
1

© 2005 Pearson Education, Inc. All rights reserved.

3.2 Classes, Objects, Methods and
Instance Variables

• Class provides one or more methods
• Method represents task in a program

– Describes the mechanisms that actually perform its
tasks

– Hides from its user the complex tasks that it
performs

– Method call tells method to perform its task

2

© 2005 Pearson Education, Inc. All rights reserved.

3.2 Classes, Objects, Methods and
Instance Variables (Cont.)

• Classes contain one or more attributes
– Specified by instance variables
– Carried with the object as it is used

3

© 2005 Pearson Education, Inc. All rights reserved.

3.3 Declaring a Class with a Method and
Instantiating an Object of a Class

• Each class declaration that begins with keyword
public must be stored in a file that has the same
name as the class and ends with the .java file-
name extension.

4

© 2005 Pearson Education, Inc. All rights reserved.

Class GradeBook

• keyword public is an access modifier
• Class declarations include:

– Access modifier
– Keyword class
– Pair of left and right braces

5

© 2005 Pearson Education, Inc. All rights reserved.

Class GradeBook

• Method declarations
– Keyword public indicates method is available to

public
– Keyword void indicates no return type
– Access modifier, return type, name of method and

parentheses comprise method header

6

© 2005 Pearson Education, Inc. All rights reserved.

Common Programming Error 3.1

Declaring more than one public class in
the same file is a compilation error.

7

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

GradeBook.java

 1 // Fig. 3.1: GradeBook.java

 2 // Class declaration with one method.

 3

 4 public class GradeBook

 5 {

 6 // display a welcome message to the GradeBook user

 7 public void displayMessage()

 8 {

 9 System.out.println("Welcome to the Grade Book!");

10 } // end method displayMessage

11

12 } // end class GradeBook

Print line of text to output

8

© 2005 Pearson Education, Inc. All rights reserved.

Class GradeBookTest

• Java is extensible
– Programmers can create new classes

• Class instance creation expression
– Keyword new
– Then name of class to create and parentheses

• Calling a method
– Object name, then dot separator (.)
– Then method name and parentheses

9

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

GradeBookTest.java

 1 // Fig. 3.2: GradeBookTest.java

 2 // Create a GradeBook object and call its displayMessage method.

 3

 4 public class GradeBookTest

 5 {

 6 // main method begins program execution

 7 public static void main(String args[])

 8 {

 9 // create a GradeBook object and assign it to myGradeBook

10 GradeBook myGradeBook = new GradeBook();

11

12 // call myGradeBook's displayMessage method

13 myGradeBook.displayMessage();

14 } // end main

15

16 } // end class GradeBookTest

Welcome to the Grade Book!

Use class instance creation
expression to create object of class

GradeBook

Call method displayMessage
using GradeBook object

10

© 2005 Pearson Education, Inc. All rights reserved.

Compiling an Application with Multiple
Classes

• Compiling multiple classes
– List each .java file separately separated with spaces
– Compile with *.java to compile all .java files in that

directory

11

© 2005 Pearson Education, Inc. All rights reserved.

UML Class Diagram for Class GradeBook

• UML class diagrams
– Top compartment contains name of the class
– Middle compartment contains class’s attributes or

instance variables
– Bottom compartment contains class’s operations or

methods
• Plus sign indicates public methods

12

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 3.3 | UML class diagram indicating that class GradeBook has a public
displayMessage operation.

13

© 2005 Pearson Education, Inc. All rights reserved.

3.4 Declaring a Method with a Parameter

• Method parameters
– Additional information passed to a method
– Supplied in the method call with arguments

14

© 2005 Pearson Education, Inc. All rights reserved.

3.4 Declaring a Method with a Parameter

•Scanner methods
– nextLine reads next line of input
– next reads next word of input

15

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

GradeBook.java

 1 // Fig. 3.4: GradeBook.java

 2 // Class declaration with a method that has a parameter.

