

31 Days Before Your CCNA Exam

Second Edition

Allan Johnson

A Day-By-Day Review Guide for the CCNA 640-802 Exam

31 Days Before Your CCNA Exam

A Day-by-Day Review Guide for the CCNA 640-802 Exam

Second Edition

Allan Johnson

Copyright® 2009 Cisco Systems, Inc.

Published by:

Cisco Press

800 East 96th Street

Indianapolis, IN 46240 USA

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the publisher, except for the inclusion of brief quotations in a review.

Printed in the United States of America

First Printing November 2008

Library of Congress Cataloging-in-Publication Data

Johnson, Allan, 1962-

31 days before your CCNA exam : a day-by-day review guide for the CCNA

640-802 exam / Allan Johnson. -- 2nd ed.

p. cm.

Originally published: Indianapolis, IN: Cisco Press, c2007 under

title: 31 days before your CCNA exam / Scott Bennett.

ISBN 978-1-58713-197-4 (pbk.)

1. Electronic data processing personnel--Certification. 2. Computer networks--Examinations--Study guides. I. Bennett, Scott, CCNA 31 days before your CCNA exam. II. Title. III. Title: Thirty one days before your CCNA exam.

TK5105.5.B443 2008

004.6--dc22

2008044139ISBN-13: 978-1-58713-197-4

ISBN-10: 1-58713-197-8

Associate Publisher
Dave Dusthimer

Cisco Press Program Manager

Jeff Brady

Executive Editor Mary Beth Ray

Managing Editor Patrick Kanouse

Senior Development Editor

Christopher Cleveland

Project Editor Mandie Frank

Copy Editor Barbara Hacha

Technical EditorsRick Graziani,
Kenneth Stewart

Editorial Assistant Vanessa Evans

Book & Cover Designer Louisa Adair

Composition TnT Design, Inc.

Indexer Lisa Stumpf

Proofreader Paula Lowell

This book is part of the Cisco Networking Academy® Program series from Cisco Press. The products in this series support and complement the Cisco Networking Academy Program curriculum. If you are using this book outside the Networking Academy program, then you are not preparing with a Cisco trained and authorized Networking Academy provider.

For information on the Cisco Networking Academy Program or to locate a Networking Academy, please visit www.cisco.com/edu.

Icons Used in This Book

Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

Boldface indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that are manually input by the user (such as a show command).

- Italic indicates arguments for which you supply actual values.
- Vertical bars (I) separate alternative, mutually exclusive elements.
- Square brackets ([]) indicate an optional element.
- Braces ({ }) indicate a required choice.
- Braces within brackets ([{ }]) indicate a required choice within an optional element.

Introduction

You are almost there! If you're reading this Introduction, you've probably already spent a considerable amount of time and energy pursuing your CCNA certification. Regardless of how you got to this point in your travels through your CCNA studies, 31 Days Before Your CCNA Exam most likely represents the last leg of your journey on your way to the destination: to become a Cisco Certified Network Associate. However if you are like me, you might be reading this book at the beginning of your studies. If such is the case, this book provides you with an excellent overview of the material you must now spend a great deal of time studying and practicing. I must warn you, though; unless you are extremely well versed in networking technologies and have considerable experience configuring and troubleshooting Cisco routers and switches, this book will not serve you well as the sole resource for CCNA exam preparation. Therefore, let me spend some time discussing my recommendations for study resources.

Study Resources

Cisco Press offers an abundance of CCNA-related books to serve as your primary source for learning how to install, configure, operate, and troubleshoot medium-size routed and switched networks. See the inside cover of this book for a quick list of my recommendations.

Foundational Resources

First on the list must be Wendell Odom's *CCNA Official Exam Certification Library*, Third Edition (ISBN: 1587201836). If you do not buy any other books, buy this set of two. Wendell's method of teaching, combined with his technical expertise and down-to-earth style, is unsurpassed in our industry. As you read through his books, you sense that he is sitting right there next to you walking you through the material. The practice exams and study materials on the CD in the back of the book are worth the price of the book. There is no better resource on the market for a CCNA candidate.

Next on the list must be Steve McQuerry's *Authorized Self-Study Guide CCNA Preparation Library*, Seventh Edition (ISBN: 1587054647). These two books are indispensable to those students who take the two Cisco recommended training classes for CCNA preparation: Interconnecting Cisco Network Devices 1 (ICND1) and Interconnecting Cisco Network Devices 2 (ICND2). These courses, available through Cisco Training Partners in a variety of formats, are usually of a very short duration (1 to 6 weeks) and are geared toward the industry professional already working in the field of networking. Steve's books serve the reader well as a concise, but thorough, treatment of the CCNA exam topics. His method and approach often differ from and complement Wendell's approach. I recommend that you also refer to these books.

If you are a Cisco Networking Academy student, you are blessed with access to the online version of the CCNA curriculum and the wildly popular Packet Tracer network simulator. Although there are two versions of the CCNA curriculum—Discovery and Exploration—I chose to use the four CCNA Exploration courses in my daily review of the exam topics. The Exploration curriculum provides a comprehensive overview of networking, from fundamentals to advanced applications and services. The Exploration courses emphasize theoretical concepts and practical application, while providing opportunities for students to gain the skills and hands-on experience needed to design, install, operate, and maintain networks in small-to-medium businesses, as well as enterprise and service provider environments. In an Academy class, not only do you have access to Packet Tracer, but you have access to extensive, guided labs and real equipment on which to practice your CCNA skills. To learn more about CCNA Exploration and to find an Academy near you, visit http://www.cisco.com/web/learning/netacad/course_catalog/CCNAexploration.html.

However, if you are not an Academy student but would like to benefit from the extensive authoring done for these courses, you can buy any or all of the CCNA Exploration Companion Guides (CG) and Lab Study Guides (LSG) of the Academy's popular online curriculum. Although you will not have access to the Packet Tracer network simulator software, you will have access to the tireless work of an outstanding team of Cisco Academy Instructors dedicated to providing students with comprehensive and engaging CCNA preparation course material. The titles and ISBNs for the CCNA Exploration CGs and LSGs are as follows:

- Network Fundamentals (CG ISBN: 1587132087; LSG ISBN: 1587132036)
- Routing Protocols and Concepts (CG ISBN: 1587132060; LSG ISBN: 1587132044)
- LAN Switching and Wireless (CG ISBN: 1587132079; LSG ISBN: 1587132028)
- Accessing the WAN (CG ISBN: 1587132052; LSG ISBN: 158713201X)

You can find these books at www.ciscopress.com by clicking the CISCO NETWORKING ACADEMY link.

Supplemental Resources

In addition to the book you hold in your hands, I recommend two more supplemental resources to augment your final 31 days of review and preparation.

First, Eric Rivard and Jim Doherty are coauthors of *CCNA Flash Cards and Exam Practice Pack*, Third Edition (ISBN: 1587201909). The text portion of the book includes more than 700 flash cards that quickly review exam topics in bite-sized pieces. Also included are nearly 200 pages of quick-reference sheets designed for late-stage exam preparation. And the included CD features a test engine with more than 500 CCNA practice exam questions.

Second, Wendell Odom has put together an excellent collection of more than four hours of personal, visual instruction in one package, titled *CCNA Video Mentor*, Second Edition (ISBN: 1587201917). It contains a DVD with 20 videos and a lab manual. Wendell walks you through common Cisco router and switch configuration topics designed to develop and enhance your hands-on skills.

The Cisco Learning Network

Finally, if you have not done so already, you should now register with the Cisco Learning Network at http://cisco.hosted.jivesoftware.com/. Sponsored by Cisco, the Cisco Learning Network is a free social-learning network where IT professionals can engage in the common pursuit of enhancing

and advancing their IT careers. Here you will find many resources to help you prepare for your CCNA exam, as well as a community of like-minded people ready to answer your questions, help you with your struggles, and share in your triumphs.

So which resources should you buy? That question is largely up to how deep your pockets are or how much you like books. If you're like me, you must have it all! I admit it. My bookcase is a testament to my Cisco "geekness." But if you are on a budget, choose one of the foundational study resources and one of the supplemental resources, such as Wendell Odom's certification library and Rivard/ Doherty's flash cards. Whatever you choose, you will be in good hands. Any or all of these authors will serve you well.

Goals and Methods

The main goal of this book is to provide you with a clear and succinct review of the CCNA objectives. Each day's exam topics are grouped into a common conceptual framework that uses the following format:

- A title for the day that concisely states the overall topic
- A list of one or more CCNA 640-802 exam topics to be reviewed
- A Key Topics section to introduce the review material and quickly orient you to the day's focus
- An extensive review section consisting of short paragraphs, lists, tables, examples, and graphics
- A Study Resources section to provide a quick reference for locating more in-depth treatment of the day's topics

The book counts down starting with Day 31 and continues through exam day to provide post-test information. You will also find a calendar and checklist that you can tear out and use during your exam preparation inside the book.

Use the calendar to enter each actual date beside the countdown day and the exact day, time, and location of your CCNA exam. The calendar provides a visual for the time that you can dedicate to each CCNA exam topic.

The checklist highlights important tasks and deadlines leading up to your exam. Use it to help you map out your studies.

Who Should Read This Book?

The audience for this book is anyone finishing preparation for taking the CCNA 640-802 exam. A secondary audience is anyone needing a refresher review of CCNA exam topics—possibly before attempting to recertify or sit for another certification to which the CCNA is a prerequisite.

Getting to Know the CCNA 640-802 Exam

For the current certifications, announced in June 2007, Cisco created the ICND1 (640-822) and ICND2 (640-816) exams, along with the CCNA (640-802) exam. To become CCNA certified, you can pass both the ICND1 and ICND2 exams, or just the CCNA exam. The CCNA exam covers all the topics on the ICND1 and ICND2 exams, giving you two options for gaining your CCNA certification. The two-exam path gives people with less experience a chance to study for a smaller set

of topics at one time. The one-exam option provides a more cost-effective certification path for those who want to prepare for all the topics at once. This book focuses exclusively on the one-exam path using the entire list of exam topics for the CCNA 640-802 exam.

