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•Philosophy to Scale for Big Data?



WORKLOAD DECOMPOSITION

Divide Work

Combine 
Results



DISTRIBUTED PROCESSING IS NON-TRIVIAL

• How to assign tasks to different workers in an efficient way?

• What happens if tasks fail?

• How do workers exchange results?

• How to synchronize distributed tasks allocated to different workers?



(PERFORMANT) BIG DATA 
STORAGE IS CHALLENGING

• Data Volumes are massive

• Reliability of Storing PBs of data is challenging

• All kinds of failures: Disk/Hardware/Network Failures

• Probability of failures simply increase with the number of 
machines …

• Performance, performance, performance



ONE POPULAR SOLUTION: 
HADOOP* 

Hadoop Cluster at Yahoo! (Credit: Yahoo)

* = but is not the only one



HADOOP* OFFERS

• Redundant, Fault-tolerant data storage

• Parallel computation framework

• Job coordination

* = as well as analogous tools



HADOOP* OFFERS

Programmers

No longer need to 
worry about 

Q: Where file is 
located? 

Q: How to handle 
failures & data 
lost?

Q: How to divide 
computation? 



HADOOP IS THE SOLUTION

• HADOOP is NOT magic

• Heuristics work… often, not always

• High Performances are not for free

• We wil see in the future how to deal with and 
implement optimizations

There ain't no such thing as a free lunch



A REAL WORLD EXAMPLE OF 
NEW YORK TIMES

• Goal: Make entire archive of articles available online: 11 million, from 1851

• Task: Translate 4 TB TIFF images to PDF files

• Solution: Used Amazon Elastic Compute Cloud (EC2) and Simple Storage System 
(S3)

• Time: ?

• Costs: ? 



A REAL WORLD EXAMPLE OF 
NEW YORK TIMES

• Goal: Make entire archive of articles available online: 11 million, from 1851

• Task: Translate 4 TB TIFF images to PDF files

• Solution: Used Amazon Elastic Compute Cloud (EC2) and Simple Storage System 
(S3)

• Time: < 24 hours

• Costs: $240 



A LITTLE HISTORY ON HADOOP

• Hadoop is an open-source implementation based on Google File System (GFS) 
and MapReduce from Google

• Hadoop was created by Doug Cutting and Mike Cafarella in 2005

• Hadoop was donated to Apache in 2006



WHO ARE USING HADOOP?
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Homeland Security

Real Time Search

Social

eCommerce

User Tracking & 
Engagement

Financial Services 



HADOOP STACK

Computation

Storage



HADOOP RESOURCES

• Hadoop at ND:

http://ccl.cse.nd.edu/operations/hadoop/

• Apache Hadoop Documentation:

http://hadoop.apache.org/docs/current/

• Data Intensive Text Processing with Map-Reduce

http://lintool.github.io/MapReduceAlgorithms/

• Hadoop Definitive Guide:

http://www.amazon.com/Hadoop-Definitive-Guide-Tom-
White/dp/1449311520

http://ccl.cse.nd.edu/operations/hadoop/
http://hadoop.apache.org/docs/current/
http://lintool.github.io/MapReduceAlgorithms/
http://www.amazon.com/Hadoop-Definitive-Guide-Tom-White/dp/1449311520


HDFS
HADOOP DISTRIBUTED FILE SYSTEM



MOTIVATION QUESTIONS

•Problem 1: Data is too big 
to store on one machine.

•HDFS: Store the data on 
multiple machines!



MOTIVATION QUESTIONS

•Problem 2: Very high end 
machines are too expensive

•HDFS: Run on commodity 
hardware!



MOTIVATION QUESTIONS

•Problem 3: Commodity 
hardware will fail!

•HDFS: Software is 
intelligent enough to handle 
hardware failure!



MOTIVATION QUESTIONS

•Problem 4: What happens 
to the data if the machine 
stores the data fails?

•HDFS: Replicate the data!



MOTIVATION QUESTIONS

• Problem 5: How can 
distributed machines organize 
the data in a coordinated way? 

• HDFS: Master-Slave 
Architecture!



HDFS ARCHITECTURE: MASTER-SLAVE

• Name Node: Controller 

• File System Name Space Management

• Block Mappings

• Data Node: Work Horses

• Block Operations

• Replication

• Secondary Name Node:

• Checkpoint node

Master

Slaves

Name Node (NN)

Data Node (DN)

Secondary Name Node 
(SNN)

Single Rack Cluster



HDFS ARCHITECTURE: MASTER-SLAVE

Name Node 
(NN)

Data Node 
(DN)

Multiple-Rack 
Cluster

SwitchSwitc
h

Rack 1

Secondary Name Node 
(SNN)

Data Node 
(DN)

Data Node 
(DN)

Rack 2 Rack N. . . 



HDFS ARCHITECTURE: MASTER-SLAVE

Name Node 
(NN)

Data Node 
(DN)

Secondary Name Node 
(SNN)

Multiple-Rack 
Cluster

Data Node 
(DN)

Data Node 
(DN)

SwitchSwitch

Rack 1 Rack 2 Rack N. . . 

NN will 
replicate lost 

blocks in 
another node 

J

I know all 
blocks and 
replicas!

