3 Generalized Linear Models

3.1 Binary Response

Most models in statistics

- 1. relate explanatory and response variables
- 2. describe pattern of association
- 3. have parameters which describe nature/strength of association
- 4. permit to test for association: based on sample data while controlling for confounding variables
- 5. can be use for prediction

GLMs are defined by their random and systemic component, and their link function.

• Random Component: It identifies that response variable Y and its distribution. The n observations Y_1, Y_2, \ldots, Y_n are assumed to be independent. Here the Y s have categorical outcomes.

Binary data: 2 possible outcomes (Success or Failure coded 1 and 0 in raw data) Example: Y = 1 or Y = 0 (Y is Bernoulli or Binomial with n = 1)

Count data: Counts are outcomes Example: Y = number of successes in a given time interval or a specified region of space (Y is Poisson)

- Systematic Component: It specifies how explanatory variables are entered into the model. Here usually with a linear predictor $\alpha + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k$
- Link Functions: It links the mean of the random component and the systematic components using a function $g(\mu)$, where μ is the mean of Y.

Example 1

HSB (High School and Beyond):

A sample of 600 high school seniors, taken from the Large scale Longitudinal Study conducted by National Opinion Research Center (1980) under contract with National Center for Education Statistics. It includes the following variables.

ID	Student Identification Number (3 digits)					
SEX	1-Male 2-Female					
RACE	(Race or Ethnicity) 1-Hispanic 2-Asian 3 - Black 4- White					
SES	Socioeconomic Status 1-Low 2-Medium 3-High					
SCTYP	School Type 1-Public 2-Private					
HSP	High School Program 1-General 2-Academic Preparatory 3- Vocational/technical					
LOCUS	Locus of Control Standardized to mean 0 and st dev 1					
CONCEPT	Self Concept Standardized to mean 0 and st dev 1					
MOTIVATIO	N Motivation Average of 3 motivation items					
CAR	Career Choice 1-Clerical 2-Craftsperson 3- Farmer 4-Homemaker 5-Laborer 6-Manager 7-M					
READING	Reading T-score standardized to mean 50 and SD 10					
WRITING	Writing T-score standardized to mean 50 and SD 10					
MATH	Math T-score standardized to mean 50 and SD 10					
SCIENCE	Science T-score standardized to mean 50 and SD 10					
CIVICS	Civics T-score standardized to mean 50 and SD 10					
x To	al of RDG, WRTG, MATH, SCI, CIV					
program du	nmy for academic program $yes=0$, $no=1$					

Below find the SPSS commands to estimate the linear equation for the GLM of interest, and discuss and interpret results. In SPSS terminology, we reference the non-academic programs, as our level of most interest is academic programs, and we wish $\pi(x)$, the probability of success to be the probability of attending an academic program. We will look at two possible ways to input SPSS commands to obtain information of interest.

Note: It is important to choose the correct reference category for the chosen dependent/response variable.

Please observe how the SPSS user interface follows the logic of choosing link function, random and systematic component by moving through the tabs.

For the Linear Probability Model:

- 1. Analyze>Generalized Linear Models>Generalized Linear Models
- Type of Model Tab: Choose Custom Distribution: Binomial Link Function: Identity
- 3. Response Tab:

Dependent Variable: program (Binary reference category: Last highest value (*category we are not interested in*)

- 4. Predictor Tab: Covariate: x (because it is a numerical predictor)
- 5. Model Tab: x as a main effect into Model box. check Include intercept in model
- 6. OK

Iteration History

		Number of	Log Likelihood ^a		Parameter		Number of Invalid Cases
Iteration	Update Type	Step-halvings		(Intercept)	х	(Scale)	C
0	Initial	0	-327.270	968450	.005700	1	4
1	Scoring	0	-326.932	848214	.005253	1	
2	Newton	0	-326.789	897262	.005432	1	2
3	Newton	1	-326.788	893459	.005419	1	2
4	Newton	10	-326.788 ^b	893459	.005419	1	2

Redundant parameters are not displayed. Their values are always zero in all iterations. Dependent Variable: program

Model: (Intercept), x

a. The full log likelihood function is displayed.

b. The maximum number of step-halvings was reached but the log likelihood value cannot be further improved.

c. These cases are invalid because there are errors in computing the inverse identity link function, the loglikelihood, the gradient, or the Hessian matrix in the iterative process. Invalid cases are excluded from iterations in which they cause computational errors.