Currently for the CCNA exam, you are allowed 90 minutes to answer 50–60 questions. Use the following steps to access a tutorial at home that demonstrates the exam environment before you go to take the exam:

- **Step 1** Visit http://www.vue.com/cisco.
- **Step 2** Look for a link to the certification tutorial. Currently, it can be found on the right side of the web page under the heading Related Links.
- **Step 3** Click the Certification tutorial link.

When you get to the testing center and check in, the proctor verifies your identity, gives you some general instructions, and then takes you into a quiet room containing a PC. When you're at the PC, you have a few things to do before the timer starts on your exam. For instance, you can take the tutorial to get accustomed to the PC and the testing engine. Every time I sit for an exam, I go through the tutorial, even though I know how the test engine works. It helps me settle my nerves and get focused. Anyone who has user-level skills in getting around a PC should have no problems with the testing environment.

When you start the exam, you are asked a series of questions. Each question is presented one at a time and must be answered before moving on to the next question. The exam engine does not let you go back and change your answer. The exam questions can be in one of the following formats:

- Multiple choice
- Fill-in-the-blank
- Drag-and-drop
- Testlet
- Simlet
- Simulation

The multiple-choice format requires that you point and click a circle or check box next to the correct answer or answers. Cisco traditionally tells you how many answers you need to choose, and the testing software prevents you from choosing too many or too few.

Fill-in-the-blank questions typically require you only to type numbers. However if words are requested, the case does not matter unless the answer is a command that is case sensitive (such as passwords and device names when configuring authentication).

Drag-and-drop questions require you to click and hold, move a button or icon to another area, and release the mouse button to place the object somewhere else—typically in a list. For some questions, to get the question correct, you might need to put a list of five things in the proper order.

Testlets contain one general scenario and several multiple-choice questions about the scenario. These are ideal if you are confident in your knowledge of the scenario's content because you can leverage your strength over multiple questions.

A simlet is similar to a testlet in that you are given a scenario with several multiple-choice questions. However, a simlet uses a network simulator to allow you access to a simulation of the command line of Cisco IOS Software. You can then use **show** commands to examine a network's current behavior and answer the question.

A simulation also uses a network simulator, but you are given a task to accomplish, such as implementing a network solution or troubleshooting an existing network implementation. You do this by configuring one or more routers and switches. The exam then grades the question based on the configuration you changed or added. A newer form of the simulation question is the GUI-based simulation, where a graphical interface like that found on a Linksys router or the Cisco Security Device Manager is simulated.

What Topics Are Covered on the CCNA Exam

The topics of the CCNA 640-802 exam focus on the following eight key categories:

- Describe how a network works.
- Configure, verify and troubleshoot a switch with VLANs and interswitch communications.
- Implement an IP addressing scheme and IP Services to meet network requirements in a medium-size enterprise branch office network.
- Configure, verify, and troubleshoot basic router operation and routing on Cisco devices.
- Explain and select the appropriate administrative tasks required for a WLAN.
- Identify security threats to a network and describe general methods to mitigate those threats.
- Implement, verify, and troubleshoot NAT and ACLs in a medium-size enterprise branch office network
- Implement and verify WAN links.

Although Cisco outlines general exam topics, it is possible that not all topics will appear on the CCNA exam and that topics that are not specifically listed might appear on the exam. The exam topics provided by Cisco and included in this book are a general framework for exam preparation. Be sure to check the Cisco website for the latest exam topics.

Cisco Networking Academy Student Discount Voucher

If you are a Cisco Networking Academy student, you have the opportunity to earn a discount voucher to use when registering and paying for your exam with Pearson VUE. To receive the discount voucher, you must complete all four courses of the CCNA Exploration curriculum and receive a score of 75 percent or higher on your first attempt of the final exam for the final CCNA Exploration course, *Accessing the WAN*. The amount of the discount varies by region and testing center, but typically it has been as much as 50% off the full exam price. Log in to the Academy Connection and click Help at the top of the page to research more information on receiving a discount voucher.

Registering for the CCNA 640-802 Exam

If you are starting your 31 Days to Your CCNA today, register for the exam right now. In my testing experience, there is no better motivator than a scheduled test date staring me in the face. I'm willing to bet it's the same for you. Don't worry about unforeseen circumstances. You can cancel your exam registration for a full refund up to 24 hours before taking the exam. So if you're ready, you should gather the following information in Table I-1 and register right now!

Table I-1 Personal Information for CCNA 640-802 Exam Registration

Item	Notes
Legal Name	
Social Security or Passport Number	
Cisco Certification ID or Test ID ¹	
Cisco Academy Username ²	
Cisco Academy ID Number ²	
Company Name	
Valid Email Address	
Voucher Number ²	
Method of Payment	

¹Applies to exam candidates if you have previously taken a Cisco certification exam (such as the ICND1 exam)

To register for an exam, contact Pearson VUE via one of the following methods:

- Online: http://www.vue.com/cisco.
- **By phone**: In the United States and Canada call 1-800-829-6387, option 1, then option 4. Check the website for information regarding other countries.

The process and available test times will vary based on the local testing center you choose.

Remember, there is no better motivation for study than an actual test date. Sign up today.

²Applies to Cisco Networking Academy students only

Connecting Switches and Ethernet Technology

CCNA 640-802 Exam Topics

- Explain the technology and media access control method for Ethernet networks.
- Select the appropriate media, cables, ports, and connectors to connect switches to other network devices and hosts.

Key Topics

Ethernet has continued to evolve from the 10BASE2 flavor capable of speeds up to 185 Mbps to the newest 10GigE (10 Gigabit Ethernet) capable of speeds up to 10 Gbps. Since 1985, IEEE has continued to upgrade the 802.3 standards to provide faster speeds without changing the underlying frame structure. This feature, among others, has made Ethernet the choice for LAN implementations worldwide. Today we review Ethernet technologies and operation at both the data link and physical layer.

Ethernet Overview

802.3 is the IEEE standard for Ethernet, and both terms are commonly used interchangeably. The terms Ethernet and 802.3 both refer to a family of standards that together define the physical and data link layers of the definitive LAN technology. Figure 28-1 shows a comparison of Ethernet standards to the OSI model.

Figure 28-1 Ethernet Standards and the OSI Model

Data Link	LLC Sublayer				IEEE	802.2		
Layer	MAC Sublayer	net		æ €	Sz net)	ab r Copper)	802.6	
Physical Layer	Physical Layer	Ethernet	IEEE 802.3 (Ethernet)	IEEE 802.3u (FastEthernet)	IEEE 802.3z (GigabitEthernet)	IEEE 802.3ab (GigabitEthernet over C	Token Ring/iEEE 802.6	FDDI

OSI Layers

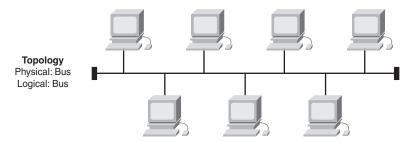
LAN Specification

Ethernet separates the functions of the data link layer into two distinct sublayers:

- Logical Link Control (LLC) sublayer: Defined in the 802.2 standard.
- Media Access Control (MAC) sublayer: Defined in the 802.3 standard.

The LLC sublayer handles communication between the network layer and the MAC sublayer. In general, LLC provides a way to identify the protocol that is passed from the data link layer to the network layer. In this way, the fields of the MAC sublayer are not populated with protocol type information, as was the case in earlier Ethernet implementations.

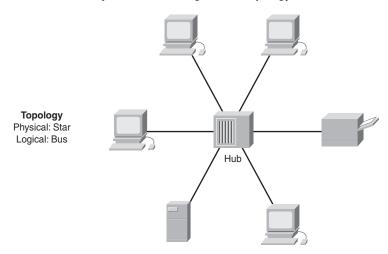
The MAC sublayer has two primary responsibilities:


- Data Encapsulation: Includes frame assembly before transmission, frame parsing upon reception of a frame, data link layer MAC addressing, and error detection.
- Media Access Control: Because Ethernet is a shared media and all devices can transmit at
 any time, media access is controlled by a method called Carrier Sense Multiple Access with
 Collision Detection (CSMA/CD).

At the physical layer, Ethernet specifies and implements encoding and decoding schemes that enable frame bits to be carried as signals across both unshielded twisted-pair (UTP) copper cables and optical fiber cables. In early implementations, Ethernet used coaxial cabling.

Legacy Ethernet Technologies

Ethernet is best understood by first considering the two early Ethernet specifications—10BASE5 and 10BASE2. With these two specifications, the network engineer installs a series of coaxial cables connecting each device on the Ethernet network, as shown in Figure 28-2.


Figure 28-2 Ethernet Physical and Logical Bus Topology

The series of cables creates an electrical circuit, called a bus, which is shared among all devices on the Ethernet. When a computer wants to send some bits to another computer on the bus, it sends an electrical signal, and the electricity propagates to all devices on the Ethernet.

With the change of media to UTP and the introduction of the first hubs, Ethernet physical topologies migrated to a star as shown in Figure 28-3.

Regardless of the change in the physical topology from a bus to a star, hubs logically operate similar to a traditional bus topology and require the use of CSMA/CD.

CSMA/CD

Because Ethernet is a shared media where every device has the right to send at any time, it also defines a specification for how to ensure that only one device sends traffic at a time. The CSMA/CD algorithm defines how the Ethernet logical bus is accessed.

CSMA/CD logic helps prevent collisions and also defines how to act when a collision does occur. The CSMA/CD algorithm works like this:

- **1.** A device with a frame to send listens until the Ethernet is not busy.
- **2.** When the Ethernet is not busy, the sender(s) begin(s) sending the frame.
- **3.** The sender(s) listen(s) to make sure that no collision occurred.
- **4.** If a collision occurs, the devices that had been sending a frame each send a jamming signal to ensure that all stations recognize the collision.
- **5.** After the jamming is complete, each sender randomizes a timer and waits that long before trying to resend the collided frame.
- **6.** When each random timer expires, the process starts again from the beginning.