Reliable 
Storage



HDFS ARCHITECTURE: MASTER-SLAVE

Name Node 
(NN)

Data Node 
(DN)

Secondary Name Node 
(SNN)

Multiple-Rack 
Cluster

Data Node 
(DN)

Data Node 
(DN)

SwitchSwitch

Rack 1 Rack 2 Rack N. . . 

NN will 
replicate lost 
blocks across 

racks J

I know the 
topology of 
the cluster!

Rack 
Awareness



HDFS ARCHITECTURE: MASTER-SLAVE

Name Node 
(NN)

Data Node 
(DN)

Secondary Name Node 
(SNN)

Multiple-Rack 
Cluster

Data Node 
(DN)

Data Node 
(DN)

SwitchSwitch

Rack 1 Rack 2 Rack N. . . 

Do not ask 
me, I am 
down L

Single Point of 
Failure



HDFS ARCHITECTURE: MASTER-SLAVE

Name Node 
(NN)

Data Node 
(DN)

Secondary Name Node 
(SNN)

Multiple-Rack 
Cluster

Data Node 
(DN)

Data Node 
(DN)

SwitchSwitch

Rack 1 Rack 2 Rack N. . . 

Keep bulky 
communicatio

n within a 
rack!

How about 
network 

performance?



HDFS INSIDE: NAME NODE

Filename Replication factor Block ID

File 1 3 [1, 2, 3]

File 2 2 [4, 5, 6]

File 3 1 [7,8]

1, 2, 5, 7,
4, 3

1, 5, 3,
2, 8, 6

1, 4, 3,
2, 6

Name Node

Data Nodes

Snapshot of FS Edit log: record 
changes to FS



HDFS INSIDE: BLOCKS

• Q: Why do we need the abstraction “Blocks” in addition to 
“Files”?

• Reasons:

• File can be larger than a single disk

• Block is of fixed size, easy to manage and manipulate

• Easy to replicate and do more fine grained load balancing



HDFS INSIDE: BLOCKS

• HDFS Block size is by default 64 MB, why it is much larger 
than regular file system block?

• Reasons:

• Minimize overhead: disk seek time is almost constant



HDFS INSIDE: READ

Client

Name Node

DN1 DN2 DN3 DNn. . .

1

2

3 4

1. Client connects to NN to read data
2. NN tells client where to find the data blocks
3. Client reads blocks directly from data nodes (without going through NN)
4. In case of node failures, client connects to another node that serves the 

missing block



HDFS INSIDE: READ

• Q: Why does HDFS choose such a design for read? Why 
not ask client to read blocks through NN?

• Reasons:

• Prevent NN from being the bottleneck of the cluster

• Allow HDFS to scale to large number of concurrent clients

• Spread the data traffic across the cluster



HDFS INSIDE: READ

• Q: Given multiple replicas of the same block, how does NN 
decide which replica the client should read?

• HDFS Solution:

• Rack awareness based on network topology



HDFS INSIDE: WRITE

Client

Name Node

DN1 DN2 DN3 DNn. . .

1

2

3

4

1. Client connects to NN to write data
2. NN tells client write these data nodes
3. Client writes blocks directly to data nodes  with desired replication factor
4. In case of node failures, NN will figure it out and replicate the missing blocks



HDFS INSIDE: WRITE

• Q: Where should HDFS put the three replicas of a block? 
What tradeoffs we need to consider?

• Tradeoffs:

• Reliability

• Write Bandwidth

• Read Bandwidth

Q: What are some possible strategies?



HDFS INSIDE: WRITE

• Replication Strategy vs Tradeoffs

Reliability Write 
Bandwidth

Read 
Bandwidth

Put all replicas on one 
node
Put all replicas on 
different racks



HDFS INSIDE: WRITE

• Replication Strategy vs Tradeoffs

Reliability Write 
Bandwidth

Read 
Bandwidth

Put all replicas on one 
node
Put all replicas on 
different racks
HDFS: 
1-> same node as client
2-> a node on different 
rack 
3-> a different node on 
the same rack as 2



MAPREDUCE
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Map
extract something you 
care about from each 

record

Reduce
aggregate, 

summarize, filter, 
or transform



EXAMPLE: WORD COUNT
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MAPPER

• Reads in input pair <Key,Value>

• Outputs a pair <K’, V’>

• Let’s count number of each word in user queries (or Tweets/Blogs)

• The input to the mapper will be <queryID, QueryText>: 

<Q1,“The teacher went to the store. The store was closed; the store 
opens in the morning. The store opens at 9am.” >

• The output would be:

<The, 1> <teacher, 1> <went, 1> <to, 1> 
<the, 1> <store,1> <the, 1> <store, 1> 
<was, 1> <closed, 1> <the, 1> <store,1> 
<opens, 1> <in, 1> <the, 1> <morning, 
1> <the 1> <store, 1> <opens, 1> <at, 
1> <9am, 1>
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REDUCER

• Accepts the Mapper output, and aggregates values on the 
key

• For our example, the reducer input would be:

<store, 1> <store, 1> <store, 1><store, 1>

• The output would be:

<store, 4>
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JAVA MAP-REDUCE



PYTHON MAP-REDUCE
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