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Abstract— In many-objective optimization, visualization of 

true Pareto front or obtained non-dominated solutions is difficult. 

A proper visualization tool must be able to show the location, 

range, shape, and distribution of obtained non-dominated 

solutions. However, existing commonly used visualization tools in 

many-objective optimization (e.g., parallel coordinates) fail to 

show the shape of the Pareto front.  In this paper, we propose a 

simple yet powerful visualization method, called 3-dimensional 

radial coordinate visualization (3D-RadVis). This method is 

capable of mapping M-dimensional objective space to a 3-

dimensional radial coordinate plot while preserving the relative 

location of solutions, shape of the Pareto front, distribution of 

solutions, and convergence trend of an optimization process. 

Furthermore, 3D-RadVis can be used by decision-makers to 

visually navigate large many-objective solution sets, observe the 

evolution process, visualize the relative location of a solution, 

evaluate trade-off among objectives, and select preferred 

solutions. The visual effectiveness of the proposed method is 

demonstrated on widely used many-objective benchmark 

problems containing variety of Pareto fronts (linear, concave, 

convex, mixed, and disconnected). In addition, we demonstrated 

the capability of 3D-RadVis for visual progress tracking of the 

NSGA-III algorithm through generations. It is worthwhile to 

mention that a suitable visualization is a crucial prerequisite for 

an effective interactive optimization.    

Keywords— Visualization, evolutionary computation; large-

scale; many-objective optimization, radial coordinate mapping; 

RadVis; 3D-RadVis. 

I. INTRODUCTION 

Nowadays real-world applications are increasingly complex 
and more encompassing, in the sense that more decision 
variables are used to model complex situations and more input 
data and parameters are available to capture the complexity of 
the problems. Moreover, many of these problems involve 
optimizing a high number of objectives. 

There are many real-world problems with high number of 
objectives (usually more than 3 objectives). Many of the state-

of-the-art many-objective evolutionary optimization algorithms 
fail to scale with the number of objectives [1, 2] and find well-
converged and well-diversified non-dominated solutions. It 
happens due to the loss of selection pressure in fitness evaluation 
[3]. In high-dimensional objective space, the proportion of non-
dominated individuals in a randomly generated initial 
population is often higher than 90% [4-6] and this will 
considerably diminish the selection pressure during the 
evolutionary process. Moreover, when the distance of nearly 
converged parent solutions is high, they will likely produce 
offspring solutions that are far from the true Pareto front [7, 8]. 

The other main issue in solving many-objective problems is 
the difficulty of visualization of solutions as it plays a key role 
for a proper decision making process and also well-
understanding of the algorithms. When the number of objectives 
is four or greater, the visualization of approximation sets is more 
challenging [9]. There are many two- or three-dimensional data 
visualization methods used for many-objective optimization. 
For example, parallel coordinate [10] and Heatmap plots [11] 
can be used to visualize the distribution, range, and trade-off 
among solutions of multi-dimensional objectives, but they are 
often difficult to interpret because solutions are superimposed or 
arbitrarily ordered [12]. Other methods, such as self-organizing 
maps [13] and radial coordinate visualization [14], show the 
distribution and inter-relationship among objectives, however 
they fail to show the shape and convergence trend of the solution 
sets. 

This paper proposes a novel 3-dimensional radial coordinate 
visualization method, called 3D-RadVis, which is capable of 
mapping an � -dimensional Pareto front to a 3-dimensional 
view while preserving the shape, accuracy, distribution, and 
convergence trend of the solution sets. The main goal of this 
paper is to introduce a powerful visualization method that 
permits many-objective optimization researchers and decision 
makers to explore and understand the optimization process and 
results of an algorithm. The 3D-RadVis allows a decision maker 
to visually navigate large many-objective solution sets and 



identify one or more preferred optimal solutions. Since 3D-
RadVis maps M-dimensional objective to a 3-dimensional 
space, decision makers can take advantage of immersive virtual 
technologies [15-18], such as the CAVE [19] to easily visualize 
the entire Pareto front from the 3D-RadVis plot and interactively 
select the ideal solution according to their requirement and 
budget. Similarly, researchers can use 3D-RadVis to investigate 
many-objective optimization algorithm’s search behavior, 
parameter specifications, performance comparison, and 
hopefully develop new algorithms to tackle many-objective 

optimization problems. Furthermore, a proper visualization tool 
can open the door for an effective interactive optimization.  

