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Abstract—We present a noise-adjusted principal component
analysis (NAPCA)-based approach to the detection and classifi-
cation of buried radioactive targets with short sensor dwell time.
The data used in the experiments is the gamma spectroscopy
collected by a Sodium Iodide (NAI) scintillation detector. Spectral
transformation methods are first applied to the data, followed by
NAPCA. Then -nearest neighbor ( NN) clustering is applied to
the NAPCA-transformed feature subspace to achieve detection or
classification. This method is evaluated using a database of 240
spectral measurements consisting of background (construction
sand), benign material measurements (uranium ore), and target
measurements (depleted uranium) at various depths. Compared to
other widely used algorithms for depleted uranium, the proposed
technique can provide better performance.

Index Terms—Buried target detection, classification, Gamma-
ray spectral analysis, noise-adjusted principal component analysis,
principal component analysis.

I. INTRODUCTION

T HE detection and discrimination of radioactive objects has
many important applications, such as illicit cargo detec-

tion at border crossings [1], [2], buried target detection within
battlefields [3], and nuclear threat discrimination from benign
sources [4]. Several approaches have been developed [4]–[6].
Many of these methods use a gamma spectrometer to count the
number of emitted gamma photons and detection or classifica-
tion is achieved based on the measurements of these photons
at different energy levels. It is assumed that the collected en-
ergy spectrum is significantly different between target and non-
target measurements. For instance, one of the most common and
simple criteria is the gross count (GC) of photons within dif-
ferent spectral energy channels [4]. Another method involves
computing the ratio of an unknown measurement with a known
and benign measurement, which is referred to as the spectral
comparison ratio (SCR) method [4], [5]. Characteristics of the
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ratio can help determine whether the unknown measurement is
similar to that of benign measurement; then target discrimina-
tion can be achieved.

Due to low energy counts and strong background clutters,
the performance of the aforementioned techniques may be poor
when a target, e.g., depleted uranium, is buried. The problem be-
comes more challenging if the sensor dwell time (i.e., counting
period) is very short, e.g., 1 s. Under such circumstance, it is
important to develop algorithms that can effectively suppress
noise and background interference. In this paper, we will inves-
tigate three spectral transformation methods, including spectral
bin energy (SBE), spectral bin ratio (SBR), and SCR, which can
normalize the contribution from background and eliminate the
trivial variation from noise.

Principal component analysis (PCA) has the capability of
suppressing noise as well. PCA can compact data information
into major principal components (PCs) since it ranks PCs in
terms of data variance. The rationale of applying PCA is that
noise effect can be alleviated if only major PCs participate in
the following data analysis. It assumes that important signal
features are included in major PCs. PCA has been applied to
gamma-ray spectra for anomaly detection [7]. In this paper,
we apply PCA to the detection and classification of buried tar-
gets. The PCs holding the highest levels of variance are consid-
ered as features of the spectra. From these features, each spec-
trum is classified using -nearest neighbor ( NN) clustering
[8]. If clustering is conducted for two classes, i.e., target class
and non-target class, then detection can be achieved. In addi-
tion, the three aforementioned spectral transformation methods
are employed before PCA. Experimental results show that this
method, i.e., spectral transformation followed by PCA, may pro-
vide better performance than applying transformation only.

However, it is obvious that both signal and noise can con-
tribute to data variance; it is possible for a PC with lower
ranking to include more important signal features than a PC
with higher ranking. Thus, noise-adjusted principal component
analysis (NAPCA) was proposed, which is to rank PCs in terms
of signal-to-noise ratio (SNR) [9], [10]. SNR is a better metric
than variance to gauge the actual signal information contained
in major PCs. In this way, a PC with higher ranking always
contains more signal information and less noise than a PC with
lower ranking. The idea of NAPCA was originally proposed
for image processing. In this paper, we will deploy NAPCA
for the analysis of gamma-ray data. The experimental result
demonstrates that NAPCA is better than PCA in extracting data
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Fig. 1. Energy spectra with different sensor dwell time. (a). Original target (DU buried 15 cm deep) and background spectra (dwell time is 1 s), (b). Original target
(DU buried 15 cm deep) and background spectra (dwell time is 0.5 s), (c). Original target (DU buried 15 cm deep) and background spectra (dwell time is 0.25 s),
(d). Original target (DU buried 15 cm deep) and background spectra (dwell time is 0.1 s).

features, thereby achieving higher detection and classification
accuracy.

