Digital System Design

3. Convert a number from one number system to another

Conversion between number bases:

Way we need conversion?

\checkmark We need decimal system for real world (for presentation and input): for example: we use 10 -based numbering system for input and output in digital calculator.
\checkmark We need binary system inside calculator for calculation.

a) Binary to decimal conversions:
\checkmark Rule: any binary number can be converted to its decimal equivalent simply by summing together the weights of the various positions in the binary number which contains a 1 .

Example 1: Convert $\mathbf{1 1 0 1 1}_{\mathbf{2}}$ to its decimal equivalent

1	1	0	1	1

$\downarrow+\downarrow+\downarrow+\downarrow \quad \downarrow=16+8+2+1=27_{10}$
$2^{4} \quad \mathbf{+ 2}^{3} \quad 0 \quad 2^{1} \quad \mathbf{2}^{0}$
Example_2: Convert $\mathbf{1 0 1 1 0 1 0 1}_{\mathbf{2}}$ to decimal equivalent
$\mathbf{2}^{\mathbf{7}} \mathbf{+} \mathbf{0}+\mathbf{2}^{\mathbf{5}} \mathbf{+ 2}^{\mathbf{4}} \mathbf{+} \mathbf{0}+\mathbf{2}^{\mathbf{2}} \mathbf{+} \mathbf{0}+\mathbf{2}^{\mathbf{0}}=\mathbf{1 8 1}_{10}$
b) Decimal to binary conversions:
\checkmark There are two ways to convert a decimal number to its equivalent binary representation

1. The reverse of the binary-to-decimal conversion process (optional). The decimal number is simply expressed as a sum of powers of 2 and then 1_{2} and O_{2} are written in the appropriate bit positions.

Example 1:-Convert $\mathbf{4 5}_{10}$ to binary number

$45_{10}=32+8+4+1=2^{5}+0+2^{3}+2^{2}+0+2^{0}=101101_{(2)}$
Example 2:-Convert $\mathbf{7 6}_{10}$ to binary number
$\mathbf{7 6} 6_{10}=\mathbf{6 4}+\mathbf{8}+4=\mathbf{2}^{\mathbf{6}}+\mathbf{2}^{\mathbf{3}}+\mathbf{2}^{\mathbf{2}}=\mathbf{1 0 0 1 1 0 0}_{2}$
2. Repeated division: Repeating division the decimal number by 2 and writing down the remainder after each division until a quotient of $\mathbf{0}$ is obtained.

Note:

The binary result is obtained by writing the first remainder as the LSB and the last remainder as the MSB.
General Rule 1: Conversion from decimal to other base

1. Divide decimal number by the base ($2,8,16, \ldots$).
2. The remainder is the lowest-order digit.
3. Repeat first two steps unit no divisor remains.

General Rule 2: Decimal fraction conversion to anther base

1. Multiply decimal number by the base ($2,8, \ldots$).
2. The integer is the highest-order digit.
3. Repeat first two steps until fraction becomes zero.

Example 1 Convert $\mathbf{2 5}_{\mathbf{1 0}}$ to binary number
$\frac{25}{2}=12+$ remainder of 1 (LSB)
$\frac{12}{2}=6+$ remainder of 0
$\frac{6}{2}=3+$ remainder of 0
$\frac{3}{2}=1+$ remainder of 1
$\frac{1}{2}=0+$ remainder of 1 (MSB)

$$
25_{10}=11001_{2}
$$

Example 2 Convert $\mathbf{1 3}_{\mathbf{1 0}}$ to binary number

Division by 2	Quotient integer	remainder
$\frac{13}{2}$	6	1 (a_{0})
$\frac{6}{2}$	3	$0\left(a_{1}\right)$
$\frac{3}{2}$	1	$1\left(a_{2}\right)$
$\frac{1}{2}$	0	$1\left(a_{3}\right)$
Answer	$(13)_{10}=\left(a_{3} a_{2} a_{1} a_{0}\right)=(1101)_{2}$	

c) Octal-to-decimal
\checkmark To convert, we need to multiply each octal digit by its positional weight.

Example 1

$372_{(8)}=\left(3 * 8^{2}\right)+\left(7 * 8^{1}\right)+\left(2 * 8^{0}\right)=(3 * 64)+56+2=250_{10}$

Example 2

$24.6_{8}=\left(2 * 8^{1}\right)+\left(4 * 8^{0}\right)+\left(6 * 8^{-1}\right)=20.75_{10}$
d) Decimal to octal
\checkmark Repeated division by 8.