When CSMA/CD is in effect, it also means that a device's network interface card (NIC) is operating in half-duplex mode—either sending or receiving frames. CSMA/CD is disabled when a NIC autodetects that it can operate in—or is manually configured to operate in—full duplex mode. In full duplex mode, a NIC can send and receive simultaneously.

Legacy Ethernet Summary

Today, you might occasionally use LAN hubs, but you will more likely use switches instead of hubs. However, keep in mind the following key points about the history of Ethernet:

- The original Ethernet LANs created an electrical bus to which all devices connected.
- 10BASE2 and 10BASE5 repeaters extended the length of LANs by cleaning up the electrical signal and repeating it—a Layer 1 function—but without interpreting the meaning of the electrical signal.

Table 28-1

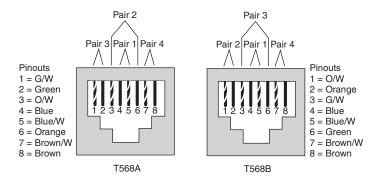
- Hubs are repeaters that provide a centralized connection point for UTP cabling—but they still create a single electrical bus, shared by the various devices, just like 10BASE5 and 10BASE2.
- Because collisions could occur in any of these cases, Ethernet defines the CSMA/CD algorithm, which tells devices how to both avoid collisions and take action when collisions do occur.

Current Ethernet Technologies

Refer back to Figure 28-1 and notice the different 802.3 standards. Each new physical layer standard from the IEEE requires many differences at the physical layer. However, each of these physical layer standards uses the same 802.3 header, and each uses the upper LLC sublayer as well. Table 28-1 lists today's most commonly used IEEE Ethernet physical layer standards.

	Idbic 20 i	roddy 5 most (Johnnon Types of	Laternot
•	Common	Speed	Alternative	Name of I
	Mama		Mama	Charada ad

Today's Most Common Types of Ethernet


Common Name	Speed	Alternative Name	Name of IEEE Standard	Cable Type, Maximum Length
Ethernet	10 Mbps	10BASE-T	IEEE 802.3	Copper, 100 m
Fast Ethernet	100 Mbps	100BASE-TX	IEEE 802.3u	Copper, 100 m
Gigabit Ethernet	1000 Mbps	1000BASE-LX, 1000BASE-SX	IEEE 802.3z	Fiber, 550 m (SX) 5 km (LX)
Gigabit Ethernet	1000 Mbps	1000BASE-T	IEEE 802.3ab	Copper, 100 m
10GigE (Gigabit Ethernet)	10 Gbps	10GBASE-SR, 10GBASE-LR	IEEE 802.3ae	Fiber, up to 300 m (SR), up to 25 km (LR)
10GigE (Gigabit Ethernet)	10 Gbps	10GBASE-T	IEEE 802.3an	Copper, 100 m

UTP Cabling

The three most common Ethernet standards used today—10BASE-T (Ethernet), 100BASE-TX (Fast Ethernet, or FE), and 1000BASE-T (Gigabit Ethernet, or GE)—use UTP cabling. Some key differences exist, particularly with the number of wire pairs needed in each case and in the type (category) of cabling.

The UTP cabling used by popular Ethernet standards include either two or four pairs of wires. The cable ends typically use an RJ-45 connector. The RJ-45 connector has eight specific physical locations into which the eight wires in the cable can be inserted, called pin positions or, simply, pins.

The Telecommunications Industry Association (TIA) and the Electronics Industry Alliance (EIA) define standards for UTP cabling, color coding for wires, and standard pinouts on the cables. Figure 28-4 shows two TIA/EIA pinout standards, with the color coding and pair numbers listed.

For the exam, you should be well prepared to choose which type of cable (straight-through or crossover) is needed in each part of the network. In short, devices on opposite ends of a cable that use the same pair of pins to transmit need a crossover cable. Devices that use an opposite pair of pins to transmit need a straight-through cable. Table 28-2 lists typical devices and the pin pairs they use, assuming that they use 10BASE-T and 100BASE-TX.

Table 28-2 10BASE-T and 100BASE-TX Pin Pairs Used

Devices That Transmit on 1,2 and Receive on 3,6	Devices That Transmit on 3,6 and Receive on 1,2
PC NICs	Hubs
Routers	Switches
Wireless Access Point (Ethernet interface)	N/A
Networked printers (printers that connect directly to the LAN)	N/A

1000BASE-T requires four wire pairs because Gigabit Ethernet transmits and receives on each of the four wire pairs simultaneously.

However, Gigabit Ethernet does have a concept of straight-through and crossover cables, with a minor difference in the crossover cables. The pinouts for a straight-through cable are the same— pin 1 to pin 1, pin 2 to pin 2, and so on. The crossover cable crosses the same two-wire pair as the crossover cable for the other types of Ethernet—the pair at pins 1,2 and 3,6—as well as crossing the two other pairs (the pair at pins 4,5 with the pair at pins 7,8).

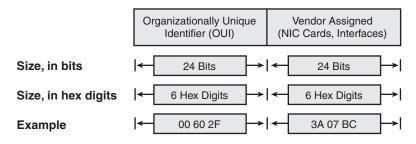
Benefits of Using Switches

A collision domain is a set of devices whose frames could collide. All devices on a 10BASE2, 10BASE5, or any network using a hub risk collisions between the frames that they send, so all devices on one of these types of Ethernet networks are in the same collision domain and use CSMA/CD to detect and resolve collisions.

LAN switches significantly reduce, or even eliminate, the number of collisions on a LAN. Unlike hubs, switches do not create a single shared bus. Instead, switches do the following:

- Switches interpret the bits in the received frame so that they can typically send the frame out the one required port, rather than all other ports.
- If a switch needs to forward multiple frames out the same port, the switch buffers the frames in memory, sending one at a time, thereby avoiding collisions.

In addition, switches with only one device cabled to each port of the switch allow the use of full-duplex operation. Full-duplex means that the NIC can send and receive concurrently, effectively doubling the bandwidth of a 100 Mbps link to 200 Mbps—100 Mbps for sending and 100 Mbps for receiving.


These seemingly simple switch features provide significant performance improvements as compared with using hubs. In particular:

- If only one device is cabled to each port of a switch, no collisions can occur.
- Devices connected to one switch port do not share their bandwidth with devices connected to another switch port. Each has its own separate bandwidth, meaning that a switch with 100 Mbps ports has 100 Mbps of bandwidth per port.

Ethernet Addressing

The IEEE defines the format and assignment of LAN addresses. To ensure a unique MAC address, the first half of the address identifies the manufacturer of the card. This code is called the organizationally unique identifier (OUI). Each manufacturer assigns a MAC address with its own OUI as the first half of the address. The second half of the address is assigned by the manufacturer and is never used on another card or network interface with the same OUI. Figure 28-5 shows the structure of a unicast Ethernet address.

Figure 28-5 Structure of Unicast Ethernet Address

Ethernet also has group addresses, which identify more than one NIC or network interface. The IEEE defines two general categories of group addresses for Ethernet:

- Broadcast addresses: The broadcast address implies that all devices on the LAN should process the frame and has a value of FFFF.FFFF.FFFF.
- Multicast addresses: Multicast addresses are used to allow a subset of devices on a LAN to communicate. When IP multicasts over an Ethernet, the multicast MAC addresses used by IP follow this format: 0100.5exx.xxxx, where any value can be used in the last half of the address.

Ethernet Framing

The physical layer helps you get a string of bits from one device to another. The framing of the bits allows the receiving device to interpret the bits. The term *framing* refers to the definition of the fields assumed to be in the data that is received. Framing defines the meaning of the bits transmitted and received over a network.

The framing used for Ethernet has changed a couple of times over the years. Each iteration of Ethernet is shown in Figure 28-6, with the current version shown at the bottom.

Figure 28-6 Ethernet Frame Formats

Bytes

DIX						
Pream 8	ble	Destination 6	Source 6	Type 2	Data and Pad 46 – 1500	FCS 4
IEEE 802.3	(Origin	al)				
Preamble 7	SFD 1	Destination 6	Source 6	Length 2	Data and Pad 46 – 1500	FCS 4
IEEE 802.3 (Revised 1997)						
Preamble	SFD	Destination	Source	Length/	Data and Pad	FCS

46 - 1500

Type 2

The fields in the last version shown in Figure 28-6 are explained further in Table 28-3.

Table 28-3 IEEE 802.3 Ethernet Field Descriptions

Field	Field Length in Bytes Description		
Preamble	7	Synchronization	
Start Frame Delimiter (SFD)	1	Signifies that the next byte begins the Destination MAC field	
Destination MAC address	6	Identifies the intended recipient of this frame	
Source MAC address	6	Identifies the sender of this frame	
Length	2	Defines the length of the data field of the frame (either length or type is present, but not both)	
Туре	2	Defines the type of protocol listed inside the frame (either length or type is present, but not both)	
Data and Pad	46–1500	Holds data from a higher layer, typically a Layer 3 PDU (generic), and often an IP packet	
Frame Check Sequence (FCS)	4	Provides a method for the receiving NIC to determine whether the frame experienced transmission errors	

The Role of the Physical Layer

We have already discussed the most popular cabling used in LANs—UTP. But to fully understand the operation of the network, you should know some additional basic concepts of the physical layer.

The OSI physical layer accepts a complete frame from the data link layer and encodes it as a series of signals that are transmitted onto the local media.

The delivery of frames across the local media requires the following physical layer elements:

- The physical media and associated connectors
- A representation of bits on the media
- Encoding of data and control information
- Transmitter and receiver circuitry on the network devices

There are three basic forms of network media on which data is represented:

- Copper cable
- Fiber
- Wireless (IEEE 802.11)

Bits are represented on the medium by changing one or more of the following characteristics of a signal:

- Amplitude
- Frequency
- Phase

The nature of the actual signals representing the bits on the media will depend on the signaling method in use. Some methods may use one attribute of a signal to represent a single 0 and use another attribute of a signal to represent a single 1. The actual signaling method and its detailed operation are not important to your CCNA exam preparation.

