3-7

1. Plan

Objectives

1 To relate slope and parallel lines
2 To relate slope and perpendicular lines

Examples

1 Checking for Parallel Lines
2 Determining Whether Lines are Parallel
3 Writing Equations of Parallel Lines
4 Checking for Perpendicular Lines
5 Writing Equations for Perpendicular Lines
6 Real-World Connection

Math Background

Slope is a fixed ratio that characterizes any nonvertical line. It is another example of a pure geometric concept, a line, described by algebraic methods. The product of the slopes of perpendicular lines being -1 , although initially surprising, is merely the Pythagorean Theorem in an analytic geometry setting.

More Math Background: p. 124D

Lesson Planning and Resources

See p. 124E for a list of the resources that support this lesson.

Bell Ringer Practice

Check Skills You'll Need

For intervention, direct students to:

Slope

Algebra 1 Review, page 165

Graphing Lines

Lesson 3-6: Example 3
Extra Skills, Word Problems, Proof Practice, Ch. 3

What You'll Learn

- To relate slope and parallel lines
- To relate slope and perpendicular lines

. . . And Why

To write an equation that models part of a leaded glass window, as in Example 6

Slopes of Parallel and Perpendicular Lines

Check Skills You'll Need

Find the slope of the line through each pair of points.

1. $F(2,5), B(-2,3) \quad \frac{1}{2}$
2. $H(0,-5), D(2,0)$
3. $E(1,1), F(2,-4)$

Find the slope of each line.
4. $y=2 x-5 \quad 2$
5. $x+y=20-1$
6. $2 x-3 y=6 \frac{2}{3}$
7. $x=y \quad 1$
8. $y=70$
\square

Slope and Parallel Lines

The relationship between slope and parallel lines is summarized below and proved in Lesson 7-3.

Key Concepts

Summary Slopes of Parallel Lines

If two nonvertical lines are parallel, their slopes are equal.
If the slopes of two distinct nonvertical lines are equal, the lines are parallel.
Any two vertical lines are parallel.

Real-World Connection

The ramp and rails are parallel because they have the same slope.

Are lines ℓ_{1} and ℓ_{2} parallel? Explain.
Find and compare the slopes of the lines.

$$
\begin{aligned}
& \text { slope of } \ell_{1}=\frac{5-(-4)}{1-(-2)}=\frac{9}{3}=3 \\
& \text { slope of } \ell_{2}=\frac{3-(-4)}{3-1}=\frac{7}{2}
\end{aligned}
$$

Lines ℓ_{1} and ℓ_{2} are not parallel because
their slopes are not equal.

Line ℓ_{3} contains $A(-4,2)$ and $B(3,1)$. Line ℓ_{4} contains $C(-4,0)$ and $D(8,-2)$. Are ℓ_{3} and ℓ_{4} parallel? Explain. No; the slope of $\ell_{3}=-\frac{1}{7}$, and the slope

$$
\text { of } \ell_{4}=-\frac{1}{6}
$$

174 Chapter 3 Parallel and Perpendicular Lines

Differentiated Instruction solutions for All Learners

Special Needs L1

Some students may have difficulty seeing pairs of perpendicular lines other than vertical and horizontal lines. Have students use a protractor to confirm the perpendicular lines shown in Example 4.

Below Level L2

Review the rules for multiplying and dividing signed numbers before students work with the slopes of perpendicular lines.

Slope-intercept form allows you to compare slopes easily in order to decide whether lines are parallel.

2

Exayple

Determining Whether Lines are Parallel

Multiple Choice Which line is parallel to $4 y-12 x=20$?

