
January 27, 2004 13:29 WSPC/103-M3AS 00317

Mathematical Models and Methods in Applied Sciences
Vol. 14, No. 1 (2004) 105–142
c© World Scientific Publishing Company

3D-SHELL ELEMENTS AND THEIR UNDERLYING

MATHEMATICAL MODEL

D. CHAPELLE∗ and A. FERENT

INRIA-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
∗dominique.chapelle@inria.fr

K. J. BATHE

Massachusetts Institute of Technology, Cambridge MA 02139, USA

Received 23 January 2003

Revised 23 July 2003
Communicated by F. Brezzi

We focus on a family of shell elements which are a direct generalization of the shell
elements most commonly used in engineering practice. The elements in the family in-
clude the effects of the through-the-thickness normal stress and can be employed to
couple directly with surrounding media on either surfaces of the shell. We establish the
“underlying” mathematical model of the shell discretization scheme, and we show that
this mathematical model features the same asymptotic behaviors — when the shell thick-
ness becomes increasingly smaller — as classical shell models. The question of “locking”
of the finite element discretization is also briefly addressed and we point out that, for
an effective finite element scheme, the MITC approach of interpolation is available.
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1. Introduction

During the recent years, considerable focus has been given on establishing, for

certain applications, refined shell finite element analysis capabilities. For this

purpose, in particular, shell finite element procedures that include higher-order

kinematic effects through the shell thickness have been proposed, see Refs. 8, 13

and 28 and references therein. The objective in this paper is to present and mathe-

matically analyze a family of such elements which we call “3D-shell elements”.

These elements are designed to include the effects of the through-the-thickness

normal stress and to couple efficiently to surrounding media that are in contact

with the shell inner and outer surfaces.

In engineeering practice, most commonly the “general shell elements” described

for example in Refs. 2 and 13 and analyzed in Refs. 11 and 13 are employed. These

elements are based on 3D continuum mechanics, the Reissner–Mindlin kinematic
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assumption and the plane stress assumption in the tangential plane of the shell.

The underlying mathematical model was identified in Ref. 11. This model is im-

portant because a finite element solution must converge to the exact solution of

the model. Furthermore, the analysis of the mathematical model showed that the

same asymptotic behavior is displayed as seen with the classical shell models. The

identification of this underlying model has been followed by further works directed

towards the numerical analysis of general shell elements as regards their robustness

when the thickness of the structure is very small, i.e. when numerical locking — in

particular — may appear.20,24

A key ingredient in general shell elements — and also in their underlying shell

model — is that a plane stress assumption must be used, somehow to compensate

for the low order of the Reissner–Mindlin kinematical assumption, namely linear

tangential displacements and constant transverse displacements across the thick-

ness. This assumption can be implemented with ease for small strains but is less

practical when large strains are present (and indeed may correspond to quite a

deficient model13).

In this paper, we consider a shell model obtained by assuming a quadratic

expansion of the 3D displacements across the thickness, without any assumption on

the stress tensor. This model is asymptotically consistent with classical shell models,

and can be used with ease for general constitutive laws. Furthermore, the model

leads to natural discretizations in the form of “3D-shell elements”, which can be

made as reliable as other existing shell elements, in particular as regards numerical

locking. In addition, the elements render the practical modeling of coupled problems

involving shells very easy, e.g. in sandwich shells or in fluid structure interaction.

An outline of this article is as follows. In Sec. 2 we introduce the geometric

concepts and the notation. In Sec. 3 we give the rationale and detailed presentation

of the proposed elements. We then obtain — in Sec. 4 — the equations of the

corresponding underlying model, and we analyze the asymptotic behavior of this

model, compared to classical shell models. Next, in Sec. 5 we analyze the 3D-shell

finite element solutions. More specifically we show that the finite element solutions

converge to the solution of the underlying model when the mesh is being refined,

and we also discuss the reliability of 3D-shell finite element solutions, in particular

as regards numerical locking phenomena. Finally we present our concluding remarks

in Sec. 6.

2. Geometry and Notation

The objective of this section is to recall the geometric concepts needed in the paper,

and to introduce the corresponding notation. For more details regarding differential

geometry we refer to Ref. 13 from which most of the related notation used here is

taken, see also Refs. 16 and 19.

Throughout the paper, we assume that all indices denoted by Greek symbols

vary in {1, 2} while indices denoted by Roman symbols vary in {1, 2, 3}, and we use

the Einstein convention pertaining to implicit summation of repeated indices.
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The midsurface of the shell is described by a mapping ~φ defined over ω, a
domain of IR2, and with values in the three-dimensional Euclidean space E . In
this paper we assume that ~φ is “smooth”, namely as regular as needed in our
analyses. We denote by t the thickness—considered to be uniform—and by ε
the scaled thickness

ε =
t

L
,

where L is a global characteristic dimension of the shell. Denoting by (ξ1, ξ2)

the coordinates used in IR2 (hence in ω) and assuming that ~φ is such that the
vectors

~aα =
∂~φ(ξ1, ξ2)

∂ξα
, α = 1, 2

form a basis—called the covariant basis—for the tangential plane to the mid-
surface at any point with coordinates in ω̄, the unit normal vector ~a3 is given
by

~a3 =
~a1 × ~a2

‖~a1 × ~a2‖
,

see Figure 1. We also introduce the contravariant basis of the tangential plane

ξ2

ω

a1
a2

S

φ

x1

x2

x3

a3

ξ1

Figure 1: Description of the shell geometry
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Fig. 1. Description of the shell geometry.

The midsurface of the shell is described by a mapping φ defined over ω, a domain

of R
2, and with values in the three-dimensional Euclidean space E . In this paper we

assume that φ is “smooth”, namely as regular as needed in our analyses. We denote

by t the thickness — considered to be uniform — and by ε the scaled thickness

ε =
t

L
,

where L is a global characteristic dimension of the shell. Denoting by (ξ1, ξ2) the

coordinates used in R
2 (hence in ω) and assuming that φ is such that the vectors

aα =
∂φ(ξ1, ξ2)

∂ξα
, α = 1, 2

form a basis — called the covariant basis — for the tangential plane to the mid-

surface at any point with coordinates in ω̄, the unit normal vector a3 is given by

a3 =
a1 × a2

‖a1 × a2‖
,

see Fig. 1. We also introduce the contravariant basis of the tangential plane (a1, a2),

such that

aα · aβ = δβ
α , α = 1, 2 ,

where δ represents the Kronecker symbol. The first fundamental form — also

referred to as the metric tensor — is given by

aαβ = aα · aβ ,
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or in contravariant components

aαβ = aα · aβ .

The following quantity appears in surface measures

a = ‖a1 × a2‖2 = a11a22 − (a12)
2 ,

and we have

dS =
√

a dξ1dξ2 . (1)

The second fundamental form — also known as the curvature tensor — is denoted

by b (we denote surface tensors with a number of lower bars corresponding to their

orders) and defined by

bαβ = a3 · aα,β = −a3,β · aα ,

and the third fundamental form is given by

cαβ = bλ
αbλβ ,

where bβ
α = aβλbλα.

Defining

Ωt = ω ×
]

− t

2
,
t

2

[

, (2)

the 3D geometry of the shell structure is described by the mapping

Φ : Ω̄t → E ,

Φ(ξ1, ξ2, ξ3) = φ(ξ1, ξ2) + ξ3a3(ξ
1, ξ2) ,

(3)

so that the 3D geometric domain occupied by the shell, denoted by Bt, is given by

Bt = Φ(Ωt) . (4)

We now introduce the 3D covariant base vectors

gi =
∂Φ

∂ξi
, (5)

and the contravariant base vectors, such that

gi · gj = δj
i . (6)

Using (3), we obtain13

gα = (δλ
α − ξ3bλ

α)aλ ,

g3 = a3 ,
(7)

and the following components for the 3D metric tensor

gαβ = gα · gβ = aαβ − 2ξ3bαβ + (ξ3)2cαβ , (8)

gα3 = gα · g3 = 0 , (9)

g33 = g3 · g3 = 1 . (10)
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We will also use the twice-contravariant metric tensor, with components

gij = gi · gj .

The volume measure is expressed as

dV =
√

g dξ1dξ2dξ3 , (11)

with

g = [(g1 × g2) · g3]
2 = a(1 − 2Hξ3 + K(ξ3)2)2 , (12)

where H and K respectively denote the mean and Gaussian curvatures of the

surface. We note that the mapping Φ is well-defined provided that the expression

1 − 2Hξ3 + K(ξ3)2 is always strictly positive. This is equivalent to requiring that

t < 2 inf
(ξ1,ξ2)∈ω̄

|Rmin(ξ
1, ξ2)| , (13)

where Rmin(ξ
1, ξ2) denotes the radius of curvature of smallest absolute value at

point φ(ξ1, ξ2). We henceforth assume that Condition (13) is satisfied.

Throughout the paper we use the symbols C and γ in inequalities in order to

denote positive (strictly for γ) constants that are allowed to take different values

at successive occurrences.

3. Rationale of 3D-Shell Elements

We briefly review in this section some results regarding the general shell elements

analyzed in Ref. 11, and then introduce the family of shell elements which are the

focus of this paper.

3.1. Overview of general shell elements and their underlying model

The geometry of a general shell element is a 3D brick defined by data provided at

nodes that are assumed to lie on the midsurface of the shell. More specifically, the

position of a point inside an element is described by the interpolation equation

x =

k
∑

i=1

λi(r, s)

(

x(i) + z
t

2
a

(i)
3

)

, (14)

where the functions λi denote the 2D finite element shape functions associated

with each of the k nodes, (r, s) are the local coordinates corresponding to direc-

tions (approximately) tangential to the midsurface while z denotes the transverse

coordinate, see the example in Fig. 2. The nodal data consists of the position vector

x(i) and the unit normal vector a
(i)
3 . We note that a non-constant thickness can be

considered by substituting nodal thickness values t(i) for t in the above equation.

The corresponding kinematics is obtained — as is standard in isoparametric

formulations — by taking variations of nodal position data, namely

V =

k
∑

i=1

λi(r, s)

(

v(i) + z
t

2
η(i)

)

, (15)
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Fig. 2. Example: the Q2 general shell element.

in which η(i) is constrained to satisfy

η(i) · a(i)
3 = 0 , (16)

which means that the unit normal vector undergoes a rotation motion without

stretching or contracting. Note that the material fibers normal to the midsurface

at the nodes thus behave according to Reissner–Mindlin kinematics.

The above geometry and kinematics are then used with a 3D variational for-

mulation in which the constitutive law can be chosen arbitrarily (according to the

specific material considered), provided that it incorporates the assumption

σzz ≡ 0 , (17)

namely, the stress component in the transverse direction is assumed to vanish.

