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16. Using Equation (4.11.11), determine all vectors sat-
isfying 〈v, v〉 > 0. Such vectors are called spacelike
vectors.

17. Make a sketch of R
2 and indicate the position of the

null, timelike, and spacelike vectors.

18. Consider the vector space R
n, and let v =

(v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) be vec-
tors in R

n. Show that the mapping 〈, 〉 defined by

〈v,w〉 = k1v1w1 + k2v2w2 + · · · + knvnwn
is a valid inner product on R

n if and only if the con-
stants k1, k2, . . . , kn are all positive.

19. Prove from the inner product axioms that, in any inner
product space V , 〈v, 0〉 = 0 for all v in V .

20. Let V be a real inner product space.

(a) Prove that for all v,w ∈ V ,

||v + w||2 = ||v||2 + 2〈v,w〉 + ||w||2.

[Hint: ||v + w||2 = 〈v + w, v + w〉.]
(b) Two vectors v and w in an inner product space

V are called orthogonal if 〈v,w〉 = 0. Use (a)
to prove the general Pythagorean theorem: If v
and w are orthogonal in an inner product space
V , then

||v + w||2 = ||v||2 + ||w||2.

(c) Prove that for all v,w in V ,

(i) ||v + w||2 − ||v − w||2 = 4〈v,w〉.
(ii) ||v+w||2 + ||v−w||2 = 2(||v||2 + ||w||2).

21. Let V be a complex inner product space. Prove that
for all v,w in V ,

||v + w||2 = ||v||2 + 2Re(〈v,w〉)+ ||v||2,

where Re denotes the real part of a complex number.

4.12 Orthogonal Sets of Vectors and the Gram-Schmidt Process

The discussion in the previous section has shown how an inner product can be used
to define the angle between two nonzero vectors. In particular, if the inner product of
two nonzero vectors is zero, then the angle between those two vectors is π/2 radians,
and therefore it is natural to call such vectors orthogonal (perpendicular). The following
definition extends the idea of orthogonality into an arbitrary inner product space.

DEFINITION 4.12.1

Let V be an inner product space.

1. Two vectors u and v in V are said to be orthogonal if 〈u, v〉 = 0.

2. A set of nonzero vectors {v1, v2, . . . , vk} in V is called an orthogonal set
of vectors if

〈vi , vj 〉 = 0, whenever i �= j.
(That is, every vector is orthogonal to every other vector in the set.)

3. A vector v in V is called a unit vector if ||v|| = 1.

4. An orthogonal set of unit vectors is called an orthonormal set of vectors.
Thus, {v1, v2, . . . , vk} in V is an orthonormal set if and only if

(a) 〈vi , vj 〉 = 0 whenever i �= j .

(b) 〈vi , vi〉 = 1 for all i = 1, 2, . . . , k.
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Remarks

1. The conditions in (4a) and (4b) can be written compactly in terms of the Kronecker
delta symbol as

〈vi , vj 〉 = δij , i, j = 1, 2, . . . , k.

2. Note that the inner products occurring in Definition 4.12.1 will depend upon which
inner product space we are working in.

3. If v is any nonzero vector, then
1

||v|| v is a unit vector, since the properties of an

inner product imply that〈
1

||v|| v,
1

||v|| v
〉
= 1

||v||2 〈v, v〉 = 1

||v||2 ||v||
2 = 1.

Using Remark 3 above, we can take an orthogonal set of vectors {v1, v2, . . . , vk}
and create a new set {u1,u2, . . . ,uk}, where ui = 1

||vi ||vi is a unit vector for each i.

Using the properties of an inner product, it is easy to see that the new set {u1,u2, . . . ,uk}
is an orthonormal set (see Problem 31). The process of replacing the vi by the ui is called
normalization.

Example 4.12.2 Verify that {(−2, 1, 3, 0), (0,−3, 1,−6), (−2,−4, 0, 2)} is an orthogonal set of vectors

in R
4, and use it to construct an orthonormal set of vectors in R

4.