Test-Taking Tip

To compare slopes of two lines, write their equations in slopeintercept form, $y=m x+b$.
(A) $y=3 x-1$
(B) $y=-\frac{1}{3} x-1$
(C) $4 y=-12 x+20$
(D) $y=\frac{1}{3} x+1$

Write $4 y-12 x=20$ in slope-intercept form.

$$
\begin{aligned}
4 y-12 x & =20 & & \\
4 y & =12 x+20 & & \text { Add } 12 x \text { to each side. } \\
y & =3 x+5 & & \text { Divide each side by } 4 .
\end{aligned}
$$

The line $4 y-12 x=20$ has slope 3 . The line $y=3 x-1$ is the only answer choice - with slope 3 . The correct choice is A .

Quick Check
Are the lines parallel? Explain.
a. $y=-\frac{1}{2} x+5$ and $2 x+4 y=9$
Yes; both slopes $=-\frac{1}{2}$.
b. $y=-\frac{1}{2} x+5$ and $2 x+4 y=20$

No; the lines are the same.
You can write an equation for a line parallel to a given line.

3 ExADPLE Writing Equations of Parallel Lines

Write an equation for the line parallel to $y=-4 x+3$ that contains $(1,-2)$.
Step 1 Identify the slope of the given line.

$$
y=\underset{\uparrow}{-4 x+3} \underset{\text { slope }}{-4}
$$

Step 2 Use point-slope form to write an equation for the new line.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-(-2) & =-4(x-1) \\
y+2 & =-4(x-1)
\end{aligned} \quad \text { Substitute }-4 \text { for } m \text { and }(1,-2) \text { for }\left(x_{1}, y_{1}\right) .
$$

Quick Check 3 Write an equation for the line parallel to $y=-x+4$ that contains $(-2,5)$.

$$
y=-x+3
$$

Slope and Perpendicular Lines

The relationship between perpendicular lines and their slopes is summarized below. These statements will be proved in Lessons 6-6 and 6-7.

Key Concepts

Summary Slopes of Perpendicular Lines

If two nonvertical lines are perpendicular, the product of their slopes is -1 .
If the slopes of two lines have a product of -1 , the lines are perpendicular.
Any horizontal line and vertical line are perpendicular.

2. Teach

Guided Instruction

Careers

Most buildings have walls that are perpendicular to floors, to ceilings, and to each other. Have students investigate how builders construct these.

Math Tip

After students read the Key Concepts about parallel lines, ask: How can you state the two conditionals as a biconditional? Two distinct nonvertical lines are parallel if and only if their slopes are equal.

ExaMPLE

Error Prevention
Remind students that they must compare both the slopes and the y-intercepts. Ask: If the slopes are equal and the y-intercepts are equal, are the lines parallel? Explain. No; there is only one line.

Additional Examples

Line ℓ_{1} contains $P(0,3)$ and $Q(-2,5)$. Line ℓ_{2} contains $R(0,-7)$ and $S(3,-10)$. Are lines ℓ_{1} and ℓ_{2} parallel? Explain. Yes; each has slope -1 and different y-intercepts.
2. Are the lines $y=-5 x+4$ and $x=-5 y+4$ parallel? Explain.
No; one line has slope -5 and the other line has slope $-\frac{1}{5}$.

3 Write an equation in pointslope form for the line parallel to $6 x-3 y=9$ that contains $(-5,-8) . y+8=2(x+5)$

Advanced Learners L4

After students complete Example 5, have them work on this problem: Line $y+a x=b$ is perpendicular to line $y-a x=b$. What are the possible values of a ?
learning style: verbal

English Language Learners ELL

Review the meaning of positive slope and negative slope. Then distinguish slope from the product of the slopes of two lines. The product of the slopes for two nonvertical perpendicular lines is always -1 .

Guided Instruction

ExanPLE

Alternative Method
When lines are perpendicular, their slopes are negative reciprocals. Have students check that m_{1} and m_{2} are negative reciprocals.

5) Example Special Needs L1

Students who find the procedure complicated can work with partners.

6) EXANPLE Diversity

Ask students to describe unusual window designs they have seen elsewhere.

