
32 Chapter 8 Mining Stream, Time-Series, and Sequence Data

8.3 Mining Sequence Patterns in Transactional Databases

A sequence database consists of sequences of ordered elements or events, recorded with
or without a concrete notion of time. There are many applications involving sequence
data. Typical examples include customer shopping sequences, Web clickstreams, bio-
logical sequences, sequences of events in science and engineering, and in natural and
social developments. In this section, we study sequential pattern mining in transactional
databases. In particular, we start with the basic concepts of sequential pattern mining in
Section 8.3.1. Section 8.3.2 presents several scalable methods for such mining.
Constraint-based sequential pattern mining is described in Section 8.3.3. Periodicity
analysis for sequence data is discussed in Section 8.3.4. Specific methods for mining
sequence patterns in biological data are addressed in Section 8.4.

8.3.1 Sequential Pattern Mining: Concepts and Primitives

“What is sequential pattern mining?” Sequential pattern mining is the mining of fre-
quently occurring ordered events or subsequences as patterns. An example of a sequen-
tial pattern is “Customers who buy a Canon digital camera are likely to buy an HP color
printer within a month.” For retail data, sequential patterns are useful for shelf placement
and promotions. This industry, as well as telecommunications and other businesses, may
also use sequential patterns for targeted marketing, customer retention, and many other
tasks. Other areas in which sequential patterns can be applied include Web access pat-
tern analysis, weather prediction, production processes, and network intrusion detec-
tion. Notice that most studies of sequential pattern mining concentrate on categorical (or
symbolic) patterns, whereas numerical curve analysis usually belongs to the scope of trend
analysis and forecasting in statistical time-series analysis, as discussed in Section 8.2.

The sequential pattern mining problem was first introduced by Agrawal and Srikant
in 1995 [AS95] based on their study of customer purchase sequences, as follows: “Given a
set of sequences, where each sequence consists of a list of events (or elements) and each event
consists of a set of items, and given a user-specified minimum support threshold of min sup,
sequential pattern mining finds all frequent subsequences, that is, the subsequences whose
occurrence frequency in the set of sequences is no less than min sup.”

Let’s establish some vocabulary for our discussion of sequential pattern mining. Let
I = {I1, I2, . . . , Ip}be the set of all items. An itemset is a nonempty set of items. A sequence
is an ordered list of events. A sequence s is denoted 〈e1e2e3 · · ·el〉, where event e1 occurs
before e2, which occurs before e3, and so on. Event e j is also called an element of s. In the
case of customer purchase data, an event refers to a shopping trip in which a customer
bought items at a certain store. The event is thus an itemset, that is, an unordered list
of items that the customer purchased during the trip. The itemset (or event) is denoted
(x1x2 · · ·xq), where xk is an item. For brevity, the brackets are omitted if an element has
only one item, that is element (x) is written as x. Suppose that a customer made sev-
eral shopping trips to the store. These ordered events form a sequence for the customer.
That is, the customer first bought the items in s1, then later bought the items in s2,

8.3 Mining Sequence Patterns in Transactional Databases 33

and so on. An item can occur at most once in an event of a sequence, but can occur
multiple times in different events of a sequence. The number of instances of items in
a sequence is called the length of the sequence. A sequence with length l is called an
l-sequence. A sequence α = 〈a1a2 · · ·an〉 is called a subsequence of another sequence
β = 〈b1b2 · · ·bm〉, and β is a supersequence of α, denoted as αv β, if there exist integers
1 ≤ j1 < j2 < · · · < jn ≤ m such that a1 ⊆ b j1 , a2 ⊆ b j2 , . . . , an ⊆ b jn . For example, if
α = 〈(ab), d〉 and β = 〈(abc), (de)〉, where a, b, c, d, and e are items, then α is a subse-
quence of β and β is a supersequence of α.

A sequence database, S, is a set of tuples, 〈SID, s〉, where SID is a sequence ID and
s is a sequence. For our example, S contains sequences for all customers of the store.
A tuple 〈SID, s〉 is said to contain a sequence α, if α is a subsequence of s. The support
of a sequence α in a sequence database S is the number of tuples in the database con-
taining α, that is, supportS(α) = | {〈SID, s〉|(〈SID, s〉 ∈ S)∧ (αv s)} |. It can be denoted
as support(α) if the sequence database is clear from the context. Given a positive inte-
ger min sup as the minimum support threshold, a sequence α is frequent in sequence
database S if supportS(α)≥min sup. That is, for sequence α to be frequent, it must occur
at least min sup times in S. A frequent sequence is called a sequential pattern. A sequen-
tial pattern with length l is called an l-pattern. The following example illustrates these
concepts.

Example 8.7 Sequential patterns. Consider the sequence database, S, given in Table 8.1, which will
be used in examples throughout this section. Let min sup = 2. The set of items in the
database is {a, b, c, d, e, f , g}. The database contains four sequences.

Let’s look at sequence 1, which is 〈a(abc)(ac)d(c f)〉. It has five events, namely (a),
(abc), (ac), (d), and (c f), which occur in the order listed. Items a and c each appear
more than once in different events of the sequence. There are nine instances of items in
sequence 1; therefore, it has a length of nine and is called a 9-sequence. Item a occurs three
times in sequence 1 and so contributes three to the length of the sequence. However,
the entire sequence contributes only one to the support of 〈a〉. Sequence 〈a(bc)d f 〉 is
a subsequence of sequence 1 since the events of the former are each subsets of events
in sequence 1, and the order of events is preserved. Consider subsequence s = 〈(ab)c〉.
Looking at the sequence database, S, we see that sequences 1 and 3 are the only ones that
contain the subsequence s. The support of s is thus 2, which satisfies minimum support.

Table 8.1 A sequence database

Sequence ID Sequence

1 〈a(abc)(ac)d(c f)〉
2 〈(ad)c(bc)(ae)〉
3 〈(e f)(ab)(d f)cb〉
4 〈eg(a f)cbc〉

34 Chapter 8 Mining Stream, Time-Series, and Sequence Data

Therefore, s is frequent, and so we call it a sequential pattern. It is a 3-pattern since it is a
sequential pattern of length three.

This model of sequential pattern mining is an abstraction of customer-shopping
sequence analysis. Scalable methods for sequential pattern mining on such data are
described in Section 8.3.2, which follows. Many other sequential pattern mining appli-
cations may not be covered by this model. For example, when analyzing Web clickstream
sequences, gaps between clicks become important if one wants to predict what the next
click might be. In DNA sequence analysis, approximate patterns become useful since
DNA sequences may contain (symbol) insertions, deletions, and mutations. Such diverse
requirements can be viewed as constraint relaxation or enforcement. In Section 8.3.3, we
discuss how to extend the basic sequential mining model to constrained sequential pat-
tern mining in order to handle these cases.

8.3.2 Scalable Methods for Mining Sequential Patterns

Sequential pattern mining is computationally challenging because such mining may gen-
erate and/or test a combinatorially explosive number of intermediate subsequences.

“How can we develop efficient and scalable methods for sequential pattern mining?”
Recent developments have made progress in two directions: (1) efficient methods for
mining the full set of sequential patterns, and (2) efficient methods for mining only
the set of closed sequential patterns, where a sequential pattern s is closed if there exists
no sequential pattern s′ where s′ is a proper supersequence of s, and s′ has the same
(frequency) support as s.6 Because all of the subsequences of a frequent sequence are
also frequent, mining the set of closed sequential patterns may avoid the generation of
unnecessary subsequences and thus lead to more compact results as well as more effi-
cient methods than mining the full set. We will first examine methods for mining the
full set and then study how they can be extended for mining the closed set. In addition,
we discuss modifications for mining multilevel, multidimensional sequential patterns
(i.e., with multiple levels of granularity).

