT for module/system
tests ‘
Perform basic HAL/S to HALMAT translation

Process (translate to monitors) local assertions

‘and keep statements

Perform data flow analysis

Perform symbolic execution

" The next eleven progréms belong in the group "Non data flow static analysis"

CBCCAA
CBCCAB
CBCCAC
CBCCAD

CBCCAEA
CBCCAEB

CBCCAEC

CBCCAEE
CBCCAFA"
CBCCAFB
CBCCAFC

1.

N — == W

Check correct program use of units and
scale
Generate cross reference maps that are -

not produced by the compiler

~ Generate pathwise estimate of execution

time

~ Check programming standards adherence/Warn

of use of dangerous constructs

Generate program call graph

Check that all loops alter their termination
conditions ‘

Annotate listing with all type coercions
performed

Generate program unit complexity measures
Check shared routines for reentrancy
Document the processes which are "dependent"
Check dependent processes for unforeseen
effects when terminated

(End of non-data flow static analysis)-

73

SAMM Designator Priority _

CCB/EB

ccca

CCCB

CCCD 2
" CCDBAA

DA .2

DB ' |
*B 2
*C

Description

' Target HALMAT to executable/simulation

code

" Load and produee load maps

Monitor HAL/S execution (System monitor)
Debug/Test Interactively

Post—process Histogram/History File
Check for recompilation requirements

and merge modules into a single system

' Expénd calls for system level assertions/keeps

Extract internal documentation

Generate flowchart

* - Node belongs to the Document Existing System model

- | 2

Test Harness - composed of nodes CCA,
CCC, CCDBA, CCDA (Create test data,
Execute, Check test coverage, Check

output values). This operation may also

require a file comnparator.
Data Base monitor (Reports to management
on which parts of the data base are empty,

which tools have not been run; etc.)

74

INTRODUCTION TO THE SAMM METHODOLOCY
Appendix A

SAMM (referen.ce 19) [Stephens and Tripp,*‘ 1978] is a BCS developed
formalism whose purpose is to model a system through a layered structure of
activities and data flow. A SAMM representation is primarily composed of a tree
structure, which describes the context of a diagram in a system, and an activity
diagram, describing the activity data flow relationships of a system. The
functional activities of a system are focussed upon, and these activities are
~ hierarchically decomposed, résulting in the tree structure. Data values flow

between boxes (called cells or tree nodes) which represent the activities.

SAMM diagrams indicate the tree structure (hierarchical decomposition)
through the systematic use of node labels. Each node in the tree is uniquely
labeled in such a way that the designation of each node indicates its parent node,
as follows. Each individual node in the tree may only"be decomposed into a
maximum of six subnodes, indicated by the letters A-F. The subnodes of the root
node are labeled by single letters (indicating the first level of decomposition).
Thus they may be designated A, B, C, D, E, and F. If node A is further
decomposed into seven nodes, their designator.s will be AA, AB, AC, and so on to
AF. Two letters indicates the second level of decomposition. The designatofs of
the ancestral nodes of a given activity are thus expli‘cit. For example, node
BCAD has as its immediate parent node BCA, whose parent is BC, whose parent is

B, whose parent is the Root.

Data items in SAMM diagrarﬁs are indicated by a name and number. Only
data numbers are used when indicating flow among activity cells; they are
correlated to the data names in the Data Table (part | of the Activity Data Flow
Diagrafn). Data items transput by an activity are of two Categories: "forward"
and "feedback." Forward output items exit the activity cell from the right,
forward input items enter the cell from the top. Feedback output exits from the

left, and {feedback input enters from the bottom. See Figure A-1. Feedback

A-1

FORWARD
J INPUT
FEEDBACK
OUTPUT
N — S
FORWARD
| - OUTPUT
FEEDBACK T -
INPUT

Figure A-1 5AMM Aétivity Cell With All Possible
Inputs and Outputs ‘

items allow the modeler to _depicf data flow loops and mutual dependencies. With
.dat_a flow paths connecting tHe nodes of the hierarchical breakdown, a directed
graph is formed. kFigure A-2 contains a sample SAMM diagram consisting of four -
activities and eight data items. Items 1| and 7 are external inputs; item 6 is an

external output.

The formalism chosen is amenable to automated input, data management,
and verification. BCS is currently creating tools to perform such tasks. One such
tool is SIGS (SAMM Interactive Graphics System), which allows graphical entry
and manipulation of SAMM diagrams. In addition to utilizing the easy entry and
automatic checking facilities, the designer may sit at a graphics terminal and
experiment with a design, considering several design alternatives. For each-
alternative the consequences and requirements associated with the changes are
easily perceived. SIGS and the SAMM methodology are excellent tools for
capturing requirements, and thus represent a potential candidate for inclusion in
the MUST environment. Inclusion would substantially aid in the automation of

node A, Analyze Requirements, of the attached model of "System Creation."

The SAMM methodology used in the accompanying forms is slightly modified from
that described in the reference. As noted -above, - SAMM forusses: on the

hicrarchiczl breakdown of activitics. A breakdown of data objects is inherent -

A-2

1 7
A
ACTIVITY
Al 2 3
ACTIVITY I
B
!
. |
8 ACTIVITY
S ,S
Y
ACTIVITY -
D 6

Figure A-2 Sample SAMM Diagram

in this as well, but the logical structure of the system data may not conveniently
conform to the tree structure. At least it may be difficult to grasp all the data
relationships present in the tree structure. Thus a data base model has been
developed as well, and is presented in Appendix B. The non-standard notation

arises when referencing this database. Feedback input items which appear "out of

thin air" denote information be'ing used from the database. Database inputs enter
activity cells from the bottom; outputs (which are only entered in the database
and do not immédiately participate in the.model) exit from the right. Such
notation is only used where standard SAMM conventions would be awkward or

unduly lengthy.

A-l4

SYSTEM DATABASE
Appendix B

The database envisioned as associated with the MUST programming
environment is described below. The ad hoc notation used is for tutorial purposes,
resembling a Pascal type definition. The keywords employed are taken from
Pascal and have similar semantics. Comments are enclosed in braces ({ }). Words
in upper case are either reserved keywords, such as TYPE, RECORD, and EN'D, or
reference defined types, such as INTEGER, TEXT, and FOLDER. Types are not »
necessarily defined before they are used. Words in lower case are identifiers, and

are used as field identifiers, type names, and variable names.

Examples:
TYPE {keyword}
mytype = {type being defined}
RECORD {keyword}
code: {field identifier}
CODE; {type defined elsewhere}
count: {field identifier} _ '
INTEGER; {type defined elsewhere (in this
~ case by the system) }
END; {keyword - end of definition of mytype}
yourtype = {type being defined }
MYTYPE; {type defined elsewhere, namely,
right above }

The database is described through the definition of type SYSTEM DATA
BASE. Not all types referenced in its definition have been fully defined. The
reader's intuition is relyed upon to provide an adequate definition for those types
which fall in this category. Some types obviously have a fuller definition than
others, such as CRITERIA, but to dwell on them would divert attention from the

basic goal of this presentation.

TYPE system data base =
RECORD - '
system requirements: REQUIREMENTS [see expansmn below}
- design: -
RECORD. '
document: DOCUMENT;
formal statement:
RECORD
number of modules: INTEGER ;
module: ARRAY [l..number of modules] OF
RECORD
requirements: REQUIREMENTS
design: DESIGN; {see expansion below}
END {module record}
integration: IDAP; {how the modules are held -
together and interact. -
‘ {overall design)} -
END {formal statement record} ;
decisions: HISTORY;
management: FOLDER,
acceptance criteria: CRITERIA {which pertams to the
design asa whole};
simulation: SIMULATION {of the whole design} ;
END {design record} ;
modules: ARRAY [L. .number of modules] OF
RECORD .
documentation: CODE DESCRIPTION;
code: CODE; {expanded below }
test driver: CODE;
results: ARRAY [1 .number of test cases] OF
RECORD
purpose: TEXT;
input: INPUT;
output: OUTPUT;
END {results record}
END {modules record} '
integration: CODE DESCRIPTION {same type of documentation
as found in the modules record, but here at a
higher level and (possibly) with some
additional items};

system test: -
RECORD
- management: FOLDER;
number of test scenarios: INTEGER ;5 .
‘transput: ARRAY [l..number of test scenarlos] OF
RECORD .
purpose: TEXT;
input: INPUT;
output: OUTPUT;
number of conﬁguratlonS' INTEGER ;
{A configuration is a collection of module 1ntermed1ates
- (possibly at different levels) which together form a
complete, coherent, system. The number of configurations
is a function of the number of intermediates per module,
where each intermediate corresponds to a different
level of instrumentation.}
system performance: ARRAY [l..num of configurations]OF
RECORD ,
configuration description:
ARRAY [l..number of modules] OF INTEGER ;
{ Where the integer is the number of the
intermediate chosen}

onitor/performance data: OUTPUT {system level};
{(“ odule level performance stored at module
level in modules.code.lower levels.etc. }
END {performance record} ;
END {transput record
END {system test record
END {system data base record} ;

code =
RECORD _
source: HAL/S;
first intermediate: HALMAT {output from the first half of
the compiler };
basic monitor file : MONITOR FILE;
lower levels: TARGET CODE;
END
target code =
RECORD _
number of intermediates: INTEGER {each corresponds to
different levels of instrumentation which have been
inserted};
intermediates: ARRAY [l..number of mtermedlates]OF
RECORD
description: TEXT {indicating what instrumentation
has been inserted. Note that intermediate code
resulting from the expancion of assei'tions at the
integration step is stored here, as well as levels-
expanded solely at the module level };

B-3

Tl L e et i At e AT TR L e s 4t s S L e 3 AT

B I T S e YA R et e b PR s

intermediate: HALMAT ;
target:
RECORD ‘ : :
number of targets: INTEGER {This structure level
reflects the MUST environment option of targeting -
a single HAL/S program to several object machines.
This level of structure is optional and may well
be omitted}; _
targets: ARRAY [l..number of targets] OF
- RECORD _ ‘
code: LOWL {an unspecified low level
:) language};
perf: PERFORMANCE ({this is the output
specific to a particular machina/0S/
instrumentation combination; and is
described below}; ' ST
load info: LOADRELATEDOUTPUT; {such as
_ maps} |
- END f{targets record} ;
'END {target record} ; :
- END {intermediates record} ;
END {targetcode record definition };

performance =
RECORD
{ number of test cases: INTEGER ;
data: ARRAY [l..number of test cases] OF
MONITORING INFO; depending on the program, such as if

there are parallel or real time features, this could
contain some stuff normally found in modules [].
results ;}

END {performance record} ;

code description =
RECORD
decisions: HISTORY;
management: FOLDER;
~ external: TEXT;
internal: TEXT;
flowchart: GRAPH;
static analysis:
RECORD
non-data flow: TEXT and GRAPHs;
data flow: TEXT; '
END {static analysis documents};
END {documentation record } ;

B-4

requirements =

RECORD
document: DOCUMENT;
formal statement: SAMM {or similar vehxcle Wthh must be

relatable to the desxgn vehlcle(s)},

management: FOLDER;
acceptance criteria: CRITERIA;

END {requirements record } ;

design =
RECORD
document: DOCUMENT;
formal statement: IDAP {or similar vehicle which must be
: . relatable to the requirements and code
: vehicles}; : :
decisions: HISTORY; S
management: FOLDER; ' ' ‘ -
acceptance criteria: CRITERIA;
simulation: SIMULATION OUTPUT
END {design record };

history = TEXT; {which indicates how the current level of specification
was arrived at from the previous level, including why
particular choices were made}

folder = TEXT; {all management related information governing development
of this particular phase, such as reviews, status
reports, action items, and the like }

REFERENCES
Appendix C

1. [Osierweil, 1977a] "A Methodology for Testing Computer Programs,"
Proceedings AIAA Conference on Computers in Aerospace, Los Angeles,
California, pp. 52-62 (October, 1977).

2. [Osterweil, Brown, and Stucki, 1978) "ASSET: A Lifecycle Verification and
Visibility System," in Proceedlngs CoM PSAC 78, Chxcago, Illinois pp. 30-35
(November, 1978).