Additional Examples

(4) Line ℓ_{1} contains $M(0,8)$ and $N(4,-6)$. Line ℓ_{2} contains $P(-2,9)$ and $Q(5,7)$. Are lines ℓ_{1} and ℓ_{2} perpendicular? Explain. No; the product of their slopes is 1.

(5)Write an equation for a line perpendicular to $5 x+2 y=1$ that contains $(10,0) . y=\frac{2}{5}(x-10)$

6The equation for a line containing a lead strip is $y=\frac{1}{2} x-9$. Write an equation for a line perpendicular to it that contains (1, 7). $y=-2 x+9$

Resources

- Daily Notetaking Guide 3-7 L3
- Daily Notetaking Guide 3-7Adapted Instruction

Closure

Explain algebraically why two lines cannot be both parallel and perpendicular. The product of the slopes m of two parallel lines is m^{2}. The product of the slopes of two perpendicular lines is $\mathbf{- 1}$. A slope m such that $m^{2}=-1$ is not a real number.

You can test whether lines are perpendicular by first noting whether either line is vertical or horizontal. If not, check their slopes. If the product of the slopes is -1 , the lines are perpendicular.

4 EXAMIPLE Checking for Perpendicular Lines

Algebra Lines ℓ_{1} and ℓ_{2} are neither vertical nor horizontal. Are they perpendicular? Explain.
Step 1 Find the slope of each line.

$$
\begin{aligned}
& m_{1}=\text { slope of } \ell_{1}=\frac{-2-2}{-3-0}=\frac{-4}{-3}=\frac{4}{3} \\
& m_{2}=\text { slope of } \ell_{2}=\frac{3-(-3)}{-2-6}=\frac{6}{-8}=-\frac{3}{4}
\end{aligned}
$$

Step 2 Find the product of the slopes.
 $m_{1} \cdot m_{2}=\frac{4}{3} \cdot-\frac{3}{4}=-1$
Lines ℓ_{1} and ℓ_{2} are perpendicular because the product of their slopes is -1 .

Are ℓ_{3} and ℓ_{4} perpendicular? Explain.
No; the slope of $\ell_{3}=\frac{4}{9}$, and the slope of $\ell_{4}=-\frac{7}{3}$, and $\frac{4}{9} \cdot-\frac{7}{3} \neq-1$.

You can write an equation for a line perpendicular to a given line. If the given line is horizontal, write an equation for a vertical line. If the given line is vertical, write an equation for a horizontal line.

5 EXADIPLE Writing Equations for Perpendicular Lines

Write an equation for the line perpendicular to $y=-3 x-5$ that contains $(-3,7)$.
Step 1 Identify the slope of the given line.

$$
\begin{gathered}
y=\frac{-3 x}{\uparrow}-5 \\
\text { slope }
\end{gathered}
$$

Vocabulary Tip

Numbers with product - 1 are opposite reciprocals. In Example 5, the opposite reciprocal of -3 is $\frac{1}{3}$.

Step 2 Find the slope of the line perpendicular to the given line.

$$
\text { Let } m \text { be the slope of the perpendicular line. }
$$

$$
\begin{aligned}
-3 m & =-1 & & \text { The product of the slopes of perpendicular lines is }-1 . \\
m & =\frac{1}{3} & & \text { Divide each side by }-3 .
\end{aligned}
$$

Step 3 Use point-slope form to write an equation for the new line.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) & & \\
y-7 & =\frac{1}{3}[x-(-3)] & & \text { Substitute } \frac{1}{3} \text { for } m \text { and }(-3,7) \text { for }\left(x_{1}, y_{1}\right) . \\
y-7 & =\frac{1}{3}(x+3) & & \text { Simplify. }
\end{aligned}
$$

Quick Check

Write an equation for the line perpendicular to $5 y-x=10$ that contains $(15,-4)$. $y+4=-5(x-15)$