The rest of the paper is organized as follows. Section II 
provides the description of visualization methods used in many-
objective optimization. Section III provides the technical 
description of the proposed visualization scheme, 3D-RadVis. 
Section IV presents how 3D-RadVis maps the Pareto fronts of 
well-known many-objective test problems. Conclusion remarks 
are provided in Section V.  
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Fig. 1. Visualization schemes used in many-objective optimization problems. (a) Parallel coordinates plot showing the performance of NSGA-III algorithm on 10-

objective DTLZ4 test problem. (b) Scatter plot matrix showing linear and concave Pareto fronts for 4-objective problem. (c) Heatmap plot for 5-dimensional 

points. (d) Self-organizing map for 4-objective linear Pareto front.  (e) RadVis/planer plot showing 10-objective DTLZ2 archived population. (f) Bubble chart 
representing four-dimensional values. 

II. SURVEY OF VISUALIZATION METHODS USED IN MANY-

OBJECTIVE OPTIMIZATION 

In this section, we describe visualization techniques used in 
many-objective optimization. 

A. Parallel Coordinate Plots 

In many-objective optimization, parallel coordinates plot 
(PCP) [10] are a popular way to visualize the distribution, range, 
and trade-off among solutions of multi-dimensional objectives 
[25, 26]. An � -dimensional objective is represented by a 

polyline with vertices on �  parallel axes placed along the x-
axis. The parallel axes are � equidistant vertical bars along the 
�-axis for each objective. The �-axis corresponds to the range 
of values for each objective. Although parallel coordinate plots 
are not capable of showing the shape of the Pareto front, they 
are simple to construct, scale well to large numbers of 
objectives, and are a great visualization tool to show 
dependencies among objectives without the loss of data in the 
representation [27]. Fig. 1(a) shows a parallel coordinate plot for 
10-objective DTLZ4 test problem.  



Fig. 2. Illustration of 3D-RadVis mapping process. 

B. Scatter Plot Matrix 

 Given M-dimensional objective, scatter plot matrix plots all 

��2 �	pairs of plots among � objectives [5, 28]. A scatter plot 

matrix is a simple visualization method capable of showing the 
pair-wise relationship of objectives while preserving some 
information on the shape of the Pareto front. When the number 
of objectives increases, the scatter plot matrix does not scale 
well as it requires a large space to show the relationship among 
pairs of each objectives. Fig. 1(b) shows approximate solutions 
obtained for 4-objective DTLZ4 problem. 

C. Heatmap 

Heatmap plots [11] are similar to the parallel coordinates plot, 

however objective values are shown using colors. Heatmap 

plots are very easy to construct and they can scale to visualize 

higher dimensional objectives. Moreover, similar to parallel 

coordinates plots it can show dependencies among objectives 

without the loss of data in the representation. However, 

Heatmap plots do not scale well when the number of solutions 

are large due to the number of colors used to represent each 

solution, and they cannot show the shape of the Pareto front. 

Fig. 1(c) shows a Heatmap plot showing approximate solutions 

obtained for 5-objective DTLZ2 problem. 

D. Self-organizing Map (SOM) 

 Self-organizing maps (SOM) [13] are a type of artificial 

neural networks (ANN) trained using unsupervised learning to 

provide a mapping from M-dimensional objective to a low 

dimensional space (typically 2-D) [29].  SOMs consist of nodes 

(neurons) associated with a weight vector of the same 

dimension as the input data vectors or neurons. The nodes are 

arranged in a 2D space using a hexagonal or rectangular grid. 

SOMs commonly use the unified distance matrix (U-Matrix) 

[30] to store each node’s average distance to its closest 

neighbors (different colors are used to represent each node’s 

distance to adjacent nodes). Light areas represent clusters of 

similar neurons and dark areas indicate cluster boundaries.  Fig. 