4

3. [Karr and Loveman, 1978] Karr, Michael and Loveman, David B.,
"Incorporation of Units into Programming Languages," Communications of
the ACM, Vol. 21, No. 5, pp. 385-391, (May, 1978).

4. [Fosdick and Osterweil, 1976] Fosdick, Lloyd D. and Osterweil, Leon J., "Data
Flow Analysis in Software Reliability," Computing Surveys, Vol. 8, No. 3, pp.
305-330, (September, 1976).

5. [Taylor and Osterweil, 1978] "A Facility for Verification, Testing, and
Documentation of Concurrent Process Software," in Proceedings COMPSAC
78, Chicago, lllinois, pp. 36-41 (November, 1978).

6. [Osterweil, l977b]'Osterweil, Leon J.,b "The Detection of Unexecutable
Program Paths Through Static Data Flow Analysis," Department of
Computer Science Technical Report No. CU-CS-110-77, University of
Colorado; Boulder, Colorado, (May, 1977).

7. [Clarke, 1976] Clarke, Lori A., "A System to Generate Test Data and
Symbolically Execute Programs," IEEE Transactions on Software
Engineering, Vol. SE-2, No. 3, pp. 215-222, (September, 1976).

8. [Howdén, 1977] Howden, William E., "Symbolic Testing and the DISSECT
Symbolic Evaluation System," IEEE Transactions on Software Engineering,
Vol. SE-3, No. 4, pp. 266-278, (July, 1977). '

9. [Howden, l978a] Howden, William E., "DISSECT - A Symbolic Evaluation and
Program Testing System," IEEE Transactions on Software Engineering, Vol.
SE-4, No. 1, pp. 70-73, (January, 1973). . '

10. [Howden, 1978b] Howden, William E., "Functional Program Testing," - .
Proceedings COMPSAC 78, Chicago, Illinois, "pp._3_2'1-325, (November, 1978).

11. [Stucki, 1976] Stucki, L. G., "The Usé of Dynamic Assertions to Improve
Software Quality, MDC G6588, McDonnell Douglas Astronautics Company-
West, November, 1976. ”

12, [Chow, 1976] Chow, T. S., "A Generalized Assertion Language," Proceedings of

the 2nd International Conference on Software Engineering, San Francisco,
CA, pp. 392-399 (October, 1976).

13, [Lloyd & Lipow, 1977] Lloyd, D. K., and Lipow, M., Reliability: Management,
Methods, and Mathematics. Second edition, p_ublished by the authors,
Redordo Beach, CA, 1977.

14, [Sukert, 1977] Sukert,-?’\. N., "A Multi-Project Comparison of Software
Reliability Models," Proceedings, 1977 Computers in Aerospace Conference,
L.A., CA, pp. 413-421, (October, 1977).

15. [Thayer, et. al., 1976] Thayer, T. A., Lipow, M., Nelson, E. C., "Software
Reliability Study," TRW-55-76-03, TRW Defense and Spare Systems Group;
Redondo Beach, California, (March, 1976).

16. [Huang, 1978] Huang, J. C., "Detectiqn of Data Flow Anomaly Through the "

Use cf Program Instrumentatien," Technical Report UH-CS-78-4,

Department of Computer Science, University of Houston (July, 1978).

C-2

17. [Johnéon, 1977] Johnson, David B., "Progfam Analysis with the Aid of a Data
Management System," Masters' thesis, Department of Corﬁputer Science,

The University of Texas at Austin, (August, 1977).

18. [Browne, & Johnson, 1978] Browne, J. C. and Johnson, David B., "FAST - A
~ Second Generation Program Analysis System," Proceedings of the 3rd
International Conference on Software Engineering., Atlanta, Geofgia, PpP.
142-148, (May, 1978).

19. [StephenS and Tripp, 1978) "Requirements Expression and Verification Aid,"
Proceedings 3rd International Conference on Software Engineering, Atlanta,
Georgia, pp. 101-108 (May, 1978).

20. [Johnson, M. S.,] Johnson, Mark Scott, "The Design and Implémentation of a
Run-Time Analysis and Interactive Debugging Environment," Doctqral _
thesis, Department of Computer Science, University of British Columbia,
1978.

C-3

SAMM DIAGRAMS

Appendix D

D-1

l i : J C,}: l NI AL B VR L MPANY
2 "

ACTIVITY - DATA FLOW DIAGRAM _

ACTIVITY DESIGNATOR

ROOT
T SYSTEM CREATION |
DATA ID | TRACE DATA DESCRIPTION v \
1 Initial concept
2 Requirements specification Hanage System _ it
3 Requirements revision specification Development Au) 12 12 12 12 12
4 Preliminary design and module $
: requirements
5 Preliminary design revision Ajalyze
) Requirements 2,10
requirements /
6 Modules 4 J
7 Module revision requirements : Design System
8 System (HALMAT level) 3 | and Identify
9 "Results" based module revision ' Modules j§}4,11 13
- requirements +
10 System acceptance criteria
- 11 Module acceptance criteria . ~Create Module 3

12 Managerial guidance and oversight, C
user input ' 4 o

13 ' Design acceptance criteria ; Integréte Modules

14 -1 Executable level of system .

: ' into System . J8,15

15 Generated test data . 0 :

16 Machine state resulting from partial .
-execution (for use by the symbolic 9 1 Target and
executor) Test System £ TE

/
PREPARED BY DATE REVIEWED 8Y DATE APPROVED BY DATE

REF. DOCUMENT 10167 (SAMM)

CO 1000 10156

ORIG. /78

DATA DESCRIPTIONS

NODE ROOT TITLE SYSTEM CREATION

DATA
TYPE

DESCRIPTION

The acceptance criteria which are generated by several _
activities in this SAMM chart are very important. As a system
is created many functions are written as a part of the imple-
mentation. Each layer of decomposition introduces a new set.
of functions, which together comprise the functions of the
previous lTevel. Each of these functions requires testing to
guaréntee that it produces the desired result. In order to
enable this testing, as each function is defined, at g!ggx
level of decomposition, a set of acceptance criteria needs

to be defined for that function. The totality of these
critéria enable effective, thorough testing when the code is
produced. (They are useful'for.testing at higher levels, too,
of course.) '

RELATED ACTIVITIES

SOURCE

DESTINATION

M\tu; COL'PUTER SERVICES WG]

E!'] .. '1»: ! BOT MG COMBUTE N STHYKLES COMPANY

ACHIVITY - DATA FLOW DIAGRAM

ACTIVITY DESIGNATOR

PREPARED BY

DATE

REVIEWED BY DATE APPROVED BY DATE

M
TITLE
MANAGE SYSTEM DEVELOPMENT 1
ﬂ‘”‘ ID| TRACE DATA DESCRIPTION . \
1 1 Initial concept Monitor
2-5 ’ Record of important decisions made Reg“i‘['e’f‘i"ts 3 -
(design issues) at each step - key CLivity p 6
spots to watch, etc. T 11
6-10} 12 Managerial approval/input into each Mom:tor
process {controlling decisions) AE?:?J/?E} T ;.
11 db System requirements B
12 db Design +12 .
13 | db Modules [] - documentation, mogi;:w
' . . -Module N
performance information, and results " Creation -) [i4 s
14 db Integration Y/
14 db System test #13 ,
Monitor
Module N
Integration J 5 :
D 9
414 | '
gonitor
. System
: >
Testing E 10
115

REF. DOCUMENT 10167 (SAMM)

CO 1000 1015

ORIG. /78

ACTIVITY DESIGNATOR

g

1 1
Create
Requirements >
Specification | 2] £ 2
- ‘}
(Check
3 Internal
Consistency-B
Génerate
6 Acceptance >
' 5

k\‘~ Criteria <’)
C

Aw V..r“'.' '
nlcb) POF NG COMPOTER SENYH 1S COMPANY
ACYIVITY - DATA FLOY DIAGRAM
i T e e s —
ANALYZE REQUIREMLNTS
DATA ID| TRACE DATA DESCRIPTION
1 12 Managerial guidance conveying initial
concept and requirements
2 2 Requirements specification
3 Inconsistency - based revision
requirements
3 Design based revision specifications
10 System acceptance criteria
Acceptance based revision
specifications
1
PREPARED BY — DATE REVIEWED 8Y DATE APPROVED BY DATE

CO 1000 1015 ORIG. 2/78

REF. DOCUMENT 10167 (SAMM)

v g

Eaeah P= S o

ACTIVITY DESCRIPTIONS

NODE A TITLE ANALYZE REQUIREMENTS
ACTIVITY RELATED DATA
ID} DESCRIPTION ’ 1D | source] DesT NAME
B In the current system configuration this

is a human activity. As more capabilities are
added to the MUST environment, this should
become automated. A requirement specification
tool such as SAMM a]]ows'such automation.

'BCS Errmmmmmye

A ACTIVITY DESIGNATOR'
ACTIVITY - DATA FLOW DIAGRAM B
"™ DESIGN SYSTEM AND IDENTIFY MODULES Lot L9 9.7
| DATA 1D | TRACE DATA DESCRIPTION (I
1. 2 Requirements specification 6 Create
2 4 - Module requirements and integration “ Pre]im}'nary > 5 — 5
specification (preliminary design) Design A) = n N B
3 Inconsistency based revisions ¥ : ’
4 Verification based revisions Check
5 Module design based revisions 3 Internal
6 ‘Requirements revision specifications Consistency_B
7 10 System acceptance criteria J
(requirements level) Verify
8 | 11 Module acceptance criteria 4 P:?;:;:?:gml;ii;gn
9 | 12 Management oversight and review : C
- 10 13 Design acceptance criteria : r
1 Acceptance based revision I @gg;:gﬁg: gg?:;ﬁfa ;
requirements wcegggnggség?ter[y _8_:_1_Q
PREPARED BY DATE REVIEWED BY : DATE APPROVED BY DATE \ 5

REF. DOCUMENT 10167 (SAMM)
CO 1000 101€ QRAIG. 2/78

NODE

ACTIVITY DESCRIPTIONS
TiTLe DESIGN SYSTEM AND IDENTIFY MODULES

ACTIVITY

1D

DESCRIPTION

8,C

As in the case of requirements analysis
these activities are currently human
performed. As capabilities are added,
these should become ‘automated.

RELATED DATA

1D

SOURCE

DEST

NAME

mo‘m ST sects o

AOE WG COMPUTER S8 RVICES COMBANY

R R

ACTIVITY - DATA FLOW DIAGRA

C

ACTIVITY DESIGNATOR

TITLE

CREATE MODULE

DATA D

TRACE

DATA DESCRIPTION

1,10,11

11 11

1

~1

- 10

4

11

12

Preliminary design and module
requirements

Module design

Module code (HALMAT level)
"Test based" code revision
specifications

Code development based design
revision specifications
Module design based revision
specifications

Integration based revision
specifications

"Results" based revision
specifications

Design level module acceptance ‘

criteria

‘Module acceptance criteria

(requirements level)
Managerial input/controlling
parameters

Generated test data

Machine state (at intermediate points

of'execution - for use by symbolic

executor)

Design Module

W

PREPARED BY

DATE

REVIEWED BY DATE APPROVED BY

DATE

3

Develop Modd]eL

)

1Z

TeSt'Module
C

o e ara———— e

7,8

REF. DOCUMENT 10167 (SAMM)

CO 1000 1015

ORIG, /78

o+ o

r E'rcgj E BOF ING COMPULE R SFRVICES COMPANY
a, [A ACTIVITY DESIGNATOR
ACT:VITY - DATA FLOW DIAGRAM CA
TITLE
DESIGN MODULE 1,9 1
DATA ID| TRACE DATA DESCRIPTION i
1 1 Module requirements
2 2 Module design specification Create 09519“A/) V) V) 7 73
6 Module design based revision A
~
specifications 4
4 Revision requirements - internal 4 (Perform Internal
5 Revision requirements - verification Verification
o to requirement
6 Revision requirements - verification Y
to other modules 5 Verify to
7 7 Revision requirements - integration Requirements
8 8 Revision requirements - results ¢
9 10 Requirements level module acceptance [
criteria 6 ﬁeck Consistency
’ X . ' . . < with other
10 9 Module design acceptance cr1§er1a ' Modu]e/SimulaBe
ﬁEPARl,D 8y OATE REVIEWED BY DATE APPROVED BY DATE 7 ’8

REF. DOCUMENT 10167 (SAMM)

CO 103G 1016 ORIG. /78

v e~ _m—

L
4: 1 :‘:‘Cﬁt\.‘j““ TV 1000 € OPARRITE IU S VM B % 8 OMEAN Y 5
Mo e e, ' . [ACTIVITY DESIGNATOR : !
ACTIVITY - DATA FLOY DIAGRAM CAD e i
nwwee T - : . ‘
" CHECK CONSISTENCY WITH OTHER MODULES/SIMULATE | 1 n - ;
DATA.iD | TRACE DATA DESCHIPTION 4 | , \
! 2 Subject module design 5 Check Design
2 Additional module designs] Consistency '
(previously created) .(Syntact1c,Stat}F) !
3 6 Consistency based revision T ! :
. . !
requirements C N
'q . L. 2 Hold Module }
4 6 Simulation based revision ‘ . ¥
. Designs 2 i
requirements __ B
, ([
- Simulate Design
C
{
PRE’AI-;ED 8Y DATE REVIEWED 8Y DATE APPROVED 8Y DATE

REF. DOCUMENT 10167 (SAMM)
. CO 100C 1015 ORIG. 2/78

5
i
%
?I:
i
i

!