6 ExanPLE
Real-World Connection
The window at the left includes some perpendicular lead strips. The line that contains $\overline{B C}$ has equation $y=-x+10 . \overline{A B}$ is perpendicular to $\overline{B C}$. Write an equation for $\overleftrightarrow{A B}$, the line that contains $\overline{A B}$ and point ($-1,5$).
The line that contains $\overline{B C}$ has slope -1 . Let m be the slope of $\overleftrightarrow{A B}$.

$$
\begin{aligned}
-1 m & =-1 \quad \text { The product of the slopes is }-1 . \\
m & =1
\end{aligned}
$$

$\overleftrightarrow{A B}$ has slope 1 and can be written in the form $y=1 x+b$, or $y=x+b$.

$$
\begin{array}{ll}
y=x+b & \overleftrightarrow{A B} \text { has slope } 1 . \\
5=-1+b & \text { Substitute } 5 \text { for } y \text { and }-1 \text { for } x . \\
6=b & \text { Add } 1 \text { to each side. }
\end{array}
$$

The equation for $\overleftrightarrow{A B}$ is $y=x+6$.
Quick CheckIf the equation for a line containing a lead strip on a different window is $y=-\frac{2}{3} x+15$, write an equation for the line perpendicular to it that contains $(2,8)$.
$y-8=\frac{3}{2}(x-2)$ or $y=\frac{3}{2} x+5$
EXERCISES
For more exercises, see Extra Skill, Word Problem, and Proof Practice.

Practice and Problem Solving

Practice by Example
Example 1

2. No; the slope of $\ell_{1}=\frac{1}{3}$ and the slope of $\ell_{2}=\frac{1}{2}$.
3. No; the slope of $\ell_{1}=\frac{3}{2}$, and the slope of $\ell_{2}=2$.

Example 2 (page 175)

In Exercises 1-5, are lines ℓ_{1} and ℓ_{2} parallel? Explain, using slope. 2-3. See left. 1. Yes; both slopes $=-\frac{1}{2}$.

3.

2.

4.

Yes; both slopes $=4$.

5. Line ℓ_{1} contains $A(-3,6)$ and $B(2,6)$, and line ℓ_{2} contains $C(0,0)$ and $D(7,0)$. Yes; both slopes $=0$.
x^{2} Algebra Are the lines parallel? Explain. 6-11. See margin.
6. $y=2 x+5$
7. $\begin{aligned} y & =\frac{3}{4} x-10 \\ y & =\frac{3}{4} x+2\end{aligned}$
8. $y=-x+6$ $y=2 x$ $y=\frac{3}{4} x+2$
$x+y=20$
9. $y-7 x=6$
10. $3 x+4 y=12$
11. $2 x+5 y=-1$
$y+7 x=8$
$6 x+2 y=6$
$10 y=-4 x-20$

Lesson 3-7 Slopes of Parallel and Perpendicular Lines
6. Yes; the lines both have a slope of 2 but different y-intercepts.
7. Yes; the lines both have a slope of $\frac{3}{4}$ but different y-intercepts.
8. Yes; the lines both have a slope of -1 but different y-intercepts.
9. No; one slope $=7$ and the other slope $=-7$.
10. No; one slope $=-\frac{3}{4}$ and the other slope $=-3$.

3. Practice

Assignment Guide

1 А в $1-15,29-32,34,35,37$
2 A B $16-28,33,36,38-44$

C Challenge	$45-48$
Test Prep	$49-52$
Mixed Review	$53-61$

Homework Quick Check

To check students' understanding of key skills and concepts, go over Exercises 6, 18, 34, 36, 40.

Visual Learners

Exercises 1-4 Lines that do not intersect on the portion of the coordinate plane shown or that appear parallel may not actually be parallel. The only way to be certain that lines are parallel is to compare their slopes.

Exercises 8-11 Remind students to rewrite equations in slopeintercept form.

Differentiated Instruction Resources

11. Yes; the lines both have a slope of $-\frac{2}{5}$ but different y-intercepts.

Exercise 28 Students must correctly transform equations in standard form to slope-intercept form.