 3

 4 public class GradeBook

 5 {

 6 // display a welcome message to the GradeBook user

 7 public void displayMessage(String courseName)

 8 {

 9 System.out.printf("Welcome to the grade book for\n%s!\n",

10 courseName);

11 } // end method displayMessage

12

13 } // end class GradeBook

Call printf method with
courseName argument

16

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

GradeBookTest.java

 1 // Fig. 3.5: GradeBookTest.java
 2 // Create GradeBook object and pass a String to
 3 // its displayMessage method.
 4 import java.util.Scanner; // program uses Scanner
 5
 6 public class GradeBookTest

 7 {

 8 // main method begins program execution
 9 public static void main(String args[])

10 {
11 // create Scanner to obtain input from command window
12 Scanner input = new Scanner(System.in);
13
14 // create a GradeBook object and assign it to myGradeBook
15 GradeBook myGradeBook = new GradeBook();
16
17 // prompt for and input course name
18 System.out.println("Please enter the course name:");
19 String nameOfCourse = input.nextLine(); // read a line of text
20 System.out.println(); // outputs a blank line
21
22 // call myGradeBook's displayMessage method
23 // and pass nameOfCourse as an argument
24 myGradeBook.displayMessage(nameOfCourse);
25 } // end main
26
27 } // end class GradeBookTest

Please enter the course name:
CS101 Introduction to Java Programming

Welcome to the grade book for
CS101 Introduction to Java Programming!

Call nextLine method to read a
line of input

Call displayMessage with an
argument

17

© 2005 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 3.1

Normally, objects are created with
new. One exception is a string literal
that is contained in quotes, such as
"hello". String literals are references
to String objects that are implicitly
created by Java.

18

© 2005 Pearson Education, Inc. All rights reserved.

More on Arguments and Parameters

• Parameters specified in method’s parameter list
– Part of method header
– Uses a comma-separated list

19

© 2005 Pearson Education, Inc. All rights reserved.

Updated UML Class Diagram for Class
GradeBook

• UML class diagram
– Parameters specified by parameter name followed by a

colon and parameter type

20

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 3.6 | UML class diagram indicating that class GradeBook has a displayMessage
operation with a courseName parameter of UML type String.

21

© 2005 Pearson Education, Inc. All rights reserved.

Notes on Import Declarations

•java.lang is implicitly imported into
every program

• Default package
– Contains classes compiled in the same directory
– Implicitly imported into source code of other files in

directory
• Packages unnecessary if fully-qualified

names are used

22

© 2005 Pearson Education, Inc. All rights reserved.

3.5 Instance Variables, set Methods and
get Methods

• Variables declared in the body of method
– Called local variables
– Can only be used within that method

• Variables declared in a class declaration
– Called fields or instance variables
– Each object of the class has a separate instance of

the variable

23

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

GradeBook.java

 1 // Fig. 3.7: GradeBook.java

 2 // GradeBook class that contains a courseName instance variable

 3 // and methods to set and get its value.

 4
 5 public class GradeBook

 6 {

 7 private String courseName; // course name for this GradeBook

 8
 9 // method to set the course name

10 public void setCourseName(String name)
11 {
12 courseName = name; // store the course name
13 } // end method setCourseName
14
15 // method to retrieve the course name
16 public String getCourseName()
17 {
18 return courseName;
19 } // end method getCourseName
20
21 // display a welcome message to the GradeBook user
22 public void displayMessage()
23 {
24 // this statement calls getCourseName to get the
25 // name of the course this GradeBook represents
26 System.out.printf("Welcome to the grade book for\n%s!\n",
27 getCourseName());
28 } // end method displayMessage
29
30 } // end class GradeBook

Instance variable courseName

set method for courseName

get method for courseName

Call get method

24

© 2005 Pearson Education, Inc. All rights reserved.

Access Modifiers public and private

• private keyword
– Used for most instance variables
– private variables and methods are accessible only

to methods of the class in which they are declared
– Declaring instance variables private is known as

data hiding
• Return type

– Indicates item returned by method
– Declared in method header

25

© 2005 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 3.3
Precede every field and method
declaration with an access modifier. As
a rule of thumb, instance variables
should be declared private and
methods should be declared public.
(We will see that it is appropriate to
declare certain methods private, if
they will be accessed only by other
methods of the class.)

26

© 2005 Pearson Education, Inc. All rights reserved.

Good Programming Practice 3.1
We prefer to list the fields of a class
first, so that, as you read the code, you
see the names and types of the
variables before you see them used in
the methods of the class. It is possible
to list the class’s fields anywhere in the
class outside its method declarations,
but scattering them tends to lead to
hard-to-read code.

27

© 2005 Pearson Education, Inc. All rights reserved.

GradeBookTest Class That
Demonstrates Class GradeBook

• Default initial value
– Provided for all fields not initialized
– Equal to null for Strings

28

© 2005 Pearson Education, Inc. All rights reserved.

set and get methods

•private instance variables
– Cannot be accessed directly by clients of the object
– Use set methods to alter the value
– Use get methods to retrieve the value

29

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

GradeBookTest.java

(1 of 2)

 1 // Fig. 3.8: GradeBookTest.java

 2 // Create and manipulate a GradeBook object.