Solution: Let v1 = (−2, 1, 3, 0), v2 = (0,−3, 1,−6), and v3 = (−2,−4, 0, 2).
Then

〈v1, v2〉 = 0, 〈v1, v3〉 = 0, 〈v2, v3〉 = 0,

so that the given set of vectors is an orthogonal set. Dividing each vector in the set by
its norm yields the following orthonormal set:{

1√
14

v1,
1√
46

v2,
1

2
√

6
v3

}
. �

Example 4.12.3 Verify that the functions f1(x) = 1, f2(x) = sin x, and f3(x) = cos x are orthogonal in

C0[−π, π ], and use them to construct an orthonormal set of functions in C0[−π, π].
Solution: In this case, we have

〈f1, f2〉 =
∫ π

−π
sin x dx = 0, 〈f1, f3〉 =

∫ π

−π
cos x dx = 0,

〈f2, f3〉 =
∫ π

−π
sin x cos x dx =

[
1

2
sin2 x

]π
−π
= 0,

so that the functions are indeed orthogonal on [−π, π]. Taking the norm of each function,
we obtain

||f1|| =
√∫ π

−π
1 dx = √2π,

||f2|| =
√∫ π

−π
sin2 x dx =

√∫ π

−π
1

2
(1− cos 2x) dx = √π,

||f3|| =
√∫ π

−π
cos2 x dx =

√∫ π

−π
1

2
(1+ cos 2x) dx = √π.
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Thus an orthonormal set of functions on [−π, π ] is{
1√
2π
,

1√
π

sin x,
1√
π

cos x

}
. �

Orthogonal and Orthonormal Bases
In the analysis of geometric vectors in elementary calculus courses, it is usual to use
the standard basis {i, j,k}. Notice that this set of vectors is in fact an orthonormal set.
The introduction of an inner product in a vector space opens up the possibility of using
similar bases in a general finite-dimensional vector space. The next definition introduces
the appropriate terminology.

DEFINITION 4.12.4

A basis {v1, v2, . . . , vn} for a (finite-dimensional) inner product space is called an
orthogonal basis if

〈vi , vj 〉 = 0 whenever i �= j,
and it is called an orthonormal basis if

〈vi , vj 〉 = δij , i, j = 1, 2, . . . , n.

There are two natural questions at this point: (1) How can we obtain an orthogonal
or orthonormal basis for an inner product space V ? (2) Why is it beneficial to work with
an orthogonal or orthonormal basis of vectors? We address the second question first.

In light of our work in previous sections of this chapter, the importance of our next
theorem should be self-evident.

Theorem 4.12.5 If {v1, v2, . . . , vk} is an orthogonal set of nonzero vectors in an inner product space V ,
then {v1, v2, . . . , vk} is linearly independent.

Proof Assume that

c1v1 + c2v2 + · · · + ckvk = 0. (4.12.1)

We will show that c1 = c2 = · · · = ck = 0. Taking the inner product of each side of
(4.12.1) with vi , we find that

〈c1v1 + c2v2 + · · · + ckvk, vi〉 = 〈0, vi〉 = 0.

Using the inner product properties on the left side, we have

c1〈v1, vi〉 + c2〈v2, vi〉 + · · · + ck〈vk, vi〉 = 0.

Finally, using the fact that for all j �= i, we have 〈vj , vi〉 = 0, we conclude that

ci〈vi , vi〉 = 0.

Since vi �= 0, it follows that ci = 0, and this holds for each i with 1 ≤ i ≤ k.

Example 4.12.6 Let V = M2(R), let W be the subspace of all 2× 2 symmetric matrices, and let

S =
{[

2 −1
−1 0

]
,

[
1 1
1 2

]
,

[
2 2
2 −3

]}
.
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Define an inner product on V via11

〈[
a11 a12
a21 a22

]
,

[
b11 b12
b21 b22

]〉
= a11b11 + a12b12 + a21b21 + a22b22.

Show that S is an orthogonal basis for W .

Solution: According to Example 4.6.18, we already know that dim[W ] = 3. Using
the given inner product, it can be directly shown that S is an orthogonal set, and hence,
Theorem 4.12.5 implies that S is linearly independent. Therefore, by Theorem 4.6.10, S
is a basis for W . �

Let V be a (finite-dimensional) inner product space, and suppose that we have an
orthogonal basis {v1, v2, . . . , vn} for V . As we saw in Section 4.7, any vector v in V
can be written uniquely in the form

v = c1v1 + c2v2 + · · · + cnvn, (4.12.2)

where the unique n-tuple (c1, c2, . . . , cn) consists of the components of v relative to the
given basis. It is easier to determine the components ci in the case of an orthogonal basis
than it is for other bases, because we can simply form the inner product of both sides of
(4.12.2) with vi as follows:

〈v, vi〉 = 〈c1v1 + c2v2 + · · · + cnvn, vi〉
= c1〈v1, vi〉 + c2〈v2, vi〉 + · · · + cn〈vn, vi〉
= ci ||vi ||2,

where the last step follows from the orthogonality properties of the basis {v1, v2, . . . , vn}.
Therefore, we have proved the following theorem.

