3D Deep Learning Tutorial@CVPR2017

Hao Su (UCSD) Leonidas Guibas (Stanford) Michael Bronstein (Università della Svizzera Italiana) Evangelos Kalogerakis (UMass) Jimei Yang (Adobe Research) Charles Qi (Stanford) Qixing Huang (UT Austin)

July 26, 2017

Schedule

- Opening remark 1:30PM-1:40PM
- Deep learning on regular data (MVCNN&3DCNN) 1:40PM-2:45PM
- Break 2:45PM-3:00PM
- Deep learning on point cloud and primitives 3:00PM-4:15PM
- Break 4:15PM-4:30PM
- Deep learning on meshes (Intrinsic CNN) 4:30PM-5:45PM

Overview of 3D deep learning

3D deep learning algorithms

Outline

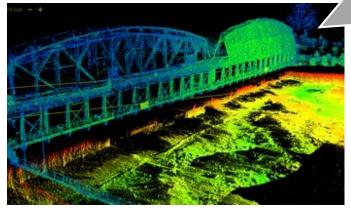
Overview of 3D deep learning Background 3D deep learning tasks 3D deep learning algorithms

The world around us is comprised of 3D geometry

Robotics

Robotics

Augmented Reality

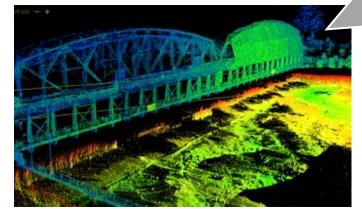


Robotics

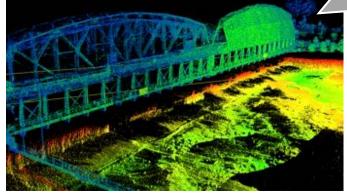
Augmented Reality

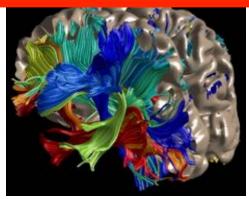
Autonomous driving

Robotics



Augmented Reality


Medical Image Processing


Autonomous driving

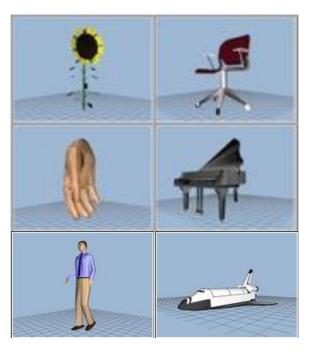
Historically, most 3D visual computing techniques focus on single models, lacking robustness

Autonomous driving

Medical Image Processing

Lacking 3D data has been the major bottleneck

Status as of 2010:



Stanford bunny

Utah teapot

1800 models in 90 categories

Princeton shape benchmark [Shilane et al. 04]

Recent rise of Internet 3D models

Nowadays millions of 3D models in online repositories

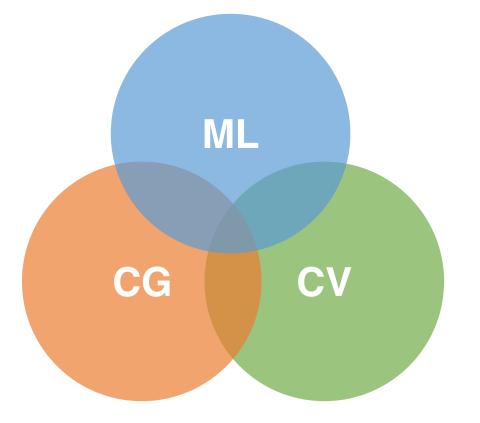
Recent rise of Internet 3D models

Growing market of crowd-sourcing for 3D modeling

Nowadays millions of 3D models in online repositories

Recent rise of Internet 3D models

Growing market of crowd-sourcing for 3D modeling

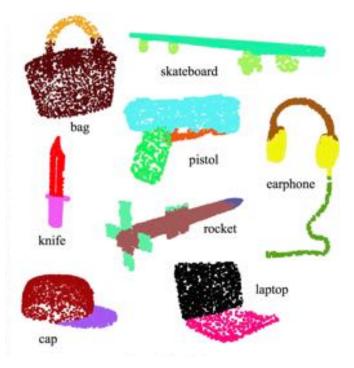


Nowadays millions of 3D models in online repositories

The surge of 3D deep learning

- Arguably started from 2015 along with of big 3D datasets (ShapeNet & ModelNet)
- Very active due to huge industry interests!