Although there is no mathematical shell model explicitly used in the formulation

of general shell elements, it can be shown that there exists a shell model “under-

lying” these finite element procedures.11,13 By this we mean that finite element

solutions can be shown to converge — under certain standard assumptions — to

the solution of this mathematical model, also called the “basic shell model” in

Ref. 13.

Considering the 3D variational formulation for linear isotropic elasticity, the

solution of the basic shell model is obtained by minimizing the total potential

energy over the subspace of displacements of the form

V(ξ1, ξ2, ξ3) = v(ξ1, ξ2) + ξ3η(ξ1, ξ2) , η · a3 ≡ 0 , (18)

under the plane stress assumption

σ33 ≡ 0 . (19)

Note that (18) corresponds to Reissner–Mindlin kinematics. We denote the solution

by

U = u(ξ1, ξ2) + ξ3θ(ξ1, ξ2) , θ · a3 ≡ 0 . (20)
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We point out that, for any finite element function of the type

V =
k
∑

i=1

λi(r, s)

(

v(i) + z
t

2
η(i)

)

, (21)

with five degrees of freedom per node (three translations and two rotations), we

also have

V = v(ξ1, ξ2) + ξ3η(ξ1, ξ2) , (22)

with v and η defined through the change of variables (within each element)

(

ξ1

ξ2

)

=

k
∑

i=1

λi(r, s)

(

ξ1
(i)

ξ2
(i)

)

, ξ3 = z
t

2
, (23)

where (ξ1
(i), ξ

2
(i)) denote the nodal coordinates in ω. Note that, however, we only

have

η · a3 = 0 (24)

at the nodes of the mesh. We can then compare the finite element solution

Uh = uh(ξ1, ξ2) + ξ3θh(ξ1, ξ2) , (25)

with the solution of the basic shell model U, and it can be shown — under regularity

assumptions for u, θ and φ — that11,12

‖u− uh, θ − θh‖H1(ω) ≤ Chmin(2,p) , (26)

where p denotes the order of approximation of the finite element shape functions

in H1, and C is a constant independent of h. Hence the convergence order in this

estimate is no better than quadratic (due to a consistency error arising from the

interpolation of rotation vectors), but the optimal order can be recovered.11,12

Furthermore, an important property of the basic shell model is that it is asymp-

totically consistent with classical shell models.11 This means that, when considering

sequences of problems obtained by varying the thickness of the shell with a fixed

midsurface, as the thickness tends to zero the sequence of solutions of the basic shell

model converges to the same limit solutions as the classical models, under similar

assumptions. In particular, when the subspace of pure bending (or inextensional)

displacements V0 is not reduced to the trivial zero field, the sequence of solutions

converges to the solution of the pure bending problem posed in V0, see Ref. 10 and

references therein. By contrast, when V0 is reduced to the zero field, the sequence

of solutions converges to the solution of the membrane problem, provided that the

loading satisfies some admissibility requirements.
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3.2. Principles of 3D-shell elements

A limitation of the above briefly reviewed shell theory is that transverse normal

strain and stress effects are not included. This is not a serious limitation in

many small strain analyses but may not be acceptable in large strain solutions;

for example, in metal forming problems when the through-the-thickness stress is

considerable.

While effective in many applications, the use of the above kinematic assumption

(with only five degrees of freedom at each shell node) can also result into practical

modeling difficulties. If the deformations at a shell surface need to be coupled to an

outer (or inner) medium, it is necessary to use displacement constraints that result

from the kinematic assumptions (including the Reissner–Mindlin assumption) used

for the shell structure. Typical applications are found in contact problems in which

shell surfaces come into contact with other media, each other (self-contact may also

be seen), and in fluid-structure or soil-structure interactions where a shell surface

is coupled to another medium. A more direct and effective way to model contact

on shell surfaces and to couple a shell surface to a surrounding medium would be

to use top and bottom nodes (even when fictitious) with completely independent

degrees of freedom.

We shall now introduce a family of shell elements that remove the two difficulties

mentioned above. They are the lowest-order general shell elements that include the

transverse normal strain and stress effects appropriately and that can directly be

coupled (without special constraint equations) to surrounding media.

Let us assume that, instead of the mid-surface nodes, we were to use top and

bottom nodes to describe the geometry and kinematics of the shell structure. Hence,

each mid-surface node is replaced by a top surface node and a bottom surface node.

Of course, each of these nodes would carry three displacement degrees of freedom.

The displacement interpolation would then be

V =
2k
∑

j=1

λ3D
j (r, s, z)V(j) , (27)

where the λ3D
i functions are 3D shape functions linear in the z-variable, and we

would have six degrees of freedom at each shell-section with two nodes. This is

equivalent to

V =
k
∑

i=1

λi(r, s)

(

v(i) + z
t(i)

2
η(i)

)

, (28)

in which the vectors η(i) are now arbitrary, namely we dispense with the Reissner–

Mindlin assumption (16).

In order to analyze the convergence of such finite element procedures, we then

need to consider a continuous model with full P1(ξ
3) kinematics, namely

V = v(ξ1, ξ2) + ξ3η(ξ1, ξ2) , (29)
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without any particular assumption on η. However, if we use an elastic energy in

which the assumption (19) is incorporated (which of course corresponds to the

assumption (17) in the finite element discretization) and pursue the minimization

of this energy over the subspace of displacements given by (29), it is clear that the

formulation is not coercive for the displacement component

η3 = η · a3 , (30)

namely the “pinching” component that is not present in Reissner–Mindlin dis-

placements. On the other hand, if we do not use the plane stress assumption, the

problem is well-posed but it is no longer asymptotically consistent with classical

shell models, see Remark 4.5 below. Therefore, the P1(ξ
3) kinematics is not suit-

able for constructing a well-posed mathematical shell model and the corresponding

finite element schemes.

Remark 3.1. This observation was already reported and attributed to a “locking”

phenomenon (called “thickness locking”), see Ref. 7 and references therein. How-

ever, locking is a numerical phenomenon that arises when discretizing a mathe-

matical model and is, for example, not present if the relevant inf–sup condition is

satisfied by the selected finite element spaces.3,9,13 The fact that the P1 kinematics

is not appropriate in shell solutions is not a numerical phenomenon and therefore

there is here no locking phenomenon. Instead, the mathematical (and physical)

model used is not consistent with classical shell (and of course plate) theories.

We therefore consider displacements quadratic in ξ3, viz.

V = v + ξ3η + (ξ3)2ρ . (31)

With this choice, we will show that the minimization of the original 3D elastic

energy (i.e. without the assumption (19)) over the given subspace yields a well-

posed shell model which is asymptotically consistent with classical shell models,

see Sec. 4. Corresponding finite element procedures have quadratic displacements

across the thickness, namely

V =

k
∑

i=1

λi(r, s)

(

v(i) + z
t

2
η(i) +

(

z
t

2

)2

ρ(i)

)

. (32)

This can also be written as

V =
k
∑

i=1

λi(r, s)

(

(z − 1)z

2
V

(i)
lower + (1 − z2)V

(i)
mid +

(z + 1)z

2
V(i)

upper

)

, (33)

with

v(i) = V
(i)
mid , (34)

η(i) =
1

t
(V(i)

upper −V
(i)
lower) , (35)

ρ(i) =
4

t2

[

1

2
(V(i)

upper + V
(i)
lower) −V

(i)
mid

]

, (36)
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where V
(i)
lower, V

(i)
mid and V

(i)
upper denote the corresponding displacements at the

points lying on the lower, middle and upper surfaces on the same transverse material

fiber as node i. This is obviously equivalent to the expression

V =

3k
∑

j=1

λ3D
j (r, s, z)V(j) , (37)

in which the functions λ3D
j are quadratic in z and represent the Lagrange shape

functions associated to 3D nodes laid out on the two outer surfaces and on the

midsurface. Therefore, the proposed shell elements can be formulated in the form

of brick elements that have the same essential features as 3D elements, namely the

same node layouts, shape functions and unknowns (nodal displacements). This is

the reason why we call these elements 3D-shell elements. Note that, in particular,

when the shape functions are also quadratic in the (r, s) variables they correspond

to standard Q2 3D shape functions, hence the practical implementation of these

elements is straightforward.

Clearly, 3D-shell elements are very easy to couple with surrounding media. In

addition, we will show in the next section — by analyzing their underlying mathe-

matical model — that they can (and indeed should) be used without the plane

stress assumption.

Remark 3.2. The above kinematic description with nine degrees of freedom per

shell-section results into a fully compatible finite element model and the shell sur-

faces can directly be coupled to surrounding media. This means that we have about

twice as many degrees of freedom per shell-section as in the case of the usual shell

elements (with five degrees of freedom per shell mid-surface node). It is of course

possible to introduce the transverse normal strain/stress effect into the usual shell

elements as incompatible modes and then condense these modes out on the element

level.2 In this case, fewer degrees of freedom are processed but the normal strain be-

tween elements is discontinuous and the possibility to couple directly to surrounding

media is lost.

Remark 3.3. It is of course also possible to kinematically constrain in the above

model the tangential mid-surface nodal displacements to be equal to the mean of the

tangential top and bottom nodal displacements (the tangential displacements are

then assumed to vary linearly through the shell thickness). In this case, we would

have only seven degrees of freedom per shell-section (instead of the nine degrees of

freedom in our above model) and the displacement compatibility between elements

would be maintained. Also, the modeling feature of including the transverse normal

stress effects (with continuity in the normal strain between elements) and the feature

to couple directly to surrounding media would both still be present. We conjecture

that the resulting mathematical model behaves essentially as the model we consider

herein.
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4. Behavior of the Underlying Model

We present in this section the mathematical shell model underlying the 3D-shell

elements and mathematically analyze the model for the asymptotic behavior as the

shell thickness decreases.

4.1. Model formulation

We consider a linear isotropic elastic material, and we start from the 3D variational

formulation, viz.

Find U ∈ V3D such that

A3D(U,V) = F 3D(V) , ∀V ∈ V3D . (38)

In this formulation, A3D represents the 3D internal virtual work

A3D(U,V) =

∫

Bt

H ijkleij(U)ekl(V)
√

g dξ1dξ2dξ3 , (39)

with eij denoting the components of the strain tensor

eij(V) =
1

2
(Vi · gj + Vj · gi) (40)

and

H ijkl =
Eν

(1 + ν)(1 − 2ν)
gijgkl +

E

2(1 + ν)
(gikgjl + gilgjk) , (41)

where we denote, as usual, Young’s modulus by E and Poisson’s ratio by ν. In the

specific coordinate system considered we have, taking into account (9) and (10),

Hαβγ3(= Hαβ3γ = Hγ3αβ = H3γαβ) = 0 , α, β, γ = 1, 2 , (42)

Hα333(= H3α33 = H33α3 = H333α) = 0 , α = 1, 2 , (43)

Hαβ33(= H33αβ) =
Eν

(1 + ν)(1 − 2ν)
gαβ , α, β = 1, 2 , (44)

Hα3β3(= H3α3β) =
E

2(1 + ν)
gαβ , α, β = 1, 2 , (45)

H3333 =
E(1 − ν)

(1 + ν)(1 − 2ν)
. (46)

The external virtual work reads

F 3D(V) =

∫

Bt

F · V dV , (47)

where F represents the applied 3D-body forces. The solution U and the test func-

tions V satisfy adequate Dirichlet boundary conditions — included in the definition

of V3D — so that, in particular, no rigid body motion is allowed.
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We now use kinematical assumptions corresponding to those considered in the

formulation of the above 3D-shell elements, namely quadratic displacements in the

transverse coordinate, i.e.