Theorem 4.12.7 LetV be a (finite-dimensional) inner product space with orthogonal basis {v1, v2, . . . , vn}.
Then any vector v ∈ V may be expressed in terms of the basis as

v =
( 〈v, v1〉
||v1||2

)
v1 +

( 〈v, v2〉
||v2||2

)
v2 + · · · +

( 〈v, vn〉
||vn||2

)
vn.

Theorem 4.12.7 gives a simple formula for writing an arbitrary vector in an inner
product space V as a linear combination of vectors in an orthogonal basis for V . Let us
illustrate with an example.

Example 4.12.8 Let V , W , and S be as in Example 4.12.6. Find the components of the vector

v =
[

0 −1
−1 2

]

relative to S.

Solution: From the formula given in Theorem 4.12.7, we have

v = 2

6

[
2 −1
−1 0

]
+ 2

7

[
1 1
1 2

]
− 10

21

[
2 2
2 −3

]
,

11This defines a valid inner product on V by Problem 4 in Section 4.11.
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so the components of v relative to S are(
1

3
,

2

7
,−10

21

)
. �

If the orthogonal basis {v1, v2, . . . , vn} for V is in fact orthonormal, then since
||vi || = 1 for each i, we immediately deduce the following corollary of Theorem 4.12.7.

Corollary 4.12.9 Let V be a (finite-dimensional) inner product space with an orthonormal basis
{v1, v2, . . . , vn}. Then any vector v ∈ V may be expressed in terms of the basis as

v = 〈v, v1〉v1 + 〈v, v2〉v2 + · · · + 〈v, vn〉vn.

Remark Corollary 4.12.9 tells us that the components of a given vector v relative to
the orthonormal basis {v1, v2, . . . , vn} are precisely the numbers 〈v, vi〉, for 1 ≤ i ≤ n.
Thus, by working with an orthonormal basis for a vector space, we have a simple method
for getting the components of any vector in the vector space.

Example 4.12.10 We can write an arbitrary vector in R
n, v = (a1, a2, . . . , an), in terms of the standard

basis {e1, e2, . . . , en} by noting that 〈v, ei〉 = ai . Thus, v = a1e1 + a2e2 + · · · + anen.
�

Example 4.12.11 We can equip the vector space P1 of all polynomials of degree ≤ 1 with inner product

〈p, q〉 =
∫ 1

−1
p(x)q(x) dx,

thus making P1 into an inner product space. Verify that the vectors p0 = 1/
√

2 and
p1 =

√
1.5x form an orthonormal basis for P1 and use Corollary 4.12.9 to write the

vector q = 1+ x as a linear combination of p0 and p1.

Solution: We have

〈p0, p1〉 =
∫ 1

−1

1√
2
· √1.5x dx = 0,

||p0|| =
√〈p0, p0〉 =

√∫ 1

−1
p2

0 dx =
√∫ 1

−1

1

2
dx = √1 = 1,

||p1|| =
√〈p1, p1〉 =

√∫ 1

−1
p2

1 dx =
√∫ 1

−1

3

2
x2 dx =

√
1

2
x3
∣∣1−1 =

√
1 = 1.

Thus, {p0, p1} is an orthonormal (and hence linearly independent) set of vectors in P1.
Since dim[P1] = 2, Theorem 4.6.10 shows that {p0, p1} is an (orthonormal) basis for
P1.

Finally, we wish to write q = 1+ x as a linear combination of p0 and p1, by using

Corollary 4.12.9. We leave it to the reader to verify that 〈q, p0〉 =
√

2 and 〈q, p1〉 =
√

2
3 .

Thus, we have

1+ x = √2 p0 +
√

2

3
p1 =

√
2 · 1√

2
+
√

2

3
·
(√

3

2
x

)
.