1(d) shows approximate solutions obtained for 5-objective 

DTLZ4 problem.  

E. Radial Coordinate Visualization (RadVis) 

Radial coordinate visualization (RadVis) [14] maps � - 

dimensional points to a 2-dimensional space using a nonlinear 

mapping. Consider a point in 2-dimensional space connected to 

� equally spaced points on a circle with springs, where each 

dimension value is the spring constant for the corresponding 

spring. Now, if the 2-dimensional point is allowed to move and 

reach equilibrium, the location of this point will be the mapping 

of �-dimensional data points onto a 2-dimensional space. Fig. 

1(e) shows RadVis/Planer plot showing approximate solutions 

obtained for 8-objective DTLZ4 problem. Although RadVis 

plots are not capable of showing the shape and convergence of 

the Pareto front, they are simple to construct, scale well to large 

numbers of objectives, and are a great visualization tool to show 

the distribution of solutions.  

F. Bubble Chart 

Bubble chart is similar to a 2- or 3-dimensional scatter chart, 

however data points are replaced with varying sizes of bubbles 

to represent the 3rd or 4th dimension. There is also a variation of 

bubble chart that use colored bubbles to represent the 4th or 5th 

dimension [31, 32]. Fig. 1(f) shows bubble chart to represent 3-

dimensional values. 

III. PROPOSED METHOD: 3D-RADVIS 

The framework of the proposed 3D-RadVis visualization 
scheme is similar to RadVis; however, 3D-RadVis incorporates 
a third dimension to visualize the shape and convergence of an 
�-dimensional solution set. Consider an � 	� non-dominated 
solution where �  is the number of solutions and �  is the 
dimension of the solution. 3D-RadVis involves two main steps: 
first, determining the distance of each solution from a reference 
hyper-plane, and second, mapping the location of � -
dimensional solutions to a 2-dimensional �� plane.  



 

To calculate the distance of each solution to the reference 
hyper-plane, we first sort these solutions using objective values 
and compute the extreme/boundary solution. For an � -
dimensional solution set, we have � boundary solutions. Next, 
we construct a linear hyper-plane passing through these extreme 
points. The constructed hyper-plane is then used as the reference 
plane for each solution (point) in the solution set. Then, we 
compute the perpendicular distance (
 ) from the reference 
hyper-plane for each point, thereby preserving the shape and 
accuracy of the solution set. The values of 
  are used as the 
altitude (height or � -axis) of a solution in the 3D-RadVis 
mapping. Algorithm 1, lines 1 to 9 describe the above process. 

Next, we utilize RadVis [14] scheme to determine the 
location of an �-dimensional solution onto a 2-dimensional �� 
plane (�, ��).  The first step is to normalize each solution per 

objective between 0 and 1. Now, consider an �-dimensional 
solution in a 2-dimensional space connected to �  equally 
spaced points on a circle with springs, where each dimension 
value is the spring constant (�) for the corresponding spring. 
Now, if the 2-dimensional point is allowed to move and reach 
equilibrium, the location of this point will be the mapping of �-
dimensional data point to the 2-dimensional space.  Given � 	
�  normalized non-dominated solutions (����� ), where �  is 
the number of objectives and �  is the number of solutions, 
solution � can be mapped to a 2D radial space as follows: 

  �� =
∑ ��,��� ! "#$%&�'(
�)*

∑ ��,��� !(
�)*

,            (1) 

and 

  �� =
∑ ��,��� !$+,	(&�)(
�)*
∑ ��,��� !(
�)*

           (2) 

where ./ is the angular position on the circle corresponding to 

dimension 0. The procedure is presented in Algorithm 2. Fig. 2 
illustrates 3D-RadVis’ mapping process.  

Algorithm 2:  RadVis (�����) Procedure 

Input: �����: � 	� normalized non-dominated solutions, 

where � is the number of objectives and � is the 

number of solutions.  

