Identifying Linear Functions

Warm Up

Lesson Presentation

Lesson Quiz

Identifying Linear Functions

Warm Up

1. Solve $2 x-3 y=12$ for $y . \quad y=\frac{2}{3} x-4$
2. Graph $y=\frac{1}{5} x+1$ for $D:\{-10,-5,0,5,10\}$.

Objectives

Identify linear functions and linear equations.
Graph linear functions that represent realworld situations and give their domain and range.

Vocabulary

linear function linear equation

Identifying Linear Functions

The graph represents a function because each domain value (x-value) is paired with exactly one range value (y-value). Notice that the graph is a straight line. A function whose graph forms a straight line is called a
 linear function.

4-1 Identifying Linear Functions

Example 1A: Identifying a Linear Function by Its Graph
Identify whether the graph represents a function. Explain. If the graph does represent a function, is the function linear?

Each domain value is paired with exactly one range value. The graph forms a line.
linear function

4-1 Identifying Linear Functions

Example 1B: Identifying a Linear Function by Its Graph
Identify whether the graph represents a function. Explain. If the graph does represent a function, is the function linear?

Each domain value is paired with exactly one range value. The graph is not a line.
not a linear function

4-1 Identifying Linear Functions

Example 1C: Identifying a Linear Function by Its Graph Identify whether the graph represents a function. Explain. If the graph does represent a function, is the function linear?

The only domain value,
-2, is paired with many different range values.
not a function

4-1 Identifying Linear Functions

Check It Out! Example 1a

Identify whether the graph represents a function. Explain. If the graph does represent a function, is the function linear?

> Each domain value is paired with exactly one range value. The graph forms a line.
> linear function

Identifying Linear Functions

Check It Out! Example 1b

Identify whether the graph represents a function. Explain. If the graph does represent a function, is the function linear?

Each domain value is paired with exactly one range value. The graph forms a line.
linear function

Check It Out! Example 1c

Identify whether the graph represents a function. Explain. If the graph does represent a function, is the function linear?

Each domain value is not paired with exactly one range value.
not a function

You can sometimes identify a linear function by looking at a table or a list of ordered pairs. In a linear function, a constant change in x corresponds to a constant change in y.

Identifying Linear Functions

In this table, a constant change of +1 in x corresponds to constant change of -3 in y. These points satisfy a linear function.

The points from this table lie on a line.

Identifying Linear Functions

In this table, a constant change of +1 in x does not correspond to a constant change in y. These points do not satisfy a linear function.

The points from this table do not lie on a line.

4-1 Identifying Linear Functions

Example 2A: Identifying a Linear Function by Using Ordered Pairs

Tell whether the set of ordered pairs satisfies a linear function. Explain.
 $\{(0,-3),(4,0),(8,3),(12,6),(16,9)\}$

Write the ordered pairs in a table.
Look for a pattern.
A constant change of +4 in x corresponds to a constant change of +3 in y.

These points satisfy a linear function.

4-1 Identifying Linear Functions

Example 2B: Identifying a Linear Function by Using Ordered Pairs

Tell whether the set of ordered pairs satisfies a linear function. Explain.

$$
\{(-4,13),(-2,1),(0,-3),(2,1),(4,13)\}
$$

Write the ordered pairs in a table. Look for a pattern.

A constant change of 2 in x corresponds to different changes in y.

These points do not satisfy a linear function.

Identifying Linear Functions

Check It Out! Example 2

Tell whether the set of ordered pairs $\{(3,5)$, $(5,4),(7,3),(9,2),(11,1)\}$ satisfies a linear function. Explain.

Write the ordered pairs in a table. Look for a pattern.

A constant change of +2 in x corresponds to a constant change of -1 in y.

These points satisfy a linear function.

Identifying Linear Functions

Another way to determine whether a function is linear is to look at its equation. A function is linear if it is described by a linear equation. A linear equation is any equation that can be written in the standard form shown below.

Standard Form of a Linear Equation

$A x+B y=C$ where A, B, and C are real numbers and A and B are not both 0

Notice that when a linear equation is written in standard form

- x and y both have exponents of 1 .
- x and y are not multiplied together.
- x and y do not appear in denominators, exponents, or radical signs.

Identifying Linear Functions

Linear	Not Linear		
$3 x+2 y=10$	Standard form	$3 x y+x=1$	x and y are multiplied.
$y-2=3 x$	Can be written as	$x^{3}+y=-1$	x has an exponent
$-y=5 x$	Can be written as	$x+\frac{6}{y}=12$	y is in a denominator.
	$5 x+y=0$		

For any two points, there is exactly one line that contains them both. This means you need only two ordered pairs to graph a line.

Identifying Linear Functions

Example 3A: Graphing Linear Functions

Tell whether the function is linear. If so, graph the function.
$x=2 y+4$
$x=2 y+4$
$x-\frac{-2 y}{-2 y}=\frac{-2 y}{4}$

Write the equation in standard form. Try to get both variables on the same side. Subtract $2 y$ from both sides.
The equation is in standard form

$$
(A=1, B=-2, C=4) .
$$

The equation can be written in standard form, so the function is linear.