The major approaches for mining the full set of sequential patterns are similar to
those introduced for frequent itemset mining in Chapter 5. Here, we discuss three such
approaches for sequential pattern mining, represented by the algorithms GSP, SPADE,
and PrefixSpan, respectively. GSP adopts a candidate generate-and-test approach using
horizonal data format (where the data are represented as 〈sequence ID : sequence of
itemsets〉, as usual, where each itemset is an event). SPADE adopts a candidate generate-
and-test approach using vertical data format (where the data are represented as 〈itemset :
(sequence ID, event ID)〉). The vertical data format can be obtained by transforming
from a horizontally formatted sequence database in just one scan. PrefixSpan is a pat-
tern growth method, which does not require candidate generation.

6Closed frequent itemsets were introduced in Chapter 5. Here, the definition is applied to sequential
patterns.

8.3 Mining Sequence Patterns in Transactional Databases 35

All three approaches either directly or indirectly explore the Apriori property, stated
as follows: every nonempty subsequence of a sequential pattern is a sequential pattern.
(Recall that for a pattern to be called sequential, it must be frequent. That is, it must sat-
isfy minimum support.) The Apriori property is antimonotonic (or downward-closed)
in that, if a sequence cannot pass a test (e.g., regarding minimum support), all of its
supersequences will also fail the test. Use of this property to prune the search space can
help make the discovery of sequential patterns more efficient.

GSP: A Sequential Pattern Mining Algorithm
Based on Candidate Generate-and-Test
GSP (Generalize Sequential Patterns) is a sequential pattern mining method that
was developed by Srikant and Agrawal in 1996. It is an extension of their seminal
algorithm for frequent itemset mining, known as Apriori (Section 5.2). GSP uses
the downward-closure property of sequential patterns and adopts a multiple-pass,
candidate generate-and-test approach. The algorithm is outlined as follows. In the
first scan of the database, it finds all of the frequent items, that is, those with
minimum support. Each such item yields a 1-event frequent sequence consisting
of that item. Each subsequent pass starts with a seed set of sequential patterns—
the set of sequential patterns found in the previous pass. This seed set is used to
generate new potentially frequent patterns, called candidate sequences. Each candidate
sequence contains one more item than the seed sequential pattern from which it
was generated (where each event in the pattern may contain one or multiple items).
Recall that the number of instances of items in a sequence is the length of the
sequence. So, all of the candidate sequences in a given pass will have the same
length. We refer to a sequence with length k as a k-sequence. Let Ck denote the
set of candidate k-sequences. A pass over the database finds the support for each
candidate k-sequence. The candidates in Ck with at least min sup form Lk, the set
of all frequent k-sequences. This set then becomes the seed set for the next pass,
k + 1. The algorithm terminates when no new sequential pattern is found in a pass,
or no candidate sequence can be generated.

The method is illustrated in the following example.

Example 8.8 GSP: Candidate generate-and-test (using horizontal data format). Suppose we are given
the same sequence database, S, of Table 8.1 from Example 8.7, with min sup = 2. Note
that the data are represented in horizontal data format. In the first scan (k = 1), GSP
collects the support for each item. The set of candidate 1-sequences is thus (shown here
in the form of “[old:item][new:sequence] : support”): 〈a〉 : 4, 〈b〉 : 4, 〈c〉 : 3, 〈d〉 : 3, 〈e〉 : 3,
〈 f 〉 : 3, 〈g〉 : 1.

The sequence 〈g〉 has a support of only 1 and is the only sequence that does not satisfy
minimum support. By filtering it out, we obtain the first seed set, L1 = {〈a〉, 〈b〉, 〈c〉, 〈d〉,
〈e〉, 〈 f 〉}. Each member in the set represents a 1-event sequential pattern. Each subse-
quent pass starts with the seed set found in the previous pass and uses it to generate new
candidate sequences, which are potentially frequent.

36 Chapter 8 Mining Stream, Time-Series, and Sequence Data

Using L1 as the seed set, this set of six length-1 sequential patterns generates a set of
6× 6 + 6 × 5

2 = 51 candidate sequences of length 2, C2 = {〈aa〉, 〈ab〉, . . . , 〈a f 〉, 〈ba〉,
〈bb〉, . . . , 〈 f f 〉, 〈(ab)〉, 〈(ac)〉, . . . , 〈(e f)〉}.

In general, the set of candidates is generated by a self-join of the sequential patterns
found in the previous pass (see Section 5.2.1 for details). GSP applies the Apriori property
to prune the set of candidates as follows. In the k-th pass, a sequence is a candidate only
if each of its length-(k− 1) subsequences is a sequential pattern found at the (k− 1)-th
pass. A new scan of the database collects the support for each candidate sequence and
finds a new set of sequential patterns, Lk. This set becomes the seed for the next pass. The
algorithm terminates when no sequential pattern is found in a pass or when no candidate
sequence is generated. Clearly, the number of scans is at least the maximum length of
sequential patterns. GSP needs one more scan if the sequential patterns obtained in the
last scan still generate new candidates (none of which are found to be frequent).

Although GSP benefits from the Apriori pruning, it still generates a large number of
candidates. In this example, six length-1 sequential patterns generate 51 length-2 candi-
dates; 22 length-2 sequential patterns generate 64 length-3 candidates; and so on. Some
candidates generated by GSP may not appear in the database at all. In this example, 13
out of 64 length-3 candidates do not appear in the database, resulting in wasted time.

The example shows that although an Apriori-like sequential pattern mining method,
such as GSP, reduces search space, it typically needs to scan the database multiple times.
It will likely generate a huge set of candidate sequences, especially when mining long
sequences. There is a need for more efficient mining methods.

SPADE: An Apriori-Based Vertical Data Format
Sequential Pattern Mining Algorithm
The Apriori-like sequential pattern mining approach (based on candidate generate-and-
test) can also be explored by mapping a sequence database into vertical data format. In
vertical data format, the database becomes a set of tuples of the form 〈itemset :
(sequence ID, event ID)〉. That is, for a given itemset, we record the sequence identifier
and corresponding event identifier for which the itemset occurs. The event identifier
serves as a timestamp within a sequence. The event ID of the ith itemset (or event) in
a sequence is i. Note than an itemset can occur in more than one sequence. The set of
(sequence ID, event ID) pairs for a given itemset forms the ID list of the itemset. The
mapping from horizontal to vertical format requires one scan of the database. A major
advantage of using this format is that we can determine the support of any k-sequence
by simply joining the ID lists of any two of its (k− 1)-length subsequences. The length
of the resulting ID list (i.e., unique sequence ID values) is equal to the support of the
k-sequence, which tells us whether the sequence is frequent.

SPADE (Sequential PAttern Discovery using Equivalent classes) is an Apriori-based
sequential pattern mining algorithm that uses vertical data format. As with GSP, SPADE
requires one scan to find the frequent 1-sequences. To find candidate 2-sequences,
we join all pairs of single items if they are frequent (therein, it applies the Apriori

8.3 Mining Sequence Patterns in Transactional Databases 37

property), share the same sequence identifier, and their event identifiers follow a
sequential ordering. That is, the first item in the pair must occur as an event before the
second item, where both occur in the same sequence. Similarly, we can grow the length
of itemsets from length 2 to length 3, and so on. The procedure stops when no frequent
sequences can be found or no such sequences can be formed by such joins. The following
example helps illustrate the process.

Example 8.9 SPADE: Candidate generate-and-test using vertical data format. Let min sup = 2. Our
running example sequence database, S, of Table 8.1 is in horizonal data format. SPADE
first scans S and transforms it into vertical format, as shown in Figure 8.6(a). Each item-
set (or event) is associated with its ID list, which is the set of SID (sequence ID) and EID
(event ID) pairs that contain the itemset. The ID list for individual items, a, b, and so
on, is shown in Figure 8.6(b). For example, the ID list for item b consists of the follow-
ing (SID, EID) pairs: {(1, 2), (2, 3), (3, 2), (3, 5), (4, 5)}, where the entry (1, 2) means
that b occurs in sequence 1, event 2, and so on. Items a and b are frequent. They can
be joined to form the length-2 sequence, 〈a, b〉. We find the support of this sequence
as follows. We join the ID lists of a and b by joining on the same sequence ID wher-
ever, according to the event IDs, a occurs before b. That is, the join must preserve the
temporal order of the events involved. The result of such a join for a and b is shown in
the ID list for ab of Figure 8.6(c). For example, the ID list for 2-sequence ab is a set of
triples, (SID, EID(a), EID(b)), namely {(1, 1, 2), (2, 1, 3), (3, 2, 5), (4, 3, 5)}. The entry
(2, 1, 3), for example, shows that both a and b occur in sequence 2, and that a (event
1 of the sequence) occurs before b (event 3), as required. Furthermore, the frequent 2-
sequences can be joined (while considering the Apriori pruning heuristic that the (k-
1)-subsequences of a candidate k-sequence must be frequent) to form 3-sequences, as
in Figure 8.6(d), and so on. The process terminates when no frequent sequences can be
found or no candidate sequences can be formed. Additional details of the method can
be found in Zaki [Zak01].

