3-D Geometry
(Volume \& Surface Area)

Zormula(s):

Example :
Find the volume.

Example 15

Find the approximate volume in square inches.

Example $16:$
Find the approximate volume in cubic feet.

Measurement in 3-D Figures

Example 13
Find the approximate surface area in square inches.

Example 14:
Find the approximate volume in cubic centimeters.

Example 3
Find the volume. Use 3.14 for pi.

Formula(s)

Example ll

Find the surface area.

Example 4
Find the volume.

Find the surface area. Use 3.14 for pi.

Example 10
Find the surface area.

Example $5:$
Find the volume.

Example 6
Find the volume. Use 3.14 for pi.

Example 8
Find the surface area.

Example 7:
Find the surface area.

Example 9 :
Find the surface area. Use 3.14 for pi.

Answer Key!

Note: I have written this answer key based on the formulas found on the Florida FCAT 2.0 Reference Sheet.

Zormula(S)
 $V=B h$

*Remember $\mathbf{B}=$ Area of Base
Rectangular Triangular Cylinder
$\mathrm{B}=\mathrm{bh} \quad \mathrm{B}=\frac{1}{2} \mathrm{bh} \quad \mathrm{B}=\pi \mathrm{r}^{2}$

Example

Find the volume.

Example 15

Find the approximate volume in square inches.

Example 10:

Find the approximate volume in cubic feet.
$3.1 \mathrm{~cm} \sim 1.22$ in

$$
\begin{aligned}
& V=B h \\
& V=\left(\pi r^{2}\right) h \\
& V=\left(3.14 \cdot 1.22^{2}\right) \cdot 4.72 \mathrm{in} \\
& V=22.1 \mathrm{in}^{3}
\end{aligned}
$$

$V=\frac{1}{3} B h$
$V=\frac{1}{3}(b h) h$
$V=\frac{1}{3}(9.8 \mathrm{ft} \cdot 5.6 \mathrm{ft}) \cdot 13.1 \mathrm{ft}$
$V=239.6 \mathrm{ft}^{3}$

Example 13:
Find the approximate surface area in square inches.

$$
\begin{aligned}
& S A=2 \pi r^{2}+2 \pi r h \\
& S A=2(3.14)(0.592)+2(3.14)(0.59)(0.24) \\
& S A=2.19+0.89 \\
& S A=3.08 \mathrm{in}^{2}
\end{aligned}
$$

Example 2
Find the volume.

$V=\left(\frac{1}{2} b h\right) h$ $V=(0.5)(8 \mathrm{~cm})(7 \mathrm{~cm})(13 \mathrm{~cm})$ $V=364 \mathrm{~cm}^{2}$

Example 14:
Find the approximate volume in cubic centimeters.

$$
\begin{aligned}
& V=B h \\
& V=\left(\frac{1}{2} b h\right) h \\
& V=(0.5)(2.54 \mathrm{~cm})(5.08 \mathrm{~cm})(15.24 \mathrm{~cm}) \\
& V=98.3 \mathrm{~cm}^{3}
\end{aligned}
$$

Example 3
Find the volume. Use 3.14 for pi.

Volume of Prisms \& Cylinders

Formula(s)
$\mathrm{V}=\frac{1}{2}$

Example 4

Find the volume.

$$
\begin{aligned}
& V=\frac{1}{3} B h \\
& V=\frac{1}{3}(\mathrm{bh}) \mathrm{h} \\
& \mathrm{~V}=\frac{1}{3}(5 \mathrm{~m})(6 \mathrm{~m})(7 \mathrm{~m}) \\
& V=70 \mathrm{~m}^{3}
\end{aligned}
$$

Example ll:

Find the surface area.

$S A=\frac{1}{2} P l+B$
$S A=0.5(12+12+12)(6)+0.5(10.38)(12)$
$S A=108+62.28$
$S A=170.28 \mathrm{~m}^{2}$

Example 12
Find the surface area. Use 3.14 for pi.

$$
\begin{aligned}
& S A=\frac{1}{2}(2 \pi r) l+B \\
& S A=\pi r l+\pi r^{2} \\
& S A=(3.14)(3)(10)+3.14(3)^{2} \\
& S A=94.2+28.26 \\
& S A=122.46 \mathrm{~cm}^{2}
\end{aligned}
$$

Formula (s)
Rectangular \& Triangular Pyramids

$$
S A=\frac{1}{2} P l+B
$$

Cone

$$
S A=\frac{1}{2}(2 \pi r) \ell+B
$$

$\mathrm{P}=$ Perimeter of Base
$\ell=$ slant height
B = Area of Base

Example 10:

Find the surface area.
5 in.

$$
\begin{aligned}
& S A=\frac{1}{2} P l+B \\
& S A=0.5(4+4+4+4)(5)+4(4) \\
& S A=56 \text { in }^{2}
\end{aligned}
$$

Example 5

Find the volume.

$$
\begin{aligned}
& V=\frac{1}{3} B h \\
& V=\frac{1}{3}\left(\frac{1}{2} \mathrm{bh}\right) \mathrm{h} \\
& V=\frac{1}{3}\left(\frac{1}{2}\right)(9 \mathrm{in})(5 \mathrm{in})(8 \mathrm{in}) \\
& V=60 \mathrm{in}^{3}
\end{aligned}
$$

Example 6 :
Find the volume. Use 3.14 for pi.

$$
\begin{aligned}
& 4.2 \mathrm{yd} \\
& \mathrm{~V}=\frac{1}{3}\left(\pi \mathrm{r}^{2}\right) \mathrm{h} \\
& \mathrm{~V}=\frac{1}{3}(3.14)(4.2 \mathrm{in})^{2}(8 \mathrm{in}) \\
& \mathrm{V}=147.7 \mathrm{yd}^{3}
\end{aligned}
$$

Volume of Pyramids ε Cones

Formula(s)

Rectangular Prism
 $S A=2 b h+2 b w+2 h w$

Triangular Prism
$S A=P h+2 B$
Cylinder
SA $=2 \pi r^{2}+2 \pi r h$

Example 8

Find the surface area.

$$
\begin{aligned}
& S A=P h+2 B \\
& S A=(10+12+14.9)(20)+2\left(\frac{1}{2}\right)(14.9)(8) \\
& S A=738+119.2 \\
& S A=857.2 \mathrm{~mm}^{2}
\end{aligned}
$$

Example 7

Find the surface area.

$S A=2 b h+2 b w+2 h w$
$S A=2(3)(4)+2(3)(2)+2(4)(2)$
$S A=24+12+16$
$S A=52 \mathrm{in}^{2}$

Example 9

Find the surface area. Use 3.14 for pi.

$$
\begin{aligned}
& S A=2 \pi r^{2}+2 \pi r h \\
& S A=2(3.14)(3)^{2}+2(3.14)(3)(4) \\
& S A=56.52+75.36 \\
& S A=131.88 \mathrm{~cm}^{2}
\end{aligned}
$$

(c) Lisa Davenport 2013

Directions:

Step 1: Print pages $1 \& 2,3 \& 4,5 \& 6$ front to back so that the print is facing in opposite directions.

Step 2: Line up the pages as shown below.

> Sureace trea or Prisms \& culinders Sureace trea or Puramids \& cones Measurement in 3-D. Fiqures

Step 3: Fold over the top half and secure with staples.
The final product should look like this:

Colume or Prisms \& Culinders
Idglumo oo. Puramids \& conos
Sureace Area or Prisms \& Culinders Sureace trea or Puramids \& cones measurement in 3-D Fiqures