Output: [�, ��] non-linear radial coordinates mapping of 

����� 

1: for �	 = 	1 to � 

2: Calculate 2D radial location/mapping of 

normalized objective: [�� , ��] Eqs.(1) and (2) 

3: end for  

4: [�, ��] = [�, �] 

IV. VISUALIZATION OF BENCHMARK TRUE AND 

APPROXIMATE PARETO FRONTS 

In this section, we describe the test problems used, parameter 
settings of the NSGA-III algorithm [20], and visualization of 
these test problems using the proposed method, 3D-RadVis. To 
demonstrate the effectiveness of the proposed method, we used 
five many-objective benchmark problems containing a variety 
of Pareto front shapes (i.e., linear, concave, convex, mixed, and 
disconnected).  In addition, we demonstrate the capability of 3D-
RadVis to track the progress of the NSGA-III algorithm through 
generations visually. 

A. Test Problems 

In order to investigate the visualization capability of 3D-
RadVis, we have used five many-objective benchmark test 
problems with various shapes. The benchmark problems are: 
DTLZ1, DTLZ2, convex DTLZ2, WFG1 and WFG2 [33, 34]. 
The number of variables are (� + 	6	 − 	1), where �  is the 
number of objectives and 6	 = 	5 for DTLZ1, while 6	 = 	10 
for DTLZ2 and convex DTLZ2. The corresponding Pareto-
optimal fronts lie in �� ∈ [0, 0.5] for the DTLZ1 problem and in 
�� ∈ [0, 1] for DTLZ2 and convex DTLZ2 problems. For WFG1 
and WFG2 test problems, the number of position parameters is 
set to 6 = � , where �  is the number of objectives and the 
number of distance parameters is set to < = 3 for all dimensions. 
The Pareto-optimal fronts for WFG test problems used in this 
work lie in	�� ∈ [0, 2�]. Table I presents detailed characteristics 
of the test problems utilized in this study. 

TABLE I.  TEST PROBLEMS 

Problem Characteristics 

DTLZ1 Linear, Multimodal 

DTLZ2 Concave 

Convex DTLZ2 Convex 

WFG1 Convex, Mixed, Biased 

WFG2 Convex, Disconnected, Multimodal 

B. Parameters Setting 

In order to investigate the visualization capability of 3D-
RadVis when two or more Pareto fronts are involved (e.g., true 
Pareto front and approximate Pareto front), we have used non-
dominated solutions obtained by the NSGA-III algorithm for 5- 

Algorithm 1:  3D-RadVis (�) Procedure 

Input: �: � 	 � non-dominated solutions, where � is the 

number of objectives and � is the number of solutions.  

Output: >:� 	 3  transformation matrix for 3D-RadVis 

visualization  

1: for �	 = 	1 to � 

2: Sort using each objective value: ?	 = sort(�, �) 
3: Compute extreme/boundary solution: @� 	= 	 ?A  

4: end for  

5: Calculate the normal vector, a hyper-plane 

constructed by @: B	 = norm(@) 
6: Calculate the constant, C for this plane: C = (B ∙ @A)   
7: for �	 = 	1	to � 

8: Calculate the perpendicular distance from n to 

solution �: 
	 = 	 EFG((��∙H)IJ))‖H‖  

9: end for 

10: Normalize � by each objective: ����� = 

normalize(�) 

11: Map ����� to 2D radial coordinates L�, ��M = 

RadVis (�����) 
12: > = [�, �� , 
] 



and 8-objective DTLZ1, DTLZ2 and convex DTLZ2 problems.  
Table II presents parameter settings used by NSGA-III and 
Table III shows the number of reference points (N ), the 
population size (�), and the number of inner and outer divisions 
used for different dimensions of the test problems. Table IV 
shows the maximum generation used for solving these test 
problems. 