ACTIVITY DESCRIPTIONS

CHECK CONSISTENCY/SIMULATE

NODE - CAD
ACTIVITY

IDj] DESCRIPTION

B This activity explicitly models a function of the
system database. Similar “"activities" are modelled

implicitly elsewhere in the design.

RELATED DATA

1D

SOURCE

DEST

NAME

B0 G COLPUTIR M AVICES NG l

S

ACTIVITY - DATA FLOW DIAGRAM

T -V .
E ! ' 6_ , B8 ING COMIITER S8 WL 2% £OMPANY

DATA DESCRIPTION

O HHKE Lt (i 2710

Module design specification
HALMAT
Source code (HAL/S)

Revision requirements - internal

consistency based

Revision requirements -
verification to design based
Revision requirements - test based
Design revision requirements

- Managerié] input/controlling

parameters

HALMAT Monitor File for system
testing .
Generated test data

Machine state from incomplete
execution

mviuwiony 0 Toan [arenovin w7

[t
DEVELOP MODULE
DATA 1D} TRACE
] 2
2 3
3
4
&
6 4
5
9 11
10 3
. _11' 12
4 13
P AN By DALY

RLE. DOCUMLNT 10167 (SAMM)

TToAN

ACTIVITY DESIGNATOR

-

1,9 B! 9]
Create Code
(including test R
driver if needed| 3
A 2 2
A
Y
Verify
5 “to
Design
B
‘ 4 Process Source
Code; Verify
Internally
6 112

BOEING COMPUTER SERVICES COMPANY

ACT.VITY - DATA FLOW DIAGRAM

ACTIVITY DESIGNATOR

CBA

1,9

"™t CREATE CODE
[DA(A ID| TRACE DATA DESCRIPTION
} 1 Design specification
2 3 Source code (HAL/S)
3 Queries about code usage
4 Internal documentation, answers to
code usage questions ‘
5 0ld code to be used, library
‘ functions
6 7 Design revision requirements
7 A1l existent code
8. Requests for internal documentation
9. I Managerial oversight
10 Internal consistency based revision
requirements
11 5 Verification to design based revision -
requirements
12 6 Test based revision requirements
P.R[PAHI L f.iV LATL REVIEWED bY DATE APPROVED BY UATil

REF. DOCUMENT 10167 (SAMM)

O a2/

Write Code A/} Z 3.8

™~y

5 Hold Code
for a]] 7
Modules
B
4 Answer Questions
About Specified
Code Segments

10,11,12

ACTIVITY DESCRIPTIONS

NODE CBA TITLE Create Code
ACTIVITY . RELATED DATA
ID{ DESCRIPTION ID | SOURCE] DEST NAME
B | The actions of the data base modelled explicitly.

This activity will provide functions like that of the

University of Texas FAST system. Particular questions about

the usage of variables, lables, and the 1ike may be asked. In
addition, internal documentations of routines (1ibrary funct1ons)
may be referenced. Note that this activity is only an
intelligent text editor. Analysis capabilities are found in
other tools, such as the static analysers and the symbolic
executor. '

m ————

e em— a7 12 e

- ————

T L b At - e S
.)

T e e ot en T T T T e, 8 N e

I i : -}C\:) TS 0 T DML 0 RV DMIPANY

Ape

L ETS

ACTIVITY - DATA FLOW DIAGRAM

TiTLt

PROCESS SOURCE CODE; VERIFY INTERNALLY

DATA ID| TRACE

DATA DESCRIPTION

ACTIVITY DESIGNATOR

3

Gy O W N

10

it 10

12 11
13 12

Source code (HAL/S)

HALMAT

Further expanded HALMAT Monitor File
Compiler error messages

Verification based revision
requirements

Managerial inpuf (controlling para-
meters, such as which assertion levels
to process, or which verification
tools to use)

Expanded HALMAT Monitor File
Instrumented HALMAT

Initial HALMAT Monitor File (contains
parsed assertions, units, and history
statements)

HALMAT Monitor File containing
monitor information to be expanded

at system level

Generated test data

Machine state from partial execution

R CBC
1 71 7 7

i

Compile HAL/S .
to 2 R
HALMAT _A/) Zflo 22

Create Calls From
Regional
Assertions B 8

(;;rform Internal

Verification Q,) 3

A

Instrument
HALMAT for
Module Tests

PREPAKLO BY DATE

HEVIEWED BY DATE APPROVED BY DATE

13

REF._DOCUMENT 10167 [SAMM)

CO 100G 1016 ORIG, /78

ACTIVITY. DESCRIPTIONS

NODE CBC TITLE
ACTIVITY
1D} DESCRIPTION
D This activity "merges" the- HALMAT and the,HALMAT Monitor

File - HALMAT level instructions which implement the
active (or selected) monitors are inserted: into the
program HALMAT.

RELATED DATA

10.

SCOURCE

NAME

| DEST

| BCS [

ST e A AL A LM M T TSR

< T A e £ T O T e e T

e

Vovy
iBCSk nm...«.(,w..u....s..wmm.,.wJ
a. S e ACTIVITY DESIGNATOR
ACTIVITY - DATA FLOW DIAGRAM CBCA
" COMPILE HAL/S to HALMAT 1
DATA 1D | TRACE __DATA DESCRIPTION
1 1 Source code (HAL/S)
2 2 HALMAT ‘ 2 Compile T o+
2 5 Error messages and source listing A)) T
4 Procedure/Program/Task/Compool .
' templates
5§ | 10 | Initial HALMAT Monitor File (parsed Hold Templates
assertions, units, and history B
information)
[PRIPARIG BY Lati rtvuwm BY LATE | APPROVED BY DATE \

REF. DOCUMINT 10167 (SAMM)

CO 1000 1%

ORIG. 2/78

ACTIVITY DESCRIPTIONS

NODE - CBCA _ TITLe COMPILE HAL/S
ACTIVITY RELATED DATA
IDj DESCRIPTION . ID | SOURCE DEST NAME
Al This "first half" compilation only

generates HALMAT, the symbol tables, and
module templates needed for later compilations.
Further targeting of the code to the '
executable level is performed by later activi-
ties. Thus the traditional concept of a
“compiler" is altered here. ‘

m-mcwmn-uwtu - |

B e Y MNP —

o

IPRT

R amoe e

1 \ g 'F
.
B)]

T BOLINGLOMIITER S RVICES COMPARY

g

ACTIVITY - DATA l.‘l;.OW DIAGRAM

ACTIVITY DESIGNATOR
CAA

COMPILE . (FIRST HALF)

DATA DESCRIPTION

TITLE
DATA !D| TRACE
1 1
Z
3 2
4
5. 5
5
7
IO ARED By T Al

CO 1002 10 OHIG, 2778

REF. DOCUMENT 10167 (SAMM)

Source code: HAL/S including new
features

New features (filtered out)
ASSERTS and KEEPS (and ENDS)
Stock HALMAT

Templates

Intermediate representation of
asserts, keeps, etc.

Contains pointers into HALMAT
Error messages (Syntax errors)
Program source 1isting'

WV WD Y .UAII APIROVED By

6,7

t o

1
Perform
Basic N
HAL/S -~ HALMAT) 2\ 3:4
' A
Process
Assertions and R
5

Keeps ‘/)
B

- ACTIVITY DESCRIPTIONS

NODE CBCAA TITLE
ACTIVITY .
1D} DESCRIPTION - _
A Slightly modified Intermetrics/LRC compiler (filters out
special comments for further processing).
B Uses compiler procédures to crack special comments into a

second file - The statements are not instrumented here, they
are only broken down into a more manageable representation.

RELATED DATA

1D

SOURCE

DEST

NAME

m T

NODE CBCAA

DATA DESCRIPTIONS

TITLE

DATA
TYPE

DESCRIPTION

This file will contain HALMAT representing the expressions
contained in the assert/keep statements, plus pointers/flags
and so forth indicating the nature of the statement. .

RELATED ACTIVITIES

SOURCE

DESTINATION

m».. CoumtiastavErs e]

At B e noe s

A= C‘:’;

BOF ING COMPUTER S RVICE S COMPANY

MO S St o

ACTIVITY - DATAVFLOW DIA RAﬁ

[

ACTIVITY DESIGNATOR

CBCB

TiTLe

“CREATE CALLS FROM REGIONAL ASSERTIONS

DATA ID] TRACE DATA DESCRIPTION
1 10 Preprocessed assert/keep statements
3 2 HALMAT ‘
3 Assert/keep with regional significance
§ - HALMAT statements (#'s) which require
instrumentation '
5 8 Instruments mapped to HALMAT
6 8 Preprocessed assert/keeps with
regional ones "marked" as "“done"
7 7 Controlling switch: perform expansion

or not

PREPASED BY

DATE

HEVIEWED BY DATE APPROVED BY DATE

HEF, DOCUMENT 10167 (SAMM)
ONIG 2718

EE{RICTIRUIIA

1,7

-

4

ind Assert/Keeps
with Global

Significance A/}.3‘\

+

Determine

Relevant HALMAT
Statements 8

Emit Psuedo- W
Instrumentation

Mapped

to HALMAT

Delete
Regional
Call

3]

s

O\{L

T T
— Rl ..

=, C e': " BOEING COMBUTER 56 RVICES COMPANY
RSN

ACTIVITY - DATA FL

ST ey

OYi DIAGRAM

ACTIVITY DESIGNATOR
Ceee

REF. DOCUMENT 10167 {SAMM)

CO 1000 101G e 2/

"™ PERFORM INTERNAL VERIFICATION
DATA ID| TRACE DATA DFSCRIPTION
1 2 HALMAT
2 Call graph)
3 Specifications of paths along which
an error is suspected to exist
4 7 Managerial input (controlling
parameters)
5 3 Expanded HALMAT Monitor File (calls
for instrumentation may be added or
. , deleted as the analysis proceeds)
6 6 Error messages and documentation
7 6 comprising revision requirements
3 6 or the code
9 8 HALMAT Monitor File
10 12 Generated test data (for a specified
program path)
11 Annotated program flowgraph
12 13 Machine state from partial execution
NOTE: Use of symbolic executor to examine this path
is pojsible, and therefore indicated. However
significant human interaction with the executod
is required and its utility is questionable.
PP AR T oy LDATL [WEVIEWED BY DATE '[A??novm BY DATL

4o

1‘\:

1,4,91

1,4

-

Perform
Non-Data Flow
Static Ana]ysls

Perform

Data

Flow

A i
nalysis 8

3,

511

-

Perform
Symbolic
Execution

/

12

! i "b'] O I0G CERAITT JUSE 1 TS EMIPANY
-7 N

ALTIVITY DESIGNATOR

CO 1000 115 ORIG. .2/78

ACTIVITY - DATA FLOW DIAGRAM CBCCA
. . : I T 1,9,
PERFORM NON-DATA FLOW STATIC ANALYSIS 1,2,7 1 10] 1,12} 1,15 1
DATA 10| TRACE DATA DESCRIPTION 4 ,
; 1 HALMAT 3 _Check g
2 9 Processed units/scale declarations | Units/Scale >
. . . - Correctness
vectors associated with variables A
matrices of relationships 16 ¥
3 ' Error messages 8 Generate
4 5 Specification for application of con- -t 4 Cross Reference 18‘\
version factors to HALMAT Maps g /)
5 db Annotated source listing 4
6 db Source listing 11 (/V Gepefate
7 4 Directives: coerce automatically or not | <+ Timing
. Estimate
-9 6 Cross reference maps C
3 4 Machine instruction time specifications - o L
10 4 Path specifica;ion 13 r/rv Check
11 6 Timing estimate + zgﬁggzgg:
12 4 Coding standards specifications
13 6 Violation report, statistical summary ¥
14 6 Documentation Z%} Perform
15 4 Managerial input] 1sce11ane0us >
anag P \\‘tatlc Ana1y51 16) 6
16 2 Call graph 19
17 6 Error messages, documentation Y
16 Listing of shared variables 11 (faocument/ChCCR
. o Real-Time
« f, . - ——
19 5 Monitors to add to Halmat Aspects
20 6 Program complexily measures
FHIFANE L DY oati bavawio uy ‘van Jarrnoviv wy DAL |
" REF. DOCUMENT 10167 (SAMM] -

Ea da oo

K s

A 0y, -

ACTIVITY DESCRIPTIONS

NODE CBCCA TITLE PERFORM NON-DATA FLOW STATIC ANALYSIS
ACTIVITY , RELATED DATA
(D} DESCRIPTION : 1D | SOURCE] DEST [NAME
D This auditor should be able to check a variety of standards,
including:

presence of assertions (especially range-type assertions)
comments ‘
control structure
program size
program complexity
language constructs which have semantic ambiguities
(as noted by Pratt)
prohibited language constructs
syntax conventions, such as certain declaration forms
and complete expression parenthesization

m B0 NG G PUTER M BYaCLS G]

NODE

ACTIVITY

CBCCA

OUTPUT

INPUT

1,2,7

OUTPUT-CONDITIONS DESCRIPTIONS

TITLE
CC CONDITION CODE DEFINITIONS
1 . 1" User selected option. Pro-

grammer must not have included
any conversion factors in his
statements. All will be
suppiied by the system.

m B b, COTPUTLR S AVICES NG

[

¥ .
C ‘ { BOEING COMPUTF A SERVICES CUMPANY

EY LTI TP

ACTIViTY - DATA FLOW DIAGRAM

ACTIVITY DESIGNATOR

CBCCAB-

GENERATE CROSS REFERENCE MAPS

DATA DESCRIPTION

REF. DOCUMINT 10167 (SAmM)

CO 1000 W1t OKIG, /78

Symbol table and HALMAT
Lock group membership map Lock and Event

Event variable map Variable MapSA

List of shared variables

Shared data map

Generate
Shared Data

Map

TITLE
DATA ID| TRACE
1 1
2 8
3 8
4 18
5 8
|.
-

—-. " S
PREPARED Y LA

AT ‘ljl-i-i«}ﬁjn'(i_ﬁ"—_'_

=4

ACTIVITY DESCRIPTIONS

LOCK groups which are used by processes (TASKs) which potentially
operate in parallel.

The information produced by activities A and B éou]d easily be
added onto the source 1isting‘produced by the compiler.

The Event Scheduling Statement Cross Reference is fairly well
provided by the block summary created by the compiler. The
block summary does not reference actual statement numbers,
however. Two possibilities exist: a facility could be provided
here to perform this and provide a map for the entire pfogram,
or the compiler could be slightly modified to augment the block
summary. ‘ '

NODE CBCCAB TITLE GENERATE CROSS REFERENCE MAPS
ACTIVITY RELATED DATA
ID] DESCRIPTION ID |SOURCE} DEST " NAME
A Lock group memberships and event variable maps are easy to

generate and are an addition to the maps provided by the

compiler. (An adequate map for COMPOOL variables is given by

the compiler in terms of the declaration/templates, the block

summaries, and the variable cross reference map.)
B | This map will indicate the global variables not belonging to -

m o crmnina |

NOEINGCOMMITE LT OVIGES COMPANY

ACTIVITY - DATA FLOW DIAGRAM

ACTIVITY DESIGNATOR

RLb. DOCUMINT 101067 (SAMM)

CO N 9 i, 22

CBCCAE
" PERFORM MISCELLANEOUS STATIC ANALYSIS . 011 L .
 — ;]
DATA ID | TRACE DATA DESCRIPTION 4 |
1 1 HALMAT 7 G ¢
2 16 - Call graph) ‘ ull eggy? € . ~ -
3 17 Indication (heuristic) as to whether Graph A‘/) 2 2
lToop termination conditions are !
altered in the range of the loop Check
4 17 Warnings as to coercions performed Pl gg;ﬂ;g?g;gn
5 db Source listing Altered B
6 db Source listing with annotations like 4| b
7 17 Error messages: recursion, unused a Annotate -
procedures, etc. “«— Type
8 17 Error messages _ Coercions .
9 15 Managerial input: - monitors desired Ts +
10 19 Monitors to apply to HALMAT 8 r Check for
il 20 Program unit complexity measures - Miscellaneous ia
(in the sense of “software science") \\> Errors Q‘,}
Generate
1 Complexity
A Measures of
Program Units
AN By vAl Jmevawin oy oAl [arrroviO WY T '—_67?1_

ACTIVITY DESCRIPTIONS

NODE CBCCAE TITLE
ACTIVITY } RELATED DATA

ID] DESCRIPTION : ID | SOURCEf DEST NAME
Al Generate call graph. :

After graph generation, it should .be analyzed for cycles
(indicating recursion). Possible additional analysis could
check for procedures not used, procedures not defined, etc.
These errors are likely best detected elsewhere, however -
the compiler, data flow analysis.

The call graph could, alternatively to the scheme presented,
be generated from analysis of the listing produced by the
compiler: ‘"combine" the contents of the compilation layout
with the block summaries. ‘This would be faster, though
possibly inadequate for multiple compilation units.

m R —

ACTIVITY DESCRIPTIONS
NODE CBCCAE TITLE
ACTIVITY ‘ RELATED DATA
ID} DESCRIPTION 1D | SOURCE] DEST NAME

D This activity will check for (at least) the following errors/
error-prone conditions:
1. Paths through a function block which end on a c]ose,
instead of a return.
2. A variable used twice in the same subroutine ca11 or
‘function call. '
3. Us1ng an aligned minor structure with a DENSE BIT
~ terminal as part of an ASSIGN parameter.
4. More than one unlatched event variable in.a logical
product of multiple event variables.
5. Scalars compared with an equality relation.

Monitors generated (optionally):
1. Check relative size of numerator and denominator
in divisions.
2. Check for overflow possibilities (machine dependent -
may be better suited elsewhere).

mu s cosmtnstmvcis e |

- . .
[f"‘v’ "'V'!i
A :. C‘;'{ 1 607G COMPUTER 5§ HVICE S CoMPANY

ATTIVITY DESIGNATOR

ACTIVITY - DATA FLOW DIAGRAF.H

- ——— CBCCAF
TITLE .
OCUME AL TIME ASPLC '
DOCUMENT RCAL TIME ASPLCTS 1.6 1 1.5
DATA ID| TRACE DATA DESCRIPTION : /'
e ¥
L 1 HALMAT L , 2 Check Shared
2 14 Indication of reentrancy for ++— Routines for
~ shared routines _ Reentrancy ,
3 14 Documentation of which routines are N
dependent 3 Document
4 14 Documentation indicating effects ~— Dependent.
: o Processes 3
of any terminates on dependent _ B
processes which use shared variables 1

18 List of what variables are shared 4 Check Depengent
- Processes for
16 .Call graph « Termination
Effects ¢
I
i
TRFAa ooy T han T TRviw AT APFHOVED uY . DATI]

KL DOCURINT 10107 (SAMM) .) o C e
O 00 e o 2

ACTIVITY DESCRIPTIONS

NODE CBCCAF ' TITLE
ACTIVITY . : : RELATED DATA
ID| DESCRIPTION ‘ 1D | SOURCE| DEST NAME

A Check shared routines for reentrancy
Activities include: ‘
1. Determine which routines should be reentrant .
2. Check those routines for reentrancy
- ensure they only call reentrant routines
- ensure that all global data modified is locked
- warn about statically declared variables
- internal update blocks and inline functions should
declare no data

m Bty e CORPLIEA N AVICES WC
b e ————————

(3] ‘ Q.‘
.-“.J...C\ Y |

[N LT TR N IR P TR T

ACTIVITY DATA FLOW DIA(,RAM

i PERFORM DATA FLOW ANALYSIS
DATA ID| TRACE DATA DESCRIPTION
1 1 HALMAT
2 2 Call graph (possibly non-existent)
3 11 Program unit database: flowgraph
plus sets (gen, kill, null)
4 Processing order, control information
5 List of errors detected/node
6 3 Paths on which errors may lie
7 7 Helpful user oriented error messages
38 Provision for non-existent program’
units
9 4 Select quality of analysis: inter
B proc, intra proc, multi proc
10 5 HALMAT Monitor File (to check OUTPUT
and INVARIANT assertions at least)
1l A1 By AN [mviiwio wy At [ArEROVED 1Y ETINTE

REF, DOCUMINT 10167 (SAMM)

CO M0 B0tk tie, 2 m

ACTIVITY C)éﬁEﬁATOR
1,8 2,9 10
»)
Create Data Base
for each —
" Program UmtA) 3\' 3} 3) 3
Determine
Reprocessing 7
Order
Apply paral]e]-.
-bit Algorithms
to Each Unit .) §
. '
{’V'Generate
rror Messages, N
{6,10

warnlngs
D

F' ! :- O:; I 1000 1047 CRAEI T b DM % 8 OATARY }
b. it gt -

ACTIVITY - DATA FLOWI DlACRAH

ACTIVITY DESIGNATOR

cBcce

"™ PERFORM SYMBOLIC EXECUTION
DATA 10| TRACE DATA DESCRIPTION
1 1 HALMAT (program specification)
2 Determination of what to do on
.branching, loops, etc.
2 The statement to execute
4 Values to be used in statement
execution
5 Updates to computation state:
statement pointer and data values
6 Computation state
7 Specification of output desired
8 8 Output/Error messages
9 (Possibly incomplete) path specifica-
tion from static analyzers
10 12 Specification of machine state
(from partial execution)
11 10 Generated test data (to force
execution of a specific path).
12 5 HALMAT Monitor File
13 11 Program flowgraph
PRU‘AH&DIBY DATE KEVIEWED BY DATE APPROVED BY DATE

4

12,9

13,1

.6

Specify
Controlling
Information

A

W7

Get
Stat
In

Next
ement
Path

™

Specify

Values To Use 4

C

~

h 4

1f;e;ute Statemen

and .
Simplify Resulting g
Expressions p

o

' Update
Computation

State £

‘ Generate

v

. Qessages/OutpUt
F

10

/

T

REF. DOCUMENT 10167 (SAMM)

CO 1000 1016 OH:G, 2/78

ACTIVITY DESCRIPTIONS

PERFORM SYMBOLIC EXECUTION

NODE CBCCC

TITLE

ACTIVITY

1D

DESCRIPTION

This breakdown specifies an incremental symbolic
executor: path selection, value specification,
output generation, and.constraint solving can all
occur after "execution" of each statement. As such
it allows highly interactive use, yet may also be
"used in batch mode given adequate controls and path
specifications. -

RELATED DATA

1D

SOURCE

DEST

NAME

m‘ ocommRsme

B0 AR T ORARR N C S IRV)0, €S IADA Y

ACTIVITY - DATA FLOW DIAGRAM

ACTIVITY DESIGNATOR

e phafiie SO CBCCCA
nre
SPECIFY CONTROLLING THFORMATION 1 g c
DATAIO| TRACE | DATA DESCRIPTION)\
i 9 (Possibly incomplete) path 1
. L Control
specifications . >
. . . , Actions A 9
2 6 Machine state (instruction pointer
and data values) 4
3 8 Output/Error messages .
1 Constraints on following a Degerg1ne
at
particular path Possibmtiesj 4y 6 6
5 12 HALMAT Monitor File T
6 L1§t of potential paths Attempt ‘\\
1 Feasibility of a particular path To Solve 7‘\ >
8. 2 Path specification Constraints Ag)’ 10
9 7 - Specification of desired output J
10 11 Test data required to force Select
execution of a particular path Path >
11 Monitor file update requirements To Take Ajﬂ 8,10
12 8 Indication of verified assertions J
Determine if
12 monitors are
- consistent with
Machine State g/ 11
A .]
Update
HALMAT v >
Monitor File F 5
] J
P‘I'RLPAHED uy DATL REVIEWED BY DATE APPROVED BY DATE 2 2