So the component vector of 1+ x relative to {p0, p1} is (
√

2,
√

2
3 )
T . �



“main”
2007/2/16
page 328

�

�

�

�

�

�

�

�

328 CHAPTER 4 Vector Spaces

The Gram-Schmidt Process
Next, we return to address the first question we raised earlier: How can we obtain an
orthogonal or orthonormal basis for an inner product space V ? The idea behind the
process is to begin with any basis for V , say {x1, x2, . . . , xn}, and to successively replace
these vectors with vectors v1, v2, . . . , vn that are orthogonal to one another, and to ensure
that, throughout the process, the span of the vectors remains unchanged. This is known
as the Gram-Schmidt process. To describe it, we shall once more appeal to a look at
geometric vectors.

If v and w are any two linearly independent (noncollinear) geometric vectors, then
the orthogonal projection of w on v is the vector P(w, v) shown in Figure 4.12.1. We
see from the figure that an orthogonal basis for the subspace (plane) of 3-space spanned
by v and w is {v1, v2}, where

v1 = v and v2 = w− P(w, v).

�

z

y

v2

w
w � P(w, v)

P(w, v)
v � v1

x

Figure 4.12.1: Obtaining an
orthogonal basis for a
two-dimensional subspace of R

3.

In order to generalize this result to an arbitrary inner product space, we need to
derive an expression for P(w, v) in terms of the dot product. We see from Figure 4.12.1
that the norm of P(w, v) is

||P(w, v)|| = ||w|| cos θ,

where θ is the angle between v and w. Thus

P(w, v) = ||w|| cos θ
v
||v|| ,

which we can write as

P(w, v) =
( ||w|| ||v||
||v||2 cos θ

)
v. (4.12.3)

Recalling that the dot product of the vectors w and v is defined by

w · v = ||w|| ||v|| cos θ,

it follows from Equation (4.12.3) that

P(w, v) = (w · v)
||v||2 v,

or equivalently, using the notation for the inner product introduced in the previous section,

P(w, v) = 〈w, v〉
||v||2 v.

Now let x1 and x2 be linearly independent vectors in an arbitrary inner product
space V . We show next that the foregoing formula can also be applied in V to obtain an
orthogonal basis {v1, v2} for the subspace of V spanned by {x1, x2}. Let

v1 = x1

and

v2 = x2 − P(x2, v1) = x2 − 〈x2, v1〉
||v1||2 v1. (4.12.4)
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Note from (4.12.4) that v2 can be written as a linear combination of {x1, x2}, and
hence, v2 ∈ span{x1, x2}. Since we also have that x2 ∈ span{v1, v2}, it follows that
span{v1, v2} = span{x1, x2}. Next we claim that v2 is orthogonal to v1. We have

〈v2, v1〉 =
〈
x2 − 〈x2, v1〉

||v1||2 v1, v1
〉 = 〈x2, v1〉 −

〈 〈x2, v1〉
||v1||2 v1, v1

〉
= 〈x2, v1〉 − 〈x2, v1〉

||v1||2 〈v1, v1〉 = 0,

which verifies our claim. We have shown that {v1, v2} is an orthogonal set of vectors
which spans the same subspace of V as x1 and x2.

The calculations just presented can be generalized to prove the following useful
result (see Problem 32).

Lemma 4.12.12 Let {v1, v2, . . . , vk} be an orthogonal set of vectors in an inner product spaceV . If x ∈ V ,
then the vector

x − P(x, v1)− P(x, v2)− · · · − P(x, vk)

is orthogonal to vi for each i.

Now suppose we are given a linearly independent set of vectors {x1, x2, . . . , xm} in
an inner product spaceV . Using Lemma 4.12.12, we can construct an orthogonal basis for
the subspace of V spanned by these vectors. We begin with the vector v1 = x1 as above,
and we define vi by subtracting off appropriate projections of xi on v1, v2, . . . , vi−1.
The resulting procedure is called the Gram-Schmidt orthogonalization procedure.
The formal statement of the result is as follows.

