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3.  ANALYTICAL KINEMATICS 
 

In planar mechanisms, kinematic analysis can be performed either analytically or graphically. 
In this course we first discuss analytical kinematic analysis.  

Analytical kinematics is based on projecting the vector loop equation(s) of a mechanism onto 
the axes of a non-moving Cartesian frame.  This projection transforms a vector equation into two 
algebraic equations.  Then, for a given value of the position (or orientation) of the input link, the 
algebraic equations are solved for the position/orientation of the remaining links. The first and 
second time derivative of the algebraic position equations provide the velocity and acceleration 
equations for the mechanism.  For given values of the velocity and acceleration of the input link, 
these equations are solved to find the velocity and acceleration of the other links in the system.  

Analytical kinematics is a systematic process that is most suitable for developing into a 
computer program.  However, for very simple systems, analytical kinemtics can be performed by 
hand calculation.  As it will be seen in the upcoming examples, even simple mechanisms can 
become a challenge for analysis without the use of a computer program. 

As a reminder, by definition, a mechanism is a collection of links that are interconnected by 
kinematic joints forming a single degree-of-freedom system. Therefore, in a kinematic analysis, 
the position, velocity, and acceleration of the input link must be given or assumed (one 
coordinate, one velocity and one acceleration). The task is then to compute the other coordinates, 
velocities, and accelerations. 
 
Slider-crank (inversion 1) 

In a slider-crank mechanism, depending on its 
application, either the crank is the input link and the 
objective is to determine the kinematics of the connecting 
rod and the slider, or the slider is the input link and the 
objective is to determine the kinematics of the connecting 
rod and the crank. In this example, we assume the first 
case: For known values of θ2 , ω2 , and α2  we want to 

determine the kinematics of the other links. 

A

B

RBA

O2

RAO2

RBO2

θ3

θ2

 

We start the analysis by defining vectors and constructing the vector loop equation: 

RAO2
+ RBA − RBO2

= 0  

The constant lengths are: RAO2
= L2 , RBA = L3 . We place the x-y frame at a convenient location. 

We define an angle (orientation) for each vector according to our convention (CCW with respect 
to the positive x-axis). 
Position equations 

The vector loop equation is projected onto the x and y axes to obtain two algebraic equations 
RAO2

cosθ2 + RBA cosθ3 − RBO2
cosθ1 = 0

RAO2
sinθ2 + RBA sinθ3 − RBO2

sinθ1 = 0
 

Since θ1 = 0 , we have: 

L2 cosθ2 + L3 cosθ3 − RBO2
= 0

L2 sinθ2 + L3 sinθ3 = 0
             (sc1.p.1) 

For known values of L2  and L3 , and given value for θ2 , these equations can be solved θ3  and 

RBO2
: 

sinθ3 = −(L2 / L3 )sinθ2 ⇒ θ3 = sin−1θ3

RBO2
= L2 cosθ2 + L3 cosθ3
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Velocity equations 
The time derivative of the position equations yields the velocity equations: 

 

−L2 sinθ2ω2 − L3 sinθ3ω 3 − RBO2
= 0

L2 cosθ2ω2 + L3 cosθ3ω 3 = 0
             (sc1.v.1) 

These equations can also be represented in matrix form, where the terms associated with the 
known crank velocity are moved to the right-hand-side: 

 

−L3 sinθ3 −1

L3 cosθ3 0
⎡

⎣
⎢

⎤

⎦
⎥

ω 3

RBO2

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

=
L2 sinθ2ω2

−L2 cosθ2ω2

⎧
⎨
⎩

⎫
⎬
⎭

                  (sc1.v.2) 

Solution of these equations provides values of ω 3  and 
 
RBO2

. 

Acceleration equations 
The time derivative of the velocity equations yields the acceleration equations: 

 

−L2 sinθ2α2 − L2 cosθ2ω2
2 − L3 sinθ3α 3 − L3 cosθ3ω 3

2 − RBO2
= 0

L2 cosθ2α2 − L2 sinθ2ω2
2 + L3 cosθ3α 3 − L3 sinθ3ω 3

2 = 0
             (sc1.a.1) 

These equations can also be represented in matrix form, where the terms associated with the 
known crank acceleration and the quadratic velocity terms are moved to the right-hand-side: 

 

−L3 sinθ3 −1

L3 cosθ3 0
⎡

⎣
⎢

⎤

⎦
⎥

α 3

RBO2

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

=
L2 (sinθ2α2 + cosθ2ω2

2 ) + L3 cosθ3ω 3
2

−L2 (cosθ2α2 − sinθ2ω2
2 ) + L3 sinθ3ω 3

2

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

                  (sc1.a.2) 

Solution of these equations provides values of α 3  and 
 
RBO2

. 

