
4.1 Schrödinger Equation in
Spherical Coordinates

i~∂Ψ
∂t = HΨ, where H = p2

2m + V

p→ (~/i)∇ implies i~∂Ψ
∂t = − ~2

2m∇2Ψ + VΨ

normalization:
∫
d3r |Ψ |2= 1

If V is independent of t, ∃ a complete set of

stationary states 3 Ψn(r, t) = ψn(r)e−iEnt/~,
where the spatial wavefunction satisfies the

time-independent Schrödinger equation:

− ~2

2m∇2ψn + V ψn = Enψn.

An arbitrary state can then be written as a sum

over these Ψn(r, t).



Spherical symmetry

If the potential energy and the boundary
conditions are spherically symmetric, it is
useful to transform H into spherical
coordinates and seek solutions to
Schrödinger’s equation which can be written
as the product of a radial portion and an
angular portion: ψ(r, θ, φ) = R(r)Y (θ, φ), or
even R(r)Θ(θ)Φ(φ).

This type of solution is known as ‘separation of
variables’.

Figure 4.1 - Spherical coordinates.



In spherical coordinates, the Laplacian takes

the form:

∇2f =
1

r2

∂

∂r

(
r2∂f
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)
+
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r2 sin θ

∂

∂θ
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1
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(
∂2f
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.

After some manipulation, the equations for the

factors become:

d2Φ

dφ2
= −m2Φ,

sin θ
d

dθ

(
sin θ

dΘ

dθ

)
+ l(l+1) sin2 θΘ = m2Θ, and

d

dr

(
r2dR

dr

)
− 2mr2

~2
[V (r)− E]R = l(l + 1)R,

where m2 and l(l + 1) are constants of

separation.



The solutions to the angular equations with

spherically symmetric boundary conditions

are: Φm = (2π)−1/2eimφ

and Θm
l ∝ Pml (cos θ),

where m is restricted to the range −l, ..., l,
Pml (x) ≡ (1− x2)|m|/2

(
d
dx

)|m|
Pl(x) is the

‘associated Legendre function,’ and Pl(x) is

the lth Legendre polynomial.

The product of Θ and Φ occurs so frequently

in quantum mechanics that it is known as a

spherical harmonic:

Y ml (θ, φ) = ε

[
(2l + 1)

4π

(l− |m|)!

(l + |m|)!

]1/2

eimφPml (cos θ),

where ε = (−1)m for m ≥ 0 and ε = 1 for

m ≤ 0, and the spherical harmonics are

orthonormal:
∫ π

0
dθ sin θ

∫ 2π

0
dφ [Y ml (θ, φ)]∗[Y m

′
l′ (θ, φ)] = δll′δmm′.



While the angular part of the wavefunction is

Y ml (θ, φ) for all spherically symmetric

situations, the radial part varies.

The equation for R can be simplified in form by

substituting u(r) = rR(r):

− ~
2

2m

d2u

dr2
+

[
V +

~2

2m

l(l + 1)

r2

]
u = Eu,

with normalization
∫
dr |u|2 = 1.

This is now referred to as the radial wave

equation, and would be identical to the

one-dimensional Schrödinger equation were it

not for the term ∝ r−2 added to V , which

pushes the particle away from the origin and

is therefore often called ‘the centrifugal

potential.’

Let’s consider some specific examples.



Infinite spherical well

V (r) =

{
0, r < a
∞, r > a.

The wavefunction = 0 for r > a;
for r < a, the differential equation is

d2u

dr2
=

[
l(l + 1)

r2
− k2

]
u, where k ≡

√
2mE

~
.

The ’stationary’ eigenfunctions of this potential
are all bound states, confined to the region
r < a.

The solutions to this equation are Bessel
functions, specifically the spherical Bessel and
spherical Neumann functions of order l:

u(r) = Arjl(kr) +Brnl(kr),

where jl(x) ≡ (−x)l
(

1

x

d

dx

)l sinx

x
,

and nl(x) ≡ −(−x)l
(

1

x

d

dx

)l cosx

x
.