Theorem 4.12.13 (Gram-Schmidt Process)

Let {x1, x2, . . . , xm} be a linearly independent set of vectors in an inner product spaceV .
Then an orthogonal basis for the subspace of V spanned by these vectors is {v1, v2, . . . ,

vm}, where

v1 = x1

v2 = x2 − 〈x2, v1〉
||v1||2 v1

v3 = x3 − 〈x3, v1〉
||v1||2 v1 − 〈x3, v2〉

||v2||2 v2

...

vi = xi −
i−1∑
k=1

〈xi , vk〉
||vk||2 vk

...

vm = xm −
m−1∑
k=1

〈xm, vk〉
||vk||2 vk.

Proof Lemma 4.12.12 shows that {v1, v2, . . . , vm} is an orthogonal set of vectors. Thus,
both {v1, v2, . . . , vm} and {x1, x2, . . . , xm} are linearly independent sets, and hence

span{v1, v2, . . . , vm} and span{x1, x2, . . . , xm}



“main”
2007/2/16
page 330

�

�

�

�

�

�

�

�

330 CHAPTER 4 Vector Spaces

are m-dimensional subspaces of V . (Why?) Moreover, from the formulas given in The-
orem 4.12.13, we see that each xi ∈ span{v1, v2, . . . , vm}, and so span{x1, x2, . . . , xm}
is a subset of span{v1, v2, . . . , vm}. Thus, by Corollary 4.6.14,

span{v1, v2, . . . , vm} = span{x1, x2, . . . , xm}.
We conclude that {v1, v2, . . . , vm} is a basis for the subspace of V spanned by x1, x2,

. . . , xm.

Example 4.12.14 Obtain an orthogonal basis for the subspace of R
4 spanned by

x1 = (1, 0, 1, 0), x2 = (1, 1, 1, 1), x3 = (−1, 2, 0, 1).

Solution: Following the Gram-Schmidt process, we set v1 = x1 = (1, 0, 1, 0). Next,
we have

v2 = x2 − 〈x2, v1〉
||v1||2 v1 = (1, 1, 1, 1)− 2

2
(1, 0, 1, 0) = (0, 1, 0, 1)

and

v3 = x3 − 〈x3, v1〉
||v1||2 v1 − 〈x3, v2〉

||v2||2 v2

= (−1, 2, 0, 1)+ 1

2
(1, 0, 1, 0)− 3

2
(0, 1, 0, 1)

=
(
−1

2
,

1

2
,

1

2
,−1

2

)
.

The orthogonal basis so obtained is{
(1, 0, 1, 0), (0, 1, 0, 1),

(
−1

2
,

1

2
,

1

2
,−1

2

)}
. �

Of course, once an orthogonal basis {v1, v2, . . . , vm} is obtained for a subspace

of V , we can normalize this basis by setting ui = vi
||vi || to obtain an orthonormal

basis {u1,u2, . . . , um}. For instance, an orthonormal basis for the subspace of R
4 in the

preceding example is{(
1√
2
, 0,

1√
2
, 0

)
,

(
0,

1√
2
, 0,

1√
2

)
,

(
−1

2
,

1

2
,

1

2
,−1

2

)}
.

Example 4.12.15 Determine an orthogonal basis for the subspace of C0[−1, 1] spanned by the functions

f1(x) = x, f2(x) = x3, f3(x) = x5, using the same inner product introduced in the
previous section.

Solution: In this case, we let {g1, g2, g3} denote the orthogonal basis, and we apply
the Gram-Schmidt process. Thus, g1(x) = x, and

g2(x) = f2(x)− 〈f2, g1〉
||g1||2 g1(x). (4.12.5)
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We have

〈f2, g1〉 =
∫ 1

−1
f2(x)g1(x) dx =

∫ 1

−1
x4 dx = 2

5 and

||g1||2 = 〈g1, g1〉 =
∫ 1

−1
x2 dx = 2

3 .

Substituting into Equation (4.12.5) yields

g2(x) = x3 − 3
5x = 1

5x(5x
2 − 3).

We now compute g3(x). According to the Gram-Schmidt process,

g3(x) = f3(x)− 〈f3, g1〉
||g1||2 g1(x)− 〈f3, g2〉

||g2||2 g2(x). (4.12.6)

We first evaluate the required inner products:

〈f3, g1〉 =
∫ 1

−1
f3(x)g1(x) dx =

∫ 1

−1
x6 dx = 2

7 ,

〈f3, g2〉 =
∫ 1

−1
f3(x)g2(x) dx = 1

5

∫ 1

−1
x6(5x2 − 3) dx = 1

5

(
10
9 − 6

7

)
= 16

315 ,

||g2||2 =
∫ 1

−1
[g2(x)]2 dx = 1

25

∫ 1
−1 x

2(5x2 − 3)2 dx

= 1
25

∫ 1
−1(25x6 − 30x4 + 9x2) dx = 8

175 .