The use of vertical data format, with the creation of ID lists, reduces scans of the
sequence database. The ID lists carry the information necessary to find the support of
candidates. As the length of a frequent sequence increases, the size of its ID list decreases,
resulting in very fast joins. However, the basic search methodology of SPADE and GSP
is breadth-first search (e.g., exploring 1-sequences, then 2-sequences, and so on) and
Apriori pruning. Despite the pruning, both algorithms have to generate large sets of
candidates in breadth-first manner in order to grow longer sequences. Thus, most of
the difficulties suffered in the GSP algorithm recur in SPADE as well.

PrefixSpan: Prefix-Projected Sequential Pattern Growth
Pattern growth is a method of frequent-pattern mining that does not require candi-
date generation. The technique originated in the FP-growth algorithm for transaction
databases, presented in Section 5.2.4 The general idea of this approach is as follows: it
finds the frequent single items, then compresses this information into a frequent-pattern

38 Chapter 8 Mining Stream, Time-Series, and Sequence Data

SID EID itemset

1 1 a

1 2 abc

1 3 ac

1 4 d

1 5 cf

2 1 ad

2 2 c

2 3 bc

2 4 ae

3 1 ef

3 2 ab

3 3 df

3 4 c

3 5 b

4 1 e

4 2 g

4 3 af

4 4 c

4 5 b

4 6 c

(a) vertical format database

a b · · ·
SID EID SID EID · · ·

1 1 1 2

1 2 2 3

1 3 3 2

2 1 3 5

2 4 4 5

3 2

4 3

(b) ID lists for some 1-sequences

ab ba · · ·
SID EID(a) EID(b) SID EID(b) EID(a) · · ·

1 1 2 1 2 3

2 1 3 2 3 4

3 2 5

4 3 5

(c) ID lists for some 2-sequences

aba · · ·
SID EID(a) EID(b) EID(a) · · ·

1 1 2 3

2 1 3 4

(d) ID lists for some 3-sequences

Figure 8.6 The SPADE mining process: (a) vertical format database; (b) to (d) show fragments of the
ID lists for 1-sequences, 2-sequences, and 3-sequences, respectively.

tree, or FP-tree. The FP-tree is used to generation a set of projected databases, each associ-
ated with one frequent item. Each of these databases is mined separately. The algorithm
builds prefix patterns, which it concatenates with suffix patterns to find frequent pat-
terns, avoiding candidate generation. Here, we look at PrefixSpan, which extends the
pattern-growth approach to instead mine sequential patterns.

Suppose that all the items within an event are listed alphabetically. For example,
instead of listing the items in an event as, say, (bac), we list them as (abc) without loss of
generality. Given a sequence α = 〈e1e2 · · ·en〉 (where each ei corresponds to a frequent
event in a sequence database, S), a sequence β = 〈e′1e′2 · · ·e′m〉 (m≤ n) is called a prefix of
α if and only if (1) e′i = ei for (i≤ m−1); (2) e′m ⊆ em; and (3) all the frequent items in
(em− e′m) are alphabetically after those in e′m. Sequence γ = 〈e′′mem+1 · · ·en〉 is called the

8.3 Mining Sequence Patterns in Transactional Databases 39

suffix of α with respect to prefix β, denoted as γ = α/β, where e′′m = (em− e′m).7 We also
denote α = β · γ. Note if β is not a subsequence of α, the suffix of α with respect to β is
empty.

We illustrate these concepts with the following example.

Example 8.10 Prefix and suffix. Let sequence s = 〈a(abc)(ac)d(c f)〉, which corresponds to sequence 1
of our running example sequence database. 〈a〉, 〈aa〉, 〈a(ab)〉, and 〈a(abc)〉 are four pre-
fixes of s. 〈(abc)(ac)d(c f)〉 is the suffix of s with respect to the prefix 〈a〉; 〈(bc)(ac)d(c f)〉
is its suffix with respect to the prefix 〈aa〉; and 〈(c)(ac)d(c f)〉 is its suffix with respect
to the prefix 〈a(ab)〉.

Based on the concepts of prefix and suffix, the problem of mining sequential patterns
can be decomposed into a set of subproblems as shown:

1. Let {〈x1〉, 〈x2〉, . . . , 〈xn〉} be the complete set of length-1 sequential patterns in a
sequence database, S. The complete set of sequential patterns in S can be partitioned
into n disjoint subsets. The ith subset (1≤ i≤ n) is the set of sequential patterns with
prefix 〈xi〉.

2. Let α be a length-l sequential pattern and {β1, β2, . . . , βm} be the set of all length-
(l + 1) sequential patterns with prefix α. The complete set of sequential patterns with
prefix α, except for α itself, can be partitioned into m disjoint subsets. The jth subset
(1≤ j ≤ m) is the set of sequential patterns prefixed with β j.

Based on this observation, the problem can be partitioned recursively. That is, each
subset of sequential patterns can be further partitioned when necessary. This forms a
divide-and-conquer framework. To mine the subsets of sequential patterns, we construct
corresponding projected databases and mine each one recursively.

Let’s use our running example to examine how to use the prefix-based projection
approach for mining sequential patterns.

Example 8.11 PrefixSpan: A pattern-growth approach. Using the same sequence database, S, of
Table 8.1 with min sup = 2, sequential patterns in S can be mined by a prefix-projection
method in the following steps.

1. Find length-1 sequential patterns. Scan S once to find all of the frequent items in
sequences. Each of these frequent items is a length-1 sequential pattern. They are
〈a〉 : 4, 〈b〉 : 4, 〈c〉 : 4, 〈d〉 : 3, 〈e〉 : 3, and 〈 f 〉 : 3, where the notation “〈pattern〉 : count”
represents the pattern and its associated support count.

7If e′′m is not empty, the suffix is also denoted as 〈(items in e′′m)em+1 · · ·en〉.

40 Chapter 8 Mining Stream, Time-Series, and Sequence Data

Table 8.2 Projected databases and sequential patterns

prefix projected database sequential patterns

〈a〉 〈(abc)(ac)d(c f)〉,
〈(d)c(bc)(ae)〉,
〈(b)(d f)eb〉, 〈(f)cbc〉

〈a〉, 〈aa〉, 〈ab〉, 〈a(bc)〉, 〈a(bc)a〉, 〈aba〉,
〈abc〉, 〈(ab)〉, 〈(ab)c〉, 〈(ab)d〉, 〈(ab) f 〉,
〈(ab)dc〉, 〈ac〉, 〈aca〉, 〈acb〉, 〈acc〉, 〈ad〉,
〈adc〉, 〈a f 〉

〈b〉 〈(c)(ac)d(c f)〉,
〈(c)(ae)〉, 〈(d f)cb〉,
〈c〉

〈b〉, 〈ba〉, 〈bc〉, 〈(bc)〉, 〈(bc)a〉, 〈bd〉, 〈bdc〉,
〈b f 〉

〈c〉 〈(ac)d(c f)〉, 〈(bc)(ae)〉,
〈b〉, 〈bc〉

〈c〉, 〈ca〉, 〈cb〉, 〈cc〉

〈d〉 〈(c f)〉, 〈c(bc)(ae)〉,
〈(f)cb〉

〈d〉, 〈db〉, 〈dc〉, 〈dcb〉

〈e〉 〈(f)(ab)(d f)cb〉,
〈(a f)cbc〉

〈e〉, 〈ea〉, 〈eab〉, 〈eac〉, 〈eacb〉, 〈eb〉, 〈ebc〉,
〈ec〉, 〈ecb〉, 〈e f 〉, 〈e f b〉, 〈e f c〉, 〈e f cb〉.