REF. DOCUMENT 10167 (SAMM)

€0 1000 1015 ORIG. 2/78

- (’ Ty
‘ HOE (M O8I RVICY S COMPANY
E ! w LA 1 F e 0 ¢ -

ACTIVITY - DATA }.’LOW DIA.GRAM

ACTIVITY DESIGNATOR

PREPARED BY

DATE

REVIEWED BY DATE APPROVED BY DATE

CBCD
TITLE .
INSTRUMENTATION, et al 1 9,2 2
DATA ID| TRACE DATA DESCRIPTION 7
1 3 Instrument fi]e(paré]le] to HALMAT) Peqform
Compile-Time
2 12 HALMAT Evaluation of 3N g’
3 | "Pared-down" instrument file (only Instruments
selected instruments will be L
inserted) Create HALMAT
7 7 Controlling/overriding input Necessary to 2
4 HALMAT which represents the Instrument o
instrument . ;
5 " Updated HALMAT (pointers changed) Merge the ‘\\
6 Full dated HALMA Instrument with >
| ully updated HALMAT - the HALMAT) .
8 11 Instruments (calls) which could not/ ~ C
need not be expanded at this level -
will be expanded at system level
9 | 7 Precompiled assertion procedures
|

REF. DOCUMENT 10167 (SAMM)
CO 1000 1016 ORIG. /73

] ;. C-_.:‘ T v wis commirtn e uvv,!'.t.l-.»um
bt by ' : ACTIVITY DESIGNATOR
DIAGRA_M CcC

" ACTIVITY - DATA FLOW
" TEST MoDULE sl 21 2.100 1.4
k])
DATAID| TRACE | DATA DESCRIPIION e] N\
1 11 Managerial input
) . . Create
2 3 HALMAT (includes instrumentation) _ Test , 3
3 ! Test data . Data A/} - =
4 Executable code - 1 l
5 Resuits (output)
) L. Target
6 Requirements for additional test data HALMAT 7111
7 Code revision specifications : 3 =’
8 Module acceptance criteria ' 1
. . . £
9 13 Part1a1 machine state or use by 9 (,EXECUTE/DEBUG
‘ symbolic executor € Interactively 5
10 12 Generated test data (from symbolic K c/ -
executor) J
1 . .) t .
11 Tapplng :f var1ab1es o} target.mach1ne . 6 Analyze
symbols". (Required, along with the | <« Results
symbol table contained in the HALMAT, v k.‘ D
for generation of post-mortem dumps) '
- J

PREPARLD BY DATE REVIEWED BY DATE APPROVED BY DATE

REF. DOCUMENT 10167 (SAMM)
CO 1000 1015 OR'G. 2/78

BN S L

e

ACTIVITY DESCRIPTIONS

NODE cC : TITLE Test Module
ACTIVITY ' ’ RELATED DATA
ID)] DESCRIPTION ID |SOURCE] DEST NAME

Three éspects of this activity, nodes A, C, and D are the basic
constituents of an automatic test harness. Several sets of
test data/acceptance criteria may be supplied to it. Each case
will be executed and the results automatically checked for
correctness. Such an apparatus is especially useful during
retesting which is required as the result of program modifica-
tions.

~ B } Given HALMAT and a specificationof the desired target machine
this activity will generate executable code, produce a load map,
and perform any static checking required at the target machine
level. Thus many HALSTAT - type functions are included here.

C | The interactive debugging of any program will be dependent on the
target machine supporting such activities. Instrumentation to
support such actions may be inserted at any of the previous in-
strumentation steps. In addition to providing the "standard"
functional capabilities expected of -interactive debuggers,

the interactive debugger should be of sufficient sophistication

B 60LWG COLPUTER SEAVICES mc]

ACTIVITY DESCRIPTIONS

nope CC (continued) TITLE Tect Module
ACTIVITY RELATED DATA
1D} DESCRIPTION | | 10 | SOURCE| DEST NAME

‘to allow the user to specify:

1) an (arbitrary) point to begin execution.

2) a point at which to halt execution.

3) initial values for all variables.

4) Which variable values to display when execution halts.

Such a capability will greatly facilitate effective functional
testing. '

SOLMG COLPUTER STAVICES WC

ABGS

AINTIN

THOE 1946 COMPLTERCSE BIVIE) 4 4 EACANRY

ACTIVITY - DATA FLOW DIAGRAM

ACTIVIIY DESIGNATOR

ccc

1} 11,12 13

Load
UT

Monitor HAL/S

Execution
(System)) 4\

3

Y

Execute - -
cjj 3

7 Irteractlve N
Debug 10

V

e EXECUTE AND DEBUG INTERACTIVELY
DATA ID{| TRACE DATA DESCRIPTION
1 4 Executable code ("relocatable
binary")
2 Load image
3 .5 Load -output-documentation
4 System control over executing
program
5 Machine/program state
6 Calls to system monitor
7 Revised machine/program state
8 5 Raw performance/histogram/history
data/post-mortem dump
9 5 Program output
‘10 E Performance/execution characteristic
output (trace/session transcript)
11 2 Symbol table (from HALMAT)
12 | 11 Mapping of symbol table to target
' machine symbols
13 3,10 Test data
PR¢PARLD BY DATE REVIEWED BY DATE APPROVED BY DATE

CO 1000 1015

REF. DOCUMENT 10767 [SAMM)

OFIG. /78

ACTIVITY DESCRIPTIONS

NODE CCC TITLE Execute/Debug Interactively
ACTIVITY RELATED DATA
iD| DESCRIPTION ‘ 1D | SOURCE| DEST NAME_

‘D | Interactive debuggers have been around for some time and they

are weT] understood. No "novel" features are planned for this
debugger, except the ability to aid in transfering the machine
state resulting from partial execution to the symbolic executor.
For an excellent consideration of interactive debugging systems,
including an extensive annotated hib]iography, see (Johnson, M.S.)
1978). When the design for this debugger is embarked upon the
basic principles guiding the design of the total environment must
be held paramount: the facilities of the tool should not over-
lap those of another, capabilities should not appear which would
better occur elsewhere, and the user modes it will appear in must
be remembered. It is our contention that thé presence of a suite
of verification tools, notably static and dynamic analysis, will
remove much of the need for interactive debuggers.

The most profitable use of the interactive debugger will be in

performing functional testing. Some of the acceptance criteria
received by node CCA, Create Test Data, may only require that a
relatively small portion of code be executed. If the debugger
allows the user to start execution at (almost) any location

mm CorTEAsavcry e]

ACTIVITY

ACTIVITY DESCRIPTIONS

NODE CCC - ' TITLE

1D

RELATED DATA

DESCRIPTION

1D

SOURCE

DEST

NAME

(using a sufficient set of user supplied initial data values),
stop execution at any point, and display values at arbitrary
points, then such testing can be performed easily and cheaply.

m”“ Sormn e “1 .

[ECET] s
ACTIVITY - DATA FLOW DIAGRAM
TITLE
MNALYZE RESULTS
DATA 1L} TRACE DATA DESCRIFTION
i 5 | Output values and messages
2 8 Acceptance criteria
3 7 Code revision specifications
4 l 5 Behavioral information
5 7 Code revision specifications
6 6 Additional testing requirements
7 1 Managerial input '
PREPARED bY DATE REVIEWED 8Y DATE APPROVED BY DATE

iL Check. Qutput
(Values + Messages)
A
h ¢
5,6 Analyze
<1 A
Behavior

ACTIVITY DESIGNATOR

CCD

1.2] 4,7

4 !

REF. DOCUMENT 10167 (SAMM)
CO 1000 106 ORIG. 2/78

| ' C‘\‘l L O R TR R TEN YTV N A ANy ‘ .
. ACTIVITY DESIGNATOR.
ACTIVITY - DATA FLOW DIAGRAM CCDhB
TITLE Tt T T T '-h[————. - T
)
ANALYZE BEHAVIOR (I[RFORMANCF) 1,71 2,71 3.7
DATA ID| TRACE » DATA DESCRIPTION (|
1 4 Histograms (freqyency count, branch 4 Check
paths, statistics) + variable maximum | < Test Coverage
. - Variable Evo]ut1on
and minimums 1
2 4 Process queue snapshots
3 4 Simulated time Qutput 5 Analyze
4 6 Additional testing requirements “ Process Queue
v Evo]ut1on
5 5 Code revision requirements -
parallel processing schedules R
6 5 -Code revision (optimization) 6 (,'..Ana1yze
- requirements ' : * S1m¥!;21°"
. . i
7 7 Managerial input : e C
PREPARLD BY UATE. REVIEWED BY‘ DATE - APPROVED BY . DATE ’

REF. DOCUMENT 10767 (SAMM)
CO 1000 1015 OR:G. 2/78

TEE IR0, € ORP UM BVIC]S COIAPANY

ACTIVITY - DATA FLOW DIAGRAM

ACTIVITY DESIGNATOR

CCDBA

TITLE

CHECK TEST COVERAGE, VARIABLE EVOLUTION

DATA ID! TRACE

DATA DESCRIPTION

1

2
3
4
5

1
7
db

Raw histogram/history information
Managerial input

Program source listing

Annotated source listing
Requirements for additional tests

PREPARED BY

OATE

REVIEWED BY OATE APPROVED BY DATE

1 2 2

-

Post Process

Histogram/Histor
9 Y 3 -——z\

A X

thoroughness of
Path Executions

Check

B

File
13
5
<1
5

R

ﬁeck Adequacy of
Variable/History

Evolution
‘ C

REF. DOCUMENT 10167 (SAMM)
CO 1000 1015 ORIG, 2/78

ACTIVITY DESCRIPTIONS

TITLE

ACTIVITY

1D

DESCRIPTION

A

The source listing produced by the compiler is an excellent
document to be annotated with the histogram information. ‘
Multiple statements per line are broken up to several lines,
all statements are pretty printed, and the format is uniform.

RELATED DATA

1D

SOURCE

DEST

NAME

BH 800G COLPUTIR STAVICES WC

BOT NG CORMPOTEI S8 WVILT S € DMIBANT

ACTIVITY - DATA FLOW DIAGRAiﬂ

ACTIVITY DESIGNATOR

D -
B INTEGRATE MODULES INTO SYSTEM 1,9] 9,12 "9 9
DATA 1D | TRACE . DATA DLCETON 4 ! |
1 6 HALMAT of each module 5 . Chéc@]sz
2 Collection of modules forming system — ecompilation
3 Further altered HALMAT Monitor File Requ&;iggntsg & 2 2
4 8 HALMAT ready for execution as a |
complete system Expand Calls
5 7 Recompilation requirements due to for System Level
factors such as "independent testing Assertions B 8
used outdated module tempTates" J
6 7 Verification based revision (~ _
. . 6 Perform
requirements < Internal 3 -
Expanded HALMAT Monitor File Verification d 10
9 12 Managerial input/controlling ’ 3
| parameters Instrument
10 15 Generated test data for 292?2; Test 4;
11 16 Machine state from partial ‘ D —
execution
12 6 HALMAT Monitor Files
PREPARED BY) DATE REVIEWED 8Y DATE APPROVED BY DATE \ 11

CO 1000 10156 OKIG. 2/78

REF. DOCUMENY 10167 (SAKMM)

DOE NG GMITE R C LS £ DMOANY
)n O

ACTIVITY DESICGNATOR

ACTIVITY - DATA FLOW DIAGRAM

YIHl T -

CHECK FOR RECOMPIIATION RLQUIR[M[N]S/MERGE 1 1 1.7
9

DATA ID| TRACE DATA DESCRIPTION (’
1 1 HALMAT for each module
2 © Procedure template "equivalents" Procedure
(true description of procedures) Descriptions 2\