Substituting into Equation (4.12.6) yields

g3(x) = x5 − 3
7x − 2

9x(5x
2 − 3) = 1

63 (63x5 − 70x3 + 15x).

Thus, an orthogonal basis for the subspace of C0[−1, 1] spanned by f1, f2, and f3 is{
x, 1

5x(5x
2 − 3), 1

63x(63x4 − 70x2 + 15)
}
. �

Exercises for 4.12

Key Terms
Orthogonal vectors, Orthogonal set, Unit vector, Orthonor-
mal vectors, Orthonormal set, Normalization, Orthogonal
basis, Orthonormal basis, Gram-Schmidt process, Orthog-
onal projection.

Skills

• Be able to determine whether a given set of vectors are
orthogonal and/or orthonormal.

• Be able to determine whether a given set of vectors
forms an orthogonal and/or orthonormal basis for an
inner product space.

• Be able to replace an orthogonal set with an orthonor-
mal set via normalization.

• Be able to readily compute the components of a vector
v in an inner product space V relative to an orthogonal
(or orthonormal) basis for V .

• Be able to compute the orthogonal projection of one
vector w along another vector v: P(w, v).

• Be able to carry out the Gram-Schmidt process to re-
place a basis forV with an orthogonal (or orthonormal)
basis for V .
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True-False Review
For Questions 1–7, decide if the given statement is true or
false, and give a brief justification for your answer. If true,
you can quote a relevant definition or theorem from the text.
If false, provide an example, illustration, or brief explanation
of why the statement is false.

1. Every orthonormal basis for an inner product space V
is also an orthogonal basis for V .

2. Every linearly independent set of vectors in an inner
product space V is orthogonal.

3. With the inner product 〈f, g〉 = ∫ π0 f (t)g(t) dt , the
functions f (x) = cos x and g(x) = sin x are an or-
thogonal basis for span{cos x, sin x}.

4. The Gram-Schmidt process applied to the vectors
{x1, x2, x3} yields the same basis as the Gram-Schmidt
process applied to the vectors {x3, x2, x1}.

5. In expressing the vector v as a linear combination of
the orthogonal basis {v1, v2, . . . , vn} for an inner prod-
uct space V , the coefficient of vi is

ci = 〈v, vi〉
||vi ||2 .

6. If u and v are orthogonal vectors and w is any vector,
then

P(P(w, v),u) = 0.

7. If w1,w2, and v are vectors in an inner product space
V , then

P(w1 + w2, v) = P(w1, v)+ P(w2, v).

Problems
For Problems 1–4, determine whether the given set of vec-
tors is an orthogonal set in R

n. For those that are, determine
a corresponding orthonormal set of vectors.

1. {(2,−1, 1), (1, 1,−1), (0, 1, 1)}.
2. {(1, 3,−1, 1), (−1, 1, 1,−1), (1, 0, 2, 1)}
3. {(1, 2,−1, 0), (1, 0, 1, 2), (−1, 1, 1, 0), (1,−1,−1, 0)}.
4. {(1, 2,−1, 0, 3), (1, 1, 0, 2,−1), (4, 2,−4,−5,−4)}
5. Let v1 = (1, 2, 3), v2 = (1, 1,−1). Determine all

nonzero vectors w such that {v1, v2,w} is an orthogo-
nal set. Hence obtain an orthonormal set of vectors in
R

3.

For Problems 6–7, show that the given set of vectors is an
orthogonal set in C

n, and hence obtain an orthonormal set of
vectors in C

n in each case.

6. {(1− i, 3+ 2i), (2+ 3i, 1− i)}.
7. {(1− i, 1+ i, i), (0, i, 1− i), (−3+ 3i, 2+ 2i, 2i)}.
8. Consider the vectors v = (1−i, 1+2i),w = (2+i, z)

in C
2. Determine the complex number z such that

{v,w} is an orthogonal set of vectors, and hence obtain
an orthonormal set of vectors in C

2.

For Problems 9–10, show that the given functions in
C0[−1, 1] are orthogonal, and use them to construct an or-
thonormal set of functions in C0[−1, 1].