- Robotics
- Autonomous driving
- Virtual/augmented reality
- Smart manufacturing


3D geometry analysis

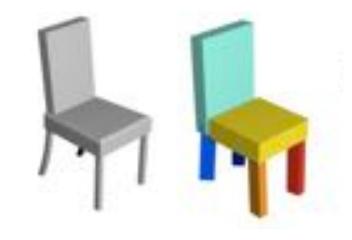
3D-assisted image analysis

3D synthesis

3D geometry analysis

Classification

Parsing (object/scene)


Correspondence

3D synthesis

Monocular 3D reconstruction

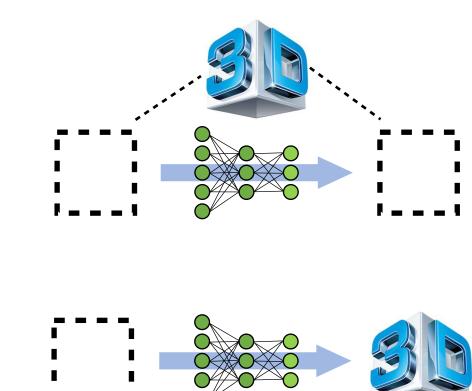
Shape completion

Shape modeling

3D-assisted image analysis

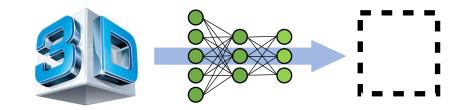
Results

Cross-view image retrieval

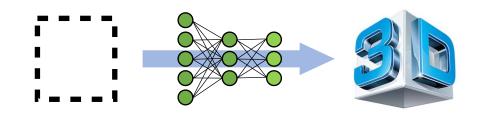

Intrinsic decomposition

All about **Data** and **Network**

3D geometry analysis


3D-assisted image analysis

3D synthesis



All about **Data** and **Network**

3D geometry analysis

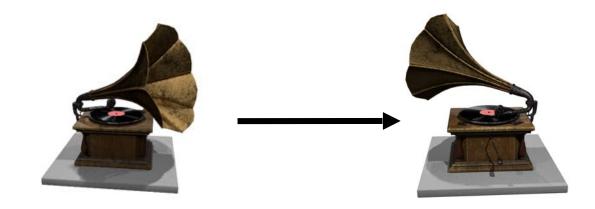
3D synthesis

Overview of 3D deep learning

3D deep learning algorithms

3D Representation issue

Deep learning on different 3D representations

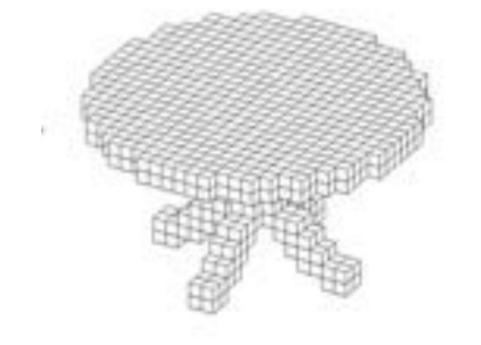

Images: Unique representation with regular data structure

-	-						
1	<mark>4</mark> 4	33	12	20	23	35	14
51	16	40	32	46	48	28	17
29	60	3	63	49	55	36	7
52	22	26	41	38	10	61	<mark>53</mark>
2	24	19	11	34	43	5	8
57	9	37	42	25	21	27	18
30	56	50	64	4	<u>59</u>	6	13
58	47	45	31	39	15	62	54

3D has many representations:

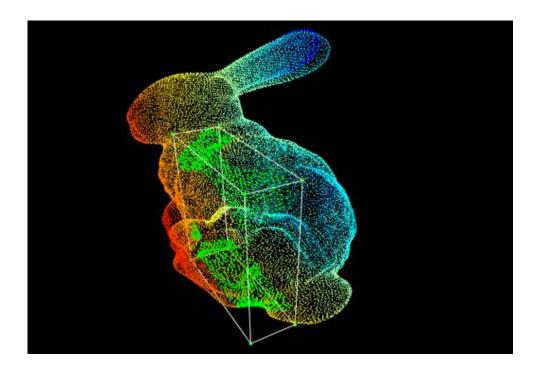
3D has many representations:

multi-view RGB(D) images volumetric

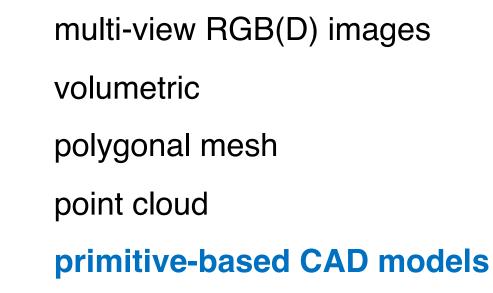

polygonal mesh

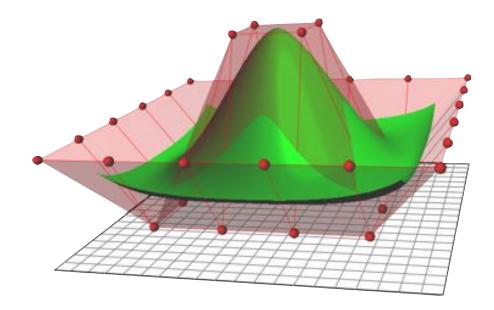
point cloud

primitive-based CAD models


Novel view image synthesis

3D has many representations:




3D has many representations:

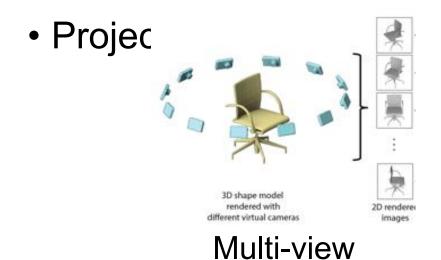
3D has many representations:

3D has many representations:

3D has many representations:

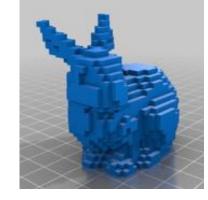
Rasterized form (regular grids)

Geometric form (irregular) multi-view RGB(D) images


volumetric

polygonal mesh

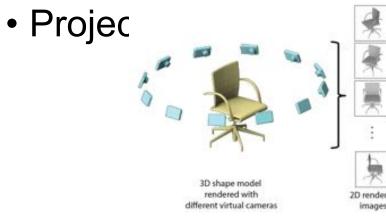
point cloud


primitive-based CAD models

3D deep learning algorithms (by representations)

[Su et al. 2015] [Kalogerakis et al. 2016]

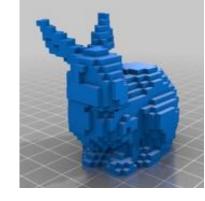
. . .



Volumetric

[Maturana et al. 2015] [Wu et al. 2015] (GAN) [Qi et al. 2016] [Liu et al. 2016] [Wang et al. 2017] (O-Net) [Tatarchenko et al. 2017] (OGN)

. . .


3D deep learning algorithms (by representations)

Multi-view

[Su et al. 2015] [Kalogerakis et al. 2016]

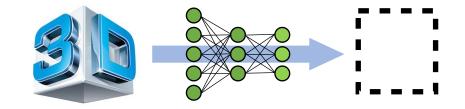
. . .

Volumetric

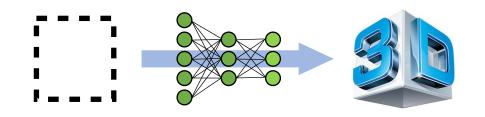
[Maturana et al. 2015] [Wu et al. 2015] (GAN) [Qi et al. 2016] [Liu et al. 2016] **[Wang et al. 2017] (O-Net) [Tatarchenko et al. 2017] (OGN)**

[Qi et al. 2017] (PointNet) [Fan et al. 2017] (PointSetGen)

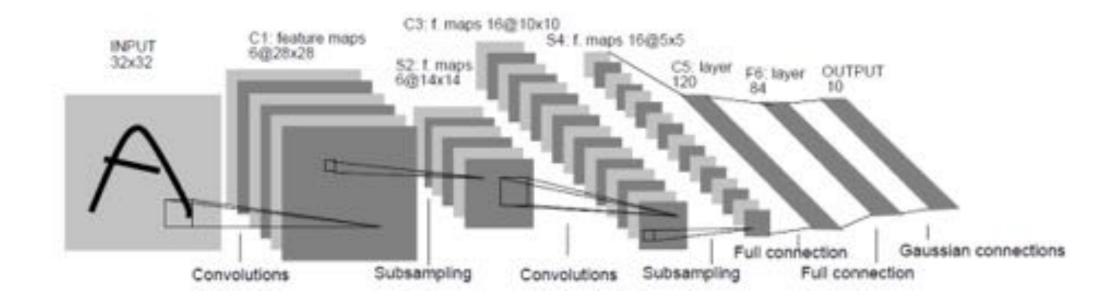
[Defferard et al. 2016] [Henaff et al. 2015] [Yi et al. 2017] (SyncSpecCNN) [Tulsiani et al. 2017] [Li et al. 2017] (GRASS)


Point cloud

Mesh (Graph CNN)


Part assembly

Cartesian product space of "task" and "representation"


3D geometry analysis

3D synthesis

Can we directly apply CNN on 3D data?

Can we directly apply CNN on 3D data?

1	44	33	12	20	23	35	14
51	16	40	32	46	48	28	17
29	60	3	63	49	55	36	7
52	22	26	41	38	10	61	53
2	24	19	11	34	43	5	8
57	9	37	42	25	21	27	18
30	56	50	64	4	<u>59</u>	6	13
58	47	45	31	39	15	62	54

$$(fst g)[n] = \sum_{m=-M}^M f[n-m]g[m]$$

3D has many representations:

Rasterized form (regular grids)

- Can directly apply CNN
- But has other challenges

multi-view RGB(D) images volumetric

3D has many representations:

Rasterized form (regular grids)

Geometric form (irregular)

Cannot directly apply CNN

multi-view RGB(D) images volumetric polygonal mesh

point cloud

primitive-based CAD models

Overview of 3D deep learning

3D deep learning algorithms

- Deep learning on regular structures
- Deep learning on meshes
- Deep learning on point cloud and parametric models

Schedule

- Opening remark 1:30PM-1:40PM
- Deep learning on regular data (MVCNN&3DCNN) 1:40PM-2:45PM
- Break 2:45PM-3:00PM
- Deep learning on point cloud and primitives 3:00PM-4:15PM
- Break 4:15PM-4:30PM
- Deep learning on meshes (Intrinsic CNN) 4:30PM-4:15PM