Exercise 38 Discuss as a class how the truth value of this theorem changes if the phrase in a plane is removed. Have students explain why the resulting statement is false.

Exercise 39 In Chapter 5 students will learn that the shortest distance from a point to a line is along the perpendicular path to that line. Discuss informally why Joe would choose the perpendicular route to the ball.

Exercises 45, 46 These exercises anticipate the study of quadrilaterals in Chapter 6. If necessary, review the distance and midpoint formulas.
12. $y-3=-2(x-0)$ or $y-3=-2 x$
13. $y-0=\frac{1}{3}(x-6)$ or $y=\frac{1}{3}(x-6)$
29. slope of $\overline{A B}=$ slope of $\overline{C D}=\frac{2}{3} ; \overline{A B} \| \overline{C D}$ slope of $\overline{B C}=$ slope of $\overline{A D}=-3 ; \overline{B C} \| \overline{A D}$
30. slope of $\overline{A B}=$ slope of $\overline{C D}=-\frac{3}{4} ; \overline{A B} \| \overline{C D}$ slope of $\overline{B C}=$ slope of $\overline{A D}=1 ; \overline{B C} \| \overline{A D}$
31. slope of $\overline{A B}=\frac{1}{2}$; slope of $\overline{C D}=\frac{1}{4} ; \overline{A B} \| \overline{C D}$ slope of $\overline{B C}=-1$; slope of $\overline{A D}=-\frac{1}{2} ; \overline{B C} \| \overline{A D}$
32. slope of $\overline{A B}=$ slope of $\overline{C D}=0 ; \overline{A B} \| \overline{C D}$
slope of $\overline{B C}=3$ and slope of $\overline{A D}=\frac{3}{2}$;
$\overline{B C} \| \overline{A D}$
45. $\overline{A C}: d$
$=\sqrt{(7-9)^{2}+(11-1)^{2}}$
$=\sqrt{104}$
$\overline{B D}: d$
$=\sqrt{(13-3)^{2}+(7-5)^{2}}$
$=\sqrt{104}$
$\overline{A C} \cong \overline{B D}$

Example 3

 (page 175)Example 4 (page 176)
16. Yes; the slope of $\ell_{1}=-\frac{1}{2}$, and the slope of $\ell_{2}=2 ;-\frac{1}{2} \cdot 2=-1$.
17. Yes; the slope of $\ell_{1}=-\frac{3}{2}$, and the slope of $\ell_{2}=\frac{2}{3} ;-\frac{3}{2} \cdot \frac{2}{3}=-1$.

Write an equation for the line parallel to $\overleftrightarrow{A B}$ that contains point C.
12. $\overleftrightarrow{A B}: y=-2 x+1, C(0,3)$ See margin.
13. $\overleftrightarrow{A B}: y=\frac{1}{3} x, C(6,0)$ See $\begin{aligned} & \text { margin. }\end{aligned}$
14. $\overleftrightarrow{A B}:-x+2 y=4, C(-2,4)$
15. $\overleftrightarrow{A B}: 3 x+2 y=12, C(6,-2)$ $y+2=-\frac{3}{2}(x-6)$

Algebra Are lines ℓ_{1} and ℓ_{2} perpendicular? Explain using slope.
16.

17.

19.

18. No; the slope of $\ell_{1}=-1, \quad 18$ and the slope of $\ell_{2}=\frac{4}{5}$; $-1 \cdot \frac{4}{5} \neq-1$.
19. Yes; the slope of $\ell_{1}=-1$, and the slope of $\ell_{2}=1 ;-1 \cdot 1=-1$.

Example 5 (page 176)

Example 6
(page 177)
33. Answers may vary.