Study Resources

For today's exam topics, refer to the following resources for more study.

Resource	Chapter	Торіс	Where to Find It	
Foundational Resources				
CCNA Exploration Online Curriculum: Network Fundamentals	Chapter 8, "OSI Physical Layer" Chapter 9, "Ethernet" Chapter 10, "Planning and Cabling Networks"	All topics within the chapter Overview of Ethernet Ethernet—Communication through the LAN The Ethernet Frame Ethernet Media Access Control Ethernet Physical Layer Address Resolution Protocol (ARP) Making LAN Connections	Chapter 8 Section 9.1 Section 9.2 Section 9.3 Section 9.4 Section 9.5 Section 9.7 Section 10.2.2	
CCNA Exploration Online Curriculum: LAN Switching and Wireless	Chapter 2, "Basic Switch Concepts and Configuration"	Key Elements of Ethernet/ 802.3 Networks	Section 2.2.1	
CCNA Exploration Network Fundamentals Companion Guide	Chapter 8, "OSI Physical Layer" Chapter 9, "Ethernet" Chapter 10, "Planning and Cabling Networks"	All topics within the chapter Overview of Ethernet Ethernet: Communication through the LAN The Ethernet Frame Ethernet MAC Ethernet Physical Layer Address Resolution Protocol (ARP) Making LAN Connections	pp. 279–306 pp. 315–320 pp. 320–324 pp. 324–334 pp. 334–342 pp. 342–347 pp. 355–361 pp. 380–384	
CCNA Exploration LAN Switching and Wireless Companion Guide	Chapter 2, "Basic Switch Concepts and Configuration"	Key Elements of Ethernet/ 802.3 Networks	pp. 46–52	
ICND1 Official Exam Certification Guide	Chapter 3, "Fundamentals of LANs"	All topics within the chapter	pp. 45–69	
ICND1 Authorized Self-Study Guide	Chapter 1, "Building a Simple Network" Chapter 2, "Ethernet LANs"	Understanding Ethernet Connecting to an Ethernet LAN Understanding the Challenges of Shared LANs	pp. 104–115 pp. 115–124 pp. 139–144	
Supplemental Resources			Г	
CCNA Flash Cards and Exam Practice Pack	ICND1, Section 3	Understanding Ethernet	pp. 70–84	

Index

Symbols	AD (administrative distance), 153-154
•	ad hoc mode, wireless operations, 254
3DES (Triple DES), 323	adding comments to named or numbered
10BASE-T, 37	ACLs, 287-288
100BASE-TX, 37	Address Resolution Protocol (ARP),
802.00i (WPA2), 258	16, 148
802.11g, 255	addresses
802.3. See Ethernet	broadcast addresses, 38
1000BASE-T, 37	Ethernet, 38
	IPv4, 109
Λ	classes of addresses, 110-111
Α	header formats, 109-110
access attacks, 272	subnet masks, 111-112 IPv6
access control lists. See ACLs	conventions for writing, 139
access layer switches, 4	loopback addresses, 141
acknowledgment (ACK) packets,	managing, 142
EIGRP, 213	private addresses, 141
ACLs (access control lists), 279	reserved addresses, 141
adding comments to named or numbered	link-local addresses, 141
ACLs, 287-288	multicast addresses, 38
complex ACLs, 288	private IP addressing, 119-120
configuring extended numbered ACLs,	public IP addressing, 119-120 site-local addresses, 141
284-285	static addresses, 123
deny FTP from subnets, 285	subnet addresses, summarizing, 118-119
deny only Telnet from subnets, 285-286	addressing devices, 123
configuring named ACLs, 286-287	addressing schemes, 354
configuring standard numbered ACLs, 282	EIGRP, 215
deny a specific host, 283	OSPF, 233-234
deny a specific subnet, 283-284 deny Telnet access to routers, 284	RIPv1, 198
permit specific network, 282-283	administrative distance (AD), 153-154
defining, 279	EIGRP, 214
design guidelines, 281-282	Advanced Encryption Standard
extended ACLs, 280	(AES), 323
identification, 281	advertisement request message, VTP, 78
interface processing, 279-280	AES (Advanced Encryption
standard ACLs, 280	Standard), 323
troubleshooting, 291 denied protocols, 292-293	AH (Authentication Header), 325
host has no connectivity, 291-292	algorithms, OSPF, 231-232
Telnet is allowed #1, 293	analog dialup, circuit-switched
Telnet is allowed #2, 294	connections (WAN), 314-315
Telnet is allowed #3, 294-295	ANDing, 112
types of, 280-281	antivirus software, 273
verifying, 289-290	application layer (TCP/IP), 21
	application layer (1 C1/11), 21

applications, network-based black hole VLAN, 73 applications, 17 boot system command, 186 impact of voice and video, 18 bootup process, routers, 162-163 increased network usage, 17 BRI (Basic Rate Interface), 315 QoS (quality of service), 17 broadband wireless, Internet connections ARP (Address Resolution Protocol), 16, (WAN), 319 124-126, 148 broadcast addresses, 38 Frame Relay, 339 subnetting, 114 AS (autonomous system), 150 broadcast domains, 45 assigning VLANs, 358, 369-370 broadcast storms, STP, 78 to interfaces, 89 broadcasts, 43 asymmetric switching, 46 ATM, packet-switched connections (WAN), 317 С attacker terminology, 267-268 cable modems, Internet connections attackers, thinking like, 268-269 (WAN), 318 authentication cables PPP, LCP, 333 crossover cables, 6, 164-165 VPNs, 325 straight-through cables, 6, 165 wireless security, 257 calculating Dijkstra algorithm (link-state Authentication Header (AH), 325 routing protocols), 157-158 auto-cost reference-bandwidth, 236 carrier protocols, 323 automatic summarization CDP, troubleshooting tools, 68-69 EIGRP, 216-217 central office (CO), WAN, 309 RIPv1, 204-205 channel service unit (CSU), 310 autonomous system (AS), 150 CHAP, configuring PPP, 335, 356, 362 autosummarization, disabling in RIPv2, 208 cHDLC (Cisco HDLC), 329 availability, balancing with security, 269 CIR (committed information rate), Frame Relay, 339 circuit-switched connections, WAN, 314 В analog dialup, 314-315 backing up IOS images, 184 ISDN, 315-316 Cisco devices, configuring, 47 backup DR (BDR), 230 Cisco Enterprise Architecture, 10 backward explicitly congestion notifica-Cisco HDLC (cHDLC), 329 tion (BECN), Frame Relay, 339 balancing security and availability, 269 Cisco Interim Solution, 258 bandwidth command, 220, 236 Cisco IOS (Internetwork Operating System), 46. See also IOS Basic Rate Interface (BRI), 315 CLI EXEC sessions, 47 basic router configuration, 167-174 CLI navigation and shortcuts, 48 BDR (backup designated router), 230 command history, 49-50 BECN (backward explicit congestion connecting to Cisco devices, 46-47 notification), Frame Relay, 339 examination commands, 50 BID (bridge ID), configuring, 82-84 file naming conventions, 182-183 binary values, subnet masks, 112 help facility, 48 storing and erasing configuration files, 51 black hats, 268

subconfiguration modes, 50

Cisco IOS Integrated File System. See IFS	encapsulation ppp, 334 erase startup-config, 51
	examination commands, Cisco IOS, 50
Cisco IOS OSPF cost values, 236	frame-relay interface-dlci, 348
classes of addresses, IPv4 addressing,	interface range command, 55
110-111	ip helper-address, 131
classful routing protocols, 151-152	ip ospf cost, 236
classifying dynamic routing protocols, 150	ip ospf priority interface, 237
classful routing protocols, 151-152	ip route, static routes, 191
classless routing protocols, 152	ipconfig/release, 131
distance vector routing protocols, 150-151	ipconfig/renew, 131
EGP, 150	for managing configuration files, IFS, 182
IGP, 150	network, 215-216, 234-235
link-state routing protocols, 151	no auto-summary, 208, 216
classless routing protocols, 152	no debug ip rip, 248
CLI (command-line interface), 162, 261	no keepalives, 351
navigation and shortcuts, 48-49	no service dhcp, 129
CLI EXEC sessions, Cisco IOS, 47	no shutdown, 58, 104
clock rate command, 350	passive-interface, disabling updates, 203
CO (central office), WAN, 309	ping, 11, 62, 132-133
	ppp authentication chap, 335
codes, interface status codes, 65, 171	ppp authentication pap, 335
LAN switches, 65-66	range, 89 redistribute static, 219
collision domains, 45	router ospf, 234
command history, Cisco IOS, 49-50	show access-lists, 289
command syntax help, 48	show cdp, 68
command-line interface (CLI), 162, 261	show cdp interface, 69
commands	show cdp neighbors detail, 69
auto-cost reference-bandwidth, 236	show controllers, 350
bandwidth, 236	show file systems, 179-181
EIGRP, 220	show flash, 185
boot system, 186	show frame-relay map, 348
clock rate, 350	show frame-relay pvc, 348
command history buffer commands, 49-50	show interface status, 67
configure terminal, 50	show interfaces, 66, 172-174, 351
сору, 51	show interfaces serial, 349
managing configuration files, 182	show interfaces status, 66
copy run start, 182	show ip eigrp interfaces, 248
debug eigrp fsm, 224	show ip eigrp neighbors, 245, 249
debug frame-relay lmi, 348	show ip interface, 290
debug ip nat, 305	show in interface brief, 11, 170, 239
debug ip rip, 247	show in not translations, 304
debug ppp authentication, 351	show ip nat translations, 304 show ip ospf, 241
default-information originate, 206, 238	show ip ospf, 241 show ip ospf interface, 242-243
dir, 180	show ip ospf interface, 242-243 show ip ospf interface brief, 248
dynamic auto, 91	show ip ospf neighbor, 240, 249
dynamic desirable, 91 enable password, 55	show ip ospf neighbor commands, 245
enable password password, 169	show ip protocols, 153, 239-240, 245, 248
enable secret. 55	RIPv1, 200

