

3. <u>Convert a number from one number system to another</u>

Conversion between number bases:

Way we need conversion?

- ✓ We need decimal system for *real world* (for presentation and input): for example: we use 10-based numbering system for input and output in digital calculator.
- ✓ We need binary system inside calculator for *calculation*.

a) Binary to decimal conversions:

Rule: any binary number can be converted to its decimal equivalent simply by *summing together the weights of the various positions in the binary number which contains a 1*.

Example 1: Convert 11011₂ to its decimal equivalent

1 1 0 1 1 $\downarrow + \downarrow + \downarrow + \downarrow + \downarrow = 16+8+2+1=27_{10}$ 2⁴ +2³ 0 2¹ 2⁰

Example 2: Convert 10110101₂ to decimal equivalent

$2^7 + 0 + 2^5 + 2^4 + 0 + 2^2 + 0 + 2^0 = 181_{10}$

- b) Decimal to binary conversions:
- ✓ There are two ways to convert a decimal number to its equivalent binary representation
- **1.** The reverse of the binary-to-decimal conversion process (optional). The decimal number is simply expressed as a sum of powers of **2** and then 1_2 and 0_2 are written in the appropriate bit positions.

Example 1:-Convert 45₁₀ to binary number

$45_{10} = 32 + 8 + 4 + 1 = 2^{5} + 0 + 2^{3} + 2^{2} + 0 + 2^{0} = 101101_{(2)}$

Example 2:-Convert 76₁₀ to binary number

$76_{10} = 64 + 8 + 4 = 2^{6} + 2^{3} + 2^{2} = 1001100_{2}$

Repeated division: Repeating division the decimal number by
 and writing down the remainder after each division until a quotient of 0 is obtained.

Note:

The binary result is obtained by writing the first remainder as the LSB and the last remainder as the MSB.

General Rule 1: Conversion from decimal to other base

- 1. Divide decimal number by the base (2, 8, 16, ...).
- 2. The remainder is the lowest-order digit.
- 3. Repeat first two steps unit no divisor remains.

General Rule 2: Decimal fraction conversion to anther base

- 1. Multiply decimal number by the base (2, 8,...).
- 2. The integer is the highest-order digit.
- 3. Repeat first two steps until fraction becomes zero.

Example 1 Convert 25₁₀ to binary number

Example 2 Convert 13₁₀ to binary number

Division by 2	Quotient integer	remainder
$\frac{13}{2}$	6	1 (a ₀)
$\frac{6}{2}$	3	0 (a ₁)
$\frac{3}{2}$	1	1 (a ₂)
$\frac{1}{2}$	0	1 (a ₃)
Answer	$(13)_{10} = (a_3 a_2 a_1 a_1)$	$_{0}) = (1101)_{2}$

Multiply by 2	Inte	ger	Fraction	coefficient	
0.625*2 =	1	+	0.25	$\mathbf{a}_1 = 1$	
0.250*2 =	0	+	0.50	a ₂ = 0	
0.500*2 =	1	+	O(stop)	a ₃ = 1	↓ .
Answer	(0.625	5) ₁₀ =	• (0.a ₁ a ₂ a ₃) ₂ = (0.101) ₂	Correct order

Example 3: Convert 0.625₁₀ to binary number

c) Octal-to-decimal

✓ To convert, we need to multiply each octal digit by its positional weight.

Example 1

 $372_{(8)} = (3*8^2) + (7*8^1) + (2*8^0) = (3*64) + 56+2 = 250_{10}$

Example 2

 $24.6_8 = (2*8^1) + (4*8^0) + (6*8^{-1}) = 20.75_{10}$

d) <u>Decimal to octal</u>
✓ Repeated division by 8.

Example 1: Convert 266₁₀ to octal number.