Identifying Linear Functions

Example 3A Continued

$$
x=2 y+4
$$

To graph, choose three values of y, and use them to generate ordered pairs. (You only need two, but graphing three points is a good check.)

y	$x=2 y+4$	(x, y)
0	$x=2(0)+4=4$	$(4,0)$
-1	$x=2(-1)+4=2$	$(2,-1)$
-2	$x=2(-2)+4=0$	$(0,-2)$

Plot the points and connect them with a straight line.

Example 3B: Graphing Linear Functions

Tell whether the function is linear. If so, graph the function.
$x y=4$
This is not linear, because x and y are multiplied. It is not in standard form.

Identifying Linear Functions

Check It Out! Example 3a

Tell whether the function is linear. If so, graph the function.

$$
\boldsymbol{y}=5 \boldsymbol{x}-\mathbf{9} \quad \text { Write the equation in standard form. }
$$ Try to get both variables on the same side. Subtract 5x from both sides.

$-5 x+y=-9 \quad$ The equation is in standard form

$$
(A=-5, B=1, C=-9) .
$$

The equation can be written in standard form, so the function is linear.

Identifying Linear Functions

Check It Out! Example 3a Continued

$$
y=5 x-9
$$

To graph, choose three values of x, and use them to generate ordered pairs. (You only need two, but graphing three points is a good check.)

x	$y=5 x-9$	(x, y)
0	$y=5(0)-9=-9$	$(0,-9)$
1	$y=5(1)-9=-4$	$(1,-4)$
2	$y=5(2)-9=1$	$(2,1)$

Plot the points and connect them with a straight line.

Check It Out! Example 3b

Tell whether the function is linear. If so, graph the function.

$y=12$
The equation is in standard form

$$
(A=0, B=1, C=12) .
$$

The equation can be written in standard form, so the function is linear.

Identifying Linear Functions

Check It Out! Example 3b Continued

$y=12$

Check It Out! Example 3c

Tell whether the function is linear. If so, graph the function.

$y=2^{x}$
This is not linear, because x is an exponent.

For linear functions whose graphs are not horizontal, the domain and range are all real numbers. However, in many real-world situations, the domain and range must be restricted. For example, some quantities cannot be negative, such as time.

Sometimes domain and range are restricted even further to a set of points. For example, a quantity such as number of people can only be whole numbers. When this happens, the graph is not actually connected because every point on the line is not a solution. However, you may see these graphs shown connected to indicate that the linear pattern, or trend, continues.

Identifying Linear Functions

Example 4: Application

An approximate relationship between human years and dog years is given by the function y $=7 x$, where x is the number of human years. Graph this function and give its domain and range.
Choose several values of x and make a table of ordered pairs.

x	$f(x)=7 x$
1	$f(1)=7(1)=7$
2	$f(2)=7(2)=14$
3	$f(3)=7(3)=21$

The number of human years must be positive, so the domain is $\{x \geq 0\}$ and the range is $\{y \geq 0\}$.

Identifying Linear Functions

Example 4 Continued

An approximate relationship between human years and dog years is given by the function y $=7 x$, where x is the number of human years. Graph this function and give its domain and range.

Graph the ordered pairs.

x	$f(x)=7 x$
1	$f(1)=7(1)=7$
2	$f(2)=7(2)=14$
3	$f(3)=7(3)=21$

Identifying Linear Functions

Check It Out! Example 4

What if...? At a salon, Sue can rent a station for $\$ 10.00$ per day plus $\$ 3.00$ per manicure. The amount she would pay each day is given by $f(x)$ $=3 x+10$, where x is the number of manicures. Graph this function and give its domain and range.

Identifying Linear Functions

Check It Out! Example 4 Continued
Choose several values of x and make a table of ordered pairs.

x	$f(x)=3 x+10$
0	$f(0)=3(0)+10=10$
1	$f(1)=3(1)+10=13$
2	$f(2)=3(2)+10=16$
3	$f(3)=3(3)+10=19$
4	$f(4)=3(4)+10=22$
5	$f(5)=3(5)+10=25$

The number of manicures must be a whole number, so the domain is $\{0,1,2,3, \ldots\}$. The range is $\{10.00,13.00$, $16.00,19.00, \ldots\}$.

Identifying Linear Functions

Check It Out! Example 4 Continued

Graph the ordered pairs.

Identifying Linear Functions

Lesson Quiz: Part I

Tell whether each set of ordered pairs satisfies a linear function. Explain.

1. $\{(-3,10),(-1,9),(1,7),(3,4),(5,0)\}$

No; a constant change of +2 in x corresponds to different changes in y.
2. $\{(3,4),(5,7),(7,10),(9,13),(11,16)\}$ Yes; a constant change of +2 in x corresponds to a constant change of +3 in y.

Lesson Quiz: Part II

Tell whether each function is linear. If so, graph the function.

3. $y=3-2^{x}$ no
4. $3 y=12$ yes

Identifying Linear Functions

Lesson Quiz: Part III

5. The cost of a can of iced-tea mix at Save More Grocery is $\$ 4.75$. The function $f(x)=4.75 x$ gives the cost of x cans of iced-tea mix. Graph this function and give its domain and range.

Cost of Iced-Tea Mix

$$
\begin{aligned}
& \text { D: }\{0,1,2,3, \ldots\} \\
& \text { R: }\{0,4.75,9.50, \\
& 14.25, \ldots\}
\end{aligned}
$$

