DAIMLERCHRYSLER

3D-Combustion Simulation: Potentials, Modeling and Application Issues

Dr. Rüdiger Steiner 10th Diesel Engine Emissions Reduction Conference August 29 – September 02, 2004 Coronado, California

Outline

- Motivation for 3D-CFD ICE Simulation
- Demands on an Industrial CFD Code
- General Modeling Aspects
- Combustion Modeling Concepts at DC
 - Spray Modeling
 - Combustion Modeling
 - Validation
- Conclusion

Motivation for 3D-CFD ICE Simulation

Improvements required by

Key-Technologies

Injection system

Combustion design

т

Turbocharging Exhaust gas aftertr.

Task:

Cost and time effective development of engine with low emissions and high fuel economy

Challenge:

Large number of design parameters and complex variable interactions

- Motivation for 3D-CFD ICE Simulation
- Demands on an Industrial CFD Code
- General Modeling Aspects
- Combustion Modeling Concepts at DC
 - Spray Modeling
 - Combustion Modeling
 - Validation
- Conclusion

Demands on an industrial CFD Code

Package must be featured by

High degree of predictability

Compromise solution!

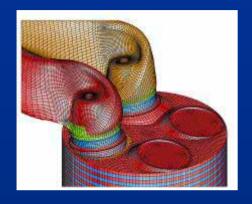
Low computational costs

<u>plus</u>

Extensibility

Ease-of use

Best Practice

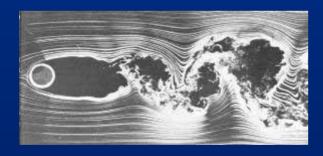

. . .

What means prediction?

- It is sufficient to predict
 - trends (e.g. determine the most qualified bowl geometry)
 - relative results (e.g. NO_x-Soot Trade-Off)
 - Reduced tuning efforts; calibration of only physical parameters (e.g. droplet size, not mesh configuration)

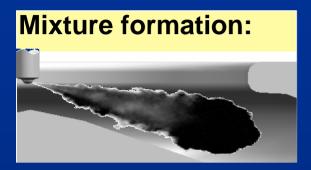
Issues in CFD Modeling

Complex shaped moving geometry


Fuel jet: 2-phase flow

Combustion & Emissions complex chemistry

Turbulent flow



Predictability of CFD Code is determined by weakest sub-model

→ All sub-models should have about the same level of detail!

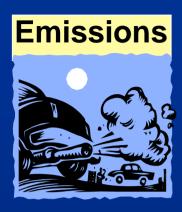
- Motivation for 3D-CFD ICE Simulation
- Demands on an Industrial CFD Code
- General Modeling Aspects
- Combustion Modeling Concepts at DC
 - Spray Modeling
 - Combustion Modeling
 - Validation
 - Conclusion

Modeling Aspects

Eulerian models in combination with orifice resolving meshes and boundary conditions from 3D simulation of nozzle flow!

- Reduced mesh dependency:
- → Resolving of relevant length-scales
 - Definition of realistic boundary conditions:
 - → Coupling between cavitating nozzle flow and spray calculation
 - Convergent droplet statistics:
- → Eulerian spray model near nozzle orifice
 - Validated physical submodels
 - → for breakup and evaporation

Modeling Aspects



- Conventional Diesel ignition:
 - → Consideration of detailed chemistry
- Advanced combustion ignition, e.g. HCCI ignition:
 - → Consideration of detailed chemistry in low temperature range
 - → Description of multi-stage ignition (Cool Flame)
- Premixed combustion:
 - → Accounting for complex chemistry schemes
- •Turbulence-chemistry interaction:
 - → Consideration of heterogeneous mixture fields
 - → Consideration of turbulent transport processes

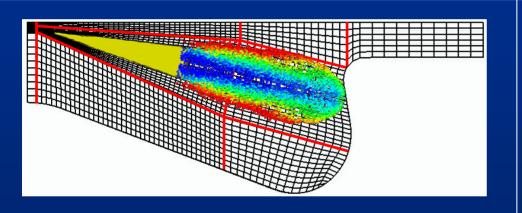
Incorporation of validated detailed kinetics and accounting for turbulence interaction!