Pull Qut. Module/

Procedure templates

5 List of mismatched procedure/ '

| . : . Pull OQut
templates =>recompilation/revision Templates

requirements ~ Used

5 List of modules which may be safely

| merged ’ '

Compare

6 2 System of legaj]y mergeq modules “— Descriptions :

9 Directions as to merger (e.g., . k\“

override) - may be unnecessary or

undesirable

,'Merge

PREFPARED BY DATE REVIEWED BY DATE APPROVED bY DATE

REF. DOCUMENT 10167 (SAMM)
CO 1000 1016 OR'G. 2/78

i J :A *,,:')ﬂ O NG OMEITEESE VIO LS COMCANY

ACTIVITY - DATA.FLOW DIAGRAM

AUTIVITY DESIGNATOR

DC
TITLE -
. a . .
PERFORM INTERNAL VERIFICATION 1,4,10 1.4 1
DATA ID| TRACE DATA DESCRIPTION (' \
1 2 HALMAT for all modules ‘ '
8 Perform
2 System call graph P Non-Data Flow 51
3 Specifications of system paths on Static Ana]ys&s ~
which errors are suspected to exist i
4 9 Managerial input ; Perform
5 3 Refined HALMAT Monitor File -~ Data Flow
. Analysis 3,F
b 6 B
7 6 Error messages and documentation
8 6 comprising revision requirements]
| 6 (,' Perform ‘\\
9 10 Generated test data -~ Symbolic -
10 8 HALMAT Monitor File - Execution .) 5,3
11 11 Machine state from incomplete
execution
PREPARED 8Y . DATE REVIEWED BY DATE A.PPROVED BY DATE 11

REF. DOCUMENT 10167 (SAMM)

CO 1000 1015 ©8'G. 2/78

ACTIVITY DESCRIPTIONS

NODE DC TITLE PERFORM INTERNAL VERIFICATION
_ACTIVITY ‘) RELATED DATA
iD] DESCRIPTION - Lo lsource] pEest NAME

The structure and purpose of this activity
closely resembles that of node CBCC. The

~ further breakdown of this nade and its re-
lated data items will closely follow that of
CBCC.

MO{»‘G ormTeR e]

3 L4

E?C\:e. I T M TR T] nwvn;v

ACTIVITY - DATA FLOW D!AGRAM

ACTIVITY DESIGNATOR

Tinte

REF. DOCUMZNT 10167 (SAMM)

TARGET AND TEST SYSTEM 1,9 3 1,2
DATA ID| TRACE DATA DESCRIPTION % I
1 13 System acceptance criteria Create
2 12 Managerial input Test 3
3 8 HALMAT comprising system Scenario AA,) -
4 14 Executable code 1 5
5 ' Test data Target
6 Output HALMAT [
7 9 Module revision requirements B‘,) B
8 Requirements for additional ¥
test data 10 (lgxecute/pebug
9 15 Generated test data “ Interactively
10 16 Machine state at a specified point k\;, .C -
of computation (for use by symbolic ’ 5
executor) 7 (“Analyze
-« Results
L 0
\
PRIPARLD BY DATE KEVIEWED BY DATE APPROVED BY DATE .

|7

€O 1000 10'6 ORIG. 2/78 -

ACTIVITY DESCRIPTIONS

NODL L TITLE TARGET AND TEST SYSTEM
ACTIVITY RELATED DATA
ID| DESCRIPTION 1D | SOURCE] DEST NAME

Further decompostion of the activities and

data items associated with this node will
closely parallel that with node CC, Module Test.
See that node for details.

m BOLING COM'PUTER SIAVICES WC I

‘ :4 ‘ :) & PO € OMPUTE N I) LOTAFANY

ACTIVITY - DATA FLOW DIAGRAM

ACTIVIiTY DESIGNATOR

PRzPARED RY DATE REVIEWED BY DATE APPAOVED BY

DATE

Load Map(s)F

- ROOT
TITLE .
DOCUMENT EXISTING SYSTEM 1 1 1
DATA ID| TRAGE DATA DESCRIPTION] \
!
1 . Source code
2 Listing "List Code 5
3 Internal documentation AA,)
4 Flowchart ’
5 Compiler documentation Extract
6 Augmented HALMAT Internal } .
7 Static analysis information Documentatmog‘/ 3
8 Load map(s) S)
Generate N
Flowchart A’) ‘Z
' C
. - Y
"~ Compile 6' p >
Y, >
Y
Perform
Non-Data Flow -
Static Analygii) 7
v
Target HALMAT
to Produce —E

REF. DOCUMENT 10167 (SAMM)
€O 1000 1015 ORIG. 2/78

- ACTIVITY DESCRIPTIONS

NODE Root ‘TiTLE Document Existing System
ACTIVITY ' o RELATED DATA
iID] DESCRIPTION _ ‘ . ID {SOURCE} DEST NAME
B This activity will extract specially marked comments

(such as /** or cc) which comprise various Tevels of internal
program documentation. Several levels of documentation may exist-
system, task, procedure, and local. If conventions are adopted
regarding the formatting of the various levels, under user control
this activity will extract and print the desired comments. A
more sophisticated capability could be designed which would, for
example, print the comments and

transfer conditions associated with a particular path through

a program. The path specification would be the same format as
used for the timing estimate and the symbolic executor.

m"n o M]

APPENDIX E

INTEGRATED TESTING AND VERIFICATION SYSTEM

FOR RESEARCH FLIGHT SOFTWARE

REQUIREMENTS DOCUMENT.

Contract Number NASI - 15253

May, 1978

Prepared by:

Boeing Computer Services Company
Space & Military Applications Division
P.O. Box 24346
Seattle, Washington 98124

1.0

2.0

3'0

4.0

'CONTENTS

PROBLEM STATEMENT

GOAL

AUDIENCE

3.1 Programmers

3.2 Program Managers

ENVIRONMENT

4.1 User Community

4.1.1
4.1.2

Problem Orientation

Interéctive and Batch Operation

4.2 Research Flight Hardware and Software

4.2.1

4.2.2 -

4.3 MUST

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7

Hardware

Software

Interactive Software Invocation System - ISIS
HAL/S |
HAL/S Compiler System

Documentation Capabilities

Meta-Assembler

Interpretive Computer Simulator _

HALSTAT

E-6
-E-6

E-6
E-7

E-8

E-8

E-9
E-10
E-10
E-10
E-1C

CONTENTS (Continued)

5.0 FUNCTIONAL CAPABILITIES

5.1

5.2

3.3

Documentation

5.1.1 Cross Reference Map

5.1.2 Implicit Type Conversion

5.1.3 Extraction of Internal Documentation

5.1.4 Process Dependency Documentation

5.1.5 Event Scheduling Statement Cross Reference
5.1.6 Call Graph

5.1.7 Query Facility

5.1.8 Reentrancy Notation

Verification

5.2.1 Detection of Illegal Data Usage

5.2.2 Detection of Unexecutable Code

5.2.3 Deadlock Detection

5.2.4 Illegal COMPOOL Data Usage in a
Multitask Environment

5.2.5 Data Inconsistencies Resulting From the
Termination of Dependent Processes

5.2.6 Units Specification '

5.2.7 Scaling and Precision Specification

5.2.8 Violation of Language Restrictions

5.2.9 Alteration of Termination Conditions

5.2.10 Consistency of the Load Module

Testing

E-3

Page

~ E-11

E-11

E-11
E-12
E-12

- E-12

E-12
E-12
E-13
E-13

E-13

E-13
E-16
E-16

E-17

E-19
E-20
E-20
E-21
E-21
E-21

E-21

6.0

54

CONTENTS (Continued)

5.3.1 Histogram Coveragé
5.3.2 General Monitoring
5.3.3 Assertions

5.3.4 Timing Assessment

Debugging Tool

DESIGN/IMPLEMENTATION PLAN

6.1

6.2
6.3
6.4

6.5
6.6

Simple Documentation
Local Information

Multi-Procedural Information

Separate Compilation/Multi-Processing .

Information
Debugging/Performance Estimate

Difficult Issues

Page
E-21
E-21

- E-22

E-24
E-24
E-25
E-25
E-26
E-26
E-26

E-27
E-27

P it e w it v ey e e ey e s S et - ot v S e e e e i 2t e Al s i N S s P 4w e Pw%n s e e e e

1.0 PROBLEM STATEMENT

The production of reliable software-is in generai, a difficult, slow, and

expensive process. Tools and methodologies :addressing this issue are recent,-

often fragmentary, and restricted in scope and applicability. Production of

| reliable flight software js more difficult yet, as real time and multi-task

requirements compound the problem. Advanced tools are required to aid in the
timely production of reliable, real time, flight systems.

| 2.0 GOAL
The study's goal is to benefit the NASA researcher by designing a unified set
of automated tools within the MUST programming environment to aid in the

3.0 AUDIENCE

3.1 Programmers. The capabilities provided by the verification system will

documentation, verification, and testing of flight software.

be of greatest utility to programmers writing the flight software. All capabilities

will be of interest.

3.2 Program Managers. Program managers will primarily be interested in

aspects of the documentation produced, though the generic verification capabil-
ities will be of interest as well, as they may in principle be applied to
requirements and design analysis. This latter ability is not considered fundamen-
tal to the problem at hand, but the algorithms employed by this work will be

directly applicable in the verification of a suitable specification language.
. : Documentation features of interest include statistics charting a program's

execution history and an indication of coding practices employed in terms of some

predefined parameters.

E-5

4.0 ENVIRONMENT

Several environmental considerations will affect the design of the verifica-
tion and testing system. First are the characteristics -of the user community.
Second are the general characteristics of research flight hardware and software.

Third are the characteristics of the MUST program and its constituents..

4.1 User Com rhunity.

4.1.1 Problem Orientation. The users of the MUST system are researchers .

devoted to addressing particular NASA problems; As engineers and programmers
they are familiar with computing concepts and may éffectively use sophisticated

tools without extensive "handholding.".

4.1.2 Interactive and Batch Operation. Most users will heavily utilize the

‘interactive features of MUST; thus the verification and testing capability should
be oriented this way. Batch usage is still preferred by some, however, so the

capabilities must be effectively usable in both modes.

4.2 Research Flight Hardware and Software.

4,2.1 Hardware.

4.2.1.1 Flight Computers. Flight computers tend to be small, one-of-a-

kind machines, though more advanced machines are appearing. They often have
little supporting software and place tight spaée and time constraints on applica-
tions pfograms. Assembly language coding is most often the rule and absolute
patches are by no means unknown. Floating point features are often absent, or if
present, unacceptably slow. Thus the use of hardware real arithmetic is often
circumvented by software fixed point computations which invite scaling and

precision errors.

4.2.1.2 Ground Based Systems. Large general purpose computer systems

are available tc NASA researchers for grdund based -support.” MUST is hosted on -

E-6

such a system (a large CDC machine supporting the programming language

Pascal).

4.2.2 Software.

4.2.2.1 Research Orientation. Since the subject software is research

oriented, rapid evolution is common, with the attendant requirement of constantly
updated documentation. Further, rapid evolution requires the rapid production of
correct code. Often a multidisciplinar'y team of researchers will address a' single
problem. Utilizing the verification and testing capabilities should aid in the

smooth integration of independently produced pieces of software.

4.2.2.2 Real Time Constraints. Supporting flight operations requires the

software to operate within strict real time bounds. For example, on board
equipment may produce a signal which must be processed ten times a second.
Many such constraints may reside within a large system, requiring complex

scheduling of functions.

4.2.2,.3 Parallel Operations and Data Pools. In response to real time

constraints, or for logical clarity, a system may be c‘onstr‘ucted with several
independent, possibly parallel, modules acéessing a common data base. A typical
model might involve navigation, guidance, and display modules, while the data
base would contain global parameters, such as position, attitude, an.d speed.
Programming concerns would include data base consistency and proper ordering of
module executions, as each module needs the guarantee that the data base is fully
updated when accessed, and that necessary information is present and correct.
The actual implementation of such a system may involve a single processor being
time shared among the modules, or each module executing on a separate

processor.

4.3 MUST. The above considerations have, of course, been the motivational -

and guiding forces in the design of the MUST programming environment, in which
this verification and testing system wili be imbedded. Its imporiant components

are described below.