Kinematic analysis 
For the slider-crank mechanism consider the following constant lengths: L2 = 0.12  and 

L3 = 0.26  (SI units).  For θ2 = 65o , ω2 = 1.6  rad/sec, and α2 = 0 , solve the position, velocity 

and acceleration equations for the unknowns. 
Position analysis 

For θ2 = 65o , we need to solve the position equations for θ3  and RBO2
.  Substituting the 

known values in equations (sc1.p.1), we have 
0.12 cos(65) + 0.26 cosθ3 − RBO2

= 0

0.12sin(65) + 0.26sinθ3 = 0
     (a) 

The second row of the equation that simplifies to 

 sinθ3 = −
0.12

0.26
sin(65) ⇒ θ3 = sin−1 −0.418( ) ⇒ θ3 = −24.73o (335.27o ) or  204.73o   

There are two solutions for θ3 .  Substituting any of these values in the first equation of (a) yields 

the position of the slider: 

RBO2
= 0.12 cos(65) + 0.26 cos(335.27) = 0.287     for θ3 = 335.27o  

RBO2
= 0.12 cos(65) + 0.26 cos(204.73) = −0.185   for θ3 = 204.73o  

 335 o

 0.287 

 65 o 

 

 65 

 204 o 

o 

 0.185 
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The two solutions are shown in the diagram.  We select the solution that fits our application—
here we select the first solution and continue with the rest of the kinematic analysis. 
Velocity analysis 

For θ2 = 65o , θ3 = 335.27o , RBO2
= 0.287 , and ω2 = 1.6  rad/sec, the velocity equations in 

(sc1.v.2) become 

 

0.109 −1

0.236 0
⎡

⎣
⎢

⎤

⎦
⎥

ω 3

RBO2

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

=
0.174

−0.081

⎧
⎨
⎩

⎫
⎬
⎭

 

Solving these two equations in two unknowns yields 

ω 3 = −0.344  rad/sec, 
 
RBO2

= −0.211  

Acceleration analysis 
Substituting all the known values for the coordinates and velocities in (sc1.a.2) provides the 

acceleration equations as 

 

0.109 −1

0.236 0
⎡

⎣
⎢

⎤

⎦
⎥

α 3

RBO2

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

=
1.577

2.656

⎧
⎨
⎩

⎫
⎬
⎭

 

Solving these equations yields 

α 3 = 1.125  rad/sec2, 
 
RBO2

= −0.035  

 
Observations 

The analytical process for the kinematics of the slider-crank mechanism reveals the following 
observations: 

• A mechanism with a single kinematic loop yields one vector-loop equation. 
• A vector loop equation can be represented as two algebraic position equations. 
• Position equations are non-linear in the coordinates (angles and distances).  Non-linear 

equations are difficult and time consuming to solve by hand.  Numerical methods, such as 
Newton-Raphson, are recommended for solving non-linear algebraic equations. 

• The time derivative of position equations yields velocity equations. 
• Velocity equations are linear in the velocities. 
• The time derivative of velocity equations yields acceleration equations. 
• Acceleration equations are linear in the accelerations. 
• The coefficient matrix of the velocities in the velocity equations and the coefficient matrix 

of the accelerations in the acceleration equations are identical.  This characteristic can be 
used to simplify the solution process of these equations. 

 
Four-bar  

In a four-bar mechanism, generally for a known 
angle, velocity and acceleration of the input link, we 
attempt to find the angles, velocities and 
accelerations of the other two links 

The vector loop equation for this four-bar is 
constructed as 

RAO2
+ RBA − RBO4

− RO4O2
= 0  

The length of the links are 

RO4O2
= L1, RAO2

= L2 , RBA = L3, RBO4
= L4  

We place the x-y frame at a convenient location as  

 x 

 y 
A

BRBA

O2

RAO2
RBO4

RO4O2

O4

θ2

θ3

θ4

 

shown.  We define an angle (orientation) for each link according to our convention (CCW with 
respect to the positive x-axis). 
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Position equations 
The vector loop equation is projected onto the x- and y-axes to obtain two algebraic equations: 
RAO2

cosθ2 + RBA cosθ3 − RBO4
cosθ4 − RO4O2

cosθ1 = 0

RAO2
sinθ2 + RBA sinθ3 − RBO4

sinθ4 − RO4O2
sinθ1 = 0

               (fb-p.1) 

Since θ1 = 0  and the link lengths are known constants, the equations are simplified to: 

L2 cosθ2 + L3 cosθ3 − L4 cosθ4 − L1 = 0

L2 sinθ2 + L3 sinθ3 − L4 sinθ4 = 0
                  (fb-p.2) 

Velocity equations 
The time derivative of the position equations yields: 
−L2 sinθ2ω2 − L3 sinθ3ω 3 + L4 sinθ4ω 4 = 0

L2 cosθ2ω2 + L3 cosθ3ω 3 − L4 cosθ4ω 4 = 0
                        (fb.v.1) 

Assuming the angular velocity of the crank, ω2 , is known, we re-arrange and express these 

equations in matrix form as 

−L3 sinθ3 L4 sinθ4

L3 cosθ3 −L4 cosθ4

⎡

⎣
⎢

⎤

⎦
⎥

ω 3

ω 4

⎧
⎨
⎩

⎫
⎬
⎭

=
L2 sinθ2ω2

−L2 cosθ2ω2

⎧
⎨
⎩

⎫
⎬
⎭

                 (fb.v.2) 