 3 import java.util.Scanner; // program uses Scanner

 4
 5 public class GradeBookTest

 6 {

 7 // main method begins program execution

 8 public static void main(String args[])

 9 {

10 // create Scanner to obtain input from command window
11 Scanner input = new Scanner(System.in);
12
13 // create a GradeBook object and assign it to myGradeBook
14 GradeBook myGradeBook = new GradeBook();
15
16 // display initial value of courseName
17 System.out.printf("Initial course name is: %s\n\n",
18 myGradeBook.getCourseName());
19

Call get method for courseName

30

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

GradeBookTest.java

(2 of 2)

20 // prompt for and read course name

21 System.out.println("Please enter the course name:");

22 String theName = input.nextLine(); // read a line of text

23 myGradeBook.setCourseName(theName); // set the course name

24 System.out.println(); // outputs a blank line

25

26 // display welcome message after specifying course name

27 myGradeBook.displayMessage();

28 } // end main

29

30 } // end class GradeBookTest

Initial course name is: null

Please enter the course name:
CS101 Introduction to Java Programming

Welcome to the grade book for
CS101 Introduction to Java Programming!

Call set method for courseName

Call displayMessage

31

© 2005 Pearson Education, Inc. All rights reserved.

GradeBook’s UML Class Diagram with an
Instance Variable and set and get Methods

• Attributes
– Listed in middle compartment
– Attribute name followed by colon followed by

attribute type
• Return type of a method

– Indicated with a colon and return type after the
parentheses after the operation name

32

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 3.9 | UML class diagram indicating that class GradeBook has a courseName attribute
of UML type String and three operations—setCourseName (with a name parameter of
UML type String), getCourseName (returns UML type String) and displayMessage.

33

© 2005 Pearson Education, Inc. All rights reserved.

Primitive Types vs. Reference Types

• Types in Java
– Primitive

• boolean, byte, char, short, int, long, float,
double

– Reference (sometimes called nonprimitive types)
• Objects
• Default value of null
• Used to invoke an object’s methods

34

© 2005 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 3.4
A variable’s declared type (e.g., int,
double or GradeBook) indicates
whether the variable is of a primitive
or a reference type. If a variable’s type
is not one of the eight primitive types,
then it is a reference type. For
example, Account account1 indicates
that account1 is a reference to an
Account object).

35

© 2005 Pearson Education, Inc. All rights reserved.

3.7 Initializing Objects with Constructors

• Constructors
– Initialize an object of a class
– Java requires a constructor for every class
– Java will provide a default no-argument constructor

if none is provided
– Called when keyword new is followed by the class

name and parentheses

36

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

GradeBook.java

(1 of 2)

 1 // Fig. 3.10: GradeBook.java

 2 // GradeBook class with a constructor to initialize the course name.

 3

 4 public class GradeBook

 5 {

 6 private String courseName; // course name for this GradeBook

 7

 8 // constructor initializes courseName with String supplied as argument

 9 public GradeBook(String name)

10 {

11 courseName = name; // initializes courseName

12 } // end constructor

13

14 // method to set the course name

15 public void setCourseName(String name)

16 {

17 courseName = name; // store the course name

18 } // end method setCourseName

19

20 // method to retrieve the course name

21 public String getCourseName()

22 {

23 return courseName;

24 } // end method getCourseName

Constructor to initialize
courseName variable

37

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

GradeBook.java

(2 of 2)

25

26 // display a welcome message to the GradeBook user

27 public void displayMessage()

28 {

29 // this statement calls getCourseName to get the

30 // name of the course this GradeBook represents

31 System.out.printf("Welcome to the grade book for\n%s!\n",

32 getCourseName());

33 } // end method displayMessage

34

35 } // end class GradeBook

38

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

GradeBookTest.java

 1 // Fig. 3.11: GradeBookTest.java

 2 // GradeBook constructor used to specify the course name at the

 3 // time each GradeBook object is created.