E-7

aer
PR

4.3.1 Interactive Software Invocation System - ISIS. The use-of ISIS as the

primary user interface,-invoking tools and managing data; makes it an important
point of integration. “Since the user sees MUST, and therefore the verification and
testing capabilitvy, #through ISIS, the design and use of the system must be
consistent with the .ISIS philosophy, presenting no implementation or invocation
peculiarities. The output produced by various aspects of the verification and

testing facility w_ill be entered, for example, as books in an ISIS library.

Kae

The relati;a'n-al data base capabilities of ISIS mey prove to be especially
useful in holding representations of a user program As futher descrlpnons of ISIS

become available, this w111 require investigation.
4.3.2 HAL/S.

4.3.2.1 General Charactersitics. The HAL/S language is by far the largest

environmental concern. As the prime programming language of the MUST
environmeht, the verification and testing systerh will be closely focussed on it.
Particular attention will be paid to the real time features of HAL/S, as real time
issues and shared data pools are critical in flight software, as noted above. These
general characteristics will most profitably be addressed within the specific
semantics of the HAL/S language and run time environment, yet the algorithms
developed and used will be general in character. This is a natural approach, but is
especially important in view of the fact that the new'Department of Defense
programmmg language may be adapted for NASA use within a few years. The
NASA standard version of HAL/S is used by MUST. Any language additions or

alterations will require coordination with the language standard control group.

4.3.2,2 Language Richness. The HAL/S language is quite rich in program-

ming constructs - perhaps too rich. Several constructs have somewhat awkward
semantics, and special cases are frequent. ~Examination of the language features
will be necessary, therefore, to see if any pose ;Sarticularly difficult'problems for
the _ver'lflcatmn and testing capability, such as adversely affecting the detection
of ,cert;nn classes of ‘errors. On this basis a decmon will be made as to whether -_
the’ verxfxcatlon capability should take cogmzance of those identified features.

An example in this category is the NAME facility. Either spurious errot fnessages

) 5.8) : | . ey |

—_—

will be generated or some error phenomena may be missed if names are used

without restraint. The problem 'iSFQn"e of aliasing, and no satisfactory solution yet '
exists. - '

~——

4.3.2.3 Implementation Dependent Features. Several language limitations . '

and operations are implementation defined, such as the exact operation of the
real time executive. Implications of this when concerned with the validity of

identical HAL/S programs running on different machines will be examined.

4.3.3 HAL/S Compiler System.

- §.3.3.1 Checking and Documentation. Some checking and documentation

features exist as normal parts of the compiler. Unless there is strong reason to
éct' otherwise, these capabilities should be retained and not duplicated. As an
éxample, the Symbol and Cross Reference Table lists all points where variables
are referenced.

4.3.3.2 HALMAT. The HAL/S compiler systems produce a fairly high level
intermediate language, HALMAT. This language may well be suitable as a

primary input to.the capability, allowing most of the verification and testing

functions to be separate from the‘veriﬁcati‘on and testing compiler internals, but -
still utilizing the compiler's syntax analysis capabilities. HALMAT currently has
several unused operation codes which. may be utilized by the verification
capability to communicate new high level "statements," such as _a_é.gﬁ, to the

analysis modules. Doing so should require only minor changes to the compiler.

4.3.3.3 _ Pascal Implementatidh, The portion of the compiler which

generates HALMAT has been translated by NASA-Langley from the original
XPL/360 version to CDC Pascal. Comprehensive documentation is available for

this implementation.

4.3.3.4 Functional Simulation - FSIM. Though not a part of the NASA

Pascal based HAL/S comp‘iler, F_SIM is available on some Intermetrics compilers.
Some of iis features, such as provision of an execution time estimate, seem quite
useful. FSIM's full capabilities will be examined to see if it should be interfaced

E-9

with the verification and testing facility, or if perhaps the most valuable features

should be made a part of the verification features directly.

4.3.4 Documentation Capabilities.

4.3.5.1 RNF. RNF is the Pascal based text processing system used by

MUST. RNF provides extensive features for formatting text into justified

paragraphs, pages, lists, and so forth. A simple macro facility is also included.

4.3.4.2 Graphical Code Representaﬁve. A Paséal based facility provides

another component of the documentation system, Guren a descr ipnon of (almosL) SRR

any programming language and a program _wntten in that language, the system
will produce a structured flowchart of that program. Some interface/modifica-
tion of this system may be required, if, for example, assertions or unit specifica-

tions are to appear in the diagrams.

4.3.5 Meta - Assembler. MUST's meta-assembler is a fécility which might

allow HALMAT to be targeted to several different computers. Verification and
testing functions which are closely tied to specific 1mplementat10ns may requxre
interface with the meta- assembler, or possxbly knowledge of what the meta-

assembler actually produces.

4.3.6 Interpretive Computer Simulator. This system allows a bit-by-bit

simulation of an actual target program to be run on the large computer hosting
MUST. Some of the run time tests may be suitable for inclusion here, and
statistics could be gathered from a simulation run. Further examination of the

system's capabilities and potential will be required.

4.3.7 HALSTAT. Since in-line code and absolute patches may still be used

in the MUST/HAL environment, cognizance should be taken of tools available to
analyze the consistency of actual load modules. Such a tool, HALSTAT, has been
produced by Intermetrics. In its current form it may not.be suitable for direct

inclusion in the system, but its canabilities bear close examiration.

E-10

5.0 FUNCTIONAL CAPABILITIES

Functional capabilities can be broadly divided into the three categories of
documentation, verification, and testing. This division.is based upon the type of
information produced, and not necessarily on the verification and testing methods
used. Indeed, detection of certain types of errors may involve the interaction of |
several different verification and testing capabilities, or the use of exlstmg tools,’

such as the compiler.

5.1 Documentation. Note that some capabllmes here may already be

provided by the compiler system; inclusion here is for completeness sake, and does

not imply duplication.

5.1.1 A Cross Reference Map. This is a table which for every variable and

‘ label, shows the location and nature of every reference and definition. As such it
should be a useful aid to debugging and desk checking, as well as a tool for-

standards checking.

- HAL/S has a number of functional classes of variables. Special prominence
shall be given to each of the classes below. Each of these specialized cross
references is intended to focus attention on a different aspect of the program s
structure and functioning. As such they should facilitate spec1ahzed debuggmg,.

testing and analysis of the program.

5.1.1.1 LOCK Group Variables. All variabies of each LOCK group will be
listed. For each variable there will be a list of the UPDATE blocks accessing the

varxable. .

5.1.1.2 COMPOOL Variables. All variables of each COMPOOL w_ill be

listed. Points of reference and definition for each variable will be enumerated.

5.1.1.3 EVENT Variables. All accesses to each EVENT variable will be
listed. T

E-11

5.1.1.4 _ Unprotected Shared Data. Notation will be produced for all

variables which are shared among processes, yet which do not belong to a LOCK
group or a COMPOOL. '

5.1.2 Implicit Type Conversions. Documentation. will be produced to

describe cases where operand types are not properly matched and are auto-
matically coerced into matching. Often such coercions are not intended by the
programmer and produce erroneous results. Hence this documentation is intended
to call to the programmer's attention- possible unexpected consequences of

existing code.

5.1.3 Extraction of Internal Documentation. A facility for extracting

imbedded commentary and reformatting it into external documentation will be
supplied. Internal commentary may take the form of comment statements or
assertions. = The assertion capability is outlined in a later section of this

document.

J.1.4 Process Dependency Documentation. A representétion will be given

- indicating the dependencies'of program and task processes. A dependent process
may continue to exist only as long as its parent; if the parent terminates,' so does
the depen'dent, whether or not it is finished. As discussed later, this may cause
~errors. A clear statement of such dependencies will enable the programmer to be

aware of all the process interrelationships.

5.1.5 Event Scheduling Statement Cross Reference. .A table will be
provided showing where all event scheduling statements appear in a body of._
program text. The event scheduling statements are: SCHEDULE, TERMINATE,
WAIT, and CANCEL. If a programmer or analyst is shown where all of these -
statements are located, it becomes easier to grasp and analyze the real time
‘structures of the program. ' Thus' this documentation should aid debugging, desk

checking and test design.

5.1.6 Call Graph. A representation of the caliing struciure of the program
will be given. This representation will show where each procedure is cailed, and

what procedures are used within a given procedure.

E-12

2.1.7 Query Facility. A feature will be provided enabling the programmer

to assess the impact of proposed coding changes, in the sense of knowing what
modules/procedures will be‘affvected by changing a given piece of code. - This
feature may also be used to determine what sections of code were executed in
establishing the values of a given set of variables at a given point in the program.'
- This query> facility is thus a more sophisticated version of the call graph
mentioned above, enabling the user to obtain more detailed information in
responée to more detailed requests. The exact capabilities to be provided will be
‘determined later. The University of Texas FAST system will be examined as a

source of model features.

5.1.8 Reentrancy Notation. All procedures used in a multiprocessing

situation will be examined for reentrancy. Any characteristics which inhibit
reentrancy will be noted. This checking will involve examination of sub-
procedures used and any update blocks present. -

Ay

5.2 Verification. Verification is the process of proving the absence or

showing the presence of program errors. No technique exists (or can exist) to

fully verify a program, but the folloWing classes of errors will be detected.

5.2.1 Detection of Illegal Data Usage. This includes errors such as

referencing an undefined variable, and definition/redefinition anomalies.

5.2.1.1 Detection of Undefined Variables.

Example:

PROC: PROCEDURE; , _
DECLARE INTEGER, I, J INITIAL (1);
J=1

~ CLOSE PROC;

E-13

Variable 1 is referenced before it is defined; possibly the programmer meant the
declaration to be: DECLARE INTEGER, J, 1 INITIAL (1);. . The reference to the

undefined variable I would be caught by simple static analysis.

5.2.1.2 Definition/Redefinition Anomalies. An exarmple definition/redefi-

nition anomaly follows:

PROCI1: PROCEDURE;
DECLARE INTEGER, K, L, M, N;
DECLARE ...

K=M+1;
=N+ M;
K = (M+N) L;

r—l

CLOSE PROCI;

The assignment statement K = M + 1; is useless in this context, as K is redefined
two statements later, without being referenced in between. The presence of such
a statement does not make the program erroneous, but it does suggest the
computation performed is not the one intended. Since this anomaly would be
flagged as a result of a static analysis scan, the programmer would be wise to

review the code in question.

Definition/Undefinition anomalies can take several forms and involve

variables in virtually all classés. All such errors will be detected.

5.2.1.3 lllegal Data Usage Across Procedure Boundaries. The above data

flow anomalies, using an undefined variable and ‘de.ﬁning/redefin'ing a variatle,

can be detected by tne ctatic analyzer across prccedure boundaries as well. Full

E-14

recognition is made of a program's branching logic. The above examples are
illustrative only, and do not reflect the complexity of érr_ors which are detectéble.
. The following program illustrates how an error may. occur across procedure
boundaries. '

FOO: PROGRAM;
DECLARE INTEGER, I, J, N;

.

"BAR: PROCEDURE ASSIGN (X);
DECLARE INTEGER, X;
X=X+l
"WRITE (5) 'THIS IS THE', X, '-TH TIME'; -
CLOSE BAR;
1=0;
READ (4) N;
A: IF N>0 THEN
CALL BAR ASSIGN (I);

ELSE

CALL BAR ASSIGN (J);

J =0
B: CALL BAR ASSIGN (J);

GOTO A;
CLOSE FOO;

Suppose -1 is the first value read for variable N. Then in the statement labaled A,

. BAR will be calle¢ with J as its argument. J is uninitialized at this point, and

E-15

BAR has not been . called before. Thus -the assignment statement in BAR
references an undefined variable. Static analysis will detect this and flég itas a
possible error. The call to BAR at B is correct however, as J is defined at »this' '
point, regardless of the value read for N. No error flag will be raised at that

point.

5.2.2 Detection of Unexecutable Code. A programmer may unknowingly
‘create a section of code to which there is no path, either when originally writing a
program or performing maintenance on an existing program. Static analysis
coupled with symbolic execution. can detect a large number of these situations.

Consider the following code fragment:

DO FOR I = 1 TO 10;

.

1f 1= 10 THEN GOTO OUT;
END;
X =X+10;
OUT: Y =Y +10;

Clearly the statement X = X + 10; is unexecutable. This condition will be
detected by the verification and testing capability. It should be noted, however,
that not all unexecutable paths will be detected, as this is precluded by

theoretical results (namely, that the halting problem is unsolvable).