U(ξ1, ξ2, ξ3) = u(ξ1, ξ2) + ξ3θ(ξ1, ξ2) + (ξ3)2τ (ξ1, ξ2) , (48)

V(ξ1, ξ2, ξ3) = v(ξ1, ξ2) + ξ3η(ξ1, ξ2) + (ξ3)2ρ(ξ1, ξ2) . (49)

We thus obtain a shell model — all unknowns and test functions being given on

the midsurface — described by the following problem:

Find (u, θ, ρ) such that

A(u, θ, ρ;v, η, ρ) = F (v, η, ρ) , ∀ (v, η, ρ) ∈ V , (50)

where

A(u, θ, τ ;u, η, ρ) = A3D(u + ξ3θ + (ξ3)2τ ,v + ξ3η + (ξ3)2ρ) , (51)

F (v, η, ρ) = F 3D(v + ξ3η + (ξ3)2ρ) . (52)

The boundary conditions considered in V are directly inherited from those given

in V3D.

The expressions of the strain components with respect to ξ3 are:

eαβ(V) = γαβ(v) + ξ3χαβ(v, η) + (ξ3)2kαβ(η, ρ) + (ξ3)3lαβ(ρ) , (53)

eα3(V) = ζα(v, η) + ξ3mα(η, ρ) + (ξ3)2nα(ρ) , (54)

e33(V) = δ(η) + ξ3p(ρ) , (55)

where

γαβ(v) =
1

2
(vα|β + vβ|α) − bαβv3 , (56)

χαβ(v, η) =
1

2
(ηα|β + ηβ|α − bλ

αvλ|β − bλ
βvλ|α) − bαβη3 + cαβv3 , (57)

kαβ(η, ρ) =
1

2
(ρα|β + ρβ|α − bλ

αηλ|β − bλ
βηλ|α) − bαβρ3 + cαβη3 , (58)

lαβ(ρ) = −1

2
(bλ

αρλ|β + bλ
βρλ|α) + cαβρ3 , (59)

ζα(v, η) =
1

2
(ηα + bλ

αvλ + v3,α) , (60)

mα(η, ρ) =
1

2
(2ρα + η3,α) , (61)

nα(ρ) =
1

2
(−bλ

αρλ + ρ3,α) , (62)

δ(η) = η3 , (63)

p(ρ) = 2ρ3 . (64)
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We point out that the tensors γ and ζ respectively correspond to the membrane

and shear strain tensors of classical shell models, see e.g. Refs. 6, 13, 16 and χ is a

generalization of the bending strain tensor (since η3 appears in the expression), for

which we therefore use the same terminology and notation. Note also that, despite

similar expressions for χ and k, we use a different notation to distinguish the two

tensors since they appear with different orders in ξ3. In addition, we emphasize

that — unlike with classical shell models — we have the nonzero transverse strain

e33. The first term in the expression of these strains (δ) plays a distinctive role in

the formulation — as will become clear in the forthcoming discussion. We call this

quantity the “pinching strain”.

Specifying the displacement space

V = [H1(ω)]9 ∩ BC , (65)

where BC symbolically denotes the essential boundary conditions, the variational

problem (50) is clearly well-posed since it corresponds to a restriction of the varia-

tional space used in the original 3D problem (well-posed in H1), and we have the

following result, proven in the Appendix.

Proposition 4.1. Assuming that F ∈ L2(Bt)
3 and that essential boundary condi-

tions are enforced in V so that no rigid body motion is allowed, then there exists a

unique (u, θ, τ ) ∈ V solution of (50). Furthermore, we have

‖u, θ, τ‖1 ≤ C‖F‖L2(Bt) . (66)

with C being a constant independent of F (but dependent on the thickness

parameter).

Therefore, we have obtained a well-posed mathematical shell model. Further-

more, we expect this shell model to be the model underlying the above-presented

3D-shell elements, meaning that the finite element solutions should converge to the

exact solution of the mathematical model when the mesh is made increasingly finer.

This natural conjecture is proven in Sec. 5.1.

4.2. Asymptotic behavior

We now study the asymptotic behavior of the solution of Problem (50), namely

when the thickness parameter ε goes to 0. The primary objective here is to compare

the mathematical model underlying 3D-shell elements with classical shell models

by means of the asymptotic behavior.

We introduce the space of pure bending displacements, defined in this case by

V0 = {(v, η, ρ) ∈ V , such that

γαβ(v) = 0, ζα(v, η) = 0, δ(η) = 0 , ∀α, β = 1, 2} . (67)

Comparing with classical shell models, V0 contains displacements for which pinching

strains vanish, in addition to membrane and shear strains, see e.g. Refs. 13, 16
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and 26. Note that this can be seen as an “asymptotic justification” of the Reissner–

Mindlin kinematical assumption.

Remark 4.1. We might note here that the pinching strain is a strain embedded

in the shell model not dependent on the other strains (and stresses). It is a re-

sult of the kinematic assumptions employed. Using the Reissner–Mindlin kinematic

assumption this strain is zero. Of course, in an actual shell solution using the

Reissner–Mindlin kinematics, once all stress components have been calculated, also

the transverse normal strain as a result of the Poisson effect can be established in

a post-processing procedure.

Depending on the geometry and boundary conditions, the shell may or may not

have nonzero pure-bending displacements. We then distinguish between the two

situations; that is, when

V0 ∩ {(v, η,0) ∈ V} = {(0,0,0)} ,

we say that pure bending is inhibited, and when

V0 ∩ {(v, η,0) ∈ V} 6= {(0,0,0)} ,

that pure bending is non-inhibited. The asymptotic behavior of a shell is strongly

influenced by whether or not pure bending is inhibited.10

The asymptotic analysis consists in seeking a scaling of the loading in the form

F = ερ−1G , (68)

so that a converging solution sequence (uε, θε, τ ε) is obtained with G independent

of ε.1,13 We also assume in our analysis that we take G in the form

G(ξ1, ξ2, ξ3) = G0(ξ
1, ξ2) + ξ3B(ξ1, ξ2, ξ3) , (69)

where G0 is in L2(ω) and B is a bounded function over Bt (uniformly in t) .

Let us introduce some specific bilinear and linear forms that will be needed in

the forthcoming discussion. We define

Am(u, θ;v, η) = L

∫

ω

[H̃αβλµγαβ(u)γλµ(v) + H̃αβ33(γαβ(u)δ(η) + γαβ(v)δ(θ))

+ 4H̃α3β3ζα(u, θ)ζβ(v, η) + H̃3333δ(θ)δ(η)] dS , (70)

Ab(u, θ, τ ;v, η, ρ) =
L3

12

∫

ω

[H̃αβλµχαβ(u, θ)χλµ(v, η)

+ H̃αβ33(χαβ(u, θ)p(ρ) + χαβ(v, η)p(τ ))

+ 4H̃α3β3mα(θ, τ )mβ(η, ρ) + H̃3333p(τ )p(ρ)] dS , (71)

where the tensor H̃ is defined by

H̃ ijkl = H ijkl|ξ3=0 , (72)
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and we also define

G(v) =

∫

ω

LG0 · v dS . (73)

We henceforth denote — in the framework of the asymptotic analysis — the solution

of Problem (50) for a given thickness parameter ε by (uε, θε, τ ε) and we now discuss

the cases of non-inhibited versus inhibited pure bending separately.

4.2.1. Non-inhibited pure bending

Assuming that V0 contains some nonzero elements, we have a model that can be

directly compared to the basic shell model with non-inhibited pure bending.11,13

Namely, the terms of order zero in ξ3 in the strain expressions (53)–(55) tend to

vanish (via a penalization mechanism) and the appropriate scaling factor is then

ρ = 3.

We introduce the norm

‖v, η, ρ‖b =

(

‖v‖2
1 + ‖η‖2

1 + ‖η3‖2
0 + ‖ρ3‖2

0 + ‖ρ +
1

2
∇ η3‖2

0

)
1

2

, (74)

where η and ρ represent the tangential parts of η and ρ, respectively, and ∇ denotes

the surface gradient (the covariant components of which correspond to covariant

derivatives, see Ref. 13). This is the norm for which we expect the convergence to

occur. This norm is not equivalent to the original norm of the displacement space

(namely, the H1-norm, recall Proposition 4.1), since we — in essence — loose in the

energy all the strain terms of degree higher than 1 in the ξ3-expansions (53)–(55)

when ε goes to zero. This norm is, indeed, weaker than the H1 norm, hence V is

not complete with respect to ‖ · ‖b. We define Vb as the completion of V for this

new norm. We will also use the space Vb
0 , defined as the completion of V0 for ‖ · ‖b,

which is identified as

Vb
0 = {(v, η, ρ) ∈ Vb such that γαβ(v) = 0 ,

ζα(v, η) = 0, δ(η) = 0, ∀α, β = 1, 2} . (75)

Using the proposed scaling ρ = 3, the tentative limit problem reads

Find (ub, θb, τ b) ∈ Vb
0 such that

Ab(u
b, θb, τ b;v, η, ρ) =

∫

ω

LG0 · v dS , ∀ (v, η, ρ) ∈ Vb
0 . (76)

Note that the right-hand side of this variational formulation defines a linear form

in Vb
0 (although this completed space may contain elements that do not belong to

V) since
∣

∣

∣

∣

∫

ω

G0 · v dS

∣

∣

∣

∣

≤ C‖G0‖0‖v‖0 ≤ C‖G0‖0‖v, η, ρ‖b , ∀ (v, η, ρ) ∈ Vb . (77)

We then have the following convergence result, proven in the Appendix.
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Proposition 4.2. The solution (uε, θε, τ ε) of Problem (50) converges weakly in

Vb, as ε goes to 0, to (ub, θb, τ b) solution of (76).

Remark 4.2. Unlike for classical shell models or for the basic shell model,13 in the

present case we also have a singular perturbation problem arising from the higher

order terms in the bilinear form A, in addition to the penalization mechanism.

Strong convergence cannot be established under these circumstances, because the

terms corresponding to penalization and singular perturbation are coupled (see

Appendix, Eqs. (A.45)–(A.50)) in the expression of the total strain energy, see also

Theorem 10.3 of Ref. 22 for a similar problem.

