3rd Annual EMS Medical Directors' Conference

NDTrauma #EMSMDConf2016

Thank you supporters!

GOLD LEVEL SUPPORTER

Comunity Health Network

#EMSMDConf2016

@INDTrauma

Inhalational Burns Dr. W. Graham Carlos

INDIANA UNIVERSITY

Inhalational Burns

Indiana State Dept. of Health 3rd Annual EMS Medical Directors' Conference W. Graham Carlos, MD August 26, 2016

INDIANA UNIVERSITY

Disclosures

None.

Goals and Objectives

- 1. Understand the epidemiology of smoke inhalation injury
- 2. Apply tenets of thermal injury diagnosis and pathophysiology
- 3. Understand inhalation injury complications
- 4. Analyze the basics of pharmacologic management

Respiration DOI: 10.1159/000443798

Receive Accepte Publishe

Smoking-Related Home Oxygen Burn Injuries: Continued Cause for Alarm

William G. Carlos^a Mary S. Baker^{a, c} Katie A. McPherson^a Gabriel T. Bosslet^{a, c} Rajiv Sood^{b, d} Alexia M. Torke^c

Divisions of ^aPulmonary/Critical Care/Allergy and Occupational Medicine and ^bPlastic Surgery, Department of Medicine, Indiana University School of Medicine, ^cCharles Warren Fairbanks Center for Medical Ethics, Indiana University Health, and ^dRichard M. Fairbanks Burn Center, Eskenazi Health, Indianapolis, Ind., USA

Findings

- Single-center retrospective study at Eskenazi Hospital studied burn injury patients related to home oxygen use²
 - 4 years
 - 55 patients admitted to BURN unit
 - Hospital mortality rate was 14.5%
 - Hospital LOS ~8days
 - Concomitant substance abuse in 27% of patients

Audience Participation Poll

Q:

What percentage of home oxygen users continue to smoke while on oxygen?

Image courtesy of www.fotosearch.com

Audience Participation Poll

Q:

What percentage of home oxygen users continue to smoke while on oxygen?

A:

Ranging from 14-51% (Linford, et al.)

Image courtesy of www.fotosearch.com

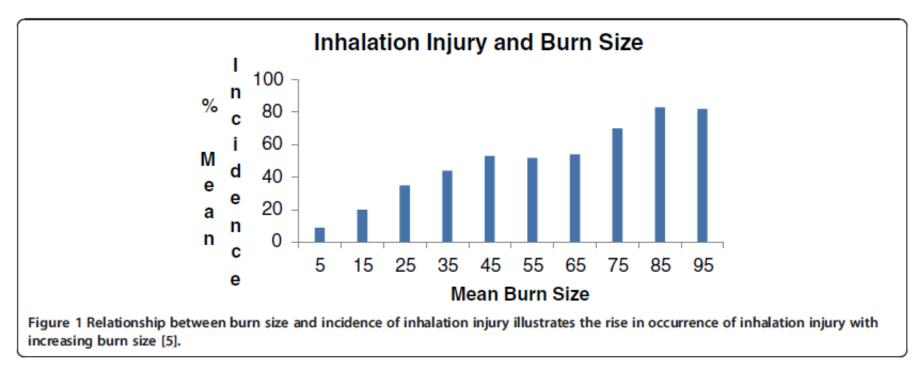
Burn Epidemiology

- Estimated **265,000 deaths/year worldwide** due to burns and inhalation
 - American Burn Association reported 3,275 fire/smoke inhalation-related deaths in 2016 (ABA)
- From 2005 2014, <u>73%</u> of U.S. inpatient burn admissions were related to residential fires.
- 49% of the 790 injured survivors from the WTC attacks developed inhalation injury.¹⁰

Smoke Inhalation in the 3rd World

www.unfoundation.org

"Today, nearly half the world's population - close to 3 billion people – will eat meals cooked over fires that use charcoal, wood, or even animal waste for fuel. A year from now, 1.9 million of those people will be dead. Their death certificates will cite pneumonia, lung cancer or tuberculosis, but the underlying cause is exposure to cooking smoke."