It is noteworthy that the computation of data covariance
matrix and its eigen-decomposition are the major steps when
implementing PCA and NAPCA. To make the covariance
matrix full-rank, the number of independent samples should
be greater than the number of data dimensionality, which
is the number of spectral channels. Thus, the three spectral
transformation methods, i.e., SBE, SBR, and SCR, can help
to alleviate the requirement for a large number of independent
spectral measurements via data dimensionality reduction.

II. SPECTRAL TRANSFORMS

Each measurement contains some degree of variability and
uncertainty in the number of counts detected. It may be diffi-
cult to compare two measurements taken over during different
time periods. Fig. 1 shows the energy spectra collected by 1 s,
0.5 s, 0.25 s, and 0.1 s. With the dwell time being reduced, the

spectrum becomes sparser. Thus, it may be helpful to map each
spectrum into a certain range by normalizing the count in each
energy channel according to the total amount of counts within
the spectral coverage. As shown in (1), and are energy
counts at the th channel before and after normalization, and
is the total number of channels

(1)

Then the following data processing uses the transformed .

A. Spectral Bin Energy (SBE)

The input spectral measurements are divided into
fixed-width, overlapping bins with width and step-size
. The sum of energy within each bin is computed as

(2)
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Fig. 2. SBE curves of the background and target spectra in Fig. 1(a).

where is the total number of bins after transformation, thus
reducing the size of the set of values that describes the spec-
trum. For spectrum measurements that are significantly sparse,
such as those measured with short sensor dwell time, this trans-
form is especially useful since it helps summarize information
within the spectrum that might not be immediately obvious and
eliminate nuisance variations of the spectrum that do not con-
tribute useful information. As mentioned earlier, it also reduces
the data dimensionality (from the number of energy channels to
the number of energy bins), which reduces the number of sam-
ples required to estimate a data covariance matrix with full rank
in the following PCA or NAPCA.

Note that (2) is a general expression for any and with
overlapping bins. Due to the difficulty of determining the op-
timal parameters, we simply use evenly spaced non-overlapping
bins in the experiment with . Then the optimal bin-width

can be found by exhaustive searching. In this research, the
is simply selected such that each bin has non-zero counts; the
other two ratio-based transforms, i.e., SBR and SCR, are built
upon SBE, so this choice makes them feasible. Fig. 1 illustrates
original spectra from 0 keV to 2160 keV with 1011 spectral
channels before the SBE transform, and the SBE-transformed
spectra for those in Fig. 1(a) with keV are illustrated
in Fig. 2, where the major spectral features are still visible but
with much less random variation.

B. Spectral Bin Ratios (SBR)

The second method transforms the spectrum based on its ratio
with a previously measured background spectrum. The spec-
trum is divided into several bins. The sum of the energy within
each bin is computed for both the observed spectrum and the
known background spectrum, and the ratio of these two sums is
computed using (3). For the th bin

(3)

where and are the SBE-transformed known back-
ground and observed measurements, respectively. Fig. 3 illus-

Fig. 3. SBRs of the background and target spectra in Fig. 1(a).

trates a comparison of the ratios of the background measurement
and the target measurement in Fig. 1(a) using another back-
ground measurement in (3). Notice that the background ratio is
close to 1 across the spectrum. This is expected since all back-
ground measurements should have a similar fraction of energy
for each energy channel. On the other hand, the ratio for target
measurement is dramatically different and easily distinguish-
able from the background ratio.

C. Spectral Comparison Ratios (SCR)

The third method uses the SCR [5], [6]. As with the SBR
method, a previously measured background spectrum is re-
quired. Both the known background spectrum and the observed
spectrum are divided into fixed-width, non-overlapping bins as
in SBE. One bin (usually the first bin) is chosen as a reference.
The SCR can then be computed as:

(4)

Given an observed spectral measurement, SCR measures how
closely the spectrum matches that of the background. If the
observed spectrum is a background measurement, the SCR is
close to 0 across the spectrum; otherwise, the magnitude of the
SCR should be significantly higher than 0. Fig. 4 shows the
SCR-transformed spectra for the two spectra in Fig. 1(a), whose
difference is significant. Actually, this difference is magnified
compared to the original spectra.