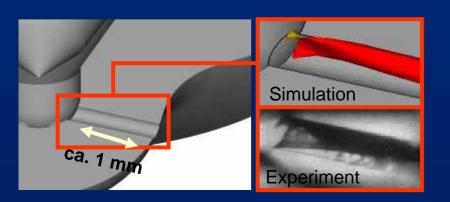
Modeling Aspects

Prediction of NOx, Soot, HC, CO:

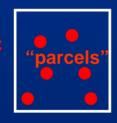
→ Consideration of detailed chemistry

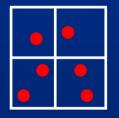
Miscellaneous:


- Accounting for real gas effects
- Accounting for elasticity effects
- Chemical schemes for alternative fuels
- Intelligent meshing strategies


- Motivation for 3D-CFD ICE Simulation
- Demands on an Industrial CFD Code
- General Modeling Aspects
- Combustion Modeling Concepts at DC
 - Spray Modeling
 - Combustion Modeling
 - Validation
 - Conclusion

Crucial for predictive spray simulations are:


- 1. Resolution of relevant scales (hole diameter!) → spray adaptive mesh
- 2. Capture of droplet statistics \rightarrow Eulerian spray model in near nozzle region
- 3. Boundary settings → Coupling between models for nozzle flow and spray
- 4. Suitable models for spray breakup and droplet evaporation



Influence of mesh refinement on statisti Coarse mesh Fine mesh

Stochastic spray model

⇒ decrease of "parcels" per ce

⇒ Number of droplet classes independent of cell size

#12

DC Approach for Spray

Comparison: Experiment and Simulation

High temperature chamber

Simulated air-fuel ratio

0.00e+00 s

Spray structure (angle and penetration) shows good agreement.

- Motivation for 3D-CFD ICE Simulation
- Demands on an Industrial CFD Code
- General Modeling Aspects
- Combustion Modeling Concepts at DC
 - Spray Modeling
 - Combustion Modeling
 - Validation
 - Conclusion

Requirements:

High degree of predictability:

Consideration of

Turbulence effects

Complex Interaction

Complex chemistry

Low CPU-costs: Reasonable level of detail

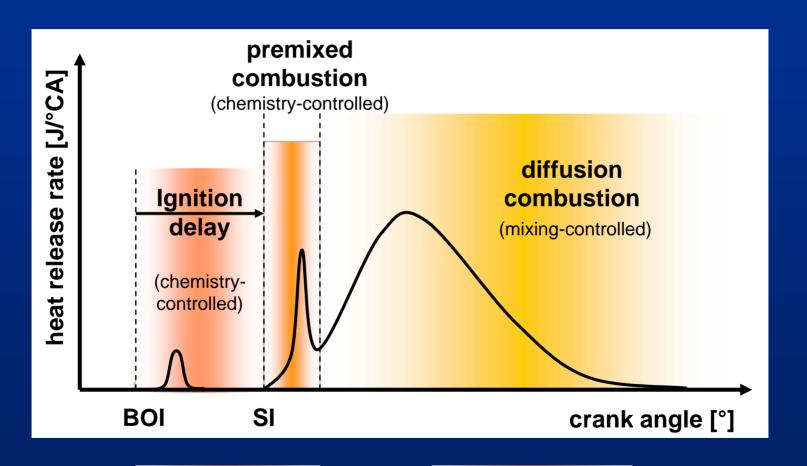
Idea of Progress Variable Approach:

Description of complex chemical phenomena with a **limited number** of **representative progress variables**

Spatial-temporal information of the progress variable:

Solving of a general convective-diffusive transport equation

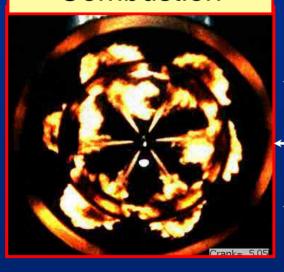
$$\left| \frac{\partial (\overline{\rho} \widetilde{\psi}_i)}{\partial t} + \nabla \cdot (\overline{\rho} \widetilde{u} \widetilde{\psi}_i) \right| = \nabla \cdot [D \nabla \widetilde{\psi}_i] + \widetilde{\psi}_i^s + \widetilde{\psi}_i^c$$


Issues:

- 1.) Identification of characteristic progress variables
- 2.) Determination of mean chemical source terms

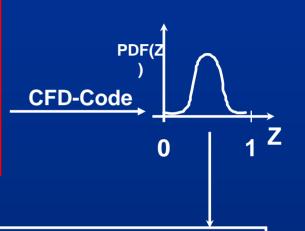
Progress Variable Approach: Definition of Progress variables