Remark 4.3. Even though we have a very weak control on τ ε in ‖ · ‖b (since we

only prove a convergence result for the quantity (τ ε + 1
2∇θε

3) in the L2-norm), the

scaled vector ε2τ ε — arising in the expression of the 3D displacements — converges

to zero in the norm ‖ · ‖1 when ε tends to zero, see the Appendix.

4.2.2. Inhibited pure bending

Assuming that pure bending is inhibited we define

‖v, η‖m = Am(v, η;v, η)
1

2 , (78)

and

V\ = {(v, η) such that (v, η,0) ∈ V} . (79)

Since pure bending is inhibited ‖ · ‖m provides a norm in V\ and — according to

Lemma A.5 (see the Appendix) — this norm is equivalent to

‖γ(v)‖0 + ‖ζ(v, η)‖0 + ‖δ(η)‖0 . (80)

Comparing with the similar norms used for classical shell models and for the basic

shell model (see in particular Ref. 13), we note that in this case the norm ‖ · ‖m

additionally contains the pinching strain terms.

Proceeding like for the basic shell model,13 we introduce Vm as the completion

of V\ with respect to the norm ‖ · ‖m. The converging behavior is then obtained in

this space for the scaling ρ = 1, and the limit problem reads

Find (um, θm) ∈ Vm such that

Am(um, θm
v, η) =

∫

ω

LG0 · v dS , ∀ (v, η) ∈ Vm . (81)

We point out that, since Vm ⊃ V\, in order to obtain a well-posed limit problem

we need to enforce that G0 ∈ (Vm)′, namely that
∣

∣

∣

∣

∫

ω

G0 · v dS

∣

∣

∣

∣

≤ C‖v, η‖m , ∀ (v, η) ∈ Vm , (82)

which is a standard condition for inhibited pure bending situations, see Refs. 10,

13 and 27. We can then prove the following convergence result (see the Appendix).
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Proposition 4.3. Assuming that G0 ∈ (Vm)′, we have that (uε + t2

12τ ε, θε) con-

verges weakly in Vm, as ε goes to 0, to (um, θm) solution of (81).

Remark 4.4. The term uε + t2

12τ ε is the mean value of the displacement vector

across the thickness, hence this convergence result is consistent with the asymptotic

analysis performed on the 3D problem in Ref. 16. In fact, we cannot prove the

convergence of uε by itself, since we only show that ε2τ ε is bounded in the H1-

norm and that ‖ε2τε
3‖0 vanishes when ε tends to zero (see the Appendix).

4.3. Conclusions on the asymptotic analysis

We can further analyze the variational formulations of the limit problems for both

asymptotic behaviors.

When pure bending is not inhibited, using in Problem (76) a test function with

v = 0, η = 0, ρ = 0 and ρ3 arbitrary, we have

H̃αβ33χαβ(ub, θb) + H̃3333p(τ b) = 0 , (83)

and this can be used to eliminate p(τ b) = 2τ b
3 in the variational formulation. Simi-

larly, taking ρ such that ρ3 = 0 with v = η = 0 we obtain

mα(θb, τ b) = 0 , α = 1, 2 . (84)

Furthermore, the transverse component of η for (v, η, ρ) ∈ V b
0 is zero by definition

of Vb
0 . Finally, the variational formulation (76) is equivalent to

L3

12

∫

ω

C̃αβλµχαβ(ub, θb)χλµ(v, η) dS = G(v) , ∀ (v, η) ∈ Vb
0 , (85)

with

C̃αβλµ = H̃αβλµ − H̃αβ33H̃λµ33

H̃3333

=
E

2(1 + ν)

(

aαλaβµ + aαµaβλ +
2ν

1 − ν
aαβaλµ

)

. (86)

We note that this is the same limit problem as for classical shell models (and also

for the shell model underlying general shell elements) when pure bending is not

inhibited, see Refs. 10 and 13.

Remark 4.5. This argument shows why the quadratic kinematical assumption

provides a consistent asymptotic behavior with non-inhibited pure bending, whereas

the linear assumption does not. In fact, with a linear kinematical assumption we

do not have (83), hence the asymptotic behavior (without plane stress assumption)

directly yields (85) with

C̃αβλµ = H̃αβλµ =
Eν

(1 + ν)(1 − 2ν)
aαβaλµ +

E

2(1 + ν)
(aαλaβµ + aαµaβλ) ,

(87)
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instead of (86), which — of course — gives a different limit solution (note that, in

particular, the behavior of these coefficients in the incompressible limit ν → 0.5 is

dramatically different).

Similarly, when pure bending is inhibited, choosing test functions such that

v = 0, η = 0 with η3 arbitrary in the limit problem (81), we obtain

H̃αβ33γαβ(um) + H̃3333δ(θm) = 0 . (88)

Using this equation to substitute δ(θm) = θm
3 in (81), we have

L

∫

ω

[C̃αβλµγαβ(um)γλµ(v)

+ D̃αβζα(um, θm)ζβ(v, η)]dS = G(v) , ∀ (v, η) ∈ Vm (89)

with (86) and

D̃αβ = 4H̃α3β3 . (90)

In this case, we also note that the limit problem corresponds to the limit problem

obtained with classical shell models, and also with the basic shell model, see Refs. 10

and 13.

Therefore, for both asymptotic categories of shell problems, the mathematical

shell model corresponding to 3D-shell elements is asymptotically consistent with

classical shell models, i.e. the solutions converge — when ε tends to zero and with

proper load scaling factors — to the solutions of the same limit problems. Hence, by

analogy to the asymptotic behavior of classical shell models, me may say that the

shell structure described by the 3D-shell model analyzed here is bending-dominated

when pure bending is non-inhibited, and that it is membrane-dominated when pure

bending is inhibited and provided that (82) holds.

In addition, the above analysis shows how the elimination of the transverse

components of the first and second order terms in the kinematical assumption (48)

leads to transformations of the elasticity tensor identical to those induced by the

plane stress assumption in classical shell models,11,13 see also Refs. 8, 17, 23 and

25 for other discussions on this issue. Hence this asymptotic analysis is valuable

both as a theoretical substantiation of the model introduced in this paper, and to

provide insight into the plane stress assumption used in other models.

5. Analysis of the 3D-shell Finite Element Solution

We consider in this section the convergence of displacement-based finite element

solutions using the 3D-shell elements to the solutions of the underlying mathe-

matical model, and also discuss how to obtain reliable (non-locking) finite element

discretization schemes.
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5.1. Convergence to the solution of the underlying model

The objective of this section is to prove that the 3D-shell finite element solutions

converge to the solution of the mathematical model described above when the mesh

is refined. This will, indeed, justify the terminology “underlying model”.

Recalling Sec. 3, the finite element formulation amounts to finding Uh, the

solution of

Ã(3D)(Uh,V) = F̃ (3D)(V) , ∀V , (91)

where in every element K, Uh and V are of the form

Uh =

k
∑

i=1

λi(r, s)

(

u
(i)
h + z

t

2
θ

(i)
h + z2 t2

4
τ

(i)
h

)

, (92)

V =
k
∑

i=1

λi(r, s)

(

v(i) + z
t

2
η(i) + z2 t2

4
ρ(i)

)

. (93)

Here, h denotes (as usual) the maximum diameter of the elements in the mesh

considered, λi the shape function associated with the node (i) and (u
(i)
h , θ

(i)
h , τ

(i)
h )

the nodal values of (uh, θh, τ h), with a similar notation being used for the nodal

values of test functions (note that we use here the expression of the finite element

displacements in terms of midsurface unknowns as in Eq. (32). In Ã(3D) and F̃ (3D)

all the geometric quantities are computed from the isoparametric approximation of

the geometry given by (14) that we now rewrite with the chart notation as

Φh(r, s, z)|K =

k
∑

i=1

λi(r, s)

(

φ(i) + z
t

2
a

(i)
3

)

, (94)

where φ(i) and a
(i)
3 respectively denote the position of the midsurface and the unit

normal vector at node (i). Equation (94) can also be written as

Φh = I(φ) + z
t

2
I(a3) , (95)

where I represents the interpolation operator associated to the in-plane finite

element discretisation. Note that we assume here the normal vector to be known

exactly at each node (and not computed from the approximation of the midsurface).

Introducing the discrete space

Vh =

{

(v, η, ρ) ∈ V | ∀K, v|K =

k
∑

i=1

λi(r, s)v
(i) ,

η|K =

k
∑

i=1

λi(r, s)η
(i), ρ|K =

k
∑

i=1

λi(r, s)ρ
(i)

}

, (96)
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the 3D-shell discrete procedure can be formulated in an equivalent manner as:

Find (uh, θh, τh) ∈ Vh such that

Ah(uh, θh, τ h;v, η, ρ) = Fh(v, η, ρ) , ∀ (v, η, ρ) ∈ Vh , (97)

where

Ah(u, θ, τ ;v, η, ρ) = Ã(3D)(u + ξ3θ + (ξ3)2τ ,v + ξ3η + (ξ3)2ρ) , (98)

Fh(v, η, ρ) = F̃ (3D)(v + ξ3η + (ξ3)2ρ) , (99)

using the change of variables given in (23).

Comparing with Problem (50), we note that the approximation scheme proposed

here introduces a consistency error arising from the approximation of the geometry.

In order to determine the influence of the approximate geometry on the discrete

solution, we suppose that the interpolation errors are optimal. Assuming (u, θ, τ ) ∈
Hp+1(ω)3 ×Hp+1(ω)3 ×Hp+1(ω)3, p being the degree of the polynomials used for

the 2D shape functions, the following classical estimate holds15

inf
(v,η,ρ)∈Vh

‖u− v, θ − η, τ − ρ‖1

≤ ‖u− I(u), θ − I(θ), τ − I(τ )‖1 ≤ Chp‖u, θ, τ‖p+1 . (100)

We can then prove the following optimal convergence result (see Appendix).

Proposition 5.1. Problem (97) has a unique solution (uh, θh, τh) which converges

to (u, θ, τ ), the solution of the underlying mathematical model, namely,

‖u− uh, θ − θh, τ − τh‖1 ≤ Chp‖u, θ, τ‖p+1 , (101)

with a constant C depending on the thickness.

5.2. Reliability considerations

The question then arises as to what makes the proposed finite element scheme

specific to shell analysis, as in fact the finite elements that we have been presenting

are in essence 3D elements used in a single layer across the thickness of the structure.

In order to clarify this point, we may resort to reliability considerations. As a matter

of fact, it is well-known that 3D elements used in thin bending-dominated structures

are subject to severe numerical locking.2,13 This means that the accuracy of the

finite element solution is very sensitive to the aspect ratio of the elements and

may seriously deteriorate when the element is thin in the direction of structural

thickness.