The warning is saying that the iteration did not converge, and no final model could be reached, because there are still invalid cases (probabilities outside the interval from 0 to 1.

For the Logistic Regression Model:

- 1. Analyze>Generalized Linear Models>Generalized Linear Models
- Type of Model Tab: Choose Custom Distribution: Binomial Link Function: Logit
- 3. Response Tab:

Dependent Variable: program (Binary reference category: Last highest value (*category we are not interested in*)

- 4. Predictor Tab: Covariate: x (because it is a numerical predictor)
- 5. Model Tab: x as a main effect into Model box. check Include intercept in model
- 6. OK

									Value	df	Value/d
							Deviance		612.542	520	1.178
	Madal	nformat	ian				Scaled Deviance		612.542	520	
	Modell	mormat	ion				Pearson Chi-Squ	are	530.969	520	1.021
Dependent	ndent Variable program ^e			Scaled Pearson (Chi-	530.969	520				
Probability C	Distribution	Binom	ial				Square				
Link Functio	n	Logit					Log Likelihood ^b		-325.509		
a. The pr respor catego	ocedure m ise, treatin rv	odels .00 g 1.00 as t	as the he reference	9			Akaike's Informati Criterion (AIC)	ion	655.019		
catogo	· y.						Finite Sample Co AIC (AICC)	rrected	655.039		
Case	Proces: Summary	sing					Bayesian Informa Criterion (BIC)	ition	663.813		
	N	Percen	t 🔤				Consistent AIC (C	CAIC)	665.813		
Included	600	99.89	6 c			Dependent Variable: program Model: (Intercept), x					
Total	601	100.09	2				a. Information criteria are in smaller-is-b				1.
Total	Categor	ical Vari		mation			b. The full log I computing i	ikelihood nformatior	function is dis n criteria.	played and	used in
	Categor			N	Percent		-		a		
Dependent	Variable	program	.00	308	51.3%		Omnib	us Tesť			
			1.00	292	48.7%		Likelihood				
			Total	600	100.0%		Ratio Chi- Square	df	Sig.		
							139.082	1	.000		
		Continu	ous Varia	ble Inforr	nation		Dependent Varial	ble: progra	im		
		N	Minimum	Maximum	Mean	Std. Deviation	Model: (Intercept)	, X	222.0		
Covariate	х	600	164.70	350.00	259.9447	40.44849	a. Compares the fitted model				

Goodness of Fit^a (Antion 1

The first output tables include information about the model, some data description for the data included, goodness of fit table, and the omnibus test.

model.

The Deviance/df is below 2.5 indicating acceptable model fit.

The omnibus test gives likelihood ratio test statistic and p-value for testing H_0 : all slope parameters are 0, which in this case can reject at $\alpha = 0.05$.

		Parameter	Estimates			
		95% Wald Confi	dence Interval	Hypot	nesis Test	
в	Std. Error	Lower	Upper	Wald Chi- Square	df	Sig.
-7.055	.6948	-8.417	-5.693	103.104	1	.000
.027	.0027	.022	.033	106.411	1	.000
1 ^a						
	B -7.055 .027 1 ^a	B Std. Error -7.055 .6948 .027 .0027 1 ^a	B Std. Error Lower -7.055 .6948 -8.417 .027 .0027 .022	Parameter Estimates 95% Wald Confidence Interval B Std. Error Lower Upper -7.055 .6948 -8.417 -5.693 .027 .0027 .022 .033 1 ^a	Parameter Estimates Parameter Estimates 95% Wald Confidence Interval Hypoti B Std. Error Lower Upper Wald Chi- Square -7.055 .6948 -8.417 -5.693 103.104 .027 .0027 .022 .033 106.411 1 ^a	Parameter Estimates Parameter Estimates 95% Wald Confidence Interval Hypothesis Test B Std. Error Lower Upper Wald Chi- Square df -7.055 .6948 -8.417 -5.693 103.104 1 .027 .0027 .022 .033 106.411 1

Model: (Intercept), x

a. Fixed at the displayed value.

The last table on the parameter estimates, gives the point estimates, standard error of the estimate,

the Wald Chi-Square statistic and P-value for the relevant parameter being 0. For the example the estimated regression function is: $logit(\hat{\pi}(x)) = -7.055 + 0.027x$. To help with the interpretation of the equation, request SPSS to include the exponentiated parameter estimates by checking in the Statistics Tab: Include exponential parameter estimates.