III. PCA AND NAPCA-BASED APPROACHES

A. PCA and NAPCA

PCA ranks PCs in terms of data variance. Consider the obser-
vation model

(5)

where is an energy spectral measurement with data dimen-
sionality (i.e., the number of spectral channels), is a signal
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Fig. 4. SCRs of the background and target spectra in Fig. 1(a).

vector, and represents the uncorrelated additive noise. Let
and be the

eigenvector and eigenvalue matrices of the data covariance ma-
trix , where are eigenvectors of size
and are the corresponding eigenvalues, i.e.,

(6)

Then, the PC images can be calculated from

(7)

where is the data mean. Assume ,
the variances of the PC images of the transformed data using

are , respectively.
NAPCA ranks PCs in terms of SNR. It can be performed

with two steps. The first step conducts noise-whitening to the
original data, and the second step performs the ordinary PCA
to the noise-whitened data. Since the noise variance is unity
in the noise-whitened data, the resultant PCs are in the order
of SNR. Let be the noise covariance matrix and be the
noise-whitening matrix such that

(8)

where is the identity matrix. Transforming by , i.e.,

(9)

where is the covariance matrix with the noise being
whitened. Finding a matrix such that

(10)

Then, the operator for NAPCA can be constructed by

(11)

The major difficulty in performing NAPCA is having an ac-
curate noise covariance matrix . The following method is

Fig. 5. Decision boundary determined by training data.

adopted in our research for its simplicity and effectiveness [11].
Let be decomposed as

(12)

where is a diagonal matrix with
being the diagonal elements of , which is the variance of the
th original channel, and is the correlation coefficient matrix

whose th element represents the correlation coefficient be-
tween the th and th channels. Similarly, in analogy with the
decomposition of , its inverse can be also decomposed
as

(13)

where is a diagonal matrix with
being the diagonal elements of and is a matrix

similar to with the diagonal elements being one and all the off-
diagonal elements being within . It turns out that is the
reciprocal of a good noise variance estimate of the th channel.
Therefore, the noise covariance matrix can be estimated by
a diagonal matrix .

It is worth mentioning that data dimensionality may be re-
duced to if energy bins are applied in spectral transformation.

B. Target Detection and Evaluation

To extract the primary features from data contaminated by
noise and background clutter, PCA or NAPCA can be applied
to the transformed spectra. The first several PCs are kept and
used in the detection or classification step. The NN clustering
technique is applied to the PCs. For detection, the reduced set
of features can be classified into two classes, e.g., target and
non-target (or background), using the NN. Fig. 5 illustrates
an example that shows the decision boundary created by the

NN method. In this case, there are a total of four background
measurements and eight target measurements. The decision
boundary consists of the points whose average distances to the

nearest target samples and to the nearest background sam-
ples are the same. We choose to be 2 in this example. All the
test measurements to one side of the decision boundary will be
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detected as the background, and all measurements to the other
side will be detected as the target. Similarly, multiple-class
classification is achieved with multiple boundaries.

Detection performance is quantified with target detection
(TD) accuracy, non-target detection (NTD) accuracy, and
overall detection (OD) accuracy. In addition, targets buried
at different depth can be considered as different classes, and
classification accuracy can be quantified using target classifi-
cation (TC) accuracy and overall classification (OC) accuracy.
Specifically, the five metrics are defined as

(14)

IV. EXPERIMENTS

Laboratory data were taken using a 10 10 40 cm sodium
iodide (NaI) scintillation detector. ORTEC DigiBASE with
ORTEC GammaVision software was employed. The measured
spectra cover the energy range of 0 keV to 2160.0 keV. After
SBE, SBR, and SCR, each measurement had 54 bins (
keV). Note that this bin-width was not optimized. The target
was a cylindrical object with 4.3 kg mass. The background
conditions consisted of construction sand, and small-rock-type
uranium ore was considered a benign object.