TABLE II.  NSGA-III PARAMETER SETTINGS. B IS THE NUMBER OF 

VARIABLES 

Parameters NSGA-III 

SBX probability (OJ) 0.9 

Polynomial mutation (O�)  1/B 

Crossover Distribution Index	(QJ) 30 

Mutation Distribution Index	(Q�) 20 

 

C. 3D-RadVis Visualization of Test Problems 

Here, we investigate how well 3D-RadVis maps 2-, 3-, 4-, 

5-, and 8-objective Pareto fronts to a 3-D space. Note that since 

we can map 2-D data points on to x-axis the	�� value always set 

to zero. Fig. 3(a) depicts the mapping of 2-D DTLZ1 onto a 3-

D space. Since all the points lie on the reference hyper-plane, 

the value of 
  is zero.  Fig. 3(b) shows the mapping of 2-

objective DTLZ2 onto a 3-D space. Here we see that the shape 

of DTLZ2 is similar to a quarter circle centered at (0, 0), the 

largest distant point from the reference hyper-plane is located at 

the center of the arc. Fig. 3(c) shows the mapping of 2-objective 

convex DTLZ2 onto a 3-D space.  Here we can see that the 

lowest point on the 3D-RadVis plot is located close to �A, and 

this is because the Pareto-optimal surface of the convex DTLZ2 

problem has sharp decent close to the intermediate �A	region. 

Fig. 3(d) shows the mapping of 2-objective WFG1 test problem 

onto a 3-D space RadVis. It can be seen that 3D-RadVis is able 

to map the mixed Pareto-optimal surface to a 3-D space. Fig. 

3(e) shows the mapping of the WFG2 test problem. Similar to 

the previous test problems, 3D-RadVis is able to capture the 

shape of relative locations of disconnected Pareto-optimal fronts 

of the WFG2 problem. In all test problems, 3D-RadVis is able 

to capture all features of the test problems regardless of shape or 

sharp/slow changes in the Pareto-optimal front.  

(a) DTLZ1 (b) DTLZ2 

(c) Convex DTLZ2 (d) WFG1 

 
(e) WFG2 

Fig. 3. 3D-RadVis plots of 2-objective linear (DTLZ1), concave (DTLZ2), convex (convex DTLZ2), mixed (WFG1) disconnnected (WFG2) Pareto fronts. 



(a) DTLZ1 (b) DTLZ2 

(c) Convex DTLZ2 (d) WFG1 

 
(e) WFG2 

Fig. 4. 3D-RadVis plots of 3-objective linear (DTLZ1), concave (DTLZ2), convex (convex DTLZ2), mixed (WFG1) disconnected (WFG2) Pareto fronts. 

TABLE III.  NUMBER OF REFERENCE POINTS AND POPULATION SIZES 

USED IN NSGA-III. 

Number of 

Objectives (M) 

Divisions Reference 

Points(H) 

Population 

Size (N) Outer Inner 

5 6 0 210 212 

8 3 2 156 156 

TABLE IV.  MAXIMUM NUMBER OF GENERATIONS USED IN  DIFFERENT 

TEST PROBLEMS. 

Problem M Max Gen 

DTLZ1 
5 

8 

750 

2000 

DTLZ2 
5 
8 

750 
2000 

Convex DTLZ2 
5 
8 

750 
2000 

 

Fig. 4 demonstrates the effectiveness of 3D-RadVis in 

mapping 3-objective test problems to 3-D space while 

preserving all characteristics of the test problems. Fig. 5 shows 

the mapping of 4-, 5- and 8-objective DTLZ2 and convex 

DTLZ2 test problem onto 3-D spaces. As it can be seen from 

these diagrams, 3D-RadVis is able to precisely map and 

visualize all aspects of higher dimensional problems.  

D. 3D-RadVis Visualization of Approximate Pareto Fronts 

The previous section has shown the effectiveness of 3D-

RadVis to visualize the true Pareto-optimal fronts when the 

number of objectives are three or more. In this section, we show 

how researchers can utilize 3D-RadVis to investigate the 

performance of an algorithm. In the current experiment, we 

have used the NSGA-III algorithm to solve 5- and 8-objective 

DTLZ1, DTLZ2, and convex DTLZ3 test problems. Tables II 

to IV show parameter settings, population size, number of 

reference points and maximum number of generations used in 

these experiments. 