The requirement that the wavefunctions be

‘regular’ at the origin eliminates the Neumann

function from any region including the origin.

The Bessel function is similarly eliminated

from any region including ∞.

Figure 4.2 - First four spherical Bessel functions.



The remaining constants, k (substituting for E)

and A, are satisfied by requiring that the

solution vanish at r = a and normalizing,

respectively: jl(ka) = 0 ⇒ ka = βnl, where βnl
is the nth zero of the lth spherical Bessel

function.

Adding the angular portion, the complete

time-independent wavefunctions are

ψnlm(r, θ, φ) = Anljl(βnlr/a)Y ml (θ, φ),

where Enl =
~2

2ma2
β2
nl.



4.2 Hydrogen Atom

The hydrogen atom consists of an electron

orbiting a proton, bound together by the

Coulomb force. While the correct dynamics

would involve both particles orbiting about a

center of mass position, the mass differential

is such that it is a very good approximation

to treat the proton as fixed at the origin.

The Coulomb potential, V ∝ 1
r , results in a

Schrödinger equation which has both

continuum states (E > 0) and bound states

(E < 0), both of which are well-studied sets

of functions. We shall neglect the former, the

confluent hypergeometric functions, for now,

and concentrate on the latter.



Including constants, the potential is
V = − e2

4πε0
1
r , leading to the following

differential equation for u:

− ~
2

2m

d2u

dr2
+

[
− e2

4πε0

1

r
+
~2

2m

l(l + 1)

r2

]
u = Eu.

This equation can be simplified with two
substitutions: since E < 0, both κ ≡

√
−2mE
~

and ρ ≡ κr are non-negative real variables;
furthermore, ρ is dimensionless.

With these substitutions, u(ρ) satisfies:

d2u

dρ2
=

[
1− ρ0

ρ
+
l(l + 1)

ρ2

]
u; ρ0 ≡

me2

2πε0~2κ
.

Having simplified this equation more or less as
much as possible, let us now look at the
asymptotic behavior:

As ρ→∞, the constant term in brackets
dominates, or d2u

dρ2 → u, which is satisfied by

u = Ae−ρ +Beρ. The second term is irregular
as ρ→∞, so B = 0⇒ u→ Ae−ρ as ρ→∞.



Similarly, as ρ→ 0, the term in brackets ∝ ρ−2

dominates, leading to d2u
dρ2 → l(l+1)

ρ2 u, which is

satisfied by u = Cρl+1 +Dρ−l. The second

term is irregular at ρ→ 0, so

D = 0⇒ u→ Cρl+1 as ρ→ 0.

We might hope that we can now solve the

differential equation by assuming a new

functional form for u which explicitly includes

both kinds of asymptotic behavior: let

u(ρ) ≡ ρl+1e−ρv(ρ). The resulting differential

equation for v is

ρ
d2v

dρ2
+ 2(l + 1− ρ)

dv

dρ
+ [ρ0 − 2(l + 1)]v = 0.

Furthermore, let us assume that v(ρ) can be

expressed as a power series in ρ:

v(ρ) =
∞∑

j=0

ajρ
j.

The problem then becomes one of solving for

{aj}.



If we had expanded in a series of orthonormal

functions, it would now be possible to

substitute that series into the differential

equation and set the coefficients of each term

equal to zero.

Powers of ρ are not orthonormal, however, so

we must use a more difficult argument based

on the equation holding for all values of ρ to

group separately the coefficients for each

power of ρ:

aj+1 =

[
2(j + l + 1)− ρ0

(j + 1)(j + 2l + 2)

]
aj.

Let’s examine the implications of this recursion

relation for the solutions to the Schrödinger

equation.