The target was buried at 15 cm, 23 cm, 30 cm, 45 cm, 60
cm, 75 cm, and 90 cm depth. Natural ore in a quart-size plastic
bag was buried at 45 cm and 75 cm depth. Each class had 24
samples. Sensor dwell time was varied from 1 s, 0.5 s, 0.25 s, to
0.1 s. Before processing, all the measurements were normalized
into equivalent 1 s dwell time. Training samples were needed
for each class (including background) at different depths. The
final performance may be slightly changed with the number of
PCs used, and we found out that using the first two PCs could
provide the best overall performance in our experiments. Thus,
we presented the results using the first two PCs hereafter.

A. Experiment Using the Entire Dataset

NN was applied for -fold cross-validation
. The -fold cross-validation divided the original samples

into subsamples. Of the subsamples, a single subsample
was taken for validation and the remaining subsamples
were used as training data. The cross-validation process was
then repeated times, with each of the subsamples used ex-
actly once as the validation data. The results from the folds
were averaged to produce a single estimation. All samples were
used for both training and validation, and each sample was used
for validation exactly once.

TABLE I
DETECTION AND CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS

FOR THE ENTIRE DATASET

Table I tabulates the average detection accuracy of cross-val-
idation by considering all the seven target classes as a single
class and all the three non-target classes as the other. The
NAPCA-based methods provided higher detection accuracy
than the PCA-based methods. In particular, the three spec-
tral transformation methods in conjunction with NAPCA
could improve the performance of the methods applied on
the original data. For instance, the SBR transform could not
improve the performance if using PCA; however, it could result
in significant improvement with NAPCA. As for the SCR
method, the overall detection (OD) accuracy was lower than the
NAPCA-based method, but similar to the PCA-based method;
with PCA (i.e., SCR-PCA), the OD accuracy was slightly
increased from 83.3% to 84.6%; if NAPCA was employed
(i.e., SCR-NAPCA), it was further increased to 88.6%. The GC
method generally yielded low accuracy.

Classification was also conducted where targets buried at dif-
ferent depths were considered different classes. As shown in
Table I, NAPCA with SBE provided the highest target classi-
fication (TC) accuracy (i.e., 87.1%) when classifying the target
buried at seven different depths and the highest overall classifi-
cation (OC) accuracy (i.e., 77.0%) when classifying all the ten
classes including natural ore and background.

The detailed classification results of the seven target classes
are listed in Table II (corresponding to the TC in Table I). The
60 cm DU was difficult to be classified because the spectra were
close to those of the natural ore buried 45 cm and 75 cm deep.
Interestingly, the four methods applied on the original data (i.e.,
GC, SBE, SBR, SCR) could provide 100% accuracy for 15 cm
DU, while the NAPCA-based methods yielded better results for
all the classes. This means the NAPCA-generated feature space
is optimal in terms of all the classes but may not for a specific
class.

The accuracy for 0.25 s and 0.1 s data were presented in
Tables III and IV, respectively. For 0.25 s data, two NAPCA-
based methods could provide 90% overall detection accuracy
and 70% overall classification accuracy. For 0.1 s data, using
NAPCA, the overall detection accuracy could be above 80%;
however, the target classification and the overall classification
accuracy were only around 60% and 50%, respectively, due to
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TABLE II
CLASSIFICATION ACCURACY (%) OF SEVEN TARGET CLASSES

TABLE III
DETECTION AND CLASSIFICATION ACCURACY (%) OF 0.25 S DATA

TABLE IV
DETECTION AND CLASSIFICATION ACCURACY (%) OF 0.1 S DATA

low energy counts when sensor dwell time was as short as 0.1 s.
In this case, the GC method seemed to be quite stable.

B. Uncertainty Analysis

Tables I–IV show the average accuracy in the 24-fold
cross-validations. In order to better describe the accuracy
statistics when using different training and test samples, box-
plots were generated in Fig. 6 showing the mean and standard

TABLE V
F-TEST FOR THE MEAN ACCURACIES OF THE TEN METHODS

TABLE VI
T-TEST FOR THE MEAN ACCURACIES OF THE FOUR GROUPS

deviation for each method (corresponding to Table I). From
Fig. 6(a), we can see that GC and SBR-PCA were worse than
other six methods; SBE-NAPCA and SBR-NAPCA were the
best because the mean accuracy was among the largest and the
standard deviation was the smallest. Similarly, in Fig. 6(b)–(e),
SBE-NAPCA, SBR-NAPCA, and SCR-NAPCA were better
than their counterparts, and ranked among the best methods.