Fig. 6 shows the performance of NSGA-III for 5- and 8-

objective DTLZ1 test problem. From the 3D-RadVis plot, we 

can precisely see how close the obtained solutions are to the 

true Pareto front. For example, Fig. 6(b) shows that the worst 

(based on distance) solution is 
	 = 	10IR  far from the true 

front. The top view of 3D-RadVis plot shows that NSGA-III is 

able to uniformly distribute the solution on the entire front. Fig. 

7 shows the performance of NSGA-III for 5- and 8-objective 

DTLZ2 test problem. While the convergence and distribution 



.

(a) DTLZ2 

 

(b) Convex DTLZ2 

Fig. 5. 3D-RadVis plots of 4-, 5- and 8-objective linear (DTLZ1), concave (DTLZ2), and convex (convex DTLZ2) Pareto fronts. 

 

  
(a) 5- objective DTLZ1 (b) 8- objective DTLZ1 

Fig. 6. 3D-RadVis plots showing obtained solutions by NSGA-III for 5- and 8-objective DTLZ1 test problem. 

of the obtained solutions are close to the true Pareto front, 

when examining the performance of NSGA-III on 8-objective 

convex DTLZ2 problem, NSGA-III is not able to find well 

distributed solutions on the entire Pareto front (see Fig. 8). 

3D-RadVis can also effectively be used by researchers and 

decision makers to explore and understand the search behavior 

of an algorithm at each generation. They can take advantage of 

the visualization power of 3D-RadVis to gain useful 

information regarding an algorithm and improve their search 



ability and ultimately develop new optimization algorithms. 

Furthermore, in an interactive environment it is possible to 

rotate and visualize solutions from different viewpoints to 

better understand the relationships among solutions. Fig. 9 

shows the performance of NSGA-III for 5-objective DTLZ2 

test problem after 25, 50, 100 and 250 generations. For the 3D-

RadVis plots, we can see that NSGA-III is able to converge 

while maintaining well a distributed solution through 

generations 

 

 

 

(a) 5- objective DTLZ2 (b) 8- objective DTLZ2 

Fig. 7. 3D-RadVis plots showing obtained solutions by NSGA-III for 5- and 8-objective DTLZ2 test problem. 

 

(a) 5- objective DTLZ2 (b) 8- objective DTLZ2 

Fig. 8. 3D-RadVis plots showing obtained solutions by NSGA-III for 5- and 8-objective convex DTLZ2 test problem. 

 



(a) 25 generations (b) 50 generations 

(c) 100 generations (d) 250 generations 

Fig. 9. 3D-RadVis plots showing the progress of obatined solutions by NSGA-III for 5-objective DTLZ2 test problem after 25, 50, 100, and 250 generations.

V. CONCLUSION REMARKS  

In this paper, we proposed a fast and powerful 3-D 
visualization method called, 3D-RadVis. This method uses a 
radial coordinate system to map � −dimensional objectives 
space to a 2-D space (� , ��)  and a distance metric (
 ) to 

maintain the location of each non-dominated solution from a 
reference hyper-plane constructed using the extreme points of 
the Pareto-optimal front. The radial coordinates, (�, ��), show 

the distribution of the solution and the combination of these 
radial coordinates with the distance metric 
, show the shape 
and accuracy of the solution.  

From the experimental tests on widely used many-objective 
optimization test problems, 3D-RadVis is able to precisely show 
the shape, distribution, and convergence of complex Pareto 
fronts (linear, concave, convex, mixed, and disconnected). 
Moreover, 3D-RadVis can be scaled to higher dimensions and 
is capable of showing multiple Pareto fronts simultaneously 
(e.g. true Pareto front and approximate solutions). It can 
effectively be used by researchers and decision makers to 
explore and understand the search behavior of an algorithm at 

each generation whereby gaining useful information regarding 
an algorithm to improve their search ability and ultimately 
development of new optimization algorithms. 3D-RadVis can 
also be utilized by decision-makers to observe the relative 
location of a solution, evaluate trade-off among objectives, and 
select preferred solutions. For an improved navigation, decision-
makers can use immersive virtual technologies, such as the 
CAVE, to easily visualize the entire Pareto front from the 3D-
RadVis plot and select the ideal solution according to their 
requirement and budget.   