Acceleration equations 
The time derivative of the velocity equations yields the acceleration equations: 

−LBA sinθ3α 3 − LBA cosθ3ω 3
2 + LBO4

sinθ4α 4 + LBO4
cosθ4ω 4

2 = LAO2
sinθ2α2 + LAO2

cosθ2ω2
2

LBA cosθ3α 3 − LBA sinθ3ω 3
2 − LBO4

cosθ4α 4 + LBO4
sinθ4ω 4

2 = −LAO2
cosθ2α2 + LAO2

sinθ2ω2
2

 

(fb.a.1) 
Assuming that α2  is known, we re-arrange the equations as 

−LBA sinθ3 LBO4
sinθ4

LBA cosθ3 −LBO4
cosθ4

⎡

⎣
⎢

⎤

⎦
⎥

α 3

α 4

⎧
⎨
⎩

⎫
⎬
⎭

=
LAO2

(sinθ2α2 + cosθ2ω2
2 ) + LBA cosθ3ω 3

2 − LBO4
cosθ4ω 4

2

−LAO2
(cosθ2α2 − sinθ2ω2

2 ) + LBA sinθ3ω 3
2 − LBO4

sinθ4ω 4
2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

(fb.a.2) 
Kinematic analysis 

Let us consider the following constant lengths: L1 = 5 , L2 = 2 , L3 = 6 , L4 = 4 .  For 

 θ2 = 120 , ω2 = 1.0  rad/sec, CCW, and α2 = −1.0  rad/sec2, determine the other two angles, 

angular velocities, and angular accelerations. 
Position analysis 

For  θ2 = 120  we solve the position equations for θ3  and θ4 .  Substituting the known lengths 

and the input angle in (fb.p.2), we get 

 
2 cos(120o ) + 6 cosθ3 − 4 cosθ4 − 5 = 0

2sin(120o ) + 6sinθ3 − 4 sinθ4 = 0
 

We have two nonlinear equations in two unknowns. We will consider a numerical method 
(Newton-Raphson) for solving these equations, as will be seen next. At this point let us consider 
the solution to be 

 

θ3 = 0.3834 = 21.98

θ4 = 1.6799 = 96.24
 

Velocity analysis 
 With known values for the angles and the given input velocity, the velocity equation of 

(fb.v.2) becomes: 
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−2.2442 3.9762

5.5645 0.4355
⎡

⎣
⎢

⎤

⎦
⎥

ω 3

ω 4

⎧
⎨
⎩

⎫
⎬
⎭

=
1.7321

1.0000

⎧
⎨
⎩

⎫
⎬
⎭

 

The solution to these linear equations yields: ω 3 = 0.1395, ω 4 = 0.5143  rad/sec.  Both velocities 

are positive, which means both are CCW. 
Acceleration analysis 

For known values for the angles and velocities, and the given input acceleration, the 
acceleration equations become: 

−2.2442 3.9762

5.5645 0.4355
⎡

⎣
⎢

⎤

⎦
⎥

α 3

α 4

⎧
⎨
⎩

⎫
⎬
⎭

=
−2.7390

−0.2761

⎧
⎨
⎩

⎫
⎬
⎭

 

The solution yields:  α 3 = 0.0041, α 4 = −0.6865  rad/sec2.  One acceleration is positive; i.e., 

CCW, and one is negative; i.e., CW. 
 
Newton-Raphson Method 

Newton-Raphson is a numerical method for solving non-linear algebraic equations. The 
method is based on linearizing nonlinear equation(s) using Taylor series, then solving the 
approximated linear equation(s) iteratively.  
One Equation in One Unknown 

Consider the nonlinear equation f (x) = 0  which contains one unknown x.  The approximated 

linearized equation is written as 

f (x) +
df

dx
Δx ≈ 0  

The Newton-Raphson iterative formula is expressed as 

 Δx = − f (x) /
df

dx
⎛
⎝⎜

⎞
⎠⎟

     (N-R.1) 

The process requires an initial estimate for the solution. This value is used in (N-R.1) to compute 
Δx . Then the computed value for Δx  is used to update x as 

x + Δx → x      (N-R.2) 

The process is repeated until a solution is found; i.e., until f (x) = 0 . 

Note: In iterative procedures such as N-R, if f (x) ≤ ε , where ε  is a small positive number, we 

must accept that a solution has been found.  
 

Example 
Find the root(s) of x3 − 3x2 −10x + 24 = 0  using Newton-Raphson process. 