As j →∞, aj+1 → 2
j+1aj, which is the same

term-to-term ratio as e2ρ. Thus, u→ Aρl+1eρ,

a solution we rejected. The only way to

continue to reject this solution is for the

infinite series implied by the recursion relation

to terminate due to a zero factor: i.e.,

2(jmax + l + 1) = ρ0. If n ≡ jmax + l + 1, then

n is the familiar principal quantum number.

ρ0 = 2n⇒ E = −~
2κ2

2m
= − me4

8π2ε20~2ρ2
0
≡ −13.6 eV

n2
.

Also, κ =
1

an
⇒ a ≡ 4πε0~2

me2
= 0.529× 10−10m.

The truncated series formed in this way is,

apart from normalization, the ‘well-known’

associated Laguerre polynomials:

v(ρ) ∝ L2l+1
n−l−1(2ρ), where

L
p
q−p(x) ≡ (−1)p

(
d
dx

)p
Lq(x) and

Lq(x) ≡ ex
(
d
dx

)q
(e−xxq) is the qth Laguerre

polynomial.



With these definitions, the orthonormalized
solutions to the Schrödinger equation for
hydrogen can now be written as

ψnlm = Anle
−r/na

(
2r

na

)l
L2l+1
n−l−1

(
2r

na

)
Y ml (θ, φ),

where Anl ≡
√√√√
(

2

na

)3 (n− l− 1)!

2n[(n+ l)!]3

and
∫
dr dθ dφ r2 sin θ ψ∗nlmψn′l′m′ = δnn′δll′δmm′.

Figure 4.4 - First few hydrogen radial wave

functions, Rnl(r).



Figure 4.6 - Surfaces of constant |ψ|2 for the

first few hydrogen wave functions.



The eigenvalues of these states are

En = − me4

32π2ε20~2n2, which correspond very

closely to the measured absorption and

emission spectra of hydrogen.

Figure 4.7 - Energy levels and transitions in the

spectrum of hydrogen.



4.3 Angular Momentum

The classical mechanics quantity L = r× p

becomes the quantum mechanical operator

L = r× (~/i)∇. Interestingly, Lx and Ly do

not commute: [Lx, Ly] = i~Lz, .... On the

other hand, [L2,L] = 0. Thus, it is sensible to

look for states which are simultaneously

eigenfunctions of both L2 and one

component of L.

Choosing Lz as that component, let’s define a

‘ladder operator’ such as is used for the

harmonic oscillator problem: L± ≡ Lx ± iLy.

With this definition, [L2, L±] = 0 and

[Lz, L±] = ±~L±.

If f is an eigenfunction of both L2 and Lz, it

can be shown that L±f is also an

eigenfunction of those same operators.

Furthermore, its eigenvalue of L2 is

unchanged, while its eigenvalue of Lz is raised

(lowered) by ~.



But it cannot be that the eigenvalue of Lz
exceeds the magnitude of L. Therefore, there

must exist a ‘top rung’ of the ‘ladder’ ft such

that L+ft = 0. For this state, let the

eigenvalues of Lz and L2 be ~l and λ,

respectively. Since L±L∓ = L2 − L2
z ± ~Lz, it

can be shown that λ = ~2l(l + 1).

Similarly, there must exist a bottom rung fb
such that L−fb = 0. For this state, let the

eigenvalue of Lz be ~l. It can be shown that

λ = ~2l(l− 1), so l = −l.

There must be some number of integer steps

between l and −l, so l must be either an

integer or a half-integer. It is sometimes

called the azimuthal quantum number.

The joint eigenstates of L2 and Lz are

characterized by eigenvalues ~2l(l + 1) and

~m, respectively, where l = 0,1/2,1,3/2, ...

and m = −l,−l + 1, ..., l − 1, l.



The eigenfunctions of L2 and Lz can be

identified by expressing all of the above

operators (Lx, Ly, Lz, L±, L2) in spherical

coordinates. These are just the operators of

which the Y ml (θ, φ) are the eigenfunctions.