〈 f 〉 〈(ab)(d f)cb〉, 〈cbc〉 〈 f 〉, 〈 f b〉, 〈 f bc〉, 〈 f c〉, 〈 f cb〉

2. Partition the search space. The complete set of sequential patterns can be partitioned
into the following six subsets according to the six prefixes: (1) the ones with prefix
〈a〉, (2) the ones with prefix 〈b〉, . . . , and (6) the ones with prefix 〈 f 〉.

3. Find subsets of sequential patterns. The subsets of sequential patterns mentioned
in step 2 can be mined by constructing corresponding projected databases and
mining each recursively. The projected databases, as well as the sequential patterns
found in them, are listed in Table 8.2, while the mining process is explained as
follows:

(a) Find sequential patterns with prefix 〈a〉. Only the sequences containing 〈a〉 should
be collected. Moreover, in a sequence containing 〈a〉, only the subsequence prefixed
with the first occurrence of 〈a〉 should be considered. For example, in sequence
〈(e f)(ab)(d f)cb〉, only the subsequence 〈(b)(d f)cb〉 should be considered for
mining sequential patterns prefixed with 〈a〉. Notice that (b) means that the last
event in the prefix, which is a, together with b, form one event.
The sequences in S containing 〈a〉 are projected with respect to 〈a〉 to form the
〈a〉-projected database, which consists of four suffix sequences: 〈(abc)(ac)d(c f)〉,
〈(d)c(bc)(ae)〉, 〈(b)(d f)cb〉, and 〈(f)cbc〉.
By scanning the 〈a〉-projected database once, its locally frequent items are a : 2,
b : 4, b : 2, c : 4, d : 2, and f : 2. Thus all the length-2 sequential patterns prefixed
with 〈a〉 are found, and they are: 〈aa〉 : 2, 〈ab〉 : 4, 〈(ab)〉 : 2, 〈ac〉 : 4, 〈ad〉 : 2, and
〈a f 〉 : 2.

8.3 Mining Sequence Patterns in Transactional Databases 41

Recursively, all sequential patterns with prefix 〈a〉 can be partitioned into six
subsets: (1) those prefixed with 〈aa〉, (2) those with 〈ab〉, . . . , and finally, (6) those
with 〈a f 〉. These subsets can be mined by constructing respective projected databases
and mining each recursively as follows:

i. The 〈aa〉-projected database consists of two nonempty (suffix) subsequences
prefixed with 〈aa〉: {〈(bc)(ac)d(c f)〉, {〈(e)〉}. Because there is no hope of
generating any frequent subsequence from this projected database, the pro-
cessing of the 〈aa〉-projected database terminates.

ii. The 〈ab〉-projected database consists of three suffix sequences: 〈(c)(ac)d
(c f)〉, 〈(c)a〉, and 〈c〉. Recursively mining the 〈ab〉-projected database
returns four sequential patterns: 〈(c)〉, 〈(c)a〉, 〈a〉, and 〈c〉 (i.e., 〈a(bc)〉,
〈a(bc)a〉, 〈aba〉, and 〈abc〉.) They form the complete set of sequential pat-
terns prefixed with 〈ab〉.

iii. The 〈(ab)〉-projected database contains only two sequences: 〈(c)(ac) d(c f)〉
and 〈(d f)cb〉, which leads to the finding of the following sequential patterns
prefixed with 〈(ab)〉: 〈c〉, 〈d〉, 〈 f 〉, and 〈dc〉.

iv. The 〈ac〉-, 〈ad〉-, and 〈a f 〉- projected databases can be constructed and recur-
sively mined in a similar manner. The sequential patterns found are shown in
Table 8.2.

(b) Find sequential patterns with prefix 〈b〉, 〈c〉, 〈d〉, 〈e〉, and 〈 f 〉, respectively. This
can be done by constructing the 〈b〉-, 〈c〉-, 〈d〉-, 〈e〉-, and 〈 f 〉-projected databases
and mining them respectively. The projected databases as well as the sequential
patterns found are also shown in Table 8.2.

4. The set of sequential patterns is the collection of patterns found in the above recursive
mining process.

The method described above generates no candidate sequences in the mining pro-
cess. However, it may generate many projected databases, one for each frequent prefix-
subsequence. Forming a large number of projected databases recursively may become the
major cost of the method, if such databases have to be generated physically. An impor-
tant optimization technique is pseudo-projection, which registers the index (or identi-
fier) of the corresponding sequence and the starting position of the projected suffix in
the sequence instead of performing physical projection. That is, a physical projection
of a sequence is replaced by registering a sequence identifier and the projected posi-
tion index point. Pseudo-projection reduces the cost of projection substantially when
such projection can be done in main memory. However, it may not be efficient if the
pseudo-projection is used for disk-based accessing because random access of disk space
is costly. The suggested approach is that if the original sequence database or the projected
databases are too big to fit in memory, the physical projection should be applied; how-
ever, the execution should be swapped to pseudo-projection once the projected databases
can fit in memory. This methodology is adopted in the PrefixSpan implementation.

42 Chapter 8 Mining Stream, Time-Series, and Sequence Data

a

c

c a

c c

(a) backward superpattern

b e
bb b

e

(b) backward superpattern

Figure 8.7 A backward subpattern and a backward superpattern.

A performance comparison of GSP, SPADE, and PrefixSpan shows that PrefixSpan has
the best overall performance. SPADE, although weaker than PrefixSpan in most cases,
outperforms GSP. Generating huge candidate sets may consume a tremendous amount
of memory, thereby causing candidate generate-and-test algorithms to become very slow.
The comparison also found that when there is a large number of frequent subsequences,
all three algorithms run slowly. This problem can be partially solved by closed sequential
pattern mining.

Mining Closed Sequential Patterns
Because mining the complete set of frequent subsequences can generate a huge number
of sequential patterns, an interesting alternative is to mine frequent closed subsequences
only, that is, those containing no supersequence with the same support. Mining closed
sequential patterns can produce a significantly less number of sequences than the full set
of sequential patterns. Note that the full set of frequent subsequences, together with their
supports, can easily be derived from the closed subsequences. Thus, closed subsequences
have the same expressive power as the corresponding full set of subsequences. Because
of their compactness, they may also be quicker to find.

CloSpan is an efficient closed sequential pattern mining method. The method is based
on a property of sequence databases, called equivalence of projected databases, stated as
follows: Two projected sequence databases, S|α = S|β,8 αv β (i.e.,α is a subsequence of β),
are equivalent if and only if the total number of items in S|α is equal to the total number of
items in S|β.

Based on this property, CloSpan can prune the nonclosed sequences from further
consideration during the mining process. That is, whenever we find two prefix-based
projected databases that are exactly the same, we can stop growing one of them. This
can be used to prune backward subpatterns and backward superpatterns as indicated in
Figure 8.7.

8In S|α, a sequence database S is projected with respect to sequence (e.g., prefix) α. The notation S|β can
be similarly defined.

8.3 Mining Sequence Patterns in Transactional Databases 43

After such pruning and mining, a postprocessing step is still required in order to delete
nonclosed sequential patterns that may exist in the derived set. A later algorithm called
BIDE (which performs a bidirectional search) can further optimize this process to avoid
such additional checking.

Empirical results show that CloSpan often derives a much smaller set of sequential
patterns in a shorter time than PrefixSpan, which mines the complete set of sequential
patterns.