9. f1(x) = 1, f2(x) = sin πx, f3(x) = cosπx.

10. f1(x) = 1, f2(x) = x, f3(x) = 1
2 (3x

2 − 1). These
are the Legendre polynomials that arise as solutions
of the Legendre differential equation

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0,

when n = 0, 1, 2, respectively.

For Problems 11–12, show that the given functions are or-
thonormal on [−1, 1].

11. f1(x) = sin πx, f2(x) = sin 2πx, f3(x) = sin 3πx.
[Hint: The trigonometric identity

sin a sin b = 1
2 [cos(a + b)− cos(a − b)]

will be useful.]

12. f1(x) = cosπx, f2(x) = cos 2πx, f3(x) =
cos 3πx.

13. Let

A1 =
[

1 1
−1 2

]
, A2 =

[−1 1
2 1

]
, and

A3 =
[−1 −3

0 2

]
.

Use the inner product

〈A,B〉 = a11b11 + a12b12 + a21b21 + a22b22

to find all matrices

A4 =
[
a b

c d

]

such that {A1, A2, A3, A4} is an orthogonal set of ma-
trices in M2(R).
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For Problems 14–19, use the Gram-Schmidt process to deter-
mine an orthonormal basis for the subspace of R

n spanned
by the given set of vectors.

14. {(1,−1,−1), (2, 1,−1)}.
15. {(2, 1,−2), (1, 3,−1)}.
16. {(−1, 1, 1, 1), (1, 2, 1, 2)}.
17. {(1, 0,−1, 0), (1, 1,−1, 0), (−1, 1, 0, 1)}
18. {(1, 2, 0, 1), (2, 1, 1, 0), (1, 0, 2, 1)}.
19. {(1, 1,−1, 0), (−1, 0, 1, 1), (2,−1, 2, 1)}.
20. If

A =

 3 1 4

1 −2 1
1 5 2


 ,

determine an orthogonal basis for rowspace(A).

For Problems 21–22, determine an orthonormal basis for the
subspace of C

3 spanned by the given set of vectors. Make
sure that you use the appropriate inner product in C

3.

21. {(1− i, 0, i), (1, 1+ i, 0)}.
22. {(1+ i, i, 2− i), (1+ 2i, 1− i, i)}.

For Problems 23–25, determine an orthogonal basis for the
subspace of C0[a, b] spanned by the given vectors, for the
given interval [a, b].

23. f1(x) = 1, f2(x) = x, f3(x) = x2, a = 0, b = 1.

24. f1(x) = 1, f2(x) = x2, f3(x) = x4, a = −1, b = 1.

25. f1(x) = 1, f2(x) = sin x, f3(x) = cos x,
a = −π/2, b = π/2.

On M2(R) define the inner product 〈A,B〉 by

〈A,B〉 = 5a11b11 + 2a12b12 + 3a21b21 + 5a22b22

for all matrices A = [aij ] and B = [bij ]. For Problems 26–
27, use this inner product in the Gram-Schmidt procedure
to determine an orthogonal basis for the subspace ofM2(R)

spanned by the given matrices.

26. A1 =
[

1 −1
2 1

]
, A2 =

[
2 −3
4 1

]
.

27. A1 =
[

0 1
1 0

]
, A2 =

[
0 1
1 1

]
, A3 =

[
1 1
1 0

]
.

Also identify the subspace of M2(R) spanned by
{A1, A2, A3}.

On Pn, define the inner product 〈p1, p2〉 by

〈p1, p2〉 = a0b0 + a1b1 + · · · + anbn
for all polynomials

p1(x) = a0 + a1x + · · · + anxn,
p2(x) = b0 + b1x + · · · + bnxn.

For Problems 28–29, use this inner product to determine an
orthogonal basis for the subspace ofPn spanned by the given
polynomials.

28. p1(x) = 1− 2x + 2x2, p2(x) = 2− x − x2.

29. p1(x) = 1+x2, p2(x) = 2−x+x3, p3(x) = 2x2−x.

30. Let {u1,u2, v} be linearly independent vectors in an
inner product space V , and suppose that u1 and u2 are
orthogonal. Define the vector u3 in V by

u3 = v + λu1 + µu2,

where λ,µ are scalars. Derive the values of λ and µ
such that {u1,u2,u3} is an orthogonal basis for the
subspace of V spanned by {u1,u2, v}.