Zoning of the overall Diesel combustion on the basis of the heat release rate:


detailled kinetics

reduced kinetics

Progress-Approach: Determination of mean chemical sources terms

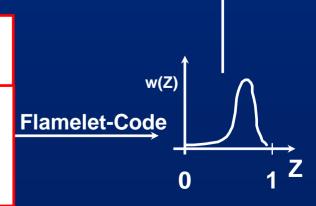

Engine Combustion

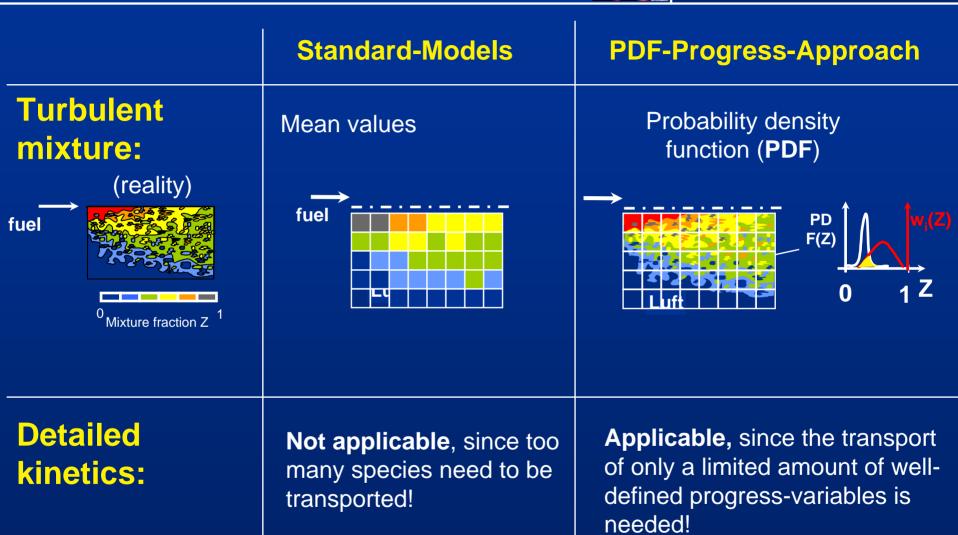
Turbulent flow

Ensemble-averaging: mean and variance

Probabilty density function (PDF)

Mean source terms:


$$\overline{\omega_i} = \int_Z \dot{\omega}_i(Z) \cdot PDF(Z) dZ$$

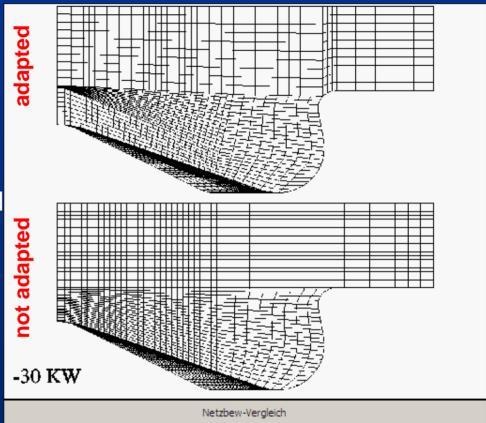

PDF-Type Model:

- Numerical separation
- PDF-Integration of "laminar" reaction rates

Chemical reactions (detailed kinetics)

$$C_2H_6 + O_2 = C_2H_5 + HO_2$$

 $C_2H_6 + OH = C_2H_5 + H_2O$
 $C_2H_6 + O = C_2H_5 + OH$



- Motivation for 3D-CFD ICE Simulation
- Demands on an Industrial CFD Code
- General Modeling Aspects
- Combustion Modeling Concepts at DC
 - Spray Modeling
 - Combustion Modeling
 - Validation
 - Conclusion

CFD-Setup:

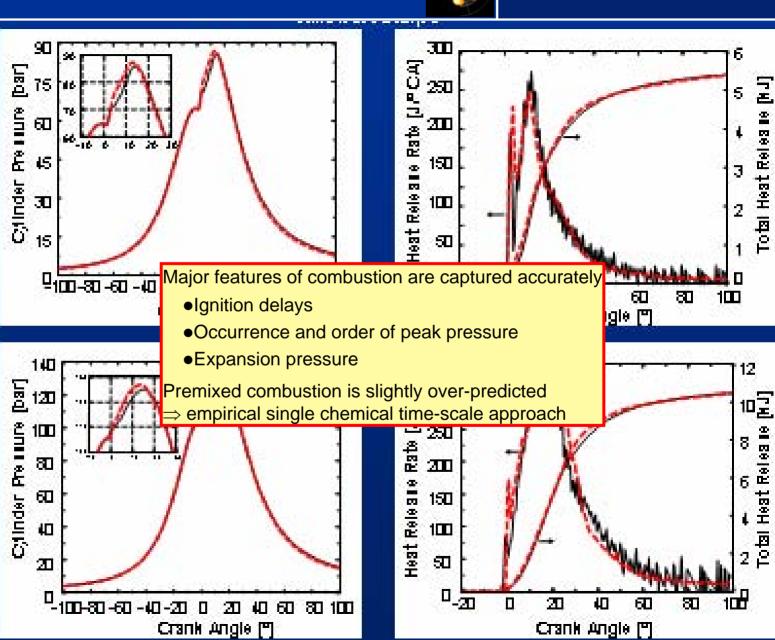
- •KIVA3v
- •1D-Eulerian Spray Model with spray adapted sector meshes
- 7-Species PDF-Timescale Mod
- Model for component elasticity effects
- Model for real gas effects