show ip route, 11, 152, 170, 199, 239, 245	Cisco devices, 47
RIPv1, 200	default routing, 357, 364
show port-security, 57	DHCP, 359, 371-372
show port-security interface, 57, 94	dynamic NAT, 301-302
show run, 304	EIGRP, 214-215
show running-config, 170, 290	automatic summarization, 216-217
show spanning-tree, 83	default routes, 219
show version, 162-163	manual summarization, 217-218
show vlan brief, 88-90	modifying EIGRP metrics, 219-220
show vtp status, 98	modifying hello intervals and hold
spanning-tree mode rapid-pvst, 84	times, 220-221
spanning-tree portfast default, 84	network command, 215-216
switch configuration commands, 53-54	EIGRP routing, 357, 365-366
switchport mode access, 103	firewall ACLs, 359, 372-373
switchport mode dynamic desirable, 75	Frame Relay, 343-344
switchport mode trunk, 75	full mesh with one subnet, 344-347
switchport mode trunk dynamic auto, 75	hub-and-spoke topology, 356, 360-362
switchport nonegotiate, 75, 103	partial mesh with one subnet per PVC
switchport port-security violation, 56	347-348
telnet, 11	HDLC, 330
tftpdnld, 187	inter-VLAN routing, 103-105, 357,
traceroute, 133-134, 175, 246	364-365
undebug all, 248	NAT, 356, 362-363
username, 335	NAT overload, 303
vtp pruning, 98	OSPF, 233
vtp version 2, 98	controlling DR/BDR election, 237-238
write erase, 51	modifying Hello intervals and hold
xmodem, 187	times, 238-239
comments, adding to named or numbered	modifying metrics, 236-237
ACLs, 287-288	network command, 234-235
	redistributing default routes, 238
committed information rate (CIR),	router ID, 235-236
Frame Relay, 339	router ospf command, 234
complex ACLs, 288	port security, 56-58, 358, 369-370
components	PPP, 334
of Frame Relay, 338-339	CHAP, 335, 356, 362
of routers, internal components, 161-162	PAP, 335-336
for teleworker connectivity, 7	RIPv1, 198-199
of VPNs, 322	RIPv2, 207-208
of WAN, 309	
configuration files	disabling autosummarization, 208
Cisco IOS, 51	routers, as DHCP servers, 128-132
	RSTP, 84
commands for managing, 182	SSH access, 55-56
configurations, ISP, 355-356	static NAT, 301
configure terminal command, 50	static routes, 191-193
configuring	default static routes, 194-197
ACLs	with "Next Hop" parameter, 193
extended numbered ACLs, 284-286	with exit interface parameter, 193-194
named ACLs, 286-287	STP, 82, 358, 370-371
standard numbered ACLs, 282-284	BID (bridge ID), 82-84
	PortFast, 84

trunking, 91-93 VLANs, 88-91, 357, 367-369 VTP, 97-100 Windows PC to use DHCP, 123 Connecting Cisco IOS to Cisco devices, 46-47 connection establishment, TCP/IP, 25 connection-oriented systems, WAN, 313 connectionless protocols, 26 connectionless systems, WAN, 313 connections routers, 164-165 verifying network connectivity, 62-65, 175-176 WAN circuit-switched connections, 314-316 dedicated connections, 317-319 packet-switched connections, 315-317 WAN link options, 319-320 conventions for writing IPv6 addresses, 139 for writing IPv6 prefixes, 139-140 converging with link-state protocols, link- state routing protocols, 158 copy command, 51, 182 copy run start command, 182 core layer switches, 4 CPE (Customer Premises Equipment), 309 CPU, 161 crackers, 268 crossover cables, 6, 164-165 CSMA/CA (carrier sense multiple access with collision avoidance), 256-257 CSMA/CD (carrier sense multiple access with collision detection), 34-35 CSU (channel service unit), 310 Customer Premises Equipment (CPE), 309 cut-through switching, 46	Data Encryption Standard (DES), 323 data service unit (DSU), 310 Data Terminal Equipment (DTE), 309, 337 data VLAN, 72 data-link connection identifier (DLCI), Frame Relay, 338 data-link protocols, WAN, 312 DBD (database description) packets, OSPF, 228 DCE (Data Communications Equipment), 309, 337 DDoS (distributed denial-of-service) attacks, 272 debug eigrp fsm, 224 debug frame-relay lmi, 348 debug ip nat command, 305 debug ip rip commands, 247 debug ppp authentication, 351 dedicated connections, WAN, 314 default file systems, 180 default routes EIGRP, 219 redistributing in OSPF, 238 RIPv1, 206-207 default routing, configuring, 357, 364 default static routes, configuring, 194-197 default VLAN, 72 default-information originate command, 206, 238 demarcation point, WAN, 309 denial-of-service (DoS) attacks, 272 deny any statements, 279 DES (Data Encryption Standard), 323 design guidelines, ACLs, 281-282 designated router (DR), 230-231 device hardening, 273 devices, 3 Cisco devices, configuring, 47 connecting Cisco IOS to Cisco devices, 46-47 hubs, 3 switches. See switches
Data Communications Equipment (DCE), 309, 337	switches. See switches
•	of WAN, 310
data encapsulation	
MAC sublayer, 34	
- ~	

TCP/IP, 28

dynamic desirable, 91

DHCP (Dynamic Host Configuration Protocol), 15, 127	Dynamic Host Configuration Protocol (DHCP), 15
configuring, 359, 371-372	dynamic NAT, 299-302
configuring Windows PC to use, 123	dynamic routing, 191
verifying operations, 130	static routing versus, 149
DHCP servers, configuring routers as,	dynamic routing metrics, 152-153
128-132	dynamic routing protocols, classifying, 150
DHCPv6, 142	classful routing protocols, 151-152
Dijkstra algorithm, calculating, 157-158	classless routing protocols, 152
dir command, 180	distance vector routing protocols, 150-151
Direct Sequence Spread Spectrum	EGP, 150
(DSSS), 255	IGP, 150
disabling	link-state routing protocols, 151 Dynamic Trunking Protocol (DTP), 75
autosummarization, RIPv2, 208	Dynamic Trunking Trotocol (D11), 73
updates, passive-interface command, 203 discontiguous networks, 246-247	_
	E
distance vector routing protocols, 150-151	E1 (External Type 1), 240
distance vectors, EIGRP versus, 211	E2 (External Type 2), 240
distributed DoS attacks, 272	EAP (Extensible Authentication
distribution layer switches, 4	Protocol), 264
DLCI (data-link connection identifier), Frame Relay, 338	EGP (Exterior Gateway Protocols), 150
DNS (Domain Name System), 15, 126-127	EIA (Electronics Industry Alliance), 36
documentation for networks, 11	EIA/TIA-232, 311
domains	EIA/TIA-449/530, 311
	EIA/TIA-612/613, 311
broadcast domains, 45 collision domains, 45	EIGRP (Enhanced Interior Gateway
top-level domains, 126	Routing Protocol), 211
DoS (denial-of-service) attacks, 272	addressing schemes, 215
DR (designated router), 230-231	administrative distance, 214
DR/BDR election, OSPF controlling,	configuring, 214-215
237-238	automatic summarization, 216-217
DSL, Internet connections (WAN),	default routes, 219
317-318	manual summarization, 217-218
DSSS (Direct Sequence Spread	modifying EIGRP metrics, 219-220 modifying hello intervals and hold
Spectrum), 255	times, 220-221
DSU (data service unit), 310	network command, 215-216
DTE (Data Terminal Equipment),	distance vectors versus, 211
309, 337	DUAL, 214
DTP (Dynamic Trunking Protocol), 75	dynamic routing metrics, 153
DUAL, EIGRP, 214	message formats, 212 neighbor requirements, 249
dual stacking, IPv6, 143	packet types, 212-213
duplexes, switches, 66-67	troubleshooting, 248
dynamic 6to4 tunnels, 143	verifying
dynamic auto, 91	with show ip eigrp neighbors, 222-224
dynamic desirable 01	with show ip protocols, 221

EIGRP routing, configuring, 357, 365-366 electrical threats, 271 Electronics Industry Alliance (EIA), 36 eliminating routing loops, 155-156 employees, wireless security risks, 257 enable password command, 55 enable password password command, 169 enable secret command, 55 encapsulating protocols, 323 Encapsulating Security Payload (ESP), 325 encapsulation, 322 HDLC, 329-330 OSL models, 16	legacy Ethernet technologies, 34-36 CSMA/CD, 35 overview, 33-34 physical layer, role of, 40 switches, 37-38 UTP cabling, 36-37 EtherType field, 74 EUI-64 format, IPv6, 141-142 examinations exam day information, 377 post-exam information career options, 379-380 receiving your certificate, 379 retesting, 380
OSI models, 16 encapsulation ppp command, 334	examination commands, Cisco IOS, 50
encapsulation process, 16	exit interface parameter, configuring stat
encoding channels, wireless encoding channels, 255	ic routes, 193-194 extended ACLs, 280
encryption, 257, 322	extended numbered ACLs, configuring, 284
encryption algorithms, VPNs, 323 Enhanced Interior Gateway Routing Protocol. See EIGRP Enterprirse Architecture, 10	deny FTP from subnets, 285 deny only Telnet from subnets, 285-286 Extensible Authentication Protocol (EAP), 264
Enterprise Branch Architecture, 10	Exterior Gateway Protocols (EGP), 150
Enterprise Campus Architecture, 10	external threats, 271
Enterprise Data Center Architecture, 10	External Type 1 (E1), 240
Enterprise Edge Architecture, 10	External Type 2 (E2), 240
Enterprise Teleworker Architecture, 10	
environmental threats, 271 erase startup-config command, 51	F
erasing configuration files, Cisco IIOS, 51	FC (Feasibility Condition), 223
error detection, LCP, 332 error recovery, TCP/IP, 24	FCC (Federal Communications Commission), 253-254
ESP (Encapsulating Security Payload), 325	FD (Feasible Distance), 223
establishing VPN connections, 322	Feasible Successor (FS), 223
authentication, 325 encryption algorithms, 323 hashes, 324-325 IPsec Security Protocols, 325 tunneling, 323	FECN (forward explicit congestion notifi- cation), Frame Relay, 339 FHSS (Frequency Hopping Spread Spectrum), 255 file naming conventions, IOS, 182-183
Ethernet, 16	file systems, default file systems, 180
addresses, 38 current Ethernet technologies, 36 framing, 39 Gigabit Ethernet, 37	File Transfer Protocol (FTP), 15 firewall ACLs, configuring, 359, 372-373 firewalls, 273
Organic Editoriot, 37	flash memory, 162