Sample: $y=\frac{4}{5} x+5$,
$y=-\frac{5}{4} x+5$

$G 0$
 Online

Homework Help
Visit: PHSchool.com Web Code: aue-0307

Write an equation for the line perpendicular to $\overleftrightarrow{M N}$ that contains point P.
20. $\overleftrightarrow{M N}: y=\frac{2}{3} x,{ }_{P} P(6,6)=-\frac{3}{2}(x-6)$
22. $\overleftrightarrow{M N}: y+2 x=-8, P(4,4)$ $y-4=\frac{1}{2}(x-4)$
24. Highway Construction Highway planners want to construct a road perpendicular to Route 3 at point O. An equation for the Route 3 line is $y=\frac{2}{3} x$. Find an equation for the line for the new road. $y=-\frac{3}{2} x$
21. $\overleftrightarrow{M N}: y=\frac{1}{2} x-\frac{y}{5}=-2(x,-4)$
23. $\overleftrightarrow{M N}: 4 y+5 x=20, P(0,0)$

Apply Your Skills

Algebra Are the lines perpendicular? Explain.
Yes; one is vertical and
25. $y=-x-7 \quad$ 26. $y=3$ the other is $y-x=20 \quad x=-2$ horizontal.
28. Mes; $1 \cdot(-1)=-1$.

$$
\text { 27. } 2 x-7 y=-42
$$

$4 y=-7 x-2$

No; $\frac{2}{7} \cdot\left(-\frac{7}{4}\right) \neq-1$
28. Multiple Choice Which line is perpendicular to $3 y+2 x=12$? \mathbf{A}
(A) $6 x-4 y=24$
(B) $y+3 x=-2$
(C) $2 x+3 y=6$
(D) $y=-2 x+6$

Use slopes to find whether the opposite sides of quadrilateral $A B C D$ are parallel.
29-32. See margin.
29. $A(0,2), B(3,4), C(2,7), D(-1,5) \quad$ 30. $A(-3,1), B(1,-2), C(0,-3), D(-4,0)$
31. $A(1,1), B(5,3), C(7,1), D(3,0)$
32. $A(1,0), B(4,0), C(3,-3), D(-1,-3)$
33. Open-Ended Write equations for two perpendicular lines that have the same y-intercept and do not pass through the origin. See left.
34. Writing Can the y-intercepts of two parallel lines be the same? Explain. No; two parallel lines with the same y-intercept are actually only one line.
Chapter 3 Parallel and Perpendicular Lines
46. slope of $\overline{A C}=-5$; slope of $\overline{B D}=\frac{1}{5}$;
since $-5 \cdot \frac{1}{5}=-1$, $\overline{A C} \perp \overline{B D}$;
midpoint $\overline{A C}=(8,6)$;
midpoint $\overline{B D}=(8,6)$; since the midpoints are the same, the diagonals bisect each other.
35. $\overline{R S}$ and $\overline{V U}$ are horizontal with slope $=0 ; \overline{R S} \| \overline{V U}$; slope of $\overline{R W}=$ slope of $\overline{U T}$ = 1; $\overline{R W} \| \overline{U T}$; slope of $\overline{W V}=$ slope of $\overline{S T}$ $=-1 ; \overline{W V} \| \overline{S T}$

Real-World Connection
For a corner kick, the ball is placed within a quarter circle of radius 1 yd .