The sources of numerical locking for shells are now well identified, see in parti-

cular Refs. 2, 13 and the references therein. It is due to constraints that are enforced

by a penalization mechanism in the mechanical formulation (where the square of

the structural aspect ratio is the penalization parameter). In classical shell models,

these constraints are that membrane and shear strains vanish.10 Locking then arises

because the discrete displacements that satisfy the constraints are “scarce”.
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In order to circumvent the locking phenomenon, it is now classical to resort to

mixed formulations in which additional unknowns — corresponding to the “locking

producing” terms of the energy — are introduced.2,9 For shell formulations, it is

thus natural to use the membrane and shear stresses as independent unknowns.

The effect of this procedure can be interpreted as a relaxation of the constraints

to be satisfied by the discrete displacements. A crucial difficulty is that — while

attempting to alleviate the locking phenomenon — the modifications performed

may seriously affect the performance of the method when applied in a membrane-

dominated situation, i.e. when locking is not to be expected.10

In particular, the MITC (standing for “Mixed Interpolated Tensorial Com-

ponents”) shell elements appear to be effective for both bending-dominated and

membrane-dominated shell problems,4,5,13,21 although there is no complete mathe-

matical analysis available for these elements (nor for any other shell element). They

rely on an interpolation procedure of the strain components, which are computed

at some well-chosen points within an element — called the tying points — directly

from the displacements and are then re-interpolated from these points throughout

the element for the stiffness computation.

Regarding the above-proposed 3D-shell elements, we have seen by analyzing

in Sec. 4 the corresponding underlying shell model that the same constraints —

namely of vanishing membrane and shear strains — are also present in the varia-

tional formulation of the proposed shell element formulation, see (67). Hence, it is

straightforward to use the same treatments to address the induced locking pheno-

mena. In addition, we can see in (67) that a new constraint is applied in bending-

dominated situations, which is that a displacement field expressed in the form (49)

should also satisfy

η · a3 ≡ 0 , (102)

in the asymptotic limit. Hence this constraint creates an additional source of locking

that we call pinching locking, due to the nature of the quantity that tends to vanish,

namely, the pinching strain.

In order to circumvent the pinching locking phenomenon, a natural idea inspired

from the MITC approach is to use tying points for the corresponding ezz tensorial

component. In particular, when using the nodes themselves as tying points (as

proposed e.g. in Ref. 7) we can see that the relaxed constraint imposed is that

η · a3 = 0 (103)

at the nodes, which is easily satisfied by the discrete displacements. In fact, it can be

mathematically proven that this strategy effectively remedies the pinching locking

phenomenon.14

6. Concluding Remarks

The objective in this paper was to present and analyze a family of shell elements

that include the effects of the transverse normal stress and lend themselves to
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model in an effective way shell structures in which the shell surfaces are coupled to

surrounding media.

Similar shell elements have been introduced earlier but the novelty in this paper

is that we identified the underlying shell mathematical model, we analyzed the

model for the asymptotic behavior when the shell thickness decreases, and we dis-

cussed how a finite element discretization as reliable as now widely-used schemes

based on the Reissner–Mindlin kinematic assumption can be established.

The mathematical model is asymptotically consistent with the basic shell model

of Refs. 11, 13 and classical shell models, in that an analogous asymptotic behavior

is observed as the shell thickness is decreased and the solutions converge to the

solutions of the limit problems of the other shell models. Hence, bending-dominated

and membrane-dominated problems can be identified. However, in addition to the

membrane and shear strains, also the pinching strain now enters the analysis.

Considering the displacement-based solutions, a convergence analysis shows that

the optimal order of convergence is obtained but of course with a constant that de-

pends on the shell thickness. Hence, “locking” is observed in the numerical solutions,

and in these finite element solutions, shear, membrane and pinching strain locking

can arise. To obtain a finite element scheme that is more reliable and effective, the

MITC interpolation schemes for the element discretizations can be used.

Appendix A.

The purpose of this Appendix is to provide the proofs of the results stated in the

above propositions.

In the forthcoming presentation, we will use the inequalities (proven in Refs. 11

and 13) given in Lemmas A.1 to A.3. We point out that the constants appearing

in these inequalities are all independent of the thickness t.

Lemma A.1. There exist strictly positive constants C and γ such that, for any

(ξ1, ξ2, ξ3) ∈ Ωt,

γaαβ(ξ1, ξ2)XαXβ ≤ gαβ(ξ1, ξ2, ξ3)XαXβ

≤ Caαβ(ξ1, ξ2)XαXβ , ∀ (X1, X2) ∈ R
2 . (A.1)

Lemma A.2. There exist strictly positive constants C and γ such that, for any

(ξ1, ξ2, ξ3) ∈ Ωt,

γaαβ(ξ1, ξ2)aλµ(ξ1, ξ2)YαλYβµ

≤ gαβ(ξ1, ξ2, ξ3)gλµ(ξ1, ξ2, ξ3)YαλYβµ

≤ Caαβ(ξ1, ξ2)aλµ(ξ1, ξ2)YαλYβµ , ∀ (Y11, Y12, Y21, Y22) ∈ R
4 . (A.2)

Lemma A.3. There exist strictly positive constants C and γ such that, for any

(ξ1, ξ2, ξ3) ∈ Ωt,

γ
√

a(ξ1, ξ2) ≤ √
g(ξ1, ξ2, ξ3) ≤ C

√
a(ξ1, ξ2) . (A.3)
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We now turn to the proof of another lemma needed in our analysis.

Lemma A.4. Assuming that the essential boundary conditions enforced in V are

such that no rigid body motion is possible, the bilinear form A is continuous and

coercive over V , i.e. there exist two strictly positive (thickness-dependent) constants

C and γ, such that for any (u, θ, τ ) and (v, η, ρ) in V ,

A(u, θ, τ ;v, η, ρ) ≤ C‖u, θ, τ‖1‖v, η, ρ‖1 , (A.4)

γ‖v, η, ρ‖2
1 ≤ A(v, η, ρ;v, η, ρ) . (A.5)

Proof. We focus on the coercivity inequality (the continuity is established by sim-

ilar — although much more straightforward — arguments). To make the equations

more compact, we write eij instead of eij(v+ξ3η+(ξ3)2ρ), and γαβ , χαβ , kαβ , lαβ ,

ζα, mα, nα, δ, p instead of γαβ(v), χαβ(v, η), kαβ(η, ρ), lαβ(ρ), ζα(v, η), mα(η, ρ),

nα(ρ), δ(η) and p(ρ), respectively.

We decompose the proof into three steps.

(i) We first show that

A(v, η, ρ;v, η, ρ) ≥ γ(‖γ‖2
0 + ‖χ‖2

0 + ‖k‖2
0 + ‖l‖2

0

+ ‖ζ‖2
0 + ‖m‖2

0 + ‖n‖2
0 + ‖δ‖2

0 + ‖p‖2
0) . (A.6)

From (A.1) and (A.2), using gijgkleijekl = (gijeij)
2 ≥ 0, we have

A(v, η, ρ;v, η, ρ) ≥ γ

∫

Bt

gikgjleijekl dV

≥ γ

∫

Bt

[gαλgβµeαβeλµ + gαβeα3eβ3 + (e33)
2] dV

≥ γ

∫

Bt

[aαλaβµeαβeλµ + aαβeα3eβ3 + (e33)
2] dV . (A.7)

Now using Eq. (A.3), then Eqs. (53)–(55), and integrating through the thickness,

we obtain

A(v, η, ρ;v, η, ρ) ≥ γt

∫

ω

{

aαλaβµ

[

γαβγλµ +
t2

12
χαβχλµ +

t2

6
γαβkλµ

+
t4

80
kαβkλµ +

t4

40
lαβχλµ +

t6

448
lαβlλµ

]

+ aαβ

[

ζαζβ +
t2

12
mαmβ +

t2

6
ζαnβ +

t4

80
nαnβ

]

+

[

δ2 +
t2

12
p2

]}

dS . (A.8)
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For two second-order surface tensors T and T̃ , we use the Euclidean inner-product

defined and denoted as in

〈T , T̃ 〉 = aαβaλµTαλT̃βµ . (A.9)

The associated (Euclidean) norm is denoted by the usual norm symbol “‖ · ‖”
(without a subscript). Likewise, for first-order surface tensors we use

〈W, W̃ 〉 = aαβWαW̃β . (A.10)

By standard inequalities, we then have
∣

∣

∣

∣

t2

6
aαλaβµγαβkλµ

∣

∣

∣

∣

=
1

6
|〈γ, t2k〉| ≤ 1

12

(

r1‖γ‖2 +
t4

r1
‖k‖2

)

≤ 1

12
aαλaβµ

(

r1γαβγλµ +
t4

r1
kαβkλµ

)

, (A.11)

and similarly
∣

∣

∣

∣

t4

40
aαλaβµlαβχλµ

∣

∣

∣

∣

≤ 1

80
aαλaβµ

(

r2t
6lαβlλµ +

t2

r2
χαβχλµ

)

, (A.12)

∣

∣

∣

∣

t2

6
aαβζαnβ

∣

∣

∣

∣

≤ 1

12
aαβ

(

r3ζαζβ +
t4

r3
nαnβ

)

, (A.13)

with r1, r2, r3 arbitrary strictly positive constants. With an appropriate choice for

these constants — for example r1 = 10, r2 = 6
35 , r3 = 10 — Eq. (A.8) gives

A(v, η, ρ;v, η, ρ) ≥ γ

∫

ω

{aαλaβµ[γαβγλµ + χαβχλµ + kαβkλµ + lαβlλµ]

+ aαβ[ζαζβ + mαmβ + nαnβ] + [δ2 + p2]} dS , (A.14)

namely, we have (A.6) (note that the constant γ depends on the parameter t).

(ii) Denoting

‖η3, ρ‖# =
(

‖m(η, ρ)‖2
0 + ‖n(ρ)‖2

0 + ‖k(0, η3, ρ)‖2
0 + ‖δ(η)‖2

0 + ‖p(ρ)‖2
0

)1/2
,

(A.15)

we now show that ‖ · ‖# provides a norm equivalent to the H1-norm (i.e. the norm

prevailing in V) over the subspace of V of displacements of the type (0, 0, η3, ρ).