Example 1: Convert $\mathbf{2 6 6}_{10}$ to octal number.
$\frac{266}{8}=33+$ remainder of 2 (LSD)
$\frac{33}{8}=4+$ remainder of 1
$\frac{4}{8}=0+$ remainder of 4
$266_{10}=412_{(8)}$

Example 1:-Convert $\mathbf{3 5 6}_{(16)}$ to decimal:

$$
\begin{aligned}
& 356_{(16)}= \\
& \left(3 * 16^{2}\right)+\left(5 * 16^{1}\right)+\left(6 * 16^{0}\right)=3 * 256+80+6=854_{(10)}
\end{aligned}
$$

Example 2:-Convert $\mathbf{2 A F}_{(16)}$ to decimal:

$$
\begin{aligned}
& 2 A F_{(16)}= \\
& \left(2 * 16^{2}\right)+\left(10^{*} 16^{1}\right)+\left(15 * 16^{0}\right)=512+160+15=687_{(10)}
\end{aligned}
$$

f) Decimal-to-hexa:(using repeated division by 16) Example 1: Convert $\mathbf{4 2 3}_{10}$ to hex number.
$\frac{423}{16}=26+$ remainder of 7 (LSD)
$\frac{26}{16}=1+$ remainder of 10
$\frac{1}{16}=0+$ remainder of 1

$$
423_{10}=1 A 7_{(16)}
$$

g) Hexa-to-binary:

\checkmark Each hexa digit is converted to its four-bit binary equivalent:

Example 1: Convert $\mathbf{9 F 2}_{(16)}$ to its binary equivalent

9	F	2
\downarrow	\downarrow	\downarrow
1001	1111	0010
$\mathbf{F 2}_{(16)}=$	$100111110010_{(2)}$	

Example_2: Convert BA6 $_{(16)}$ to binary equivalent
BA6 $_{(16)}=\left(\begin{array}{lll}1011 & \underline{1010} & \underline{0110}\end{array}\right)_{2}$
h) Binary-to-hexa
\checkmark The binary numbers are grouped into groups of four bits and each group is converted to its equivalent hexa digit.
\checkmark Zeros are added as needed to complete a four-bit group.

Example_1: Convert $\mathbf{1 1 1 0 1 0 0 1 1 0}_{(2)}$ to hexa equivalent

Solution:

$1110100110_{(2)}=$ 3A6 $_{(16)}$
Example_2: Convert $\mathbf{1 0 1 0 1 1 1 1 1}_{\mathbf{2}}$ to hexa equivalent

Solution:

$\underline{1} \underline{0101} \underline{1111}_{2_{-}}=15 F_{(16)}$
i) Octal to binary conversion:
\checkmark Conversion each octal digit to its three bit binary equivalent.

Conversion Table								
Octal digit	0	1	2	3	4	5	6	7
Binary equivalent	000	001	010	011	100	101	110	111

\checkmark Using this table, we can convert any octal number to binary by individually converting each digit.

Example 1: Convert $\mathbf{4 7 2}_{(8)}$ to binary number

Solution:

$472_{(8))}=100111010_{(2)}$

Example 2: Convert 5431(8) to binary number

Solution:

$\underline{5431}_{(8)}=\underline{101} \underline{100} \underline{011} \underline{001}=101100011001_{(2)}$
j) Binary to octal conversion:
\checkmark The bits of the binary number are grouped into group of 3 bits starting at the LSB, then each group is converted to its octal equivalent (see table).

Example_1: Convert $\mathbf{1 1 0 1 0 1 1 0}_{(2)}$ to octal equivalent

Solution:

$11010110_{(2)}=326_{(8)}$

Note:

Zero was placed to the left of the MSB to produce groups of 3 bits.

General example:

Convert $\mathbf{1 7 7}_{10}$ to its eight-bit binary equivalent by first converting to octal.

Solution:

$$
\begin{aligned}
& \frac{177}{8}=\mathbf{2 2}+\text { remainder of } \mathbf{1}(\text { LSD }) \\
& \frac{22}{8}=2+\text { remainder of } 6 \\
& \frac{2}{8}=0+\text { remainder of } 2 \\
& \\
& \\
& \\
& \\
& \mathbf{1 7 7}_{10}=2
\end{aligned}
$$

\checkmark Thus $\mathbf{1 7 7}_{\mathbf{1 0}}=\mathbf{2 6 1}_{(8)}$, now we can quickly convert this octal number to its binary equivalent 010110001 to get eight bit representation. So:
$\mathbf{1 7 7}_{10}=1011000$
Important Note: this method of decimal-to-octal-to-binary conversion is often quicker than going directly from decimal to binary, especially for large numbers.
4. Advantage of octal and hexadecimal systems:

1. Hexa and octal number are used as a "short hand" way to represent stings of bits.
2. Error prone to write the binary number, in hex and octal less error.
3. The octal and hexadecimal number systems are both used (in memory addressing and microprocessor technology).