Thus, when we solved for the eigenfunctions

of the hydrogen atom, we inadvertently found

those functions which are simultaneously

eigenfunctions of H, L2, and Lz.

Note also that we have discovered that the

azimuthal quantum number, l, in addition to

taking on integer values, may also take on

half-integer values, leading to a discussion of

the property of ‘spin’.



4.4 Spin

In classical systems, two different words are

used to describe two rather similar types of

rigid body rotation: ‘spin’ for rotation about

its center of mass; ‘orbital’ for rotation of its

center of mass about another axis.

The same two words are used in quantum

mechanical systems, but they do not refer to

similar types of motion. Experiments have

shown that the behavior of electrons in

magnetic fields, for example, cannot be

explained without invoking the existence of a

constant of motion in addition to the energy

and momentum. It apparently must be

characterized by an intrinsic angular

momentum S, or spin, in addition to whatever

extrinsic angular momentum L it might carry.



Spin quantities are defined in analogy to

comparable orbital angular momentum

quantities: [Sx, Sy] = i~Sz, ...; S± ≡ Sx ± iSy;

S±|sm〉 = ~
√
s(s+ 1)−m(m± 1) |s (m± 1)〉;

S2|sm〉 = ~2s(s+ 1)|sm〉; Sz|sm〉 = ~m|sm〉,
where s = 0,1/2,1,3/2, ... and

m = −s,−s+ 1, ..., s− 1, s.

This time, however, the eigenfunctions are not

expressible as a function of any spatial

coordinates.

Every elementary particle has a specific and

immutable value of s, which we call its spin:

e.g., π mesons have spin 0; electrons have

spin 1/2; photons have spin 1; deltas have

spin 3/2; and so on.

In contrast, the orbital angular momentum l for

each particle can take on any integer value,

and can change whenever the system is

perturbed.



An electron has spin s = 1/2, leading to two

eigenstates which we can call spin up (↑) and

spin down (↓) referring to the ‘projection of

the spin on the z axis’. We will express the

eigenfunction as a two-element column

matrix, or spinor : χ+ ≡
(

1
0

)
; χ− ≡

(
0
1

)
.

In the same notation, the operators are 2× 2

matrices which we will express in terms of the

Pauli spin matrices:

σx ≡
(

0 1
1 0

)
; σy ≡

(
0 −i
i 0

)
; σz ≡

(
1 0
0 −1

)
.

Therefore, S = (~/2)σ.

The σz matrix is already diagonal, so the

eigenspinors of Sz are simply χ+ and χ− with

eigenvalues +~/2 and −~/2, respectively.

Since these eigenstates span the space, we can

express any general spinor as a sum of these:

χ = aχ+ + bχ−.



If you measure Sz on a particle in this state χ,

you will measure +~/2 with probability |a|2
and −~/2 with probability |b|2.

Suppose now that you want to measure Sx on

this same state. The e.f. of Sx are

χ
(x)
± = 1√

2
(χ+ ± χ−) expressed in the basis of

the e.f. of Sz, with e.v. ±~/2. Thus 〈Sx〉 =

(1/2)|a+ b|2(+~/2) + (1/2)|a− b|2(−~/2).

NB, even if the particle is in a pure ‘up’ state

relative to the z axis (i.e., a, b = 1,0), it can

be in either of two different states when

projected on the x axis. This uncertainty is

an expected result since [Sz, Sx] 6= 0 (i.e.,

incompatible observables).



Experiments on electrons imply that the

electrons possess a magnetic moment

unrelated to any orbital motion, as though

the electron were a macroscopic charged

body ‘spinning’ on an axis through its center

of mass. This magnetic moment is related to

this presumed ‘spin’ through µ = γS, leading

to a Hamiltonian H = −µ ·B = −γB · S.

This term in the Hamiltonian can be used to

explain on a purely quantum mechanical basis

the observation of Larmor precession and the

Stern-Gerlach experiment.