Solution 

We re-state the equation as f = x3 − 3x2 −10x + 24 . The derivative of this function with 

respect to the unknown is df / dx = 3x2 − 6x −10 . To start the N-R process, we assume the 

solution is at x = 10 .   The following table shows the results from the iterative N-R process: 
Iteration # x f df/dx Δx  x + Δx  

1 10 624.0000 230 -2.7130 7.2870 
2 7.2870 178.7667 105.5775 -1.6932 5.5937 
3 5.5937 49.2200 50.3070 -0.9784 4.6153 
4 4.6153 12.2555 26.2120 -0.4676 4.1478 
5 4.1478 2.2688 16.7257 -0.1356 4.0121 
6 4.0121 0.1713 14.2189 -0.0120 4.0001 
7 4.0001 0.0013 14.0017 -9.3x10-5 4.0000 
8 4.0000 0.0000    

 



AME 352  ANALYTICAL KINEMATICS 
 

P.E. Nikravesh  3-6 
 

The process converges to x = 4.0  as the answer. 
We now consider a different initial estimate for the solution.  Instead of x = 10  we repeat 

the process from x = −5 . 
 

Iteration # x f df/dx Δx  x + Δx  
1 -5 -126 95 1.3263 -3.6737 
2 -3.6737 -29.3309 52.5300 0.5584 -3.1153 
3 -3.1153 -4.1973 37.8076 0.1110 -3.0043 
4 -3.0043 -0.1508 35.1033 0.0043 -3.0000 
5 -3.0000 -2.2x10-4 35.0002 6.3x10-6 -3.0000 
6 -3.0000 -4.8x10-8    

We now know that x = −3.0  is another solution to this problem. 
Obviously there should be a third solution since we are dealing with a quadratic function. 

The following figure should clarify what the solutions are. 

 
 

 
Two Equations in Two Unknowns 

Consider the following two non-linear equations in x and y: 
f1(x, y) = 0

f2 (x, y) = 0
 

The approximated linearized equations are written as 

f1(x, y) +
∂f1
∂x

Δx +
∂f1
∂y

Δy ≈ 0

f2 (x, y) +
∂f2

∂x
Δx +

∂f2

∂y
Δy ≈ 0

 

The Newton-Raphson iterative formula is expressed as 

 
Δx

Δy

⎧
⎨
⎩

⎫
⎬
⎭

= −

∂f1
∂x

∂f1
∂y

∂f2

∂x

∂f2

∂y

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−1

f1(x, y)

f2 (x, y)

⎧
⎨
⎩

⎫
⎬
⎭

     (N-R.3) 

The process requires an initial estimate for the unknowns x and y. These value are used in (N-R.3) 
to compute Δx  and Δy . Then the computed values are used to update the approximated solution: 

x + Δx → x

y + Δy → y
                (N-R.4) 
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The process is repeated until a solution is found.  Rather than checking whether each function 

meets the condition f ≤ ε , we consider f1
2 + f2

2 ≤ ε  for terminating the process. 

 
Example (four-bar) 

We apply the Newton-Raphson process to solve the position equations for a four-bar 
mechanism.  The position equations from Example 1 are expressed as: 

f1 = 2 cos(120o ) + 6 cosθ3 − 4 cosθ4 − 5

f2 = 2sin(120o ) + 6sinθ3 − 4 sinθ4

          (a) 

Then N-R formula for these equations becomes: 

Δθ3

Δθ4

⎧
⎨
⎩

⎫
⎬
⎭

= −

∂f1
∂θ3

∂f1
∂θ4

∂f2

∂θ3

∂f2

∂θ4

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−1

f1
f2

⎧
⎨
⎩

⎫
⎬
⎭

= −
−6sinθ3 4 sinθ4

6 cosθ3 −4 cosθ4

⎡

⎣
⎢

⎤

⎦
⎥

−1
f1
f2

⎧
⎨
⎩

⎫
⎬
⎭

          (b) 

From a rough sketch of the mechanism for the given input angle, we estimate the values for the 
two unknowns to be: 

θ3 ≈ 30o = 0.5236 rad, θ4 ≈ 90o = 1.5708 rad  

We start the Newton-Raphson process by evaluating the two functions in (a): 

f1 = 2 cos(120o ) + 6 cos(30o )− 4 cos(90o )− 5 = −0.8038

f2 = 2sin(120o ) + 6sin(30o )− 4 sin(90o ) = 0.7321
 

These values show that our estimates are far from zeros.  We evaluate (b): 

Δθ3

Δθ4

⎧
⎨
⎩

⎫
⎬
⎭

= −
−3.0000 4.0000

5.1962 0.0000
⎡

⎣
⎢

⎤

⎦
⎥

−1 −0.8038

0.7321

⎧
⎨
⎩

⎫
⎬
⎭

=
−0.1409

0.0953

⎧
⎨
⎩

⎫
⎬
⎭

 

Note that the corrections for the two angles are in radians not in degrees (this is always true).  
Therefore the estimated values of the two angles are corrected as 

θ3 ≈ 0.5236 − 0.1409 = 0.3827  and θ4 ≈1.5708 + 0.0953 = 1.6661  

The two equations in (a) are re-evaluated: 
f1 = −0.0535 , f2 = −0.0092  

Since these values are not zeros, the process is continued.  After two more iterations the 
process yields: 

 θ3 = 0.3834 = 21.98 ,  θ4 = 1.6799 = 96.24  

With these values, f1  and f2  are small enough to be considered zeros. 
 

 
The Newton-Raphson process can be extended to n equations in n unknowns.  The formulas 

are similar to those for two equations.  It should be obvious that the N-R process is not suitable 
for hand calculation.  The method is suitable for implementation in a computer program. 