In order to see that ‖ · ‖# gives a norm, we observe that from δ(η) = 0 and

p(ρ) = 0 we obtain η3 = 0 and ρ3 = 0, respectively. Then, from m(η, ρ) = 0 and

η3 = 0 we have ρ = 0. Bounding this norm as in

‖η3, ρ‖# ≤ C‖η3, ρ‖1 (A.16)

is straightforward, hence to prove the equivalence it remains to show that we have

the other inequality

‖η3, ρ‖# ≥ γ‖η3, ρ‖1 . (A.17)
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To that purpose, we use the following Korn inequality for first-order surface tensors,

see Refs. 16 and 18,

|v|1 ≤ C(‖ε(v)‖0 + ‖v‖0) , (A.18)

where

ε(v) =
1

2
(∇ v + (∇ v)T) . (A.19)

We then have, from (58),

|ρ|21 ≤ C(‖ε(ρ)‖2
0 + ‖ρ‖2

0)

≤ C(‖k(0, η3, ρ)‖2
0 + ‖bρ3‖2

0 + ‖cη3‖2
0 + ‖ρ‖2

0)

≤ C(‖k(0, η3, ρ)‖2
0 + ‖ρ3‖2

0 + ‖η3‖2
0 + ‖ρ‖2

0) . (A.20)

In addition, from Eq. (62) we have

|ρ3|21 ≤ C(‖n(ρ)‖2
0 + ‖ρ‖3

0) , (A.21)

and, from (61),

|η3|21 ≤ C(‖m(η, ρ)‖2
0 + ‖ρ‖2

0) . (A.22)

Gathering Eqs. (A.20)–(A.22), we obtain

‖η3, ρ‖2
1 ≤ C(‖m(η, ρ)‖2

0 + ‖k(0, η3, ρ)‖2
0 + ‖n(ρ)‖2

0 + ‖ρ3‖2
0 + ‖η3‖2

0 + ‖ρ‖2
0)

≤ C(‖η3, ρ‖2
# + ‖η3, ρ‖2

0) . (A.23)

Finally, in order to show that we can dispense with the L2-norm term on the right-

hand side of this inequality, we invoke a (standard) contradiction argument, see

e.g. Refs. 16 and 13.

(iii) Final coercivity bound.

We will repeatedly use the following general inequality, valid for any norm and any

(fixed) real number α,

‖v1 + αv2‖2 + ‖v2‖2 ≥ γ(‖v1‖2 + ‖v2‖2) . (A.24)

Using this inequality we obtain

‖χ(v, η)‖2
0 + ‖δ(η)‖2

0 = ‖χ(v, η, 0) − bη3‖2
0 + ‖η3‖2

0

≥ γ(‖χ(v, η, 0)‖2
0 + ‖η3‖2

0) , (A.25)

hence

‖γ(v)‖2
0 + ‖χ(v, η)‖2

0 + ‖ζ(v, η)‖2
0 + ‖δ(η)‖2

0

≥ γ(‖γ(v)‖2
0 + ‖ζ(v, η)‖2

0 + ‖χ(v, η, 0)‖2
0 + ‖η3‖2

0)

≥ γ(‖v, η‖2
1 + ‖η3‖2

0) , (A.26)



January 27, 2004 13:29 WSPC/103-M3AS 00317

130 D. Chapelle, A. Ferent & K. J. Bathe

where the last inequality directly follows from the coercivity of the bilinear form

of the classical shell model referred to as the “shear-membrane-bending model” in

Ref. 13 and “Naghdi model” in Ref. 16, see also these references (and references

therein) for a proof.

Furthermore,

‖k(η, ρ)‖2
0 + |η|21 ≥ γ(‖k(0, η3, ρ)‖2

0 + |η|21) , (A.27)

hence,

‖k(η, ρ)‖2
0 + |η|21 + ‖m(η, ρ)‖2

0 + ‖n(ρ)‖2
0 + ‖δ(η)‖2

0 + ‖p(ρ)‖2
0

≥ γ(‖k(0, η3, ρ)‖2
0 + ‖m(η, ρ)‖2

0 + ‖n(ρ)‖2
0 + ‖δ(η)‖2

0 + ‖p(ρ)‖2
0 + |η|21)

= γ(‖η3, ρ‖2
# + |η|21) ≥ γ(‖η3, ρ‖2

1 + |η|21) . (A.28)

Therefore, from (A.6), (A.26) and (A.28), we have

A(v, η, ρ;v, η, ρ) ≥ γ(‖γ‖2
0 + ‖χ‖2

0 + ‖ζ‖2
0 + ‖δ‖2

0 + ‖k‖2
0 + ‖m‖2

0 + ‖n‖2
0 + ‖p‖2

0)

≥ γ(‖v, η‖2
1 + ‖η3‖2

0 + ‖k‖2
0 + ‖m‖2

0 + ‖n‖2
0 + ‖p‖2

0)

≥ γ(‖v, η‖2
1 + ‖η3, ρ‖2

1) = γ‖v, η, ρ‖2
1 . (A.29)

Proof of Proposition 4.1. The existence and the uniqueness are direct conse-

quences of the Lax–Milgram lemma, since A is a coercive bilinear form and F is

a linear form, both in V . To obtain the estimate (66) we use the continuity of F ,

which gives for any (v, η, ρ) ∈ V
∣

∣

∣

∣

∫

Bt

F · (v + ξ3η + (ξ3)2ρ) dV

∣

∣

∣

∣

≤ ‖F‖L2(Bt)‖v + ξ3η + (ξ3)2ρ‖L2(Bt)

≤ C‖F‖L2(Bt)‖v, η, ρ‖0 . (A.30)

Then, from the H1-coercivity of A we infer

γ‖u, θ, τ‖2
1 ≤ A(u, θ, τ ;u, θ, τ )

= F (u, θ, τ ) ≤ C‖F‖L2(Bt)‖u, θ, τ‖0 , (A.31)

and the a priori estimate directly follows.

In the statement (and proof) of the following lemma we use the same compact

notation for the strains as in the proof of Lemma A.4.

Lemma A.5. We have the following equivalence relations of norms and semi-

norms :

1. Whether these expressions define norms (when pure bending is inhibited) or

semi-norms (otherwise), ‖v, η‖m is equivalent to (‖γ‖2
0 + ‖ζ‖2

0 + ‖δ‖2
0)

1/2.
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2. The norms ‖v, η, ρ‖b, (‖γ‖2
0 + ‖ζ‖2

0 + ‖δ‖2
0 + ‖χ‖2

0 + ‖m‖2
0 + ‖p‖2

0)
1/2, and

(Am(v, η;v, η) + Ab(v, η, ρ;v, η, ρ))1/2, are all equivalent.

3. The norms ‖v, η, ρ‖1 and (‖γ‖2
0 + ‖ζ‖2

0 + ‖δ‖0 + ‖χ‖2
0 + ‖m‖2

0 + ‖p‖2
0 + ‖k‖2

0 +

‖n‖2
0)

1/2 are equivalent.

Proof. We split the proof according to the items in the statement of the lemma.

(i) From the definition of ‖ · ‖m we have

‖v, η‖2
m = L

∫

ω

[H̃αβλµγαβγλµ + H̃3333(δ)2

+ 2H̃αβ33γαβδ + 4H̃α3β3ζαζβ ] dS . (A.32)

Then
∫

ω

H̃αβλµγαβγλµ dS =
Eν

(1 + ν)(1 − 2ν)

∫

ω

aαβaλµγαβγλµ dS

+
E

2(1 + ν)

∫

ω

(aαλaβµ + aαµaβλ)γαβγλµ dS

=
Eν

(1 + ν)(1 − 2ν)
‖ tr γ‖2

0 +
E

1 + ν
‖γ‖2

0 . (A.33)

Likewise,
∫

ω

H̃α3β3ζαζβ dS =
E

2(1 + ν)
‖ζ‖2

0 , (A.34)

∫

ω

H̃3333(δ)2 dS =
E(1 − ν)

(1 + ν)(1 − 2ν)
‖δ‖2

0 , (A.35)

and
∫

ω

H̃αβ33γαβδ dS =
Eν

(1 + ν)(1 − 2ν)
〈tr γ, δ〉L2(ω) . (A.36)

Hence,

‖v, η‖2
m =

Eν

(1 + ν)(1 − 2ν)
‖ tr γ + δ‖2

0 +
E

1 + ν
‖γ‖2

0

+
2E

(1 + ν)
‖ζ‖2

0 +
E

1 + ν
‖δ‖2

0 , (A.37)

which implies

‖v, η‖2
m ≥ γ[‖γ‖2

0 + ‖ζ‖2
0 + ‖δ‖2

0] . (A.38)

Furthermore, since ‖ tr γ‖0 ≤ C‖γ‖0, from (A.37) we directly obtain

‖v, η‖2
m ≤ C[‖γ‖2

0 + ‖ζ‖2
0 + ‖δ‖2

0] , (A.39)

and the equivalence is proven.
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(ii) We have

‖v, η, ρ‖2
b = ‖v‖2

1 + ‖η‖2
1 + ‖η3‖2

0 + ‖ρ3‖2
0 + ‖ρ +

1

2
∇η3‖2

0

= ‖v‖2
1 + ‖η‖2

1 + ‖m‖2
0 + ‖δ‖2

0 +
1

4
‖p‖2

0 . (A.40)

Using the H1-coercivity of the bilinear form of the shear-membrane-bending model

(see the proof of Lemma A.4) we have

γ(‖v‖2
1 + ‖η‖2

1) ≤ ‖γ‖2
0 + ‖ζ‖2

0 + ‖χ(v, η, 0)‖2
0 , (A.41)

and

‖χ(v, η, 0)‖0 = ‖χ − bη3‖0 ≤ ‖χ‖0 + ‖bη3‖0 ≤ C(‖χ‖0 + ‖δ‖0) . (A.42)

From (A.40)–(A.42), we obtain

‖v, η, ρ‖2
b ≤ C(‖γ‖2

0 + ‖ζ‖2
0 + ‖χ‖2

0 + ‖m‖2
0 + ‖δ‖2

0 + ‖p‖2
0) . (A.43)

Furthermore, from the definition of the norm ‖ · ‖b we obtain by straightforward

bounds

‖γ‖2
0 + ‖ζ‖2

0 + ‖χ‖2
0 + ‖m‖2

0 + ‖δ‖2
0 + ‖p‖2

0 ≤ C‖v, η, ρ‖2
b , (A.44)

hence the equivalence of ‖ · ‖b and (‖γ‖2
0 + ‖ζ‖2

0 + ‖δ‖2
0 + ‖χ‖2

0 + ‖m‖2
0 + ‖p‖2

0)
1/2

is proven.

To prove the equivalence of ‖ · ‖b and (Am(· , ·) + Ab(· , ·))1/2, we recall that

‖γ‖2
0 + ‖ζ‖2

0 + ‖δ‖2
0 is equivalent to Am(· , ·). Hence to complete the proof it suffices

to show that

γ(‖χ‖2
0 + ‖m‖2

0 + ‖p‖2
0) ≤ Ab(v, η, ρ;v, η, ρ) ≤ C(‖χ‖2

0 + ‖m‖2
0 + ‖p‖2

0) ,

which is achieved exactly like in Step (i) above.

(iii) The equivalence of ‖·‖1 and (‖γ‖2
0 +‖ζ‖2

0 +‖δ‖0+‖χ‖2
0+‖m‖2

0 +‖p‖2
0+‖k‖2

0+

‖n‖2
0)

1/2 directly follows from the proof of Lemma A.4.