Prognosis and Outcomes

- Systematic review of 13 cohort studies revealed a mortality rate of 13.9% in burn patients but 27.6% specifically with thermal inhalation injury⁴
- Strongest predictors of mortality in burn patients⁴:
 - Increased % Total Body Surface Area affected
 - Presence of smoke inhalation injury
 - Advanced age
 - Other less closely associated predictors include burn depth, comorbid conditions, etc.

Higher %TBSA = Inhalation Injury

DJ Dries and FW Endorf, 2013

Pathophysiology of Inhalation Injury

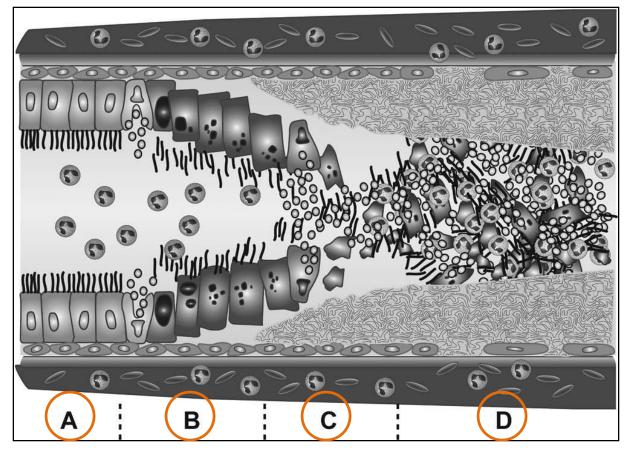
Upper Airway Injury

- Airway temps in a fire reach 1000°F but is dissipated in the airway⁵
- Massive swelling of oropharyngeal structures within hours

Tracheobronchial Tree Injury

- Bronchospasm
- Formation of pseudomembranous airway casts⁸

Lung Parenchyma Damage


- Alveolar destruction and atelectasis due to transvascular fluid flux and loss of surfactant¹⁰
- Activated neutrophils cause direct cell damage via proteases/free radicals¹⁰

Systemic Effects

- Cyanide and Carbon monoxide toxicity
- Diffuse inflammatory response

Airway Changes in Thermal Injury

Miller AC, et al. Crit Care Med 2014

More Than the Heat: Chemical Breakdown of Smoke

Compound	Source	Clinical Effect
Arolein, propenal	Textiles, wall coverings, upholstery, cellulose-based materials	Marked upper respiratory tract necrosis. Rapid death with concentrations >50ppm
Aldehydes	Textiles, wall coverings upholstery, household goods	Corrosive, denatures proteins
Carbon monoxide	Anything combustible	Organ failure, death with concentrations of >80-90%
Hydrogen chloride	Polyester, PVC materials	Tracheobronchitis
Hydrogen cyanide	Polymeric materials (-amide, - amine, -urethanes)	Tissue hypoxia. Death with concentrations > 1ug/mL
Hydrogen sulfide	Rubber, silk, wool	Local irritant

Rehberg S, et al. (2009)

Assessing Severity of Airway

- First, rely on history/setting and physical exam findings
 - Singed facial hair, carbonaceous deposits on skin/mouth most likely to predict need for intubation
- Major challenges previously in stratifying severity

 Table 1. Abbreviated Injury Score (AIS) bronchoscopic

 gradation of inhalation injury

Grade	Findings			
Grade 0 (no	Absence of carbonaceous deposits,			
injury)	erythema, edema, bronchorrhea, or obstruction			
Grade 1 (mild	Minor or patchy areas of erythema,			
injury)	carbonaceous deposits in proximal or distal bronchi (any or combination)			
Grade 2 (moderate	Moderate degree of erythema, carbonaceous			
injury)	deposits, bronchorrhea, with or without compromise of the bronchi (any or combination)			
Grade 3 (severe injury)	Severe inflammation with friability, copious carbonaceous deposits, bronchorrhea, bronchial obstruction (any or combination)			
Grade 4 (massive injury)	Evidence of mucosal sloughing, necrosis, endoluminal obliteration (any or combination)			