 
Secondary Computations  

In addition to solving the kinematic equations for the coordinates, velocities and 
accelerations, we may need to determine the kinematics of a point that is defined on one of the 
links of the mechanism.  Determining the kinematics of a point on a link is a secondary process 
and it does not require solving any set of algebraic equations—we only need to evaluate one or 
more expressions. 
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Four-bar coupler point  
Assume that the coupler of a four-bar is in the 

shape of a triangle, and the location of the coupler 

point P relative to A and B is defined by the angle β3  

and the length LPA  (two constants).  This coupler 

point can be positioned with respect to the origin of 
the x-y frame as 

RPO2
= RAO2

+ RPA  

Coupler point expressions 
Algebraically, the above equation becomes: 

L2

P 

A 

B 

O 2 O 4

L1

L3

L4

LPA β3

 x 

 y 

θ2

θ3

θ4

 
xP = L2 cosθ2 + LPA cos(θ3 + β3 )

yP = L2 sinθ2 + LPA sin(θ3 + β3 )
    (fb.cp.1) 

The time derivative of the position expressions provides the velocity of point P: 

 

xP ≡VP(x ) = −L2 sinθ2ω2 − LPA sin(θ3 + β3 )ω 3

yP ≡VP(y) = L2 cosθ2ω2 + LPA cos(θ3 + β3 )ω 3

       (fb.cv.1) 

Similarly, the time derivative of the velocity expressions yields the acceleration of point P: 

 

xP ≡ AP(x ) = −L2 (sinθ2α2 + cosθ2ω2
2 )− LPA (sin(θ3 + β3 )α 3 + cos(θ3 + β3 )ω 3

2 )

yP ≡ AP(y) = L2 (cosθ2α2 − sinθ2ω2
2 ) + LPA (cos(θ3 + β3 )α 3 − sin(θ3 + β3 )ω 3

2 )
    (fb.ca.1) 

 
Example (four-bar) 

We continue with the data for the four-bar example.  Assume the coupler point is 

positioned at β3 = 22.5o , LPA = 5.5 .  Substituting the known values for the angles, angular 

velocities, and angular accelerations yields the coordinate, velocity, and acceleration of the 
coupler point: 

 
RPO2

=
xP

yP

⎧
⎨
⎩

⎫
⎬
⎭

=
5 cos(120o ) + 5.5 cos(21.98 + 22.5 ) = 2.9253

5sin(120o ) + 5.5sin(21.98 + 22.5 ) = 5.5846

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

 

 
VP =

xP

yP

⎧
⎨
⎩

⎫
⎬
⎭

=
−2.2693

−0.4526

⎧
⎨
⎩

⎫
⎬
⎭

,   

 
AP =

xP

yP

⎧
⎨
⎩

⎫
⎬
⎭

=
2.6399

−0.7908

⎧
⎨
⎩

⎫
⎬
⎭

 

 
 

 
Matlab Programs 

Two Matlab programs (fourbar.m and fourbar_anim.m) are provided for kinematic 
analysis of a four-bar mechanism containing a coupler point.  The program fourbar.m performs 
position, velocity, and acceleration analysis for a given angle of the crank. The program solves 
for the unknown coordinates, velocities, and accelerations, and reports the results in numerical 
form. The program fourbar_anim.m only performs position analysis. However, it repeatedly 
increments the crank angle and reports the results in the form of an animation.  Both programs 
obtain the data for the four-bar from the file fourbar_data. 

 
fourbar_data.m 

The user is required to provide in this file the following data for the four-bar of interest: 

• Constant values for the link lengths ( L1 , L2 , L3 , L4 )    

• Initial angle of the crank (θ2 )   

• Estimates for the initial angles of the coupler and the follower (θ3 , θ4 )   
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• Constant values for the coupler point position ( LPA , β3 )   

• Angular velocity and acceleration of the crank (ω2 , α2 )  

• Animation increment for the crank angle ( Δθ2 )  

• Limits for the plot axes [x_min  x_max  y_min  y_max]  
   Needed by fourbar.m 
  Needed by fourbar_anim.m 

 

The program fourbar_anim.m requires an accompanying M-file named fourbar_plot.m 
that must reside in the same directory.  The program first checks and reports whether the four-bar 
is Grashof or not. Then it computes the unknown angles, using the N-R process, and the 
coordinates of the coupler point. If a solution is found the results are depicted graphically.  After 
the four-bar is displayed in its initial state, if any keys is pressed the program will increment the 
crank angle and solves for the new angles and coordinates. The solution and animation will be 
continued for two complete cycles of the crank rotation.  For a non-Grashof four-bar, or if the 
four-bar is Grashof but the input link is not able to rotate completely, the input link is rotated 
between its limits. 