 4

 5 public class GradeBookTest

 6 {

 7 // main method begins program execution

 8 public static void main(String args[])

 9 {

10 // create GradeBook object

11 GradeBook gradeBook1 = new GradeBook(

12 "CS101 Introduction to Java Programming");

13 GradeBook gradeBook2 = new GradeBook(

14 "CS102 Data Structures in Java");

15

16 // display initial value of courseName for each GradeBook

17 System.out.printf("gradeBook1 course name is: %s\n",

18 gradeBook1.getCourseName());

19 System.out.printf("gradeBook2 course name is: %s\n",

20 gradeBook2.getCourseName());

21 } // end main

22

23 } // end class GradeBookTest

gradeBook1 course name is: CS101 Introduction to Java Programming
gradeBook2 course name is: CS102 Data Structures in Java

Call constructor to create first
grade book object

Create second grade book object

39

© 2005 Pearson Education, Inc. All rights reserved.

Adding the Constructor to Class
GradeBookTest’s UML Class Diagram

• UML class diagram
– Constructors go in third compartment
– Place “<<constructor>>” before constructor name
– By convention, place constructors first in their

compartment

40

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 3.12 | UML class diagram indicating that class GradeBook has a constructor that has
a name parameter of UML type String.

41

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 3.16 | Summary of the GUI and Graphics Case Study in each chapter.

Location Title—Exercise(s)
Section 3.9 Using Dialog Boxes—Basic input and output with dialog boxes

Section 4.14 Creating Simple Drawings—Displaying and drawing lines on the screen

Section 5.10 Drawing Rectangles and Ovals—Using shapes to represent data

Section 6.13 Colors and Filled Shapes—Drawing a bull’s-eye and random graphics

Section 7.13 Drawing Arcs—Drawing spirals with arcs

Section 8.18 Using Objects with Graphics—Storing shapes as objects

Section 9.8 Displaying Text and Images Using Labels—Providing status information

Section 10.8 Drawing with Polymorphism—Identifying the similarities between shapes

Exercise 11.18 Expanding the Interface—Using GUI components and event handling

Exercise 12.12 Adding Java 2D—Using the Java 2D API to enhance drawings

42

© 2005 Pearson Education, Inc. All rights reserved.

Displaying Text in a Dialog Box

• Windows and dialog boxes
– Many Java applications use these to display output
– JOptionPane provides prepackaged dialog boxes

called message dialogs

43

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

Dialog1.java

 1 // Fig. 3.17: Dialog1.java

 2 // Printing multiple lines in dialog box.

 3 import javax.swing.JOptionPane; // import class JOptionPane

 4

 5 public class Dialog1

 6 {

 7 public static void main(String args[])

 8 {

 9 // display a dialog with the message

10 JOptionPane.showMessageDialog(null, "Welcome\nto\nJava");

11 } // end main

12 } // end class Dialog1

Show a message dialog with text

Import class JOptionPane

44

© 2005 Pearson Education, Inc. All rights reserved.

Displaying Text in a Dialog Box

• Package javax.swing
– Contains classes to help create graphical user

interfaces (GUIs)
– Contains class JOptionPane

• Declares static method showMessageDialog for
displaying a message dialog

45

© 2005 Pearson Education, Inc. All rights reserved.

Entering Text in a Dialog Box

• Input dialog
– Allows user to input information
– Created using method showInputDialog from

class JOptionPane

46

© 2005 Pearson Education,
Inc. All rights reserved.

Outline

NameDialog.java

 1 // Fig. 3.18: NameDialog.java

 2 // Basic input with a dialog box.

 3 import javax.swing.JOptionPane;

 4

 5 public class NameDialog

 6 {

 7 public static void main(String args[])

 8 {

 9 // prompt user to enter name

10 String name =

11 JOptionPane.showInputDialog("What is your name?");

12

13 // create the message

14 String message =

15 String.format("Welcome, %s, to Java Programming!", name);

16

17 // display the message to welcome the user by name

18 JOptionPane.showMessageDialog(null, message);

19 } // end main

20 } // end class NameDialog

Show input dialog

Format a String to output to user

47

© 2005 Pearson Education, Inc. All rights reserved.

3.10 (Optional) Software Engineering Case Study:
Identifying the Classes in a Requirements Document

• Begin designing the ATM system
– Analyze the nouns and noun phrases
– Introduce UML class diagrams

48

© 2005 Pearson Education, Inc. All rights reserved.

Identifying the Classes in a System

• Key nouns and noun phrases in
requirements document

– Some are attributes of other classes
– Some do not correspond to parts of the system
– Some are classes

• To be represented by UML class diagrams

49

© 2005 Pearson Education, Inc. All rights reserved.