Since 3D-RadVis maps M-dimensional objective to a 3-D 
map while preserving the shape, distribution and accuracy of the 
solution, it is natural to develop a new performance metric 
capable of measuring the convergence and diversity of 
approximated Pareto-optimal solutions. Therefore, in the future, 
we would like to extend this study to investigate how 3D-
RadVis-based performance metric can be consistent with other  
performance metrics which are currently used in many-objective 
optimization.   

 



REFERENCES 

[1] E. J. Hughes, "Evolutionary many-objective optimisation: many once or 
one many?," in Evolutionary Computation, 2005. The 2005 IEEE 
Congress on, pp. 222-227, 2005. 

[2] J. Knowles and D. Corne, "Quantifying the effects of objective space 
dimension in evolutionary multiobjective optimization," in Evolutionary 
Multi-Criterion Optimization, pp. 757-771, 2007. 

[3] Z. He and G. Yen, "Many-Objective Evolutionary Algorithm: Objective 
Space Reduction+ Diversity Improvement," 2012. 

[4] Z. He, G. G. Yen, and J. Zhang, "Fuzzy-based Pareto optimality for many-
objective evolutionary algorithms," Evolutionary Computation, IEEE 
Transactions on, vol. 18, pp. 269-285, 2014. 

[5] K. Deb, Multi-objective optimization using evolutionary algorithms vol. 
16: John Wiley & Sons, 2001. 

[6] M. Garza-Fabre, G. T. Pulido, and C. A. C. Coello, "Ranking methods for 
many-objective optimization," in MICAI 2009: Advances in Artificial 
Intelligence, ed: Springer, pp. 633-645, 2009. 

[7] H. Ishibuchi, Y. Tanigaki, H. Masuda, and Y. Nojima, "Distance-Based 
Analysis of Crossover Operators for Many-Objective Knapsack 
Problems," in Parallel Problem Solving from Nature–PPSN XIII, ed: 
Springer, pp. 600-610, 2014. 

[8] H. Sato, H. Aguirre, and K. Tanaka, "Variable space diversity, crossover 
and mutation in MOEA solving many-objective knapsack problems," 
Annals of Mathematics and Artificial Intelligence, vol. 68, pp. 197-224, 
2013. 

[9] A. López Jaimes and C. A. Coello Coello, "Some techniques to deal with 
many-objective problems," in Proceedings of the 11th Annual Conference 
Companion on Genetic and Evolutionary Computation Conference: Late 
Breaking Papers, pp. 2693-2696, 2009. 

[10] A. Inselberg, "The plane with parallel coordinates," The Visual Computer, 
vol. 1, pp. 69-91, 1985. 

[11] A. Pryke, S. Mostaghim, and A. Nazemi, "Heatmap visualization of 
population based multi objective algorithms," in Evolutionary multi-
criterion optimization, pp. 361-375, 2007. 

[12] D. J. Walker, R. M. Everson, and J. E. Fieldsend, "Visualizing mutually 
nondominating solution sets in many-objective optimization," 
Evolutionary Computation, IEEE Transactions on, vol. 17, pp. 165-184, 
2013. 

[13] T. Kohonen, "Self-organizing maps, vol. 30 of Springer Series in 
Information Sciences," ed: Springer Berlin, 2001. 

[14] P. Hoffman, G. Grinstein, K. Marx, I. Grosse, and E. Stanley, "DNA 
visual and analytic data mining," in Visualization'97., Proceedings, pp. 
437-441, 1997. 

[15] S. D. Miyahira, R. A. Folen, M. Stetz, A. Rizzo, and M. M. Kawasaki, 
"Use of immersive virtual reality for treating anger," Stud Health Technol 
Inform, vol. 154, pp. 82-86, 2010. 