 
Other Mechanisms 

Kinematic analysis of other mechanisms is similar to, and in some cases simpler than, that of 
a four-bar.  The followings are examples of position, velocity, and acceleration equations, and the 
underlying objectives of kinematic analysis for some commonly used mechanisms.  
Slider-crank (inversion 1 - offset) 
Vector loop equation 

RAO2
+ RBA − RBO2

+ RO2Q
= 0  

Constant: RAO2
= L2 , RBA = L3, RO2Q

= a (offset)  

Position equations 

RAO2
cosθ2 + RBA cosθ3 − RBQ cosθ1 + RO2Q

cos(90o ) = 0

RAO2
sinθ2 + RBA sinθ3 − RBQ sinθ1 + RO2Q

sin(90o ) = 0
 

A

B

RBA

O2

RAO2

RBQQ 

RO2Q

 

Since θ1 = 0 , we have: 

L2 cosθ2 + L3 cosθ3 − RBQ = 0

L2 sinθ2 + L3 sinθ3 + a = 0
             (sc1-o.p.1) 

Position analysis 

For a given crank angle θ2 , solve the position equations for θ3  and RBQ . 

Velocity and acceleration equations 
The equations are identical to those of the non-offset system. 

Q:  What are the angular velocity and acceleration of the slider-block? 
 
Slider-crank (inversion 2) 
Vector loop equation 

RAO2
− RAO4

− RO4O2
= 0  

Constant: RAO2
= L2 , RO4O2

= L1  
Position equations 

L2 cosθ2 − RAO4
cosθ4 − L1 = 0

L2 sinθ2 − RAO4
sinθ4 = 0

   (sc2.p.1) 

 

 
A

O2

RAO2

O4
RO4O2

RAO4 θ4
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Position analysis 
For a given crank angle θ2 , solve the position equations for θ4  and RAO4

. 
Velocity equations (in expanded and matrix forms) 

 

−L2 sinθ2ω2 + RAO4
sinθ4ω 4 − RAO4

cosθ4 = 0

L2 cosθ2ω2 − RAO4
cosθ4ω 4 − RAO4

sinθ4 = 0
 (sc2.v.1) 

 

RAO4
sinθ4 −1

−RAO4
cosθ4 0

⎡

⎣
⎢

⎤

⎦
⎥

ω 4

RAO4

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

=
L2 sinθ2ω2

−L2 cosθ2ω2

⎧
⎨
⎩

⎫
⎬
⎭

                  (sc2.v.2) 

Velocity analysis 
For a given crank velocity ω2 , solve the velocity equations for ω 4  and 

 
RAO4

. 
Acceleration equations (in expanded and matrix forms) 

 

−L2 sinθ2α2 − L2 cosθ2ω2
2 + RAO4

sinθ4α 4 + RAO4
cosθ4ω 4

2 + 2RAO4
sinθ4ω 4 − RAO4

cosθ4 = 0

L2 cosθ2α2 − L2 sinθ2ω2
2 − RAO4

cosθ4α 4 + RAO4
sinθ4ω 4

2 − 2RAO4
cosθ4ω 4 − RAO4

sinθ4 = 0
  (sc2.a.1) 

 

RAO4
sinθ4 −1

−RAO4
cosθ4 0

⎡

⎣
⎢

⎤

⎦
⎥

α 4

RAO4

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

=
L2 (sinθ2α2 + cosθ2ω2

2 )− RAO4
cosθ4ω 4

2 − 2RAO4
sinθ4ω 4

−L2 (cosθ2α − sinθ2ω2
2 )− RAO4

sinθ4ω 4
2 + 2RAO4

cosθ4ω 4

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
      (sc2.a.2) 

Acceleration analysis 
For a given crank acceleration α2 , solve the acceleration equations for α 4  and 

 
RAO4

. 
Q:  What are the angular velocity and acceleration of the slider-block? 
Slider-crank (inversion 2 - offset) 
Vector loop equation 

RAO2
− RAB − RBO4

− RO4O2
= 0  

Constants: RAO2
= L2 , RO4O2

= L1, RAB = a (offset)  
Position equations 

L2 cosθ2 − a cos(θ4 + 90o )− RBO4
cosθ4 − L1 = 0

L2 sinθ2 − a sin(θ4 + 90o )− RBO4
sinθ4 = 0

 (sc2-o.p.1) 

 

A

O2
O4

RAO2

B

RBO4
RAB

RO4O2

θ4

 
Position analysis 

For a given crank angle θ2 , solve the position equations for θ4  and RBO4
. 

Velocity equations (in expanded and matrix forms) 

 

−L2 sinθ2ω2 + a sin(θ4 + 90o )ω 4 + RBO4
sinθ4ω 4 − RBO4

cosθ4 = 0

L2 cosθ2ω2 − a cos(θ4 + 90o )ω 4 − RBO4
cosθ4ω 4 − RBO4

sinθ4 = 0
 (sc2-o.v.1) 

 

a sin(θ4 + 90o ) + RBO4
sinθ4( ) − cosθ4

− a cos(θ4 + 90o )− RBO4
cosθ4( ) − sinθ4

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

ω 4

RBO4

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

=
L2 sinθ2ω2

−L2 cosθ2ω2

⎧
⎨
⎩

⎫
⎬
⎭

                  (sc2-o.v.2) 