flow control, TCP/IP, 25

forward explicit congestion notification (FECN), Frame Relay, 339	G
forwarding, frame forwarding, 45	Gigabit Ethernet, 37
asymmetric switching, 46	global unicast addresses, IPv6, 140-141
Layer 2 switching, 46	GUI (graphical user interface), 162, 261
Layer 3 switching, 46	
memory buffering, 46 switch forwarding methods, 45	Н
symmetric switching, 46	
FRAD (Frame Relay Access Devices), 337	hackers, 257, 267
frame format, PPP, 331-332	hardware threats, 271
frame forwarding, 45-46	hashes, VPNs, 324-325
Frame Relay, 16, 337	HDLC
backward explicity congestion notification (BECN), 339 committed information rate (CIR), 339	configuring, 330 encapsulation, 329-330 verifying, 331 HDLC (High-Level Data Link
components of, 338-339	Control), 329
configuring, 344	header formats, IPv4 addressing, 109-110
full mesh with one subnet, 344-347 hub-and-spoke topology, 356, 360-362	hello intervals and hold times
partial mesh with one subnet per PVC,	modifying (EIGRP), 220-221
347-348	modifying (OSPF), 238-239
configuring and verifying, 343	Hello packets
data-link connection identifier (DLCI), 338	EIGRP, 213
DCE, 337	OSPF, 228
DTE, 337	neighbor adjacency, 228-229
forward explicit congestion notification	help facilities, Cisco IOS, 48
(FECN), 339 Inverse Address Resolution Protocol	hierarchical network models, 9
(ARP), 339	High-Level Data Link Control
Inverse ARP, 341-343	(HDLC), 329
LMI, 341-343	HIPS (host-based intrusion
local access rate, 338	prevention), 273
Local Management Interface (LMI), 339	history of commands, Cisco IOS, 49-50
NBMA (nonbroadcast multi-access), 340 packet-switched connections, WAN, 317	HMAC (hashed message authentication code), 324-325
permanent virtual circuit (PVC), 338 switched virtual circuit (SVC), 338 targelegies, 320	hold-down timers, preventing routing loops, 155
topologies, 339 verifying, 348 virtual circuit (VC), 338	host and server security, mitigation techniques, 273
Frame Relay Access Devices (FRAD), 337	host ranges, subnetting, 114
frame-relay interface-dlci command, 348	host-based intrusion prevention (HIPS), 273
framing, Ethernet, 39	HTTP (Hypertext Transfer Protocol), 15
Frequency Hopping Spread Spectrum	HTTP request, 21
(FHSS), 255	- '
FS (Feasible Successor), 223	HTTP response, 21
FTP (File Transfer Protocol), 15	hub-and-spoke configuration, Frame

Relay, 340

full-mesh topology, Frame Relay, 339

hub-and-spoke topology, Frame Relay (configuring), 356, 360-362	interfaces
hubs, 3	assigning VLANs to, 89 passive interfaces, RIPv1, 203-204
Hypertext Transfer Protocol (HTTP), 15	routers, 164 unused interfaces, shutting down and securing, 58
I	up interfaces, layer 1 problems, 67 Interior Gateway Protocols. See IGP
ICMP (Internet Control Message Protocol), 16, 147	internal threats, 271
identification, ACLs, 281	Internet connections, WAN
IDS (intrusion detection systems), 273 IEEE, 253	broadband wireless, 319 cable modems, 318 DSL, 317-318
IETF (Internet Engineering Task Force), 137, 227 IFS (Integrated File System)	Metro Ethernet, 319 Internet Control Message Protocol (ICMP), 16, 147
commands, 179-181 commands for managing configuration	Internet Engineering Task Force (IETF), 137
files, 182	internet information queries, 271
URL prefixes for specifying file locations, 181	Internet layer, TCP/IP, 26
IGP (Interior Gateway Protocols), 150	Internet Message Access Protocol (IMAP), 15
comparison summary, 154 images, IOS images, 183	Internet Protocol (IP), 16
backing up, 184 recovering with TFTP servers, 186-187	Internetwork Operating System. See Cisco IOS
recovering with Xmodem, 187-188 restoring, 185-186	Intrasite Automatic Tunnel Addressing Protocol (ISATAP), 143
IMAP (Internet Message Access Protocol), 15	intrusion detection and prevention, miti gation techniques, 273
implementing WLAN, 261	intrusion detection systems (IDS), 273
checklist for implementing, 262-264	intrustion tools, wireless security, 257
infrastructure mode, wireless operations, 254	Inverse Address Resolution Protocol (ARP), Frame Relay, 339
inside global address, NAT, 297	Inverse ARP, Frame Relay, 341-343
inside local address, NAT, 297	IOS (Internetwork Operating
Integrated File System. See IFS	System), 162
Inter-Switch Link (ISL), 103	file naming conventions, 182-183
inter-VLAN routing	IOS images
configuring, 103-105, 357, 364-365 troubleshooting, 105 verifying, 105	managing, 183 backing up, 184 restoring, 185-186
interface ID, IPv6, 141-142	recovering with TFTP servers, 186-187
interface processing, ACLs, 279-280	recovering with Xmodem, 187-188
interface range command, 55	IP (Internet Protocol), 16
interface status codes, 65-66, 171	IP addressing, 119-120

IP multicast, 72	Layer 2 problems, troubleshooting,
ip ospf cost command, 236	350-351
ip ospf priority interface command, 237	Layer 2 switching, 46
ip route command, static routes, 191	Layer 3 problems, troubleshooting,
IP telephony, 72	351-352
ipconfig/release commands, 131	Layer 3 switching, 46
ipconfig/renew command, 131	layers
IPsec Security Protocols, VPNs, 325	OSI models, 14-15
IPv4	TCP/IP models, 15-16
addresses	troubleshooting with, 29
classes of addresses, 110-111	LCP (PPP Link Control Protocol),
header formats, 109-110	332-333
subnet masks, 111-112	legacy Ethernet technologies, 34-36
versus IPv6, 137	CSMA/CD, 35
IPv6	link-local addresses, 141
addresses	link-state advertisements (LSA), 228
conventions for writing, 139	link-state database (LSDB), building,
global unicast addresses, 140-141	156-157
loopback addresses, 141	link-state protocols, converging with
managing, 142	link-state routing protocols, 158
private addresses, 141 reserved addresses, 141	link-state routing process, OSPF, 232-233
interface ID and EUI-64 format, 141-142	link-state routing protocols, 151, 156
versus IPv4, 137	calculating Dijkstra algorithms, 157-158
overview of, 137-138	convergence with link-state protocols, 158
prefixes, conventions for writing, 139-140	LSDB, building, 156-157
transitioning to, 142-143	LLC (Logical Link Control) sublayer, 34
ISATAP (Intrasite Automatic Tunnel	LMI (Local Management Interface)
Addressing Protocol), 143	Frame Relay, 339-343
ISDN, circuit-switched connections	local access rate, Frame Relay, 338
(WAN), 315-316	local loop, 309
ISL (Inter-Switch Link), 103	Local Management Interface (LMI),
ISP (Internet service provider), configu-	Frame Relay, 339
rations, 355-356	Logical Link Control (LLC) sublayer, 34
ITU-R, 253	logical switching, 44-45
	logical topologies, 9
J-K-L	loopback addresses, IPv6, 141
O R E	loopback configurations, OSPF, 235
jitter, 18	looped link detection, LCP, 332
	loss, 18
LAN cabling, standards for, 6	low delay, 18
LAN switches, 45	LSA (link-state advertisements), 156,
interface status codes, 65-66	228-229
LANs (local-area networks), 7	LSack (link-state acknowledgment) pack-
Layer 1 problems, troubleshooting, 350	ets, OSPF, 228
Layer 1 problems, up interfaces, 67	
Layer 1 problems, up interfaces, 67	

LSDB (link-state database), building, 156-157	models
LSR (link-state request) packets,	network models, benefits of, 13 OSI models, 13
OSPF, 228	layers, 14-15
LSU (link-state update) packets,	PDUs and encapsulation, 16
OSPF, 228-229	TCP/IP models, 13-16
,	modes of VTP, 77
B.4	modifying
М	EIGRP metrics, 219-220
MAC (Media Access Control) sublayer, 34	Hello intervals and hold times
MAC addresses, switch forwarding, 45	EIGRP, 220-221
MAC database instability, STP, 79	OSPF, 238-239
MAC sublayer, 34	OSPF metrics, 236-237
maintaining security, 275-276	MOTD (message-of-the-day), 169
maintenance threats, 271	multicast addresses, 38
malicious code attacks, 272	multilink PPP, LCP, 333
man-in-the-middle attacks, 272	multiple frame transmission, STP, 79
management VLAN, 73	Multiple Instances of Spanning Tree (MIST), 82
managing	municipal Wi-Fi, 319
addresses, IPv6, 142	mutual authentication, wireless
IOS images, 183	security, 257
backing up, 184	-
restoring, 185-186	N
manual summarization, EIGRP, 217-218	IN
MCT (manually configured tunnels), 143	named ACLs, configuring, 286-287
media, 5-6	naming conventions, IOS, 182-183
networking, 5	NAT (Network Address Translation), 297
standards for LAN cabling, 6 Media Access Control (MAC) sublayer, 34	benefits of, 300
memory, 162	configuring, 356, 362-363
	dynamic NAT, 299-302
memory buffering, 46	example of PC1 sending traffic to
message-of-the-day (MOTD), 169	Internet, 298-299
messages	inside global address, 297
EIGRP, 212	inside local address, 297 limitations of, 300
OSPF, 227-228 RIPv1, 197	outside global address, 297
methodologies, troubleshooting, 61-62	outside local address, 297
metrics, dynamic routing metrics, 152-153	overloading, 300
Metro Ethernet, Internet connections	static NAT, 299-301
(WAN), 319	troubleshooting, 304-305 verifying, 303-304
MIST (Multiple Instances of Spanning	NAT overload, 299-300, 303
Tree), 82	native VLAN, 73
mitigation techniques, 273	navigation, CLI, 48-49
host and server security, 273	NBMA (nonbroadcast multi-access),
intrusion detection and prevention, 273	Frame Relay, 340
security appliances and applications,	NCPs (Network Control Protocols), 332
273-274	