5.2.3 Deadlock Detection. A HAL/S multitask program may be written so

that a cyclic wait (deadlock) situation occurs. Consider the following example.

E-16

DECLARE EVENT LATCHED, EVI, EVZ;

Tl: TASK;
‘ /* some computation */
RESET EV2;
WAIT FOR EVI;
SET EVZ;
CLOSE Tl;
T2: TASK;
/* somewhat less computation */
RESET EVI;
WAIT FOR EV2;
SET EVI;
CLOSE T2;

- SET EVI;

SET EV2;
SCHEDULE T1 PRIORITY (50);
SCHEDULE T2 PRIORITY (50);

Depending upon the actions of the real time executive, events EV2 and EVI may
be reset by tasks T1 and T2 (respectively) "simultaneously." In the absence of
external influencés, both tasks will wait indefinitely, eésentially for each other.
This simple example of potential deadlock can be detected statically, as can some
more complex examples. For some situations, however, symblic execution may be
required to attempt to generate conditions under which deadlock can occur.
Other examples may require instrumentation for monitoring these conditions at
run time. This distribution of error detecting capabilities among several

verification and testing tools is expected to be common in the facility designed.

5.2.4 Illegal Compool Data Usage in a Multitask Environment. A group of

processes may be structured such that compool data is properly defined and used
only if the processes execute in a certain order.. THe possible existence of

conditions under which this ordering could be violated will be noted.

E-17

'Example:

COMMON: COMPOOL;
DECLARE INTEGER, I, J;

CLOSE COMMON;

BAZ: PROGRAM; |
DECLARE INTEGER, M, N; -
/* compool template also included */
INIT: TASK; ’
1=0;
CLOSE INIT;
USE: TASK;
1=+
CLOSE USE;

READ (4) M, N;
SCHEDULE INIT PRIORITY (M);
‘ SCHEDULE USE PRIORITY (N);
CLOSE BAZ; -

| In this example the scheduling of INIT and USE depénd upon variables M and N. If
N > M, USE will execute first, causing an uninitialized variable to be used. As
with deadlock, the detection of this type of error will be distributed among
several functions. Compool data membership and usage is documented, as are the ‘
statements controlling the execution of processes. Static detection of ordering
requirements will generate a message, and run time instrumentation may be

inserted to check for actual violation.

E-18

5.2.5 Data Inconsistencies Resulting From the Termination of Dependent

Processes. The_pfogram will be examined to see what types of errors may occur -

when the parent of a dependent process:is terminated, causing its sons to be

terminated as well. Warnings of inconsistencies in shared data which may arise

will be provided. The following example indicates such an inconsistency.
ONE_OF TWO: PROGRAM;

UPDATE_POSITION: TASK;
/* reference compool */.
CLOSE UPDATE_POSITION;

TERMINATE; |
CLOSE ONE_OF_TWO;
DATA_BASE: COMPOOL;

CLOSE DATA_BASE;
TWO_OF_TWO: PROGRAM;

NAVIGATION: TASK;
/* reference compool */
CLOSE NAVIGATION;

CLOSE TWO_OF_TWO;
E-19

Suppose that task UPDATE_POSITIQN is executing when its parent,
ONE__OF_TWO', reaches the TERMINATE statement. If the task is only partially
done, the data base will be left in an indeterminate state. If TWO_OF_TWO'S
NAVIGATION task then accesses the data base, erroneous results will ensue.
Warning of such a situation will be provided by the static -analysis, and run time

checks may by inserted for monitoring.

5.2.6 Units Specification. '_A facility will be added to the HAL/S language
(possibly as a specially processed comment) to allow the progrémmer to specify in
what units the value of a variable is assumed to be stored. This declaration will.b
be specified at the pbint of normal declarations. Checking for conSistency will be
performed at procedure bondaries; checking may be attempted during expression

evaluation.

Example:

Declare speed integer /* units: feet/second */;
Declare velocity /* units: furlongs/fortnight */;

Declare height /* units: cubits */

5.2.7 _Scaling and Precision Specification. On machines with inadequate or

non-existant floating point units, scaler computation may be performed using
fixed point quantities where the programmer keeps track of the implied decimal
(or binary) point. The declaration of this convention will be done in a manner
analogous to the units Speciﬁcation. Checking of proper scaling and precision will
be performed throughout expression evaluation as well as across procedure

invocation boundaries.

A sample declaration might appear as follows:

Declare float3 integer /* scale: 3 */; .

implying that float3 has three digits to the right of an implied binary point. Only
variables with compatible scales could be added and subtracted. In assignment
centext the resulting scale from expression eValuatmn would be checked for

‘compatibility with tha declared scale of the receiving variabie.

E-20

‘The precise form of the declaration will be determined latér.

5.2.8 Violation of Language Restrictions. Language violations which will be

- checked here include division by zero and exceeding the maximum subscript of a
matrix. Of course it may not be possible to completely verify that these will not
occur before actual program execution; for. some instances run time monitors will

be required.

5.2.9 Alteration of Termination Conditions. A common programming error

is the writing of infinite loops, when such action is not intended: This often
- occurs because the _vaf'iables involved in the terminéﬁon condition are not altered
during execution of the body of the loop. A check will be made to verify that
such a change is possible; if not, a warning message will be printed. It should be
stressed that such checking will not be infallible in the detection of infinite loops,

it will only be an aid.

5.2.10 Consist:ency of the Load Module. Since a HAL/S load module may be

a collection of several separately compiled programs and data pools, checks will
be made to guarantee that uniform ‘descriptions of compools and common
procedures are used by all programs, Thisvis especially important in view of the
fact that non-HAL code may be present, including some absolute patches. In
addition, a reference map will be produced showing the locations of all variables.-
The HALSTAT. tool will be carefully examined for guidance when considering the

provision of these features.
5.3 Testing. Testing includes all activities taken at or near run time.

5.3.1 Histogram Coverage. A histogram. will be produced showing the

execution frequency for all statements of a program. Untested statements are
thus apparent, and an indication of branch paths taken will be provided. (This

information serves as an important guide to optimization as well.)

5.3.2_General Monitoring. Many capabilities are possible in this classifi-

- cation, with the following being among the most important.

E-21

5.3.2.1 Event Variable Activity. A report would be produced indicating at

what times, with respect to the real time clock, the values of event variables
changed, and to what values they were changed. Since program and task names
have process events associated with them, this report would also indicate the

times of their entering and departing the process queue.

J.3.2.2 Process Queue Snapshots. At specified intervals or times a snapshot

would be produced -showing what processes were currently in the queue, and in
what state: active, wait, ready, or stall. If stalled, an indication would be given

as to the condition causing the stall.

5.3.2.3 Selective Variable Monitoring. At each pdint of change a message

would be produced indicating the new value of the variable and the statement
number causing the change.

5.3.2.4 Selective Procedure Invocation Monitoring. A report similar to

variable monitoring would be produced, but indicating what procedures had been

called, from where, and the values of the parameters.

5.3.3 Assertions. Assertions are statements which allow the user to

describe the expected behavior of a program. As "statements," they could be
inserted in HAL/S programs as specially processed comments or even as a new
HAL/S statement type. The actual syntax will be decided upon during the design
phase. The basic assert statement, possibly phrased as assert < boolean
expression >, when instrumented, is semantically equivalent to the executable
statement:

IF NOT <boolean expression> THEN sénd_errori:j;
where error;.. corresponds to assertion_violation. A simple use of this assert

- statement might appear as follows:

E-22

-

CALL SUBI ASSIGN (X);
Y =15.0N+3 3

ASSERT (X +Y <7)
Z=3J/(X+Y);

Presumably when the code was written the pfogrammér was aware that his
calculations "guaranteed” X + Y <J. Indicating that by an assert statement
documents his understanding while inserting a check for errors which may have
arisen due to later modifications (such as to SUBI), misunderstandings, imple-

mentation errors, and so forth.

More advanced assertion statements will allow checking of a range of
variables and values, and over a program region. An assertion in this category

might appear as assert global values (x,y) (1:10); indicating that if the values of

variables x and y ever deviate from the range | to 10 in any region of the
program, the assertion has been violated. The instrumentation for such as
assertion would involve checking the values of x and y at each point they are

changed, to assure they lie in the proper interval.

The actual design of the specific assertion statements to be implemented is
a requirement of the study. Of a particular interest to the real time programmer
will be assertions involving event variables, to assert (and thus check for) proper
event sequencing. Note that the error handling capabilities provided by HAL/S
~ may enable much of the assertion checking instrumentation to be implemented

within the HAL/S language.

Overall, the assertion facility should contain the following features.

E-23

1) The notion of a region over. which the assertion is valid. This may be a -
‘single statement, or an entire procedure. The translator must determine all

the relevant points at which to check the assertion.

2) Levels of assertions. The ability to suppress chécking (instrumentation) of

assertions below a certain level should be provided as a compile-time option.

| 3) Some quantifiers which may apply to ihe boolean expression. The full power
of first-order predicate calculus would be desirable, but at least a "V should

be supplied.

4) An “invariant" clause, to allow statements such as assert x+y invariant; for a

specified region.
5) A threshold concept. The user would be enabled to specify a limit on the
number of times a partiéular assertion may be violated, before some drastic

action (such as terminating the program) is taken.

5.3.4 Timing Assessment. A capability will be provided for estimating the

execution time of a given program on a given machine. Input would be required,

of course, describing the target machine.

5.4 Debugging Tool. The verification tools provided are envisioned as

interfacing with a program debugging tool. Such a tool would 'permit the
generation of program snapshots, setting of checkpoints, and dynamic alteration
of variable values. The tool will be highly interactive, but shall be usable from
batch as well. Additional capabilities may be added as the design of the tool and
its relationship to the verification facility is elaborated. (Some of the functional
capabilities listed above, such as variable evolution tracing, may be included as

part of the debugging tool.)

E-24

6.0 DESIGN/IMPLEMENTATION PLAN

It is not envisioned that all the above capabilities will be implemented at
once. A phased implementation is anticipated, with increasingly powerful (and:
thus increasingly expensive) verification capabilities being added at each step.
With this in mind, the capabilities have been divided into six categories, based
upon utility of the features to the user and the scope of analysis required. The
categorization is not rigid, in that the distinction between some categories for
certain features is somewhat arbitrary. A first implementatioh would almost
certainly go beyond implementing only category one; most likely the first three

categories would be produced.

The design of the verification and testing capability will accommodate
such an implementation. The design produced should be easily amenable to
expanSion or contraction of capabilities. Thus, for example, if only category one
and two features were desiréd, the implementation should succeed well without -
the pre'sence of any category three capabilities. The categories are hierarchical,
however, in that an implementation of category four could assume the presence of

the first three.

6. Simple Documentation.

Cross reference maps

Variable V

Lock Group

COMPOOL

~ Shared Data

Event Scheduling Statements
Process dependenéy
Implicit type conversions
Extraction of internal documentation

Call graph

E-25

6.2 Local Information.

Histograms
Symbolic post-mortem dump
Local assertions: boolean expressions
levels
* threshold
quantifiers
Intraprocedural detection of:
uninitialized variables ,
definition/redefinition anomalies . o
Run time monitors for zero division, overflow, etc.
Variable and procedure monitoring
Scaling 'Specification and intra-procedural checking

Simple detection of unexecutable code

- 6.3 Multi-Procedural Ivnformation.

Units speciﬁcations and interprocedural checking
Scale spéciﬁcations and interprocedural checking
Interprocedural checking of: -
~ uninitialized variables
definition/redefinition anomalies
Regional assertions

Load module analysis

6.4 Separate Compilation/Multi-Processing Information.

FAST-like query facility
Reentrancy checking

Illegal COMPOOL usage
Termination of dependant processes
Event chronology

E-26

Queue snapshots

Simple Deadlock detection

6.5 Debugging/Performance Estimates.

General debugging system:
breakpoints -
traces
variable alteration

Check of termination conditions .

Timing estimate

6.6 Difficult Issues.

Refinement of above analysis:
Unexecutable code
Definition/redifinition anomalies
Uninitialized variables
Deadlock detection
COMPOOL usage

Violation of language rules

E-27