Velocity analysis 
For a given crank velocity ω2 , solve the velocity equations for ω 4  and 

 
RBO4

. 
Acceleration equations (in expanded and matrix forms) 

 

−L2 sinθ2α2 − L2 cosθ2ω2
2 + a sin(θ4 + 90o ) + RBO4

sinθ4( )α 4

+ a cos(θ4 + 90o ) + RBO4
cosθ4( )ω 4

2 + 2RBO4
sinθ4ω 4 − RBO4

cosθ4 = 0

L2 cosθ2α2 − L2 sinθ2ω2
2 − a cos(θ4 + 90o ) + RBO4

cosθ4( )α 4

+ a sin(θ4 + 90o ) + RBO4
sinθ4( )ω 4

2 − 2RBO4
cosθ4ω 4 − RBO4

sinθ4 = 0

         (sc2-o.a.1) 
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a sin(θ4 + 90o ) + RBO4
sinθ4( ) − cosθ4

− a cos(θ4 + 90o )− RBO4
cosθ4( ) − sinθ4

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

α 4

RBO4

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

=

L2 (sinθ2α2 + cosθ2ω2
2 )− a cos(θ4 + 90o ) + RBO4

cosθ4( )ω 4
2 − 2RBO4

sinθ4ω 4

−L2 (cosθ2α2 − sinθ2ω2
2 )− a sin(θ4 + 90o ) + RBO4

sinθ4( )ω 4
2 + 2RBO4

cosθ4ω 4

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

   (sc2-o.a.2) 

Acceleration analysis 
For a given crank acceleration α2 , solve the acceleration equations for α 4  and 

 
RBO4

. 
Slider-crank (inversion 3) 
Vector loop equation 

RAO2
+ RO4A − RO4O2

= 0  

Constant: RAO2
= L2 , RO4O2

= L1  
Position equations 

L2 cosθ2 + RO4A cosθ3 − L1 = 0

L2 sinθ2 + RO4A sinθ3 = 0
         (sc3.p.1) 

A

O2

RAO2

O4
RO4O2

RO4A

θ3

 

Position analysis 
For a given crank angle θ2 , solve the position equations for θ3  and RO4A . 

Velocity equations (in expanded and matrix forms) 

 

−L2 sinθ2ω2 − RO4A sinθ3ω 3 + RO4A cosθ3 = 0

L2 cosθ2ω2 + RO4A cosθ3ω 3 + RO4A sinθ3 = 0
 (sc3.v.1) 

 

−RO4A sinθ3 cosθ3

RO4A cosθ3 sinθ3

⎡

⎣
⎢

⎤

⎦
⎥

ω 3

RO4A

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

=
L2 sinθ2ω2

−L2 cosθ2ω2

⎧
⎨
⎩

⎫
⎬
⎭

                  (sc3.v.2) 

Velocity analysis 
For a given crank velocity ω2 , solve the velocity equations for ω 3  and 

 
RO4A . 

Acceleration equations (in expanded and matrix forms) 

 

−L2 sinθ2α2 − L2 cosθ2ω2
2 − RO4A sinθ3α 3 − RO4A cosθ3ω 3

2 − 2RO4A sinθ3ω 3 + RO4A cosθ3 = 0

L2 cosθ2α2 − L2 sinθ2ω2
2 + RO4A cosθ3α 3 − RO4A sinθ3ω 3

2 + 2RO4A cosθ3ω 3 + RO4A sinθ3 = 0
      (sc3.a.1) 

 

−RO4A sinθ3 cosθ3

RO4A cosθ3 sinθ3

⎡

⎣
⎢

⎤

⎦
⎥

α 3

RO4A

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

=
L2 (sinθ2α2 + cosθ2ω2

2 ) + RO4A cosθ3ω 3
2 + 2RO4A sinθ3ω 3

−L2 (cosθ2α2 − sinθ2ω2
2 ) + RO4A sinθ3ω 3

2 − 2RO4A cosθ3ω 3

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
    (sc3.a.2) 

Acceleration analysis 
For a given crank acceleration α2 , solve the acceleration equations for α 3  and 

 
RO4A . 

Q:  What are the angular velocity and acceleration of the slider-block? 
 
Slider-crank (inversion 3 - offset) 
Vector loop equation 

RAO2
+ RBA − RBO4

− RO4O2
= 0  

Constant: RAO2
= L2 , RO4O2

= L1, RBO4
= a (offset)  

Position equations 
L2 cosθ2 + RBA cosθ3 − a cos(θ3 + 90o )− L1 = 0

L2 sinθ2 + RBA sinθ3 − a sin(θ3 + 90o ) = 0
   (sc3-o.p.1) 

 

A

O2

RAO2

O4
RO4O2

B

RBA

RBO4

θ3
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Position analysis 
For a given crank angle θ2 , solve the position equations for θ3  and RBA . 