Remark A.1. Using Eqs. (42), (43), (53)–(55), and the change of variables ξ3 = εξ,

the bilinear form A can be expressed as

A(u, θ, τ ;v, η, ρ) = I1 + I2 + I3 + I4 + I5 , (A.45)

with

I1 = ε

∫ L/2

−L/2

∫

ω

Hαβλµ
(

γαβ(u) + εξχαβ(u, θ) + ε2(ξ)2kαβ(θ, τ )

+ ε3(ξ)3lαβ(τ )
)

×
(

γλµ(v) + εξχλµ(v, η) + ε2(ξ)2kλµ(η, ρ)

+ ε3(ξ)3lλµ(ρ)
)√

g dξ1dξ2dξ , (A.46)
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I2 = ε

∫ L/2

−L/2

∫

ω

4Hα3β3
(

ζα(u, θ) + εξmα(θ, τ ) + ε2(ξ)2nα(τ )
)

×
(

ζβ(v, η) + εξmβ(η, ρ) + ε2(ξ)2nβ(ρ)
)√

g dξ1dξ2dξ , (A.47)

I3 = ε

∫ L/2

−L/2

∫

ω

H3333
(

δ(θ) + εξp(τ )
)(

δ(η) + εξp(ρ)
)√

g dξ1dξ2dξ , (A.48)

I4 = ε

∫ L/2

−L/2

∫

ω

Hαβ33
(

γαβ(u) + εξχαβ(u, θ) + ε2(ξ)2kαβ(θ, τ )

+ ε3(ξ)3lαβ(τ )
)

×
(

δ(η) + εξp(ρ)
)√

g dξ1dξ2dξ , (A.49)

I5 = ε

∫ L/2

−L/2

∫

ω

Hαβ33
(

γαβ(v) + εξχαβ(v, η) + ε2(ξ)2kαβ(η, ρ)

+ ε3(ξ)3lαβ(ρ)
)

×
(

δ(θ) + εξp(τ )
)√

g dξ1dξ2dξ . (A.50)

Similarly, the linear form F becomes

F (v, η, ρ) = ε

∫ L/2

−L/2

∫

ω

F · (v + εξη + ε2(ξ)2ρ)
√

g dξ1dξ2dξ . (A.51)

Proof of Proposition 4.2. We follow the same approach as for the model under-

lying general shell elements, namely the basic shell model, see Refs. 11 and 13. We

divide the proof into three steps.

(i) Uniform bound on the solution. We start by noting that, in the proof of

Lemma A.4, from (A.8) and (A.11)–(A.13), Inequality (A.14) can be restated as

A(v, η, ρ;v, η, ρ)

≥ γt

∫

ω

{aαλaβµ[γαβγλµ + t2χαβχλµ + t4kαβkλµ + t6lαβlλµ]

+ aαβ[ζαζβ + t2mαmβ + t4nαnβ ] + [δ2 + t2p2]} dS , (A.52)

with γ independent of t. Hence, using ε = t
L we have

A(v, η, ρ;v, η, ρ)

≥ γε

∫

ω

L{aαλaβµ[γαβγλµ + ε2L2χαβχλµ + ε4L4kαβkλµ + ε6L6lαβlλµ]

+ aαβ[ζαζβ + ε2L2mαmβ + ε4L4nαnβ] + [δ2 + ε2L2p2]} dS . (A.53)
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Since t ≤ tmax and denoting εmax = tmax

L , (A.53) gives

A(v, η, ρ;v, η, ρ) ≥ γε3

[

1

ε2
max

(‖γ‖2
0 + ‖ζ‖2

0 + ‖δ‖2
0)

× (‖χ‖2
0 + ‖m‖2

0 + ‖p‖2
0) + ε2(‖k‖2

0 + ‖n‖2
0)

]

≥ γ[ε3‖v, η, ρ‖2
b + ε5‖v, η, ρ‖2

1] , (A.54)

using the equivalences given in Lemma A.5. In addition, recalling F = ε2G, using

(12), (69), (A.51) and integrating through the thickness, we obtain
∫

Bt

F · (v + ξ3η + (ξ3)2ρ) dV

= ε3

∫ L/2

−L/2

∫

ω

(G0 + εξB)(v + εξη + ε2(ξ)2ρ)
√

g dξ1dξ2dξ

= ε3

∫

ω

LG0 · v
√

a dξ1dξ2 + R , (A.55)

where the remainder R is bounded as

|R| ≤ Cε4‖v, η, ρ‖0 . (A.56)

Recalling (77), this gives
∫

Bt

F · (v + ξ3η + (ξ3)2ρ) dV ≤ Cε3‖v, η, ρ‖b + Cε4‖v, η, ρ‖0 . (A.57)

Using then (v, η, ρ) = (uε, θε, τ ε) in the variational formulation, with (A.54) and

(A.57) we infer

‖uε, θε, τ ε‖b + ε‖uε, θε, τ ε‖1 ≤ C . (A.58)

Note that this bound substantiates Remark 4.3.

(ii) Weak convergence in V0
b . Since (uε, θε, τ ε) is uniformly bounded in the norm

‖ · ‖b, we can extract a subsequence (for which we will use the same notation)

converging weakly in Vb to a limit (uw, θw, τw). Of course, ε‖ · ‖1 remains bounded

for this subsequence also, due to (A.58).

Since the geometry is smooth, we can expand the constitutive tensor as

H ijkl(ξ1, ξ2, ξ3) = H̃ ijkl(ξ1, ξ2) + ξ3H̄ ijkl(ξ1, ξ2, ξ3) , (A.59)

where H̄ ijkl(ξ1, ξ2, ξ3) is bounded over Bt. Using the change of variable ξ3 = εξ,

for any (v, η, ρ) ∈ V ⊂ Vb,

A(uε, θε, τ ε;v, η, ρ) = I1 + I2 + I3 + I4 + I5 , (A.60)
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where I1, I2, I3, I4, I5 are defined by Eqs. (A.46)–(A.50). Since (uε, θε, τ ε) is weakly

converging in Vb we have

lim
ε→0

γ(uε) = γ(uw) , weakly in L2(ω) , (A.61)

lim
ε→0

ζ(uε, θε) = ζ(uw, θw) , weakly in L2(ω) , (A.62)

lim
ε→0

δ(θε) = δ(θw) , weakly in L2(ω) , (A.63)

lim
ε→0

χ(uε, θε) = χ(uw, θw) , weakly in L2(ω) , (A.64)

lim
ε→0

m(θε, τ ε) = m(θw, τw) , weakly in L2(ω) , (A.65)

lim
ε→0

p(τ ε) = p(τ w) , weakly in L2(ω) , (A.66)

so that, using the uniform boundedness of ε‖uε, θε, τ ε‖1, we obtain

lim
ε→0

1

ε
I1 =

∫

ω

LH̃αβλµγαβ(uw)γλµ(v)
√

a dξ1dξ2 , (A.67)

lim
ε→0

1

ε
I2 =

∫

ω

LH̃α3β3ζα(uw, θw)ζβ(v, η)
√

adξ1dξ2 , (A.68)

lim
ε→0

1

ε
I3 =

∫

ω

LH̃3333δ(θw)δ(η)
√

a dξ1dξ2 , (A.69)

lim
ε→0

1

ε
I4 =

∫

ω

LH̃αβ33γαβ(uw)δ(η)
√

a dξ1dξ2 , (A.70)

lim
ε→0

1

ε
I5 =

∫

ω

LH̃αβ33γαβ(v)δ(θw)
√

a dξ1dξ2 , (A.71)

hence,

lim
ε→0

1

ε
A(uε, θε, τ ε;v, η, ρ) = Am(uw, θw;v, η) . (A.72)

On the other hand, recalling (A.57) we have
∣

∣

∣

∣

1

ε
A(uε, θε, τ ε;v, η, ρ)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

ε

∫

Bt

F · (v + ξ3η + (ξ3)2ρ) dV

∣

∣

∣

∣

≤ Cε2‖v, η, ρ‖b + Cε3‖v, η, ρ‖0 , (A.73)

and, since (v, η, ρ) is fixed in V , the left-hand side of this inequality tends to zero

with ε. Therefore,

Am(uw, θw;v, η) = 0 , ∀ (v, η, ρ) ∈ V , (A.74)

and by density this also holds for any (v, η, ρ) ∈ Vb, hence in particular for

(uw, θw, τw). From Lemma A.5 (first equivalence statement) we then infer that

(uw, θw, τw) ∈ Vb
0 .
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(iii) Characterization of (uw, θw, τw). Let us now choose (v, η, ρ) ∈ V0, namely,

γαβ(v) = 0 , ζα(v, η) = 0 , δ(η) = 0 . (A.75)

Since

1

ε3
A(uε, θε, τ ε;v, η, ρ) =

1

ε3
I1 +

1

ε3
I2 +

1

ε3
I3 +

1

ε3
I4 +

1

ε3
I5 , (A.76)

we analyze each term in the right-hand side separately. Using (A.75), we have

1

ε3
I1 =

1

ε2

∫ L/2

−L/2

∫

ω

Hαβλµ(γαβ(uε) + εξχαβ(uε, ρε) + ε2(ξ)2kαβ(θε, τ ε)

+ ε3(ξ)3lαβ(τ ε)) × (εξχλµ(v, η) + ε2(ξ)2kλµ(η, ρ)

+ ε3(ξ)3lλµ(ρ))
√

g dξ1dξ2dξ . (A.77)

Developing in powers of ε by using (12) and (A.59), we obtain that the only term

in 1
ε is

1

ε2

∫ L/2

−L/2

∫

ω

εξH̃αβλµγαβ(uε)χλµ(v, η)
√

a dξ1dξ2dξ , (A.78)

which vanishes because of the integration on ξ. The other terms in the expansion

of 1
ε3 I1 converge to zero, except for

L3

12

∫

ω

H̃αβλµχαβ(uw, θw)χλµ(v, η)
√

a, dξ1dξ2 . (A.79)

To prove this claim, we use the weak convergence of (uε, θε, τ ε) to (uw, θw, τ w), the

uniform bound on ε‖uε, θε, τ ε‖1 and the fact that (uw, θw, τw) ∈ Vb
0 . For example,

lim
ε→0

1

ε2

∫ L/2

−L/2

∫

ω

ε2H̃αβλµγαβ(uε)((ξ)2kλµ(η, ρ))
√

a dξ1dξ2dξ

=
L3

12

∫

ω

H̃αβλµγαβ(uw)kλµ(η, ρ)
√

adξ1dξ2 = 0 , (A.80)

because γαβ(uw) = 0. Note also that for the same reason, and using the bounded-

ness of H̄αβλµ, we have

lim
ε→0

1

ε2

∫ L/2

−L/2

∫

ω

εξH̄αβλµγαβ(uε)εξχλµ(v, η)
√

a dξ1dξ2dξ

= lim
ε→0

∫ L/2

−L/2

∫

ω

(ξ)2H̄αβλµγαβ(uε)χλµ(v, η)
√

adξ1dξ2dξ = 0 . (A.81)