memory), 162

neighbor adjacency issues, troubleshooting, 248-250	0
neighbors, OSPF Hello packets, 228-229	OFDM (Orthogonal Frequency Division Multiplexing), 255
verifying, 240	Open Shortest Path First. See OSPF
network access layer, TCP/IP, 27-28	operating system patches, 273
Network Address Translation. See NAT	organizationally unique identifier
network admission control, 274	(OUI), 38
network command, 215-216, 234-235	Orthogonal Frequency Division
network connectivity, verifying, 62-65,	Multiplexing (OFDM), 255
175-176	OSI models, 13
Network Control Protocols (NCPs), 332	OSI layers, 14-15
network documentation, 11	PDUs (protocol data units), 16
network interface card (NIC), 261	OSPF (Open Shortest Path First), 227
network layer testing tools	addressing schemes, 233-234
ping, 132-133	algorithms, 231-232
traceroute, 133-134	configuring, 233 controlling DR/BDR election, 237-238
network management, 72	modifying Hello intervals and hold
network models, benefits of, 13	times, 238-239
network statements, 209, 247	modifying metrics, 236-237
network usage, network-based	network command, 234-235
applications, 17	redistributing default routes, 238
network-based applications, 17-18	router ID, 235-236
networking, media, 5	router ospf command, 234 DR/BDR election, 230-231
networking icons, 7	Hello packets, neighbor adjacency,
networks	228-229
discontiguous networks, 246-247	link-state routing process, 232-233
OSPF, 230	loopback configurations, 235
threats to, 271	LSA packets, 229
networks attacks, types of, 271-272	LSU packets, 229
"Next Hop" parameter, configuring static	message format, 227-228 neighbor requirements, 249-250
routes, 193	network types, 230
NIC (network interface card), 261	packet types, 228
no auto-summary command, 208, 216	troubleshooting, 239-240, 248
no debug ip rip, 248	verifying, 240-243
no keepalives command, 351	OUI (organizationally unique
no service dhcp command, 129	identifier), 38
no shutdown command, 58, 104	outside global address, NAT, 297
nonbroadcast multi-access (NBMA), 340	outside local address, 297
normal data, 72	overloading NAT, 299-300
NVRAM (nonvolatile random-access	

P	ping sweeps, 271
	ping-of-death attacks, 272
packet capturing sniffers, 271	Point-to-Point Protocol. See PPP
packet forwarding, 147 path determination and switching function	policies, developing security policies, 269-270
example, 148-149	POP3 (Post Office Protocol), 15
packet-switched connections, WAN, 315	Port Address Translation (PAT), 299
ATM, 317 Frame Relay, 317	port mappings, VLAN, 355
X.25, 315	port numbers, 23
packets	port redirection, 272
EIGRP, 212-213	port roles, RSTP and STP, 81
OSPF, 228	port scans, 271
RTP, 212-213	port security, configuring, 56-58, 358, 370
PAP, configuring PPP, 335-336	port states, RSTP and STP, 81
parameters exit interface, configuring static routes,	port examination, post-exam information (receiving your certificate), 379
193-194 "Next Hop," configuring static routes, 193	port-based memory, 46
partial-mesh topology, Frame Relay, 339	PortFast, 84
passenger protocols, 323	ports, routers, 164
passive interfaces, RIPv1, 203-204	Post Office Protocol (POP3), 15
passive-interface command, disabling	PPP (Point-to-Point Protocol), 329-330
updates, 203	configuring, 334
password attacks, 272	CHAP, 335
passwords, recovering, 188	PAP, 335-336
PAT (Port Address Translation), 299	with CHAP, 356, 362 frame format, 331-332
path determination, packet forwarding,	LCP (Link Control Protocol), 332-333
148-149	ppp authentication chap command, 335
PDUs (protocol data units), OSI	ppp authentication pap command, 335
models, 16	PPP Link Control Protocol. See LCP
Per-VLAN Rapid Spanning Tree	prefixes
(PVRST), 82	IPv6, conventions for writing, 139-140
permanent virtual circuit (PVC), Frame	URL prefixes for specifying file
Relay, 338	locations, 181
personal firewalls, 273	preshared key (PSK), 325
phishers, 268	preventing routing loops, 155-156
phreakers, 268	PRI (Primary Rate Interface), 315
physical (MAC) addresses, ARP, 125	private addresses, IPv6, 141
physical infrastructures, threats to, 271	private IP addressing, 119-120
physical layer	privileged EXEC mode, 47
Ethernet, 40	pruning, VTP, 78
WAN, 311	PSK (preshared key), 325
physical topologies, 8	PSTN (public switched telephone
ping, 11, 62, 132-133	network), 310
verifying network connectivity, 175	public IP addressing, 119-120

PVC (permanent virtual circuit)	RIPv2
Frame Relay, 338	configuring, 207-208
WAN, 313	verifying, 208-209
PVRST (Per-VLAN Rapid Spanning	Rivest, Shamir, and Adleman (RSA), 323
Tree), 82	rogue AP, wireless security risks, 257
	ROM, 161
Q	router ID, configuring OSPF, 235-236
4	router ospf command, 234
QoS (Quality of Service), network-based	routers, 5
applications, 17	AD (administrative distance), 153-154
quad-zero routes, 194	basic router configuration, 167-174
quartets, 139	bootup process, 162-163
query packets, EIGRP, 213	configuring as DHCP servers, 128-132
	connections, 164-165
n	internal components of, 161-162 ports and interfaces, 164
R	routes, tracing from Windows PC, 65
RAM, 161	routing
range command, 89	EIGRP. See EIGRP
Rapid Per-VLAN Spanning Tree	inter-VLAN routing, configuring and
(RPVST), 82	verifying, 103-105
Rapid STP. See RSTP	OSPF. See OSPF
reconnaissance attacks, 271	troubleshooting, 245
· ·	routing loop prevention, 155-156
recovering	routing methods, 149
IOS images with TFTP servers, 186-187	dynamic routing protocols, classifying,
with 1F1P servers, 180-187 with Xmodem, 187-188	150-152
passwords, 188	dynamic versus static routing, 149
redistribute static command, 219	RPVST (Rapid Per-VLAN Spanning
redistributing default routes, OSPF, 238	Tree), 82
reference bandwidth, 236	RSA (Rivest, Shamir, and Adleman), 323
	RSTP (Rapid STP), 80-81
Reliable Transport Protocol. See RTP	configuring, 84
remote-access VPNs, 321	port roles, 81
reply packets, EIGRP, 213	port states, 81
reserved addresses, IPv6, 141	RTP (Reliable Transport Protocol), 212
restoring IOS images, 185-186	packets, 212-213
RIP, 197	
routes, interpreting, 200	S
troubleshooting, 247-248	satellite Internet, 319
RIPv1, 198	scavenger class, 72
addressing schemes, 198	securing unused interfaces, 58
automatic summarization, 204-205	security, 267
configuring, 198-199	attacker terminology, 267-268
default routing, 206-207	balancing security and availability, 269
message format, 197	common threats
passive interfaces, 203-204 verifying, 199-202	to networks, 271
verifying, 177-202	to physical infrastructures, 271
	vulnerabilities, 270

configuring, 369	show ip route, 11, 152, 170, 199, 239, 245
developing security policies, 269-270	RIPv1, 200
importance of, 267	show port-security command, 57
maintaining, 275-276	show port-security interface command, 57
mitigation techniques, 273-274	show portsecurity interface, 94
network attacks, 271-272 port security, configuring, 56-58	show run command, 304
thinking like attackers, 268-269	show running-config command, 170, 290
wireless security risks, 257	show spanning-tree command, 83
wireless security standards, 258	show version command, 162-163
security appliances and applications,	show vlan brief, 88-90
mitigation techniques, 273-274	show vtp status command, 98
security communications, 274	shutting down unused interfaces, 58
security violations, 57	site-local addresses, 141
service set identifier (SSID), 261	site-to-site VPNs, 320
shared memory, 46	,
shortcuts, CLI, 48-49	SMTP (Simple Mail Transfer Protocol), 15
show access-lists command, 289	SNMP (Simple Network Management Protocol), 15
show cdp commands, 68	spammers, 268
show cdp interface command, 69	Spanning Tree Protocol. See STP
show cdp neighbor detail, 11, 69	spanning-tree mode rapid-pvst, 84
show controllers command, 350	spanning-tree portfast default, 84
show file systems command, 179-181	speed mismatches, switches, 66-67
show flash command, 185	split horizons, preventing routing
show frame-relay map command, 348	loops, 155
show frame-relay pvc command, 348	SSH, configuring access, 55-56
show interface status, 67	SSID (service set identifier), 261
show interfaces, 66, 171-174	standard ACLs, 280
show interfaces command, 351	standard numbered ACLs,
show interfaces serial command, 349	configuring, 282
show interfaces status, 66	deny a specific host, 283
show ip eigrp interfaces, 248	deny a specific subnet, 283-284
show ip eigrp neighbors, 222-224,	deny Telnet access to routers, 284
245, 249	permit specific network, 282-283
show ip interface brief, 11, 170, 239	star topology, Frame Relay, 340
show ip interface command, 290	stateless autoconfiguration, IPv6, 142
show ip interface e0 command, 290	statements
show ip nat statistics command, 304	deny any, 279
show ip nat translations command, 304	network, 247 static addresses, 123
show ip ospf command, 241	static NAT, 299-301
show ip ospf interface brief, 242-243, 248	static routes
show ip ospf neighbor, 240, 245, 249	configuring, 191-192
show ip protocols, 153, 239-240, 245, 248	default static routes, 194-197
EIGRP, 221	with exit interface parameter, 193-194
RIPv1, 200	with "Next Hop" parameter, 193