Go Online
 phschool.com

For: Graphing calculator procedures
Web Code: aue-2122

Challenge
35. Use slope to show that the opposite sides of hexagon RSTUVW at the right are parallel.
36. Use slope to determine whether a triangle
(GPS with vertices $G(3,2), H(8,5)$, and $K(0,10)$ is a right triangle. Explain. No; no pairs of slopes have a product of -1 .
Developing Proof Use slope to explain why each
 theorem is true for three lines in the coordinate plane.
37. Theorem 3-9: If two lines are parallel to the same line, then they are parallel to each other. The lines will have the same slope.
38. Theorem 3-10: In a plane, if two lines are perpendicular to the same line, then they are parallel to each other. When lines are \perp, the product of their slopes is $\mathbf{- 1}$. So, two lines \perp to the same line must have the same slope.
39. Soccer The coordinate system at the right is designed for a soccer field. Each unit represents one yard. Joe is at point $P(35,-20)$. The path of the ball from a corner kick is represented by the equation $y=-\frac{4}{3} x$. To have the best chance for a shot on goal, Joe wants to run toward the ball so that his path meets the path of the ball at a right angle.
a. Find an equation for the line on which Joe
 should run. $y+20=\frac{3}{4}(x-35)$
b. Critical Thinking Why is point-slope form the best choice for the equation? because you are given a point and can quickly find the slope
Determine whether $\overleftrightarrow{\boldsymbol{A B}}$ and $\overleftrightarrow{\boldsymbol{C D}}$ are parallel, perpendicular, or neither.
40. $A\left(-1, \frac{1}{2}\right), B(-1,2), C(3,7), D(3,-1) \|$ 41. $A(-2,3), B(-2,5), C(1,4), D(2,4) \perp$
42. $A(2,4), B(5,4), C(3,2), D(0,8)$
43. $A(-3,2), B(5,1), C(2,7), D(1,-1) \perp$ neither
44. Graphing Calculator Use your graphing calculator to find the slope of $\overleftrightarrow{A B}$ in Exercise 43. Enter the x-coordinates of A and B into the L_{1} list of your list editor. Enter the y-coordinates into the L_{2} list. In your STAT CALC menu select LinReg $(a x+b)$. ENTER to find the slope a. Repeat to find the slope of $\overleftrightarrow{C D}$. Are $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ parallel, perpendicular, or neither? \perp
45. Show that the diagonals of the figure at the right are congruent. See margin, p. 178.
46. Show that the diagonals of the figure at the right are perpendicular bisectors of each other. See margin, p. 178.
47. a. Graph the points $P(2,2), Q(7,4)$, and $R(3,5)$. a-c. See margin.
b. Find the coordinates of a point S that, along with points P, Q, and R, will form the vertices of a quadrilateral whose opposite sides are parallel. Graph the quadrilateral.

c. Repeat part (b), finding a different point S and graphing the new quadrilateral.
48. A triangle has vertices $L(-5,6), M(-2,-3)$, and $N(4,5)$. Write an equation for the line perpendicular to $\overline{L M}$ that contains point $N . y-5=\frac{1}{3}(x-4)$

47.a-b. Answers may vary. Sample:

1. Are lines ℓ_{1} and ℓ_{2} parallel? Explain.

Yes; the lines have the same slope and different y-intercepts.
2. Are the lines $x+4 y=8$ and $2 x$ $+6 y=16$ parallel? Explain. No; their slopes are not equal.
3. Write an equation in pointslope form for the line parallel to $-18 x+2 y=7$ that contains $(3,1)$.
$y-1=9(x-3)$
4. Are the lines $y=\frac{2}{3} x+5$ and $3 x+2 y=10$ perpendicular? Explain. Yes; the product of their slopes is -1 .
5. Write an equation in point-slope form for the line perpendicular to $y=-\frac{1}{6} x-2$ that contains $(-5,-8) . y+8=6(x+5$

Alternative Assessment

Have students draw a pair of parallel lines and a pair of perpendicular lines on a coordinate plane and then use slopes to prove that the lines are parallel and perpendicular.

Test Prep

Resources

For additional practice with a variety of test item formats:

- Standardized Test Prep, p. 193
- Test-Taking Strategies, p. 188
- Test-Taking Strategies with Transparencies

Test Prep

Use this Checkpoint Quiz to check students' understanding of the skills and concepts of Lessons 3-5 through 3-7.

Resources

Grab \& Go

- Checkpoint Quiz 2

52. [2] a. slope of line c:

$$
\begin{aligned}
& \frac{1-(-2)}{-4-2}= \\
& \frac{3}{-6}=-\frac{1}{2} ; \text { slope of } \\
& \text { line } \perp \text { to } c: 2
\end{aligned}
$$

b. 0
[1] at least one correct slope

Checkpoint Quiz 2

4.

