
30. Diffraction and the Fourier Transform

Diffraction examples
Diffraction by an edge
Arago spot

The far-field
Fraunhofer Diffraction
Some examples

Simeon Poisson
(1781 - 1840)

Francois Arago
(1786 - 1853)



Coordinates:
• the plane of the aperture: x1, y1

• the plane of observation: x0, y0

(a distance z downstream)

(x1, y1)

aperture

z

observation 
region

   2 22
01 0 1 0 1    r z x x y y

(x0, y0)

         
2 2
1 0 1 1 0 1

0 0 1 1 1 1 1 1

2 2
, exp , ,

2 2
x x x y y y

E x y jk Aperture x y E x y dx dy
z z

       
    

Reminder: Fresnel-Kirchoff diffraction

Quadratics in the exponent: a messy integral
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A plane wave incident on a sharp edge

Fresnel diffraction integral, in one dimension:
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exact diffraction result

The irradiance 
exactly at the edge is 
25% of the value far 
from the edge.



Light passing
by an edge

Diffraction by an Edge

Electrons passing
by an edge



An interesting manifestation of 
diffraction effects: The Spot of Arago

If a beam encounters a circular “stop”, it develops a hole, which fills in as 
it propagates and diffracts:
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The Spot of Arago
Why does it happen?

According to Huygen’s principle, 
every point on the perimeter of the 
disc radiates a spherical wave.

Obviously, the distance from each 
spherical wave’s point of origin to a 
point on the central axis of the disc 
is the same.

Constructive interference on the center line!

In 1818, Poisson used Fresnel’s theory to predict this phenomenon.  He 
regarded this as proof that Fresnel’s wave theory was nonsense, and 
that light must be a particle and not a wave.  But almost immediately, 
Arago experimentally verified Poisson’s prediction.



Let D be the largest dimension of the aperture:  D2 = max(x1
2 + y1

2).

Our first step, which allowed us to obtain the Fresnel result, was the 
paraxial approximation:

Recall the Fresnel diffraction result:

 
2 2

0 1 0 1 1 1
0 0 1 1 1 1

( 2 2 ) ( ), exp ( , )
2 2

        
    x x y y x yE x y jk Aperture x y dx dy

z z

  or   1 
Dz D
z

Note that this approximation does not contain the wavelength.

A more severe approximation is suggested by noticing that the integral 
simplifies A LOT if only we could neglect the quadratic terms x1

2 and y1
2.

If  kD2/2z << 1, then we could do that…

Simplification of Fresnel diffraction



This new approximation, which does contain , is equivalent to:
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So D/z is not merely required to be less than 1, but is required to be
less than D, which is generally smaller than one for visible light.

Note: if the aperture is a slit of width D = 2b, this condition becomes:
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or

Recall our definition of the Fresnel number for a slit of width 2b:
2
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we see that this new approximation is equivalent to:   4N << 1.

Approximation #2: involving the wavelength



As in Fresnel diffraction, we’ll typically assume a plane wave incident 
field, we’ll neglect the phase factors, and we’ll explicitly write the 
aperture function in the integral:
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Fraunhofer Diffraction: when the quadratic terms can be ignored. 
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Apply this approximation: to the Fresnel diffraction result:

In this case, the quadratic terms are tiny, so we can ignore them.

Approximation #2: Fraunhofer diffraction



Joseph von Fraunhofer

Joseph von Fraunhofer
1787-1826

Fraunhofer achieved fame by developing recipes for 
the world’s finest optical glass.  He also invented 
precise methods for measuring dispersion of glass, 
and discovered more than 500 different absorption 
lines in sunlight, most due to specific atomic or 
molecular species at the sun’s surface.  

He had almost nothing to do with Fraunhofer diffraction that we’re 
discussing today.  He did, however, invent the diffraction grating, 
which we will discuss next lecture.

He was almost an exact contemporary of Augustin Fresnel 
(1788 – 1827).  But it is unlikely that they ever met.

These are still known 
as Fraunhofer lines. 



The Fraunhofer regime
How far away is far enough?  We must have both z >> D and z >> D2/.

Example #1:  green light ( = 0.5 m)

If D = 1 millimeter, then:
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If D = 10 microns, then:
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Example #2:   microwaves ( = 3 cm)

If D = 10 centimeters, then:
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If D = 1 millimeter, then:
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But notice that z >> 1 mm is required 
in this case for the paraxial 
approximation to also be true. 