static routing, dynamic routing versus, 149	switched virtual circuit (SVC), Frame Relay, 338
store-and-forward switching, 46	switches, 3, 37-38
storing configuration files, Cisco IOS, 51	access layer switches, 4
STP (Spanning Tree Protocol), 79-80	broadcast domains, 45
broadcast storms, 78	collision domains, 45
configuring, 82, 358, 370-371	core layer switches, 4
BID (bridge ID), 82-84	distribution layer switches, 4
PortFast, 84	duplex and speed mismatches, 66-67
MAC database instability, 79	frame forwarding, 45-46
multiple frame transmission, 79	LAN switches, 45, 65-66
port roles, 81	layer 1 problems on up interfaces, 67
troubleshooting, 84	VTP, 102
straight-through cables, 6, 165	WAN switches, 310
structured threats, 271	switching
Structured Wireless-Aware Network	evolution to, 43-44
(SWAN), 257	logical switching, 44-45
subconfiguration modes, Cisco IOS, 50	WAN, 312-313
subnet addresses, summarizing, 118-119	switching function, packet forwarding, 148-149
subnet masks, IPv4 addresses, 111-112	switchport mode access, 103
subnet multipliers, 114	switchport mode dynamic desirable com-
subnets, subnetting, 114	mand, 75
subnetting, 112-113	switchport mode trunk, 75
determining how many bits to borrow, 113	switchport mode trunk dynamic auto
determining net subnet masks, 114	command, 75
determining subnet multipliers, 114	switchport nonegotiate, 75, 103
examples, 114-116	switchport port-security violation
listing subnets, host ranges and broadcast	command, 56
addresses, 114	symmetric switching, 46
VLSM. See VLSM	SYN flood attacks, 272
subset advertisement, VTP, 78	
successor, EIGRP, 223	Т
summarization	TCD (Transmission Control Protocol) 15
automatic summarization	TCP (Transmission Control Protocol), 15
EIGRP, 217	TCP header, 22
RIPv1, 204-205	TCP/IP
manual summarization, EIGRP, 217-218	application layer, 21
summary advertisement, VTP, 78	data encapsulation, 28
SVC (switched virtual circuit)	Internet layer, 26
Frame Relay, 338	layers, troubleshooting with, 29
WAN, 313	network access layer, 27-28
SWAN (Structured Wireless-Aware	transport layer, 21
Network), 257	connection establishment and termination. 25
switch configuration commands, 53-54	error recovery, 24
switch forwarding methods	flow control, 25
based on MAC addresses, 45	port numbers, 23
frame forwarding, 45	TCP header, 22
	UDP, 26

TCP/IP models, 13-16	Trojan horses, 272
TCP/IP protocols, 15-16	troubleshooting
TCP/IP stacks, testing on Windows PC, 63	ACLs, 291
Telecommunications Industry Association	denied protocols, 292-293
(TIA), 36	host has no connectivity, 291-292
Telnet, 15, 176	Telnet is allowed #1, 293
telnet command, 11	Telnet is allowed #2, 294
· · · · · · · · · · · · · · · · · · ·	Telnet is allowed #3, 294-295
Temporal Key Integrity Protocol	EIGRP, 248
(TKIP), 264	inter-VLAN routing, 105
Teredo tunneling, IPv6, 143	with layers, 29
termination, TCP/IP, 25	methodology, 61-62
testing	NAT, 304-305
connectivity	neighbor adjacency issues, 248-250 OSPF, 239-240, 248
to default gateways on Windows PC, 63	RIP, 247-248
to destinations on Windows PC, 64	RIPv2, 208-209
TCP/IP stacks on Windows PC, 63	routing, 245
TFTP servers, recovering IOS images,	STP, 84
186-187	tools, CDP, 68-69
tftpdnld command, 187	trunking, 93-94
threat control, 274	VLAN, 93-94
threats	VLSM, 246
to networks, 271-272	VTP, 102-103
to physical infrastructures, 271	WAN implementations, 349
vulnerabilities, 270	Layer 1 problems, 350
TIA (Telecommunications Industry	Layer 2 problems, 350-351
Association), 36	Layer 3 problems, 351-352
TKIP (Temporal Key Integrity	WLAN, 264 trunking
Protocol), 264	=
tools for troubleshooting, CDP, 68-69	configuring, 91-93
top-level domains, 126	troubleshooting, 93-94 verifying, 91-93
topologies, 8, 339	trunking VLANs, 74-75
traceroute, 133-134, 175, 246	trust exploitation, 272
tracert, 132-134	tunneling, 322. See also encapsulation
tracing routes from Windows PC, 65	IPv6, 143
traffic types, VLANs, 72	Teredo tunneling, IPv6, 143
transitioning to IPv6, 142-143	VPNs, 323
Transmission Control Protocol (TCP), 15	
transport layer (TCP/IP), 21-22	U
connection establishment and	IDD (II D) D) 15 A
termination, 25	UDP (User Datagram Protocol), 15
error recovery, 24	TCP/IP, 26
flow control, 25	undebug all, 248
port numbers, 23	unshielded twisted-pair (UTP), 164
TCP header, 22	unstructured threats, 271
UDP, 26	up interfaces, layer 1 problems, 67
Triple DES (3DES), 323	update packets, EIGRP, 213
	<u> </u>

URL prefixes for specifying file locations,	VLANs (virtual local-area networks)
IFS, 181	assigning, 358, 369-370
usage of networks, network-based	to interfaces, 89
applications, 17	benefits of, 71-72
User Datagram Protocol (UDP), 15	black hole VLAN, 73
user EXEC mode, 47	configuring, 88-91, 357, 367-369
	creating, 88
username command, 335	data VLAN, 72
UTP (unshielded twisted-pair), 164	default VLAN, 72
UTP cabling, 36-37	DTP (Dynamic Trunking Protocol), 75
	management VLAN, 73
V	native VLAN, 73 overview, 71
	traffic types, 72
V.35, 311	troubleshooting, 93-94
variable-length subnet masking. See	trunking VLANs, 74-75
VLSM	verification commands, 88-91
VC (virtual circuit), Frame Relay, 338	voice VLAN, 73-74
verifying	VLSM (variable-length subnet masking),
ACLs, 289-290	116-118, 246
BID, 82-84	troubleshooting, 246
DHCP operations, 130	voice, impact on network-based
EIGRP	applications, 18
show ip eigrp neighbors, 222-224	voice VLAN, 73-74
show ip protocols, 221	VoIP (voice over IP), 18
Frame Relay, 343, 348	VPNs (virtual private networks), 320
HDLC, 331	benefits of, 320
inter-VLAN routing configurations, 105	components of, 322
NAT, 303-304	establishing connections, 322
network connectivity, 62-65 OSPF, 240-243	authentication, 325
RIPv1, 199-202	encryption algorithms, 323
RIPv2, 208-209	hashes, 324-325
speed and duplex settings, 66-67	IPsec Security Protocols, 325
trunking, 91-93	tunneling, 323
VLAN, 88-91	types of access, 320
VTP, 99-100	remote-access VPNs, 321
synchronized databases, 101-102	site-to-site VPNs, 320
VLAN configurations on VTP servers,	VTP (VLAN Trunking Protocol),
100-101	76-77, 97
verifying network connectivity, 175-176	advertisement request message, 78
video, impact on network-based applica-	configuring, 97-100
tions, 18	modes, 77 pruning, 78
virtual circuit (VC), Frame Relay, 338	subset advertisement, 78
virtual private networks. See VPNs	summary advertisement, 78
viruses, 272	switches, 102
VLAN configurations and port	troubleshooting, 102-103
mappings, 355	verifying, 99
VLAN tag fields, 74	synchronized databases, 101-102
VLAN Trunking Protocol. See VTP	VLAN on VTP servers, 100-101

VTP operation, 77-78
vtp pruning, 98
vtp version 2, 98
vulnerabilities, 270
,
W
WAN
components of, 309
connections, 165
circuit-switched connections, 314-316
dedicated connections, 314
Internet connections, 317-319
packet-switched connections, 315-317 WAN link options, 319-320
data-link protocols, 312
devices, 310
physical layer standards, 311
PVC, 313
SVC, 313
switching, 312-313
WAN implementations,
troubleshooting, 349
Layer 1 problems, 350
Layer 2 problems, 350-351
Layer 3 problems, 351-352 WAN link options, 319-320
WAN switches, 310
WANs (wide-area networks), 7
war drivers, wireless security risks, 257
WEP (Wired Equivalent Privacy), 258, 261
white hats, 267
Wi-Fi Alliance, 253
Wi-Fi Protected Access (WPA), 258, 261
WiMAX (Worldwide Interoperability for
Microwave Access), 319
windowing, 25
Windows PC
configuring to use DHCP, 123
testing
connectivity to default gateways, 63
connectivity to destinations, 64 TCP/IP stacks, 63
tracing routes, 65
Wired Equivalent Privacy (WEP),
258, 261

wireless access points, 261

wireless coverage areas, 256 wireless encoding channels, 255 wireless frequencies, 254 wireless LAN. See WLAN wireless modes of operation, 254 wireless security risks, 257 wireless security standards, 258 wireless standards, 253 **WLAN** implementing, 261 checklist for, 262-264 modes of operation, 254 speed and frequency reference, 256 standards for, 254 troubleshooting, 264 word help, 48 Worldwide Interoperability for Microwave Access (WiMAX), 319 worms, 272 WPA (Wi-Fi Protected Access), 258, 261

X-Y-Z

write erase command, 51

X.21, 311 X.25, packet-switched connections (WAN), 315 Xmodem, recovering IOS images, 187-188 xmodem command, 187