Velocity equations (in expanded and matrix forms) 

 

−L2 sinθ2ω2 − RBA sinθ3ω 3 + RBA cosθ3 + a sin(θ3 + 90o )ω 3 = 0

L2 cosθ2ω2 + RBA cosθ3ω 3 + RBA sinθ3 − a cos(θ3 + 90o )ω 3 = 0
               (sc3-o.v.1) 

 

−RBA sinθ3 + a sin(θ3 + 90o )( ) cosθ3

RBA cosθ3 − a cos(θ3 + 90o )( ) sinθ3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ω 3

RBA

⎧
⎨
⎩

⎫
⎬
⎭

=
L2 sinθ2ω2

−L2 cosθ2ω2

⎧
⎨
⎩

⎫
⎬
⎭

            (sc3-o.v.2) 

Velocity analysis 

For a given crank angle ω2 , solve the position equations for ω 3 and  RBA . 

Acceleration equations (in expanded and matrix forms) 

 

−L2 sinθ2α2 − L2 cosθ2ω2
2 − RBA sinθ3 − a sin(θ3 + 90o )( )α 3

+ RBA cosθ3 − RBA cosθ3 − a cos(θ3 + 90o )( )ω 3
2 − 2RBA sinθ3ω 3 = 0

L2 cosθ2α2 − L2 sinθ2ω2
2 + RBA cosθ3 − a cos(θ3 + 90o )( )α 3

+ RBA sinθ3 − RBA sinθ3 − a sin(θ3 + 90o )( )ω 3
2 + 2RBA cosθ3ω 3 = 0

               (sc3-o.a.1) 

 

−RBA sinθ3 + a sin(θ3 + 90o )( ) cosθ3

RBA cosθ3 − a cos(θ3 + 90o )( ) sinθ3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

α 3

RBA

⎧
⎨
⎩

⎫
⎬
⎭

=    

 

L2 (sinθ2α2 + cosθ2ω2
2 ) + RBA cosθ3 − a cos(θ3 + 90o )( )ω 3

2 + 2RBA sinθ3ω 3

−L2 (cosθ2α2 − sinθ2ω2
2 ) + RBA sinθ3 − a sin(θ3 + 90o )( )ω 3

2 − 2RBA cosθ3ω 3

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  (sc3-o.a.2) 

Acceleration analysis 

For a given crank acceleration α2 , solve the acceleration equations for α 3 and  RBA . 

 
In any of the inversions of the slider-crank, the position equations contain one unknown 

length and one unknown angle.  These equations, compared to the position equations of a four-
bar, are simpler to solve by hand.  However, it is highly recommended that the Matlab program 
fourbar.m to be revised from a four-bar to any of the slider-crank inversions. 
Six-bar Mechanism 

This six-bar mechanism is 
constructed from two four-bars in 
series.  There are three ground 
attachment joints at O2 , O4  and O6 . 

Position loop equations 
RAO2

+ RBA − RBO4
− RO4O2

= 0

RBO4
+ RCB − RCO6

− RO6O4
= 0

 

Constant angles:  
θ1 =ψ 1  and θ7 =ψ 7  

L2

A 

B 

O 2
O 4

L1

L3

L4

 x 

 y 

θ2

θ3

θ4

ψ 1

L5

L7

ψ 7

θ5

O6

C

L6
θ6

 
Constant lengths: RO4O2

= L1, RAO2
= L2 , RBA = L3, RBO4

= L4 , RCB = L5 , RCO6
= L6 , RO6O4

= L7  

Position equations 
L2 cosθ2 + L3 cosθ3 − L4 cosθ4 − L1 cosψ 1 = 0

L2 sinθ2 + L3 sinθ3 − L4 sinθ4 − L1 sinψ 1 = 0

L4 cosθ4 + L5 cosθ5 − L6 cosθ6 − L7 cosψ 7 = 0

L4 sinθ4 + L5 sinθ5 − L6 sinθ6 − L7 sinψ 7 = 0

 

Velocity equations 
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−L3 sinθ3 L4 sinθ4 0 0

L3 cosθ3 −L4 cosθ4 0 0

0 −L4 sinθ4 −L5 sinθ5 L6 sinθ6

0 L4 cosθ4 L5 cosθ5 −L6 cosθ6

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

ω 3

ω 4

ω 5

ω 6

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

=

L2 sinθ2ω 2

−L2 cosθ2ω 2

0
0

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

              

Acceleration equations 

−L3 sinθ3 L4 sinθ4 0 0

L3 cosθ3 −L4 cosθ4 0 0

0 −L4 sinθ4 −L5 sinθ5 L6 sinθ6

0 L4 cosθ4 L5 cosθ5 −L6 cosθ6

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

α 3

α 4

α 5

α 6

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

=

                             

L2 (sinθ2α 2 + cosθ2ω 2
2 ) + L3 cosθ3ω 3

2 − L4 cosθ4ω 4
2

−L2 (cosθ2α 2 + sinθ2ω 2
2 ) + L3 sinθ3ω 3

2 − L4 sinθ4ω 4
2

L4 cosθ4ω 4
2 + L5 cosθ5ω 5

2 − L6 cosθ6ω 6
2

L4 sinθ4ω 4
2 + L5 sinθ5ω 5

2 − L6 sinθ6ω 6
2

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

 

 