Mining Multidimensional, Multilevel Sequential Patterns
Sequence identifiers (representing individual customers, for example) and sequence
items (such as products bought) are often associated with additional pieces of infor-
mation. Sequential pattern mining should take advantage of such additional informa-
tion to discover interesting patterns in multidimensional, multilevel information space.
Take customer shopping transactions, for instance. In a sequence database for such data,
the additional information associated with sequence IDs could include customer age,
address, group, and profession. Information associated with items could include item
category, brand, model type, model number, place manufactured, and manufacture date.
Mining multidimensional, multilevel sequential patterns is the discovery of interesting
patterns in such a broad dimensional space, at different levels of detail.

Example 8.12 Multidimensional, multilevel sequential patters. The discovery that “Retired customers
who purchase a digital camera are likely to purchase a color printer within a month” and
that “Young adults who purchase a laptop are likely to buy a flash drive within two weeks”
are examples of multidimensional, multilevel sequential patterns. By grouping customers
into “retired customers” and “young adults” according to the values in the age dimension,
and by generalizing items to, say, “digital camera” rather than a specific model, the pat-
terns mined here are associated with additional dimensions and are at a higher level of
granularity.

“Can a typical sequential pattern algorithm such as PrefixSpan be extended to efficiently
mine multidimensional, multilevel sequential patterns?” One suggested modification is to
associate the multidimensional, multilevel information with the sequence ID and
item ID, respectively, which the mining method can take into consideration when find-
ing frequent subsequences. For example, (Chicago, middle aged, business) can be asso-
ciated with sequence ID 1002 (for a given customer), whereas (Digital camera, Canon,
Supershot, SD400, Japan, 2005) can be associated with item ID 543005 in the sequence.
A sequential pattern mining algorithm will use such information in the mining process
to find sequential patterns associated with multidimensional, multilevel information.

8.3.3 Constraint-Based Mining of Sequential Patterns

As shown in our study of frequent-pattern mining in Chapter 5, mining that is performed
without user- or expert-specified constraints may generate numerous patterns that are

44 Chapter 8 Mining Stream, Time-Series, and Sequence Data

of no interest. Such unfocused mining can reduce both the efficiency and usability of
frequent-pattern mining. Thus, we promote constraint-based mining, which incorpo-
rates user-specified constraints to reduce the search space and derive only patterns that
are of interest to the user.

Constraints can be expressed in many forms. They may specify desired relation-
ships between attributes, attribute values, or aggregates within the resulting patterns
mined. Regular expressions can also be used as constraints in the form of “pattern
templates,” which specify the desired form of the patterns to be mined. The gen-
eral concepts introduced for constraint-based frequent pattern mining in Section 5.5.1
apply to constraint-based sequential pattern mining as well. The key idea to note is that
these kinds of constraints can be used during the mining process to confine the search
space, thereby improving (1) the efficiency of the mining and (2) the interestingness
of the resulting patterns found. This idea is also referred to as “pushing the constraints
deep into the mining process.”

We now examine some typical examples of constraints for sequential pattern mining.
First, constraints can be related to the duration, T , of a sequence. The duration may
be the maximal or minimal length of the sequence in the database, or a user-specified
duration related to time, such as the year 2005. Sequential pattern mining can then be
confined to the data within the specified duration, T .

Constraints relating to the maximal or minimal length (duration) can be treated as
antimonotonic or monotonic constraints, respectively. For example, the constraint T ≤ 10
is antimonotonic since, if a sequence does not satisfy this constraint, then neither will any
of its supersequences (which are, obviously, longer). The constraint T > 10 is monotonic.
This means that if a sequence satisfies the constraint, then all of its supersequences will
also satisfy the constraint. We have already seen several examples in this chapter of how
antimonotonic constraints (such as those involving minimum support) can be pushed
deep into the mining process to prune the search space. Monotonic constraints can be
used in a way similar to its frequent-pattern counterpart as well.

Constraints related to a specific duration, such as a particular year, are considered
succinct constraints. A constraint is succinct if we can enumerate all and only those
sequences that are guaranteed to satisfy the constraint, even before support counting
begins. Suppose, here, T = 2005. By selecting the data for which year = 2005, we can
enumerate all of the sequences guaranteed to satisfy the constraint before mining begins.
In other words, we don’t need to generate and test. Thus, such constraints contribute
toward efficiency in that they avoid the substantial overhead of the generate-and-test
paradigm.

Durations may also be defined as being related to sets of partitioned sequences, such
as every year, or every month after stock dips, or every two weeks before and after an
earthquake. In such cases, periodic patterns (Section 8.3.4) can be discovered.

Second, the constraint may be related to an event folding window, w. A set of events
occurring within a specified period can be viewed as occurring together. If w is set to be as
long as the duration, T , it finds time-insensitive frequent patterns—these are essentially
frequent patterns, such as “In 1999, customers who bought a PC bought a digital camera
as well” (i.e., without bothering about which items were bought first). If w is set to 0

8.3 Mining Sequence Patterns in Transactional Databases 45

(i.e., no event sequence folding), sequential patterns are found where each event occurs
at a distinct time instant, such as “A customer who bought a PC and then a digital camera
is likely to buy an SD memory chip in a month.” If w is set to be something in between
(e.g., for transactions occurring within the same month or within a sliding window of
24 hours), then these transactions are considered as occurring within the same period,
and such sequences are “folded” in the analysis.

Third, a desired (time) gap between events in the discovered patterns may be speci-
fied as a constraint. Possible cases are: (1) gap = 0 (no gap is allowed), which is to find
strictly consecutive sequential patterns like ai−1aiai+1. For example, if the event folding
window is set to a week, this will find frequent patterns occurring in consecutive weeks;
(2) min gap ≤ gap ≤ max gap, which is to find patterns that are separated by at least
min gap but at most max gap, such as “If a person rents movie A, it is likely she will rent
movie B within 30 days” implies gap≤ 30 (days); and (3) gap = c 6= 0, which is to find pat-
terns with an exact gap, c. It is straightforward to push gap constraints into the sequential
pattern mining process. With minor modifications to the mining process, it can handle
constraints with approximate gaps as well.

Finally, a user can specify constraints on the kinds of sequential patterns by provid-
ing “pattern templates” in the form of serial episodes and parallel episodes using regular
expressions. A serial episode is a set of events that occurs in a total order, whereas a paral-
lel episode is a set of events whose occurrence ordering is trivial. Consider the following
example.

Example 8.13 Specifying serial episodes and parallel episodes with regular expressions. Let the nota-
tion (E , t) represent event type E at time t. Consider the data (A, 1), (C, 2), and (B, 5) with
an event folding window width of w = 2, where the serial episode A→ B and the parallel
episode A & C both occur in the data. The user can specify constraints in the form of a
regular expression, such as (A|B)C ∗ (D|E), which indicates that the user would like to
find patterns where event A and B first occur (but they are parallel in that their relative
ordering is unimportant), followed by one or a set of events C, followed by the events D
and E (where D can occur either before or after E). Other events can occur in between
those specified in the regular expression.

A regular expression constraint may antimonotonic nor monotonic. In such cases, we
cannot use it to prune the search space in the same ways as described above. However,
by modifying the PrefixSpan-based pattern-growth approach, such constraints can be
handled elegantly. Let’s examine one such example.

Example 8.14 Constraint-based sequential pattern mining with a regular expression constraint. Sup-
pose that our task is to mine sequential patterns, again using the sequence database, S,
of Table 8.1. This time, however, we are particularly interested in patterns that match the
regular expression constraint, C = 〈a?{bb|(bc)d|dd}〉, with minimum support.

Such a regular expression constraint is neither antimonotonic, nor monotonic, nor
succinct. Therefore, it cannot be pushed deep into the mining process. Nonetheless, this
constraint can easily be integrated with the pattern-growth mining process as follows.

46 Chapter 8 Mining Stream, Time-Series, and Sequence Data

First, only the 〈a〉-projected database, S|〈a〉, needs to be mined since the regular

expression constraint C starts with a. Retain only the sequences in S|〈a〉 that contain

items within the set {b, c, d}. Second, the remaining mining can proceed from the suffix.
This is essentially the Suffix-Span algorithm, which is symmetric to PrefixSpan in that it
grows suffixes from the end of the sequence forward. The growth should match the suffix
as the constraint, 〈{bb|(bc)d|dd}〉. For the projected databases that match these suffixes,
we can grow sequential patterns either in prefix- or suffix-expansion manner to find all
of the remaining sequential patterns.