Parameter Estimates

			95% Wald Confi	dence Interval	Hypoti	hesis Test			95% Wald Confid for Exp	dence Interval (B)
Parameter	в	Std. Error	Lower	Upper	Wald Chi- Square	df	Sig.	Exp(B)	Lower	Upper
(Intercept)	-7.055	.6948	-8.417	-5.693	103.104	1	.000	.001	.000	.003
х	.027	.0027	.022	.033	106.411	1	.000	1.028	1.022	1.033
(Scale)	1 ^a									

Model: (Intercept), x

a. Fixed at the displayed value.

 $exp(\hat{\beta}_1) = 1.028$, for every 1 point increase in the total exam score the odds for being in an academic program increases by 2.8%. The 95% confidence interval indicates that we can be 95% confident that the increase falls between 2.2% and 3.3%.

3.2 Count Response

Example 2

Will see how to analyse the data on death due to AIDS in Australia in 3 month periods from January 1983 to June 1986.

The data are in AIDS.sav. First get a scatteplot of the data, by following the SPSS commands below.

The data exhibit an exponential pattern, which means that a log linear model can be appropriate.

SPSS commands To fit a Loglinear Model to the data:

- 1. Analyze>Generalized Linear Models>Generalized Linear Models
- Type of Model Tab: Choose Custom Distribution: Poisson Link Function: Log

- 3. Response Tab: Dependent Variable: count
- 4. Predictor Tab: Covariate: Quarter (because it is a numerical predictor)
- 5. Model Tab:

Quarter as a main effect into Model box. check Include intercept in model

- 6. Statistics Tab: check Include exponential parameter estimates
- 7. OK

	Value	df	Value/df
Deviance	29.654	12	2.471
Scaled Deviance	29.654	12	
Pearson Chi-Square	28.847	12	2.404
Scaled Pearson Chi- Square	28.847	12	
Log Likelihood ^b	-41.290		
Akaike's Information Criterion (AIC)	86.581		
Finite Sample Corrected AIC (AICC)	87.672		
Bayesian Information Criterion (BIC)	87.859		
Consistent AIC (CAIC)	89.859		

a. Information criteria are in smaller-is-better form.
b. The full log likelihood function is displayed and used in

computing information criteria.

Goodness of Fit^a

Omnib	us Test ^a	
Likelihood Ratio Chi- Square	df	Sig.
177.619	1	.000
Dependent Varial Model: (Intercept)	ole: Count , Quarter	
a. Compares t against the i model.	he fitted mo intercept-on	del Iy

Tests of Model Effects

	Type III							
Source	Wald Chi- Square	df	Sig.					
(Intercept)	1.828	1	.176					
Quarter	135.477	1	.000					
Dependent V	/ariable: Count	19						

Model: (Intercept), Quarter

Deviance/df=2.471 indicates acceptable model fit. The omnibus test informs that at significance level of 5% the slope for time(Quarter) is different from 0 ($\chi^2(1) = 177.619$, p-value<0.001).

Parameter Estimates

				1 41 4	ineter Estimat					
	eter B		95% Wald Confi	dence Interval	Hypot	hesis Test			95% Wald Confid for Exp	dence Interval v(B)
Parameter		Std. Error	Lower	Upper	Wald Chi- Square	df	Sig.	Exp(B)	Lower	Upper
(Intercept)	.340	.2512	153	.832	1.828	1	.176	1.404	.858	2.298
Quarter	.257	.0220	.213	.300	135.477	1	.000	1.292	1.238	1.349
(Scale)	1 ^a									

Dependent Variable: Count

Model: (Intercept), Quarter

a. Fixed at the displayed value.

From the table we find the estimated model equation is $log(\hat{\mu}) = .340 + .257$ Quarter, which is equivalent to $\mu = \exp(.340) \exp(.257)^{Quarter} = 1.404(1.292)^{Quarter}$. The number of AIDS deaths in

Australia over a 3 month period was in average 1.29 times higher than in the previous 3 month period. On average in every quarter the mean number of death by AIDS in Australia in the year 1983 to 1986 went up by 29%. With a 95% confidence interval ranging from 23.8% to 34.9%.