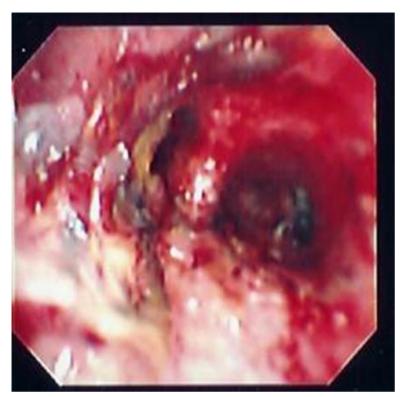
Mosier MJ, et al. (2012)

Look Worse = Do Worse

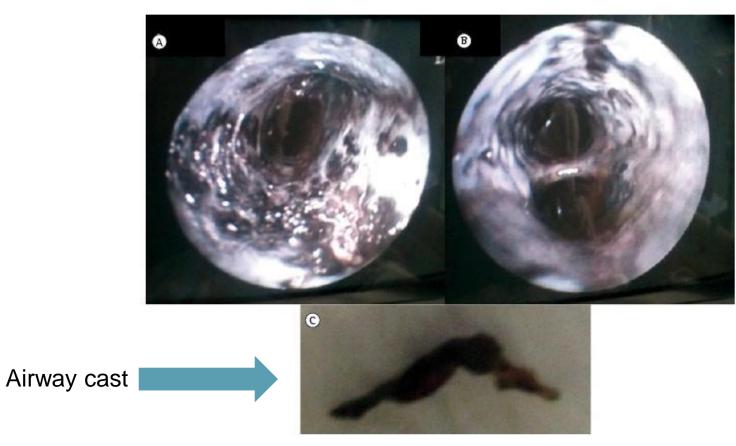
Table 2 Comparison for bronchoscopic grade of inhalation injury

	Group 1	Group 2	Р	
	(Grades 0 and 1)	(Grades 2, 3, 4)	Value	
	25 Patients	35 Patients		
mL/kg/%TBSA	6.6 (±0.7)	6.7 (±0.4)	.88	
Ventilator days	8.6 (±1.4)	12.8 (±2.2)	.11	
Survival	21 (84%)	20 (57%)	.03	
Initial compliance	49.9 (±4.4)	49.7 (±3.1)	.98	
Initial P:F Ratio	371.5 (±32)	329.7 (±29)	.33	

Endorf, et al. (2007)



Bronchoscopy in Smoke Inhalation


Post Inhalation, Day 0 Walker, et al. (2015)

Post Inhalation, Day 4 Walker, et al. (2015)

Cast formation

Walker, et al. (2015)

Inhaled Therapies

Bronchodilators

- Ovine model of <u>tiotropium</u> demonstrated improved P/F ratio and decreased peak pressures 24h after injury¹²
- Beta-agonists also helpful and may decrease inflammatory response
- Epinephrine shown to decrease TNF levels, potentiate IL-10¹²

Mucolytic Agents

- N-acetylcysteine can thin secretions and may have a role in ameliorating effects of free radicals^{5,12}
- Often dosed with heparin, pre-dosed with a beta-agonist
- Anti-inflammatory and Anticoagulation Agents
 - Heparin protocol q2 (alternate w/ NAC/Albuterol)

Nebulized Heparin Review

TABLE 3. Summary of the Pathophysiological and Clinical Effects of Nebulized Heparin Regimens in Human Clinical Studies of Smoke Inhalation–Associated Acute Lung Injury

Reference	Lung Injury Score	Pneumonia Prevalence	Mechanical Ventilation Duration	Unplanned Reintubation	Hospital Length of Stay	Bleeding Risk	Mortality
Desai et al (2)	↓	\downarrow	No change	Ļ			
Rivero et al (48)	\downarrow						\downarrow
Holt et al (50)ª		No change			No change		No change
Miller et al (27)	Ļ						\downarrow
Yip et al (49)						No change	
No randomization or allocation into treatment groups. Patients treated at attending physician discretion with a dosing regimen half the strength of the studies by Rivero et al (48) and Miller et al (27).							