Thus, we have seen several ways in which constraints can be used to improve the
efficiency and usability of sequential pattern mining.

8.3.4 Periodicity Analysis for Time-Related Sequence Data

“What is periodicity analysis?” Periodicity analysis is the mining of periodic patterns, that
is, the search for recurring patterns in time-related sequence data. Periodicity analysis can
be applied to many important areas. For example, seasons, tides, planet trajectories, daily
power consumptions, daily traffic patterns, and weekly TV programs all present certain
periodic patterns. Periodicity analysis is often performed over time-series data, which
consists of sequences of values or events typically measured at equal time intervals (e.g.,
hourly, daily, weekly). It can also be applied to other time-related sequence data where
the value or event may occur at a nonequal time interval or at any time (e.g., on-line
transactions). Moreover, the items to be analyzed can be numerical data, such as daily
temperature or power consumption fluctuations, or categorical data (events), such as
purchasing a product or watching a game.

The problem of mining periodic patterns can be viewed in different perspectives.
Based on the coverage of the pattern, we can categorize periodic patterns into full versus
partial periodic patterns:

A full periodic pattern is a pattern where every point in time contributes (precisely
or approximately) to the cyclic behavior of a time-related sequence. For example, all
of the days in the year approximately contribute to the season cycle of the year.

A partial periodic pattern specifies the periodic behavior of a time-related sequence
at some but not all of the points in time. For example, Sandy reads the New York
Times from 7:00 to 7:30 every weekday morning, but her activities at other times do
not have much regularity. Partial periodicity is a looser form of periodicity than full
periodicity, and occurs more commonly in the real world.

Based on the precision of the periodicity, a pattern can be either synchronous or asyn-
chronous, where the former requires that an event occur at a relatively fixed offset in
each “stable” period, such as 3 p.m. every day, whereas the latter allows that the event
fluctuates in a somewhat loosely defined period. A pattern can also be either precise or
approximate, depending on the data value or the offset within a period. For example, if

8.5 Summary 61

small numbers that can cause underflow arithmetic errors. A way around this is to use
the logarithms of the probabilities.

8.5 Summary

Stream data flow in and out of a computer system continuously and with varying
update rates. They are temporally ordered, fast changing, massive (e.g., gigabytes to ter-
abytes in volume), and potentially infinite. Applications involving stream data include
telecommunications, financial markets, and satellite data processing.

Synopses provide summaries of stream data, which typically can be used to return
approximate answers to queries. Random sampling, sliding windows, histograms, mul-
tiresolution methods (e.g., for data reduction), sketches (which operate in a single
pass), and randomized algorithms are all forms of synopses.

The tilted time frame model allows data to be stored at multiple granularities of time.
The most recent time is registered at the finest granularity. The most distant time is
at the coarsest granularity.

A stream data cube can store compressed data by (1) using the tilted time frame model
on the time dimension, (2) storing data at only some critical layers, which reflect
the levels of data that are of most interest to the analyst, and (3) performing partial
materialization based on “popular paths” through the critical layers.

Traditional methods of frequent itemset mining, classification, and clustering tend to
scan the data multiple times, making them infeasible for stream data. Stream-based
versions of such mining instead try to find approximate answers within a user-specified
error bound. Examples include the Lossy Counting algorithm for frequent itemset
stream mining; the Hoeffding tree, VFDT, and CVFDT algorithms for stream data
classification; and the STREAM and CluStream algorithms for stream data clustering.

A time-series database consists of sequences of values or events changing with time,
typically measured at equal time intervals. Applications include stock market analysis,
economic and sales forecasting, cardiogram analysis, and the observation of weather
phenomena.

Trend analysis decomposes time-series data into the following: trend (long-term)
movements, cyclic movements, seasonal movements (which are systematic or calendar
related), and irregular movements (due to random or chance events).

Subsequence matching is a form of similarity search that finds subsequences that
are similar to a given query sequence. Such methods match subsequences that have
the same shape, while accounting for gaps (missing values) and differences in base-
line/offset and scale.

A sequence database consists of sequences of ordered elements or events, recorded
with or without a concrete notion of time. Examples of sequence data include cus-
tomer shopping sequences, Web clickstreams, and biological sequences.

62 Chapter 8 Mining Stream, Time-Series, and Sequence Data

Sequential pattern mining is the mining of frequently occurring ordered events or
subsequences as patterns. Given a sequence database, any sequence that satisfies min-
imum support is frequent and is called a sequential pattern. An example of a sequen-
tial pattern is “Customers who buy a Canon digital camera are likely to buy an HP
color printer within a month.” Algorithms for sequential pattern mining include GSP,
SPADE, and PrefixSpan, as well as CloSpan (which mines closed sequential patterns).

Constraint-based mining of sequential patterns incorporates user-specified
constraints to reduce the search space and derive only patterns that are of interest
to the user. Constraints may relate to the duration of a sequence, to an event fold-
ing window (where events occurring within such a window of time can be viewed as
occurring together), and to gaps between events. Pattern templates may also be spec-
ified as a form of constraint using regular expressions.

Periodicity analysis is the mining of periodic patterns, that is, the search for recurring
patterns in time-related sequence databases. Full periodic and partial periodic patterns
can be mined as well as periodic association rules.

Biological sequence analysis compares, aligns, indexes, and analyzes biological
sequences, which can be either sequences of nucleotides or of amino acids. Biose-
quenceanalysisplaysacrucial role inbioinformaticsandmodernbiology.Suchanalysis
can be partitioned into two essential tasks: pairwise sequence alignment and multi-
ple sequence alignment. The Dynamic programming approach is commonly used for
sequence alignments. Among many available analysis packages, BLAST (Basic Local
Alignment Search Tool) is one of the most popular tools in biosequence analysis.

Markov chains and hidden Markov models are probabilistic models in which the
probability of a state depends only on that of the previous state. They are particu-
larly useful for the analysis of biological sequence data. Given a sequence of symbols,
x, the forward algorithm finds the probability of obtaining x in the model, whereas
the Viterbi algorithm finds the most probable path (corresponding to x) through the
model. The Baum-Welch algorithm learns or adjusts the model parameters (transition
and emission probabilities) so as to best explain a set of training sequences.

Exercises

8.1 A stream data cube should be relatively stable in size with respect to infinite data streams.
Moreover, it should be incrementally updateable with respect to infinite data streams.
Show that the stream cube proposed in Section 8.1.2 satisfies these two requirements.

8.2 In stream data analysis, we are often interested in only the nontrivial or exceptionally
large cube cells. These can be formulated as iceberg conditions. Thus, it may seem that
the iceberg cube [BR99] is a likely model for stream cube architecture. Unfortunately,
this is not the case because iceberg cubes cannot accommodate the incremental updates
required due to the constant arrival of new data. Explain why.

Exercises 63

8.3 An important task in stream data analysis is to detect outliers in a multidimensional envi-
ronment. An example is the detection of unusual power surges, where the dimensions
include time (i.e., comparing with the normal duration), region (i.e., comparing with
surrounding regions), sector (i.e., university, residence, government), and so on. Out-
line an efficient stream OLAP method that can detect outliers in data streams. Provide
reasons as to why your design can ensure such quality.

8.4 Frequent itemset mining in data streams is a challenging task. It is too costly to keep the
frequency count for every itemset. However, because a currently infrequent itemset may
become frequent, and a currently frequent one may become infrequent in the future,
it is important to keep as much frequency count information as possible. Given a fixed
amount of memory, can you work out a good mechanism that may maintain high-quality
approximation of itemset counting?

8.5 For the above approximate frequent itemset counting problem, it is interesting to incor-
porate the notion of tilted time frame. That is, we can put less weight on more remote
itemsets when counting frequent itemsets. Design an efficient method that may obtain
high-quality approximation of itemset frequency in data streams in this case.