Model parameter:

 Pre-exponential factor of the empirical chemical time-scale of the combustion model

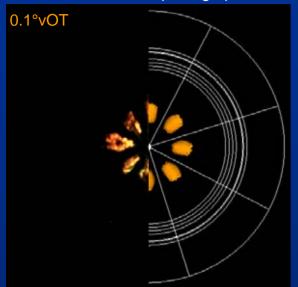
Validation

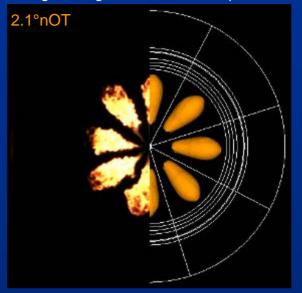
Heavy duty truck engine:

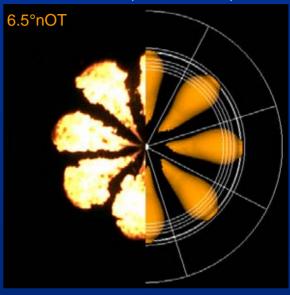

Part load

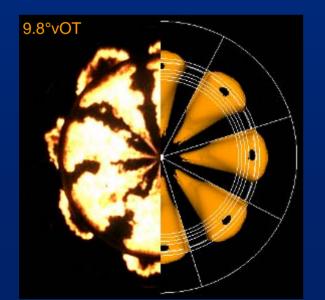
Simulation

Heavy duty truck engine:

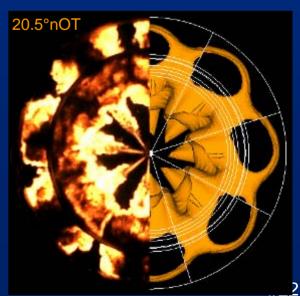

Full load

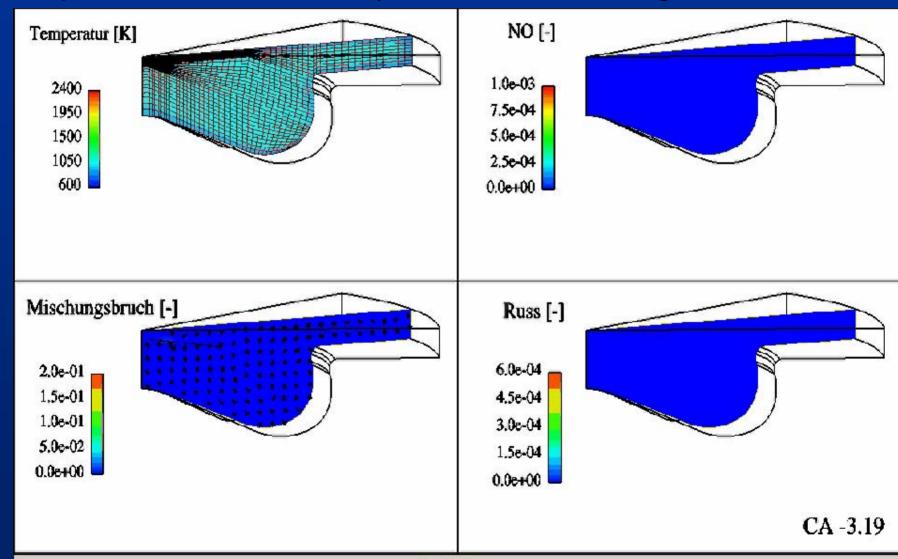





Comparison between combustion photographs and numerical results

Left: combustion photographs from optical engine; Right: calculated temperature iso-surfaces T=1400K (mirrored view)





Example of a local flow analysis for a marine engine

- Motivation for 3D-CFD ICE Simulation
- Demands on an Industrial CFD Code
- General Modeling Aspects
- Combustion Modeling Concepts at DC
 - Spray Modeling
 - Combustion Modeling
 - Validation
- Conclusion

- I. Challenges in Diesel engine development requires intensive use of 3D Combustion Simulation
 - > in early conception phase by pre-selection of design parameters
 - > in testing phase as analysis tool
- II. Demands on CFD models for industrial purposes are high degree of predictability and low computational costs
- III. Modelling issues for advanced combustion concepts are
 - > validated detailed and chemical mechanism for all fuels
 - > correct description of turbulence chemistry interactions
 - integrated simulation of nozzle flow, mixture formation, combustion emissions, coolant-flow and FE-structure dynamics