	Multiply by 8	Inte	ger	Fraction	coefficient
_	0.35*8=	2	+	0.80	a ₁ = 2
Repeat	ed 0.8*8 =	6	+	0.40	a ₂ = 6
"stop	0.4*8 =	3	+	0.20	a ₃ = 3
	0.2*8 =	1	+	0.60	a ₄ = 1
	0.6*8 =	4	+	0.80	a ₅ = 4
ŀ	Answer	(0.35)) ₁₀ = (($0.a_1 a_2 a_3 a_4 a_5)$	₂ = (0.26314) ₈ Co
					07

Example 2: Convert 0.35₁₀ to octal number.

Correct order

e) <u>Hexa-to-decimal</u>

Example 1:-Convert 356₍₁₆₎ to decimal:

356₍₁₆₎ =

 $(3*16^2) + (5*16^1) + (6*16^0) = 3*256 + 80 + 6 = 854_{(10)}$

Example 2:-Convert 2AF(16) to decimal:

 $2AF_{(16)} =$

 $(2*16^{2}) + (10*16^{1}) + (15*16^{0}) = 512+160+15 = 687_{(10)}$

f) <u>Decimal-to-hexa:(using repeated division by 16)</u> Example 1: Convert 423₁₀ to hex number.

$$\frac{423}{16} = 26 + \text{remainder of 7 (LSD)}$$

$$\frac{26}{16} = 1 + \text{remainder of 10}$$

$$\frac{1}{16} = 0 + \text{remainder of 1}$$

$$423_{10} = 1 \text{ A 7}_{(16)}$$

g) <u>Hexa-to-binary:</u>

✓ Each hexa digit is converted to its *four-bit binary equivalent*:

Example 1: Convert 9F2₍₁₆₎ to its binary equivalent

9	F	2
Ļ	Ļ	ļ

1001 1111 0010

9F2₍₁₆₎ = **100111110010**₍₂₎

Example_2: Convert BA6₍₁₆₎ to binary equivalent

 $BA6_{(16)} = (1011 \ 1010 \ 0110)_2$

h) <u>Binary-to-hexa</u>

- ✓ The binary numbers are grouped into groups of four bits and each group is converted to its equivalent hexa digit.
- ✓ *Zeros* are added as needed to complete a four-bit group.

Example_1: Convert 1110100110(2) to hexa equivalent

Solution:

 $1110100110_{(2)} = 3A6_{(16)}$

Example_2: Convert 101011111₂ to hexa equivalent

Solution:

$10101 1111_2 = 15F_{(16)}$

i) Octal to binary conversion:

✓ Conversion each octal digit to its *three bit binary equivalent*.

		Conve	rsion	Table				
Octal digit	0	1	2	3	4	5	6	7
Binary equivalent	000	001	010	011	100	101	110	111

✓ Using this table, we can convert any octal number to binary by individually converting each digit.

Example 1: Convert 472₍₈₎ to binary number

Solution:

 $472_{(8)} = 100111010_{(2)}$

Example 2: Convert 5431₍₈₎ to binary number

Solution:

$5431_{(8)} = 101 100 011 001 = 101100011001_{(2)}$

j) Binary to octal conversion:

✓ The bits of the binary number are grouped into group of 3 bits starting at the LSB, then each group is converted to its octal equivalent (see table).

Example_1: Convert 11010110₍₂₎ to octal equivalent

Solution:

 $11010110_{(2)} = 326_{(8)}$

Note:
Zero was placed to the left of the MSB to produce groups
of 3 bits.

General example:

Convert 177_{10} to its eight-bit binary equivalent by first converting to octal.

Solution:

Thus 177₁₀ = 261₍₈₎, now we can quickly convert this octal number to its binary equivalent 010110001 to get eight bit representation. So:

 $177_{10} = 1011000_{(2)}$

Important Note: this method of decimal-to-octal-to-binary conversion is often quicker than going directly from decimal to binary, especially for large numbers.

4. Advantage of octal and hexadecimal systems:

- 1. Hexa and octal number are used as a "*short hand*" way to represent stings of bits.
- 2. Error prone to write the binary number, in hex and octal *less error*.
- 3. The octal and hexadecimal number systems are both used (*in memory addressing and microprocessor technology*).