8.6 A classification model may change dynamically along with the changes of training data
streams. This is known as concept drift. Explain why decision tree induction may not
be a suitable method for such dynamically changing data sets. Is naïve Bayesian a better
method on such data sets? Comparing with the naïve Bayesian approach, is lazy evalua-
tion (such as the k-nearest-neighbor approach) even better? Explain your reasoning.

8.7 The concept of microclustering has been popular for on-line maintenance of cluster-
ing information for data streams. By exploring the power of microclustering, design an
effective density-based clustering method for clustering evolving data streams.

8.8 Suppose that a power station stores data regarding power consumption levels by time and
by region, in addition to power usage information per customer in each region. Discuss
how to solve the following problems in such a time-series database:

(a) Find similar power consumption curve fragments for a given region on Fridays.

(b) Every time a power consumption curve rises sharply, what may happen within the
next 20 minutes?

(c) How can we find the most influential features that distinguish a stable power con-
sumption region from an unstable one?

8.9 Regression is commonly used in trend analysis for time-series data sets. An item in a
time-series database is usually associated with properties in multidimensional space.
For example, a electric power consumer may be associated with consumer location,
category, and time of usage (weekdays vs. weekends). In such a multidimensional
space, it is often necessary to perform regression analysis in an OLAP manner (i.e.,
drilling and rolling along any dimension combinations that a user desires). Design
an efficient mechanism so that regression analysis can be performed efficiently in
multidimensional space.

64 Chapter 8 Mining Stream, Time-Series, and Sequence Data

8.10 Suppose that a restaurant chain would like to mine customers’ consumption behavior
relating to major sport events, such as “Every time there is a major sport event on TV, the
sales of Kentucky Fried Chicken will go up 20% one hour before the match.”

(a) For this problem, there are multiple sequences (each corresponding to one restau-
rant in the chain). However, each sequence is long and contains multiple occurrences
of a (sequential) pattern. Thus this problem is different from the setting of sequential
pattern mining problem discussed in this chapter. Analyze what are the differences
in the two problem definitions and how such differences may influence the develop-
ment of mining algorithms.

(b) Develop a method for finding such patterns efficiently.

8.11 (Implementation project) The sequential pattern mining algorithm introduced by
Srikant and Agrawal [SA96] finds sequential patterns among a set of sequences. Although
there have been interesting follow-up studies such as the development of the algorithms
SPADE (Zaki [Zak01]), PrefixSpan (Pei, Han, Mortazavi-Asl, et al. [PHMA+01]), and
CloSpan (Yan, Han, and Afshar [YHA03]), the basic definition of “sequential pattern”
has not changed. However, suppose we would like to find frequently occurring subse-
quences (i.e., sequential patterns) within one given sequence, where, say, gaps are not
allowed. (That is, we do not consider AG to be a subsequence of the sequence ATG.)
For example, the string ATGCTCGAGCT contains a substring GCT with a support of
2. Derive an efficient algorithm that finds the complete set of subsequences satisfying a
minimum support threshold. Explain how your algorithm works using a small example,
and show some performance results for your implementation.

8.12 Suppose frequent subsequences have been mined from a sequence database, with a given
(relative) minimum support, min sup. The database can be updated in two cases:
(i) adding new sequences (e.g., new customers buying items), and (ii) appending new
subsequences to some existing sequences (e.g., existing customers buying new items). For
each case, work out an efficient incremental mining method that derives the complete sub-
sequences satisfying min-sup, without mining the whole sequence database from scratch.

8.13 Closed sequential patterns can be viewed as a lossless compression of a large set of sequen-
tial patterns. However, the set of closed sequential patterns may still be too large for effec-
tive analysis. There should be some mechanism for lossy compression that may further
reduce the set of sequential patterns derived from a sequence database.

(a) Provide a good definition of lossy compression of sequential patterns, and reason
why such a definition may lead to effective compression with minimal information
loss (i.e., high compression quality).

(b) Develop an efficient method for such pattern compression.

(c) Develop an efficient method that mines such compressed patterns directly from a
sequence database.

8.14 As discussed in Section 8.3.4, mining partial periodic patterns will require a user to specify
the length of the period. This may burden the user and reduces the effectiveness of mining.

Bibliographic Notes 65

Propose a method that will automatically mine the minimal period of a pattern requiring
a predefined period. Moreover, extend the method to find approximate periodicity where
the period will not need to be precise (i.e., it can fluctuate within a specified small range).

8.15 There are several major differences between biological sequential patterns and transac-
tional sequential patterns. First, in transactional sequential patterns, the gaps between
two events are usually nonessential. For example, the pattern “purchasing a digital camera
two months after purchasing a PC” does not imply that the two purchases are consecutive.
However, for biological sequences, gaps play an important role in patterns. Second, pat-
terns in a transactional sequence are usually precise. However, a biological pattern can be
quite imprecise, allowing insertions, deletions, and mutations. Discuss how the mining
methodologies in these two domains are influenced by such differences.

8.16 BLAST is a typical heuristic alignment method for pairwise sequence alignment. It first
locates high-scoring short stretches and then extends them to achieve suboptimal align-
ments. When the sequences to be aligned are really long, BLAST may run quite slowly.
Propose and discuss some enhancements to improve the scalability of such a method.

8.17 The Viterbi algorithm uses the equality, argmaxπP(π|x) = argmaxπP(x, π), in its search
for the most probable path, π?, through a hidden Markov model for a given sequence of
symbols, x. Prove the equality.

8.18 (Implementation project) A dishonest casino uses a fair die most of the time. However, it
switches to a loaded die with a probability of 0.05, and switches back to the fair die with
a probability 0.10. The fair die has a probability of 1

6 of rolling any number. The loaded
die has P(1) = P(2) = P(3) = P(4) = P(5) = 0.10 and P(6) = 0.50.

(a) Draw a hidden Markov model for the dishonest casino problem using two states,
Fair (F) and Loaded (L). Show all transition and emission probabilities.

(b) Suppose you pick up a die at random and roll a 6. What is the probability that the
die is loaded, that is, find P(6|DL)? What is the probability that it is fair, that is, find
P(6|DF)? What is the probability of rolling a 6 from the die you picked up? If you
roll a sequence of 666, what is the probability that the die is loaded?

(c) Write a program that, given a sequence of rolls (e.g., x = 5114362366 . . .), predicts
when the fair die was used and when the loaded die was used. (Hint: This is similar
to detecting CpG islands and non-CPG islands in a given long sequence.) Use the
Viterbi algorithm to get the most probable path through the model. Describe your
implementation in report form, showing your code and some examples.

Bibliographic Notes

Stream data mining research has been active in recent years. Popular surveys on stream
data systems and stream data processing include Babu and Widom [BW01], Babcock,
Babu, Datar, et al. [BBD+02], Muthukrishnan [Mut03], and the tutorial by Garofalakis,
Gehrke, and Rastogi [GGR02].

66 Chapter 8 Mining Stream, Time-Series, and Sequence Data

There have been extensive studies on stream data management and the processing
of continuous queries in stream data. For a description of synopsis data structures for
stream data, see Gibbons and Matias [GM98]. Vitter introduced the notion of reservoir
sampling as a way to select an unbiased random sample of n elements without replace-
ment from a larger ordered set of size N, where N is unknown [Vit85]. Stream query
or aggregate processing methods have been proposed by Chandrasekaran and Franklin
[CF02], Gehrke, Korn, and Srivastava [GKS01], Dobra, Garofalakis, Gehrke, and Ras-
togi [DGGR02], and Madden, Shah, Hellerstein, and Raman [MSHR02]. A one-pass
summary method for processing approximate aggregate queries using wavelets was pro-
posed by Gilbert, Kotidis, Muthukrishnan, and Strauss [GKMS01]. Statstream, a statisti-
cal method for the monitoring of thousands of data streams in real time, was developed
by Zhu and Shasha [ZS02, SZ04].