5.

6.

Multiple Choice

Short Response
49. What is the slope of a line parallel to the line $6 x-4 y=12$? B
A. $-\frac{3}{2}$
B. $\frac{3}{2}$
C. $\frac{4}{3}$
D. $-\frac{4}{3}$
50. The slope of a line is 6 . What is the slope of a line perpendicular to it? J
F. 6
G. -6
H. $\frac{1}{6}$
J. $-\frac{1}{6}$
51. Line f contains the points $(5,-4)$ and $(4,-6)$. What is the slope of a line perpendicular to it? C
A. 2
B. $\frac{1}{2}$
C. $-\frac{1}{2}$
D. -2
52. Line c contains the points $(2,-2)$ and $(-4,1)$. a-b. See margin.
a. What is the slope of a line perpendicular to line c ?
b. What is the y-intercept of the line perpendicular to line c that contains (1,2)?

Mixed Review

for
Lesson 3-6 $\quad x^{2}$ Algebra Write an equation for the line containing the given points.

Help
53. $A(0,3), B(6,0)$

$$
y-3=-\frac{1}{2}(x-0) \text { or } y-3=-\frac{1}{2} x
$$

54. $C(-4,2), D(-1,7)$

$$
\text { 55. } E(3,-2), F(-5,-8)
$$

$$
y-2=\frac{5}{3}(x+4)
$$

Lesson 2-4 Name the property that justifies each statement.

$$
y+2=\frac{3}{4}(x-3)
$$

56. $\angle 4 \cong \angle 4$ Refl. Prop. of \cong
57. $-3 x+6=3(-x+2)$ Dist. Prop.
58. If $m \angle B=8$, then $\overline{\overline{2}} m \angle B=16$.
59. If $\overline{R S} \cong \overline{M N}$, then $\overline{M N} \cong \overline{R S}$. Symm. Prop. of \cong

Lesson 2-3 Use the Law of Syllogism to draw a conclusion.
60. If you are in geometry class, then you are in math class. If you are in math class, then you are at school. If you are in geometry class, then you are at school.
61. If you travel to Switzerland, then you travel to Europe. If you travel to Europe, then you have a passport. If you travel to Switzerland, then you have a passport.

Checkpoint Quiz 2

Lessons 3-5 through 3-7

Use the number of sides to name the polygon. Then find the value of each variable.
1.

octagon; $n=125$

quad; $a=105 ;$ $m=116$ Algebra Graph each line using intercepts. 4-6. See margin.
7. slope of $\overleftrightarrow{R S}=-\frac{2}{5}$; slope of $\overleftrightarrow{T V}=\frac{5}{3}$; neither
8. slope of $\overleftrightarrow{R S}=1$; slope of $\overleftrightarrow{T V}=-1 ; \perp$
9. slope of $\overleftrightarrow{R S}=-\frac{5}{4}$;
slope of $\overleftrightarrow{T V}=\frac{4}{5} ; \perp$
4. $4 x+y=-8$
5. $-2 x+3 y=12$
6. $3 x+5 y=30$

Find the slopes of $\overleftrightarrow{R S}$ and $\overleftrightarrow{T V}$. Then determine whether $\overleftrightarrow{R S}$ and $\overleftrightarrow{T V}$ are parallel, perpendicular, or neither. Explain.
7. $R(-2,6), S(3,4), T(3,5), V(0,0)$
8. $R(6,-1), S(7,0), T(3,-4), V(0,-1)$
9. $R(9,1), S(5,6), T(3,8), V(-2,4)$
10. $R(5,-7), S(-4,-9), T(6,2), V(-3,0)$
slope of $\overleftrightarrow{R S}=\frac{2}{9}$; slope of $\overleftrightarrow{T V}=\frac{2}{9}$; ||