[16] C. A. Kilmon, L. Brown, S. Ghosh, and A. Mikitiuk, "Immersive virtual 
reality simulations in nursing education," Nursing education perspectives, 
vol. 31, pp. 314-317, 2010. 

[17] M. Carrozzino and M. Bergamasco, "Beyond virtual museums: 
Experiencing immersive virtual reality in real museums," Journal of 
Cultural Heritage, vol. 11, pp. 452-458, 2010. 

[18] B. Bideau, R. Kulpa, N. Vignais, S. Brault, F. Multon, and C. Craig, 
"Using virtual reality to analyze sports performance," Computer graphics 
and applications, IEEE, vol. 30, pp. 14-21, 2010. 

[19] S. Manjrekar, S. Sandilya, D. Bhosale, S. Kanchi, A. Pitkar, and M. 
Gondhalekar, "CAVE: An Emerging Immersive Technology--A 
Review," in Computer Modelling and Simulation (UKSim), 2014 
UKSim-AMSS 16th International Conference on, pp. 131-136, 2014. 

[20] K. Deb and H. Jain, "An evolutionary many-objective optimization 
algorithm using reference-point-based nondominated sorting approach, 
part I: solving problems with box constraints," Evolutionary 
Computation, IEEE Transactions on, vol. 18, pp. 577-601, 2014. 

[21] T. Tusar and B. Filipic, "Visualization of Pareto front approximations in 
evolutionary multiobjective optimization: A critical review and the 
prosection method," Evolutionary Computation, IEEE Transactions on, 
vol. 19, pp. 225-245, 2015. 

[22] Z. He and G. Yen, "Visualization and performance metric in many-
objective optimization," 2015. 

[23] D. Walker, J. Fieldsend, and R. Everson, "Visualising many-objective 
populations," in Proceedings of the 14th annual conference companion on 
Genetic and evolutionary computation, pp. 451-458, 2012. 

[24] H. Borhan and E. Hodzen, "A Robust Design Optimization Framework 
for Systematic Model-Based Calibration of Engine Control Systems," 
Journal of Engineering for Gas Turbines and Power, vol. 137, p. 111601, 
2015. 

[25] A. Inselberg, Parallel coordinates: Springer, 2009. 

[26] C. M. Fonseca and P. J. Fleming, "Multiobjective optimization and 
multiple constraint handling with evolutionary algorithms. II. Application 
example," Systems, Man and Cybernetics, Part A: Systems and Humans, 
IEEE Transactions on, vol. 28, pp. 38-47, 1998. 

[27] P. J. Fleming, R. C. Purshouse, and R. J. Lygoe, "Many-objective 
optimization: An engineering design perspective," in Evolutionary multi-
criterion optimization, pp. 14-32, 2005. 

[28] D. Carr and W. Nicholson, "Evaluation of graphical techniques for data 
in dimensions 3 to 5: scatter plot matrix, glyph and stereo examples," 
Pacific Northwest Labs., Richland, WA (USA), 1985. 

[29] S. Obayashi and D. Sasaki, "Visualization and data mining of Pareto 
solutions using self-organizing map," in Evolutionary multi-criterion 
optimization, pp. 796-809, 2003. 

[30] A. Ultsch, U*-matrix: a tool to visualize clusters in high dimensional data: 
Fachbereich Mathematik und Informatik Berlin, 2003. 

[31] M. Ashby, "Multi-objective optimization in material design and 
selection," Acta materialia, vol. 48, pp. 359-369, 2000. 

[32] S. Poles, P. Geremia, F. Campos, S. Weston, and M. Islam, "MOGA-II 
for an automotive cooling duct optimization on distributed resources," in 
Evolutionary Multi-Criterion Optimization, pp. 633-644, 2007. 

[33] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, "Scalable multi-objective 
optimization test problems," in Proceedings of the Congress on 
Evolutionary Computation (CEC-2002),(Honolulu, USA), pp. 825-830, 
2002. 

[34] S. Huband, L. Barone, L. While, and P. Hingston, "A scalable multi-
objective test problem toolkit," in Evolutionary multi-criterion 
optimization, pp. 280-295, 2005. 

 

 

 

 