Fraunhofer diffraction is a Fourier transform

This is just a Fourier Transform!  (actually, two of them, in two variables)

   0 0 0 1 0 1 1 1 1 1, exp ( , )    
  jkE x y x x y y Aperture x y dx dy
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Interestingly, it’s a Fourier Transform from 
position, x1, to another position variable, x0 (in 
another plane, i.e., a different z position). 

Usually, the Fourier “conjugate variables” have 
reciprocal units (e.g., t and , or x and k). 

The conjugate variables here are really x1 and kx0/z, 
which do have reciprocal units.



Fraunhofer diffraction is a Fourier transform

Knowing this makes the calculations a lot easier…
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  In one dimension:

So, the light in the Fraunhofer regime (the “far field”) is simply the 
Fourier Transform of the apertured field!
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Fraunhofer diffraction pattern for a slit

2b

In this case, the problem is a single 
Fourier transform (in x), rather than two 
of them (in x and y):

     0 0 1 1 1exp    
  jkE x x x Aperture x dx

z

The aperture function is simple:
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How very satisfying!  This is exactly the answer we saw last lecture, 
for the Fresnel diffraction result in the limit of very large z.
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written here
in terms of the 
Fresnel number 
N = b2/z

But we know that the Fourier transform of a rectangle 
function (of width 2b) is a sinc function:
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Fraunhofer Diffraction 
from a Square Aperture

Diffracted
irradiance

Diffracted
field

A square aperture (edge length = 2b) 
just gives the product of two sinc
functions in x and in y.  Just as if it were 
two slits, orthogonal to each other.
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Fraunhofer diffraction from 
a circular aperture

The 2D Fourier transform of a circular 
aperture, radius = b, is given by a 
Bessel function of the first kind:
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where                         is the radial 
coordinate in the x1 - y1 plane.
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A plot of J1(r)/r

first zero at 
r = 3.83

Diffracted E-field plotted in 2D

Most of the energy falls in the central 
region, for values  kb/z < 3.83



A circular aperture yields a diffracted pattern 
known as an “Airy pattern” or an “Airy disc”.

The Airy pattern

Diffracted Irradiance
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Sir George Biddell Airy
1801-1892

The central spot contains about 84% of the total energy:
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The size of the Airy pattern
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How big is the central spot, where most of the energy is found?

The diameter of the aperture is D = 2b, so we can write:

3.83 1.22 spot
z z

D D
 



Define the size of the spot as spot, 
the radial distance from the center 
to the first zero:spot



Diffraction from small and large 
circular apertures

This is a good illustration 
of the Scale Theorem!

Small aperture

Large aperture

2spot

1
spot D





Fraunhofer Diffraction: an interesting example
Randomly placed identical holes yield a diffraction pattern whose 
gross features reveal the shape of the holes. 

Hole           Diffraction
pattern pattern 

Square holes

Round holes



The Fourier Transform of a random
array of identical tiny objects

Define a random array of two-dimensional delta-functions:
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The Fourier Transform of a random array of identically shaped tiny holes is:

rapidly 
varying

slowly 
varying

Sum of rapidly
varying sinusoids
(looks like noise)
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If OneHole(x,y) is the shape of an individual tiny hole, then a random 
array of identically shaped tiny holes is: convolution



Diffraction from 
multiple slits

Infinitely many equally spaced 
slits (a Shah function!) yields a 
far-field pattern which is the 
Fourier transform; that is, the 
Shah function.

Slit Diffraction
Pattern Pattern



Laser speckle is a diffraction pattern.
When a laser illuminates a 
rough surface or passes 
through a region where it 
can scatter a little bit, the 
result is a “speckle”
pattern.  It is a diffraction 
pattern from the very 
complex surface.  

Don’t try to do this Fourier 
Transform at home.

But people do. Computing 
the inverse FT of a speckle 
pattern can give information 
about the degree of 
roughness of a surface.



There are situations where this Fourier 
transform idea is not so useful

Example: light passing by an edge

In this case, the effective “width” of the 
slit, D, is infinite. It is impossible to reach 
the Fraunhofer regime of z >> D2/.
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