The ANOVA (analysis of variance) F-test was employed to
quantify the statistically significant difference between the mean
accuracies of the ten methods (denoted as
with the hypothesis test being formulated as

(15)

The results are shown in Table V with significance level being
set to be as usual [12]. We can see that all the P values
are less than 0.0001, much smaller than , indicating
that is rejected. This means there really exist significant dif-
ferences among the mean accuracies of the ten methods. Based
on the F values, Table V also indicates that performance dis-
crepancy is the most obvious for OC and the least obvious for
TD, which is the same as illustrated in Fig. 6. Here, error degree
of freedom is 230, treatment degree of freedom is 9, and total
degree of freedom is 239.

T-test was also used to analyze the significance of perfor-
mance discrepancy between different groups: group1 :
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Fig. 6. Boxplots for 24-fold cross-validation using the entire dataset. (a) Target Detection (TD) Accuracy, (b) Non-target Detection (NTD) Accuracy, (c) Overall
Detection (OD) Accuracy, (d) Classification Accuracy of Seven Target Classes (TC), (e) Overall Classification Accuracy of Ten Classes (TC).

{GC}; group2 : {SBE, SBR, SCR}, group3 : {SBE-
PCA, SBR- PCA, SCR-PCA}, group4 : {SBE-NAPCA,
SBR-NAPCA, SCR-NAPCA}. The test is formulated
as

(16)

where is the mean accuracy of , for . The
significance level being set to be as usual. Small sam-
ples inferences for two samples are considered. The degree of
freedom equals the number of samples in the two groups minus
2. If the P value is smaller than is rejected which
means there exists material difference between the performance

of the two groups under test. The T-test results were shown in
Table VI where the P values less than were high-
lighted. As we can see, in all the tests related to the NAPCA
group , the significance was very obvious. For instance, the
test between and showed that all the accuracies except
TD demonstrated great improvement, which means applying
NAPCA was better than the original transforms; the test be-
tween and also showed great improvement except NTD,
which means NAPCA was a better choice than PCA.

C. Experiment Using Data Containing Difficult Classes Only

This experiment was conducted when the three easy classes:
DU buried 15 cm, 23 cm, and 30 cm deep, were removed.
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TABLE VII
DETECTION AND CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS

FOR THE DATASET CONTAINING SEVEN DIFFICULT CLASSES

Table VII lists the average detection accuracy of cross-valida-
tion, where NAPCA could improve the performance of SBE,
SBR, and SCR while PCA did not necessarily bring about
improvement. Table VII also lists the average classification
accuracy for the seven classes (with four target classes), where
NAPCA-based methods were among the best.

V. CONCLUSION

In this paper, we propose an approach for buried radioactive
target detection and classification, which applies spectral trans-
formation followed by PCA or NAPCA. To meet the require-
ment of practical survey mapping, we focus on the circumstance
when sensor dwell time is very short (i.e., less than 1 s). In
this case, the gamma spectroscopy collected by an NaI detector
can be sparse, random, and dominated by energy counts from
the background. We believe an appropriate spectral transform
can alleviate the effects from spectral noisy variation and back-
ground clutters, while NAPCA, a better choice than PCA, can
extract major features for the following detection and classifi-
cation. Thus, it can generally improve the target detection and
classification performance after a certain spectral transform is
applied.

For SBR and SCR, a known background measurement is
needed. For real field data, background may be changed with
geolocation. Under such circumstance, SBR and SCR should
be applied locally by using a local background measurement.
Even for the data collected at the same location (e.g., the lab
data), the background measurement is changed with time due
to counting uncertainty when sensor dwell time is very short.
This is why a background measurement normalized by another
background measurement using SBR or SCR is not a constant
1 or 0. Such variation shows the importance of employing a
statistical approach (e.g., PCA and NAPCA) instead of the
traditional deterministic approach. It also motivates us to

employ a multi-dimensional technique, where all the energy
channels/bins are explored simultaneously for decision-making
rather than a single or a few channels only.

It is worth mentioning that the performance of all the three
spectral transforms is varied with the bin-width selection. How
to automatically select an optimal bin-width for each transform
is under investigation. However, using the NAPCA-transformed
data, these three spectral transforms generally can provide better
detection and classification than other methods, such as GC, ap-
plied on the original data.
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