Larmor precession

Consider a particle of spin 1
2 at rest in a

uniform magnetic field: B = B0k̂, so that

H = −γB0Sz. The eigenstates of H are the

same as those of Sz, χ+ and χ− with

eigenvalues ∓γB0~
2 , respectively.

Since H is time independent, the general

solution to the time-independent Schrödinger

equation, i~∂χ∂t = Hχ, can be expressed in

terms of the stationary states:

χ(t) = aχ+e
−iE+t/~ + bχ−e−iE−t/~.



Since χ is normalized, we can substitute
a = cos α2 and b = sin α

2. Calculating 〈S〉:
〈Sx〉 = ~

2 sinα cos(γB0t/2),

〈Sy〉 = −~2 sinα sin(γB0t/2),

and 〈Sz〉 = ~
2 cosα.

These equations describe a spin vector which
has a constant component in the field
direction, but which precesses in the xy-plane
with frequency ω = γB0.

Figure 4.7 - Precession of 〈S〉 in a magnetic field.



Stern-Gerlach experiment

Suppose a beam of spin-1
2 particles moving in

the y direction passes through a region of

inhomogeneous B = (B0 + αz)k̂, where the

constant α denotes a small deviation from

homogeneity.

Figure 4.11 - The Stern-Gerlach configuration.



In addition to the effect of the Lorentz force,

the inhomogeneity gives rise to a spatially

dependent energy which affects the

wavefunctions as follows:

χ(t) = aχ+e
−iE+T/~ + bχ−e−iE−T/~

= (aeiγB0T/2χ+)ei(αγT/2)z

+(be−iγB0T/2χ−)e−i(αγT/2)z,

where T is the amount of time spent in the

inhomogeneous field.

The z-dependent portion of the wavefunction is

equivalent to pz = ±αγT~2 , and leads to the

splitting of the beam into 2s+ 1 individual

beams, demonstrating the quantization of Sz.



Addition of angular momenta

Suppose we have a system with two spin-1/2

particles. Since each can be ‘up’ or ‘down’,

there are four possible combinations:

↑↑, ↑↓, ↓↑, ↓↓.

Define the total angular momentum:

S ≡ S(1) + S(2).

Then Szχ1χ2 = (S(1)
z + S

(2)
z )χ1χ2

= (S(1)
z χ1)χ2 +χ1(S(2)

z χ2) = ~(m1 +m2)χ1χ2.

∴ m↑↑ = 1;m↑↓ = 0;m↓↑ = 0;m↓↓ = −1.

There are two e.s. degenerate in Sz, but not in

S2. Sort them out by applying S− to the ↑↑
state: S−(↑↑) = (S(1)

− ↑) ↑ + ↑ (S(2)
− ↑)

= (~ ↓) ↑ + ↑ (~ ↓) = ~(↓↑ + ↑↓).



Thus, there are three e.s. in one group and one
in another: |sm〉 = |1 1〉 (↑↑);
|1 0〉 [ 1√

2
(↑↓ + ↓↑)]; |1 − 1〉 (↓↓);

|0 0〉 [ 1√
2

(↑↓ − ↓↑)].

The first three e.s. constitute a triplet set, and
the last a singlet. You can show that they are
all e.s. of S2 with e.v. = ~2s(s+ 1), as
anticipated.

Finally, to generalize, if you combine s1 with s2,
the possible resulting total spin of the system
ranges over every value between (s1 + s2) and
|s1 − s2| in integer steps. This relationship is
summarized in the following equation
involving the Clebsch-Gordan coefficients:

|s1m1〉 |s2m2〉 =
∑

s
C
s1s2s
m1m2m |sm〉

and the reciprocal relation, where
m = m1 +m2 and s ranges as noted above.

These relationships hold for both orbital and
spin angular momentum, and mixtures, and
can be used to express products of spherical
harmonics as a sum of spherical harmonics.