There are also many stream data projects. Examples include Aurora by Zdonik,
Cetintemel, Cherniack, et al. [ZCC+02], which is targeted toward stream monitoring
applications; STREAM, developed at Stanford University by Babcock, Babu, Datar
et al, aims at developing a general-purpose Data Stream Management System (DSMS)
[BBD+02]; and an early system called Tapestry by Terry, Goldberg, Nichols, and Oki
[TGNO92], which used continuous queries for content-based filtering over an append-
only database of email and bulletin board messages. A restricted subset of SQL was
used as the query language in order to provide guarantees about efficient evaluation
and append-only query results.

A multidimensional stream cube model was proposed by Chen, Dong, Han, et al.
[CDH+02] in their study of multidimensional regression analysis of time-series data
streams. MAIDS (Mining Alarming Incidents from Data Streams), a stream data mining
system built on top of such a stream data cube, was developed by Cai, Clutter, Pape et al.
[CCP+04].

For mining frequent items and itemsets on stream data, Manku and Motwani pro-
posed sticky sampling and lossy counting algorithms for approximate frequency counts
over data streams [MM02]. Karp, Papadimitriou, and Shenker proposed a counting algo-
rithm for finding frequent elements in data streams [KPS03]. Giannella, Han, Pei et al.
proposed a method for mining frequent patterns in data streams at multiple time gran-
ularities [GHP+04].

For stream data classification, Domingos and Hulten proposed the VFDT algorithm,
based on their Hoeffding tree algorithm [DH00]. CVFDT, a later version of VFDT, was
developed by Hulten, Spencer, and Domingos [HSD01] to handle concept drift in time-
changing data streams. Wang, Fan, Yu, and Han proposed an ensemble classifier to mine
concept-drifting data streams [WFYH03] Aggarwal, Han, Wang, and Yu developed a
k-nearest-neighbor-based method for classify evolving data streams [AHWY04b].

Several methods have been proposed for clustering data streams. The k-median-
based STREAM algorithm was proposed by Guha, Mishra, Motwani, and O’Callaghan
[GMMO00] and by O’Callaghan, Mishra, Meyerson, et al. [OMM+02]. Aggarwal, Han,
Wang, and Yu proposed CluStream, a framework for clustering evolving data streams
[AHWY03], and HPStream, a framework for projected clustering of high-dimensional
data streams [AHWY04a].

Bibliographic Notes 67

Statistical methods for time-series analysis have been proposed and studied extensively
in statistics, such as in Chatfield [Cha03], Brockwell and Davis [BD02], and
Shumway and Stoffer [SS05] StatSoft’s Electronic Textbook (www.statsoft.com/textbook/
stathome.html) is a useful online resource that includes a discussion on time-series data
analysis. The ARIMA forecasting method is described in Box, Jenkins, and Reinsel
[BJR94]. Efficient similarity search in sequence databases was studied by Agrawal, Falout-
sos,andSwami[AFS93].Afastsubsequencematchingmethodintime-seriesdatabaseswas
presented by Faloutsos, Ranganathan, and Manolopoulos [FRM94]. Agrawal, Lin, Sawh-
ney, and Shim [ALSS95] developed a method for fast similarity search in the presence of
noise, scaling, and translation in time-series databases. Language primitives for querying
shapes of histories were proposed by Agrawal, Psaila, Wimmers, and Zait
[APWZ95]. Other work on similarity-based search of time-series data includes Rafiei and
Mendelzon [RM97], and Yi, Jagadish, and Faloutsos [YJF98]. Yi, Sidiropoulos, Johnson,
Jagadish, et al. [YSJ+00] introduced a method for on-line mining for co-evolving time
sequences. Chen, Dong, Han, et al. [CDH+02] proposed a multidimensional regression
method for analysis of multidimensional time-series data. Shasha and Zhu present a state-
of-the-art overview of the methods for high-performance discovery in time series [SZ04].

The problem of mining sequential patterns was first proposed by Agrawal and Srikant
[AS95]. In the Apriori-based GSP algorithm, Srikant and Agrawal [SA96] generalized
their earlier notion to include time constraints, a sliding time window, and user-defined
taxonomies. Zaki [Zak01] developed a vertical-format-based sequential pattern mining
method called SPADE, which is an extension of vertical-format-based frequent itemset
mining methods, like Eclat and Charm [Zak98, ZH02]. PrefixSpan, a pattern growth
approach to sequential pattern mining, and its predecessor FreeSpan, was developed
by Pei, Han, Mortazavi-Asl et al. [HPMA+00, PHMA+01, PHMA+04]. The CloSpan
algorithm for mining closed sequential patterns was proposed by Yan, Han, and Afshar
[YHA03]. BIDE, a bidirectional search for mining frequent closed sequences, was devel-
oped by Wang and Han [WH04].

The studies of sequential pattern mining have been extended in several different ways.
Mannila, Toivonen, and Verkamo [MTV97] consider frequent episodes in sequences,
where episodes are essentially acyclic graphs of events whose edges specify the temporal
before-and-after relationship but without timing-interval restrictions. Sequence pattern
mining for plan failures was proposed in Zaki, Lesh, and Ogihara [ZLO98]. Garofalakis,
Rastogi, and Shim [GRS99a] proposed the use of regular expressions as a flexible con-
straint specification tool that enables user-controlled focus to be incorporated into the
sequential pattern mining process. The embedding of multidimensional, multilevel infor-
mation into a transformed sequence database for sequential pattern mining was pro-
posed by Pinto, Han, Pei et al. [PHP+01]. Pei, Han, and Wang studied issues regarding
constraint-based sequential pattern mining [PHW02]. CLUSEQ is a sequence cluster-
ing algorithm, developed by Yang and Wang [YW03]. An incremental sequential pattern
mining algorithm, IncSpan, was proposed by Cheng, Yan, and Han [CYH04]. SeqIndex,
efficient sequence indexing by frequent and discriminative analysis of sequential pat-
terns, was studied by Cheng, Yan, and Han [CYH05]. A method for parallel mining of
closed sequential patterns was proposed by Cong, Han, and Padua [CHP05].

68 Chapter 8 Mining Stream, Time-Series, and Sequence Data

Data mining for periodicity analysis has been an interesting theme in data mining.
Özden, Ramaswamy, and Silberschatz [ORS98] studied methods for mining periodic

or cyclic association rules. Lu, Han, and Feng [LHF98] proposed intertransaction asso-
ciation rules, which are implication rules whose two sides are totally ordered episodes
with timing-interval restrictions (on the events in the episodes and on the two sides).
Bettini, Wang, and Jajodia [BWJ98] consider a generalization of intertransaction associ-
ation rules. The notion of mining partial periodicity was first proposed by Han, Dong,
and Yin, together with a max-subpattern hit set method [HDY99]. Ma and Hellerstein
[MH01a] proposed a method for mining partially periodic event patterns with unknown
periods. Yang, Wang, and Yu studied mining asynchronous periodic patterns in time-
series data [YWY03].

Methods for the analysis of biological sequences have been introduced in many text-
books, such as Waterman [Wat95], Setubal and Meidanis [SM97], Durbin, Eddy, Krogh,
and Mitchison [DEKM98], Baldi and Brunak [BB01], Krane and Raymer [KR03], Jones
and Pevzner [JP04], and Baxevanis and Ouellette [BO04]. Information about BLAST can
be found at the NCBI Web site www.ncbi.nlm.nih.gov/BLAST/. For a systematic intro-
duction of the BLAST algorithms and usages, see the book “BLAST” by Korf, Yandell,
and Bedell [KYB03].

For an introduction to Markov chains and hidden Markov models from a biologi-
cal sequence perspective, see Durbin, Eddy, Krogh, and Mitchison [DEKM98] and Jones
and Pevzner [JP04]. A general introduction can be found in Rabiner [Rab89]. Eddy and
Krogh have each respectively headed the development of software packages for hidden
Markov models for protein sequence analysis, namely HMMER (pronounced “ham-
mer,” available at http://hmmer.wustl.edu/) and SAM (www.cse.ucsc.edu/research/
compbio/sam.html).