- Human studies demonstrated overall decrease in lung injury scores/mortality with nebulized heparin⁷
- No change in duration of ventilation with heparin protocols, but one study was associated with decreased re-intubation⁷
- No systemic bleeding risks noted⁷

References

1. Asmussen S, et al. Extracorporeal membrane oxygenation in burn and smoke inhalation injury. Burns. 39(3):429-35, 2013 May.

2. Carlos WG, et al. Smoking-Related Home Oxygen Burn Injuries: Continued Cause for Alarm. <u>Respiration.</u> 2016;91(2):151-5.

3. Cha, et al. Isolated smoke inhalation injuries: Acute respiratory dysfunction, clinical outcomes, and short-term evolution of pulmonary functions with the effects of steroids. Burns. <u>Volume 33, Issue 2</u>, March 2007, Pages 200–208.

4. Colohan, Shannon M. Predicting Prognosis in Thermal Burns With Associated Inhalational Injury: A Systematic Review of Prognostic Factors in Adult Burn Victims. *J Burn Care Res* 2010;31:529–539.

5. Dries, David J and Fredrick W. Endorf. Inhalation injury: epidemiology, pathology, treatment strategies. *Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine* 2013, 21:31.

6. Linford, et al. Home Oxygen Therapy and Cigarette Smoking: A Dangerous Practice. Ann Burns Fire Disasters. 2006 Jun 30; 19(2): 99–100.

References

1. Asmussen S, et al. Extracorporeal membrane oxygenation in burn and smoke inhalation injury. Burns. 39(3):429-35, 2013 May.

2. Carlos WG, et al. Smoking-Related Home Oxygen Burn Injuries: Continued Cause for Alarm. <u>Respiration.</u> 2016;91(2):151-5.

3. Cha, et al. Isolated smoke inhalation injuries: Acute respiratory dysfunction, clinical outcomes, and short-term evolution of pulmonary functions with the effects of steroids. Burns. <u>Volume 33, Issue 2</u>, March 2007, Pages 200–208.

4. Colohan, Shannon M. Predicting Prognosis in Thermal Burns With Associated Inhalational Injury: A Systematic Review of Prognostic Factors in Adult Burn Victims. *J Burn Care Res* 2010;31:529–539.

5. Dries, David J and Fredrick W. Endorf. Inhalation injury: epidemiology, pathology, treatment strategies. *Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine* 2013, 21:31.

6. Linford, et al. Home Oxygen Therapy and Cigarette Smoking: A Dangerous Practice. Ann Burns Fire Disasters. 2006 Jun 30; 19(2): 99–100.

References, Cont'd.

7. Miller, AC, et al. Inhaled Anticoagulation Regimens for the Treatment of Smoke Inhalation–Associated Acute Lung Injury: A Systematic Review. *Critical Care Medicine*. 42(2):413-9, 2014 Feb.

8. MIcak, RP. Respiratory management of inhalation injury. *Burns* (2007) 33: 2-13.

9. Nelson J, et al. Early Extracorporeal Life Support as Rescue Therapy for Severe Acute Respiratory Distress Syndrome After Inhalation InjuryJournal of Burn Care & Research. Issue: Volume 30(6), November/December 2009, pp 1035-1038.

10. Rehberg S, et al. Pathophysiology, management and treatment of smoke inhalation injury. *Expert Rev Respir Med.* 2009 June 1; 3(3): 283–297.

11. Robinson NB, et al. Steroid therapy following isolated smoke inhalation injury. J Trauma. 1982 Oct; 22(10): 876-9.

12. Walker, PF, et al. Diagnosis and management of inhalation injury: an updated review. *Critical Care* (2015) 19:351.

Questions?

Contact Us:

Email: <u>indianatrauma@isdh.in.gov</u> Website: <u>indianatrauma.org</u> Follow us on Twitter @INDTrauma

#EMSMDConf2016

DTrauma