Nouns and noun phrases in the requirements document
bank money / funds account number

ATM screen PIN

user keypad bank database

customer cash dispenser balance inquiry

transaction $20 bill / cash withdrawal

account deposit slot deposit

balance deposit envelope

Fig. 3.19 | Nouns and noun phrases in the requirements document.

50

© 2005 Pearson Education, Inc. All rights reserved.

Modeling Classes

• UML class diagrams
– Top compartment contains name of the class
– Middle compartment contains class’s attributes or

instance variables
– Bottom compartment contains class’s operations or

methods

51

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 3.20 | Representing a class in the UML using a class diagram.

52

© 2005 Pearson Education, Inc. All rights reserved.

Modeling Classes

• UML class diagrams
– Allows suppression of class attributes and operations

• Called an elided diagram
– Solid line that connects two classes represents an

association
• numbers near end of each line are multiplicity values

53

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 3.21 | Class diagram showing an association among classes.

54

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 3.22 | Multiplicity types.

Symbol Meaning
0 None
1 One
m An integer value
0..1 Zero or one
m, n m or n
m..n At least m, but not more than n
* Any non-negative integer (zero or more)
0..* Zero or more (identical to *)
1..* One or more

55

© 2005 Pearson Education, Inc. All rights reserved.

Modeling Classes

• UML class diagrams
– Solid diamonds attached to association lines

indicate a composition relationship
– Hollow diamonds indicate aggregation – a weaker

form of composition

56

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 3.23 | Class diagram showing composition relationships.

57

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 3.24 | Class diagram for the ATM system model.

58

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 3.25 | Class diagram showing composition relationships of a class Car.

59

© 2005 Pearson Education, Inc. All rights reserved.

Fig. 3.26 | Class diagram for the ATM system model including class Deposit.

	3.2 Classes, Objects, Methods and Instance Variables
	3.2 Classes, Objects, Methods and Instance Variables (Cont.)
	3.3 Declaring a Class with a Method and Instantiating an Object of a Class
	Class GradeBook
	Class GradeBook
	Common Programming Error 3.1
	Outline
	Class GradeBookTest
	Outline
	Compiling an Application with Multiple Classes
	UML Class Diagram for Class GradeBook
	Fig. 3.3 | UML class diagram indicating that class GradeBook has a public displayMessage operation.
	3.4 Declaring a Method with a Parameter
	3.4 Declaring a Method with a Parameter
	Outline
	Outline
	Software Engineering Observation 3.1
	More on Arguments and Parameters
	Updated UML Class Diagram for Class GradeBook
	Fig. 3.6 | UML class diagram indicating that class GradeBook has a displayMessage operation with a courseName parameter of UML
	Notes on Import Declarations
	3.5 Instance Variables, set Methods and get Methods
	Outline
	Access Modifiers public and private
	Software Engineering Observation 3.3
	Good Programming Practice 3.1
	GradeBookTest Class That Demonstrates Class GradeBook
	set and get methods
	Outline
	Outline
	GradeBook’s UML Class Diagram with an Instance Variable and set and get Methods
	Fig. 3.9 | UML class diagram indicating that class GradeBook has a courseName attribute of UML type String and three operation
	Primitive Types vs. Reference Types
	Software Engineering Observation 3.4
	3.7 Initializing Objects with Constructors
	Outline
	Outline
	Outline
	Adding the Constructor to Class GradeBookTest’s UML Class Diagram
	Fig. 3.12 | UML class diagram indicating that class GradeBook has a constructor that has a name parameter of UML type String.
	Fig. 3.16 | Summary of the GUI and Graphics Case Study in each chapter.
	Displaying Text in a Dialog Box
	Outline
	Displaying Text in a Dialog Box
	Entering Text in a Dialog Box
	Outline
	3.10 (Optional) Software Engineering Case Study: Identifying the Classes in a Requirements Document
	Identifying the Classes in a System
	Fig. 3.19 | Nouns and noun phrases in the requirements document.
	Modeling Classes
	Fig. 3.20 | Representing a class in the UML using a class diagram.
	Modeling Classes
	Fig. 3.21 | Class diagram showing an association among classes.
	Fig. 3.22 | Multiplicity types.
	Modeling Classes
	Fig. 3.23 | Class diagram showing composition relationships.
	Fig. 3.24 | Class diagram for the ATM system model.
	Fig. 3.25 | Class diagram showing composition relationships of a class Car.
	Fig. 3.26 | Class diagram for the ATM system model including class Deposit.