By similar arguments, we obtain

lim
ε→0

1

ε3
I2 =

L3

12

∫

ω

4H̃α3β3mα(θw, τw)mβ(η, ρ)
√

a dξ1dξ2 , (A.82)

lim
ε→0

1

ε3
I3 =

L3

12

∫

ω

H̃3333p(τ w)p(ρ)
√

a dξ1dξ2 , (A.83)
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lim
ε→0

1

ε3
(I4 + I5) =

L3

12

∫

ω

H̃αβ33(χαβ(uw, θw)p(ρ)

+ χαβ(v, η)p(τw))
√

a dξ1dξ2 . (A.84)

Therefore,

lim
ε→0

1

ε3
A(uε, θε, τ ε;v, η, ρ) = Ab(u

w, θw, τw;v, η, ρ) . (A.85)

Furthermore, recalling (A.55) and (A.56) we have

1

ε3

∫

Bt

F · (v + ξ3η + (ξ3)2ρ) dV =

∫ L/2

−L/2

∫

ω

G0 · v
√

a dξ1dξ2dξ +
R

ε3
, (A.86)

with
∣

∣

∣

∣

R

ε3

∣

∣

∣

∣

≤ Cε‖v, η, ρ‖0 . (A.87)

We infer

lim
ε→0

1

ε3

∫

Bt

F · (v + ξ3η + (ξ3)2ρ) dV =

∫

ω

LG0 · v
√

a dξ1dξ2 , (A.88)

hence

Ab(u
w, θw, τw;v, η, ρ) =

∫

ω

LG0 · v
√

a dξ1dξ2 , ∀ (v, η, ρ) ∈ V0 . (A.89)

By density, this equation also holds for any (v, η, ρ) ∈ Vb
0 and therefore coincides

with Eq. (76). From the uniqueness of the solution, it follows that (uw, θw, τw) =

(ub, θb, τ b). As this holds for any weakly-converging subsequence (uε, θε, τ ε), we

conclude that the whole sequence converges weakly to (ub, θb, τ b).

Proof of Proposition 4.3. We divide the proof into two steps.

(i) Uniform bound on the solution. We proceed like in the proof of Proposition 4.2,

using Eq. (A.53) and Lemma A.5 to obtain

A(v, η, ρ;v, η, ρ) ≥ γ(ε‖v, η‖2
m + ε3‖v, η, ρ‖2

b + ε5‖v, η, ρ‖2
1) . (A.90)

Recalling that F = G0 + εξB and integrating through the thickness we obtain
∫

Bt

F · (v + ξ3η + (ξ3)2ρ) dV = ε

∫

ω

LG0 · v dS + R , (A.91)

where the remainder R is bounded as

|R| ≤ C(ε2‖v, η‖0 + ε3‖ρ‖0) ≤ C(ε2‖v, η, ρ‖b + ε3‖v, η, ρ‖1) . (A.92)

Since G0 ∈ (Vm)′, from (A.91) we have
∫

Bt

F · (v + ξ3η + (ξ3)2ρ) dV ≤ Cε(‖v, η‖m + ε‖v, η, ρ‖b + ε2‖v, η, ρ‖1) .

(A.93)
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Considering (v, η, ρ) = (uε, θε, τ ε) in the variational formulation and using (A.90)

and (A.93), we infer

‖uε, θε‖m + ε‖uε, θε, τ ε‖b + ε2‖uε, θε, τ ε‖1 ≤ C . (A.94)

Note that this bound was discussed in Remark 4.4.

(ii) Weak convergence. Since (uε, θε) is uniformly bounded in Vm and ε2(uε, θε, τ ε)

is uniformly bounded in H1(ω), we infer that the sequence (uε + t2

12 τ ε, θε) is

also uniformly bounded in Vm. Therefore, we can extract a subsequence (of the

latter) converging weakly to a limit (uw, θw) in Vm. Of course, for this subsequence

ε‖uε, θε, τ ε‖b and ε2‖uε, θε, τ ε‖1 are also bounded. We again use the expansion

(A.59) in the decomposition (A.60) for an arbitrary (v, η, ρ) ∈ V ⊂ Vm, noting

that we now have, due to the weak convergence in Vm,

lim
ε→0

γ

(

uε +
t2

12
τ ε

)

= γ(uw) , weakly in L2(ω) ,

lim
ε→0

ζ

(

uε +
t2

12
τ ε, θε

)

= ζ(uw, θw) , weakly in L2(ω) ,

lim
ε→0

δ(θε) = δ(θw) , weakly in L2(ω) .

Taking into account the uniform boundedness of ε‖uε, θε, τ ε‖b and ε2‖uε, θε, τ ε‖1,

we obtain

lim
ε→0

1

ε
I1 =

∫

ω

LH̃αβλµγαβ(uw)γλµ(v)
√

a dξ1dξ2 ,

lim
ε→0

1

ε
I2 =

∫

ω

4LH̃α3β3ζα(uw, θw)ζβ(v, η)
√

a dξ1dξ2 ,

lim
ε→0

1

ε
I3 =

∫

ω

LH̃3333δ(θw)δ(η)
√

a dξ1dξ2 ,

lim
ε→0

1

ε
I4 =

∫

ω

LH̃αβ33γαβ(uw)δ(η)
√

adξ1dξ2 ,

lim
ε→0

1

ε
I5 =

∫

ω

LH̃αβ33γαβ(v)δ(θw)
√

a dξ1dξ2 .

Hence, for any (v, η, ρ) fixed in V , we obtain

lim
ε→0

1

ε
A(uε, θε, τ ε;v, η, ρ) = Am(uw, θw;v, η) . (A.95)

On the other hand, recalling (A.91) we have

1

ε
A(uε, θε, τ ε;v, η, ρ) =

1

ε

∫

Bt

F · (v + ξ3η + (ξ3)2ρ) dV (A.96)

=

∫

ω

LG0v
√

a dξ1dξ2 +
R

ε
, (A.97)



January 27, 2004 13:29 WSPC/103-M3AS 00317

3D-shell Elements and Their Underlying Mathematical Model 139

where R satisfies (A.92), hence R/ε converges to zero as ε → 0 since (v, η, ρ) is

fixed. We then infer

Am(uw, θw;v, η) =

∫

ω

LG0v
√

a dξ1dξ2 , ∀ (v, η) ∈ V . (A.98)

By density, this holds for any (v, η) ∈ Vm. Since (81) has a unique solution, we have

that (uw, θw) = (um, θm). Finally, as this identity holds for any weakly-converging

subsequence we conclude that the whole sequence (uε + t2

12τ ε, θε) converges weakly

to (um, θm) in Vm.

We now turn to the proof of Proposition 5.1. We first focus on consistency error

estimates which will be used in a stability/consistency argument to establish the

a priori error estimate.

Lemma A.6. We have

inf
(v,η,ρ)∈Vh

{

‖u− v, θ − η, τ − ρ‖1 + sup
(w,ϑ,ς)∈Vh

|(A − Ah)(v, η, ρ;w, ϑ, ς)|
‖w, ϑ, ς‖1

}

≤ Chp‖u, θ, τ‖p+1 (A.99)

and

sup
(w,ϑ,ς)∈Vh

|(F − Fh)|(w, ϑ, ς)|
‖w, ϑ, ς‖1

≤ Chp . (A.100)

Proof. Noting that the integrals in Ah and Fh are computed over the same domain

— namely, Bt — as in A and F , we need to analyze the quantities which are modified

by using the approximate geometry. We have

Ah(v, η, ρ;w, ϑ, ς) = Ã(3D)(V;W)

=

∫

Bt

H ijkleij(V)ekl(W)
√

g dξ1dξ2dξ3 , (A.101)

where the constitutive tensor H ijkl , the strains eij and the Jacobian
√

g are com-

puted using the approximate quantities

gh
i =

∂Φh

∂ξi
, (A.102)

instead of gi. Since the geometry is smooth, we infer from (95) that

‖gh
i − gi‖L∞(ω) ≤ Chp , (A.103)

hence all errors introduced by using the approximate forms of H ijkl , eij and
√

g

are in O(hp), and therefore

|(A − Ah)(v, η, ρ;w, ϑ, ς)| ≤ Chp‖v, η, ρ‖1‖w, ϑ, ς‖1 . (A.104)
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Choosing (v, η, ρ) = (I(u), I(θ), I(τ )) and using the standard continuity in-

equality

‖I(u), I(θ), I(τ )‖1 ≤ C‖u, θ, τ‖1 , (A.105)

the conclusion immediately follows from the interpolation estimate (100). We use

a similar reasoning to prove the estimate (A.100).

Proof of Proposition 5.1. We first prove the coercivity of the bilinear form Ah

over Vh. Since A is V-coercive, (A.104) indeed implies, for h sufficiently small,

Ah(v, η, ρ;v, η, ρ) ≥ C‖v, η, ρ‖2
1 , ∀ (v, η, ρ) ∈ Vh . (A.106)

Likewise, (A.100) implies that Fh is bounded, hence the discrete problem (97) has

a unique solution (uh, θh, τh).

We now use a (classical) stability/consistency argument. Considering an arbi-

trary (v, η, ρ) ∈ Vh, we have

‖uh − v, θh − η, τh − ρ‖2
1

≤ CAh(uh − v, θh − η, τh − ρ;uh − v, θh − η, τ h − ρ)

= C
[

Fh(uh − v, θh − η, τh − ρ

+ (A − Ah)(v, η, ρ;uh − v, θh − η, τh − ρ)

−A(v, η, ρ;uh − v, ηh − η, τh − ρ)
]

= C
[

A(u − v, θ − η, τ − ρ;uh − v, θh − η, τh − ρ)

+ (Fh − F )(uh − v, θh − η, τh − ρ)

+ (A − Ah)(v, η, ρ;uh − v, θh − η, τh − ρ)
]

, (A.107)

recalling (50) and (97). Using the continuity of A as in

A(u − v, θ − η, θ − ρ;uh − v, θh − η, τh − ρ)

≤ C‖u− v, θ − η, τ − ρ‖1‖uh − v, θh − η, τ h − ρ‖1 , (A.108)

we then obtain

‖uh − v, θh − η, τh − ρ‖1

≤ C

{

‖u− v, θ − η, τ − ρ‖1 + sup
(w,ϑ,ς)∈Vh

|(A − Ah)(v, η, ρ;w, ϑ, ς)|
‖w, ϑ, ς‖1

+ sup
(w,ϑ,ς)∈Vh

|(F − Fh)(w, ϑ, ς)|
‖w, ϑ, ς‖1

}

. (A.109)

The final estimate (101) follows by using a triangular inequality and the consistency

error estimates (A.99) and (A.100).
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