31. Prove that if {v1, v2, . . . , vk} is an orthogonal set of

vectors in an inner product spaceV and if ui = 1

||vi ||vi
for each i, then {u1,u2, . . . ,uk} form an orthonormal
set of vectors.

32. Prove Lemma 4.12.12.

Let V be an inner product space, and letW be a subspace of
V . Set

W⊥ = {v ∈ V : 〈v,w〉 = 0 for all w ∈ W }.
The set W⊥ is called the orthogonal complement of W
in V . Problems 33–38 explore this concept in some detail.
Deeper applications can be found in Project 1 at the end of
this chapter.

33. Prove that W⊥ is a subspace of V .

34. Let V = R
3 and let

W = span{(1, 1,−1)}.
Find W⊥.

35. Let V = R
4 and let

W = span{(0, 1,−1, 3), (1, 0, 0, 3)}.
Find W⊥.
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36. Let V = M2(R) and let W be the subspace of 2 × 2
symmetric matrices. Compute W⊥.

37. Prove that W ∩ W⊥ = 0. (That is, W and W⊥ have
no nonzero elements in common.)

38. Prove that if W1 is a subset of W2, then (W2)
⊥ is a

subset of (W1)
⊥.

39. The subject of Fourier series is concerned with the rep-
resentation of a 2π-periodic function f as the follow-
ing infinite linear combination of the set of functions
{1, sin nx, cos nx}∞n=1 :

f (x) = 1
2a0 +∑∞n=1(an cos nx + bn sin nx).

(4.12.7)

In this problem, we investigate the possibility of per-
forming such a representation.

(a) Use appropriate trigonometric identities, or some
form of technology, to verify that the set of func-
tions

{1, sin nx, cos nx}∞n=1

is orthogonal on the interval [−π, π ].
(b) By multiplying (4.12.7) by cosmx and integrat-

ing over the interval [−π, π ], show that

a0 = 1

π

∫ π

−π
f (x) dx

and

am = 1

π

∫ π

−π
f (x) cosmx dx.

[Hint: You may assume that interchange of the
infinite summation with the integral is permissi-
ble.]

(c) Use a similar procedure to show that

bm = 1

π

∫ π

−π
f (x) sinmx dx.

It can be shown that if f is in C1(−π, π), then
Equation (4.12.7) holds for each x ∈ (−π, π).
The series appearing on the right-hand side of
(4.12.7) is called the Fourier series of f , and the
constants in the summation are called the Fourier
coefficients for f .

(d) Show that the Fourier coefficients for the function
f (x) = x,−π < x ≤ π, f (x + 2π) = f (x),
are

an = 0, n = 0, 1, 2, . . . ,

bn = −2

n
cos nπ, n = 1, 2, . . . ,

and thereby determine the Fourier series of f .

(e) � Using some form of technology, sketch the
approximations to f (x) = x on the interval
(−π, π) obtained by considering the first three
terms, first five terms, and first ten terms in the
Fourier series for f . What do you conclude?

4.13 Chapter Review

In this chapter we have derived some basic results in linear algebra regarding vector
spaces. These results form the framework for much of linear mathematics. Following
are listed some of the chapter highlights.

The Definition of a Vector Space
A vector space consists of four different components:

1. A set of vectors V .

2. A set of scalars F (either the set of real numbers R, or the set of complex numbers
C).

3. A rule, +, for adding vectors in V .

4. A rule, · , for multiplying vectors in V by scalars in F .

Then (V ,+, ·) is a vector space over F if and only if axioms A1–A10 of Definition 4.2.1
are satisfied. If F is the set of all real numbers, then (V ,+, ·) is called a real vector
space, whereas if F is the set of all complex numbers, then (V ,+, ·) is called a complex
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vector space. Since it is usually quite clear what the addition and scalar multiplication
operations are, we usually specify a vector space by giving only the set of vectors V .
The major vector spaces we have dealt with are the following:

R
n the (real) vector space of all ordered n-tuples of real numbers.

C
n the (complex) vector space of all ordered n-tuples of complex numbers.

Mn(R) the (real) vector space of all n× n matrices with real elements.
Ck(I) the vector space of all real-valued functions that are continuous and have

(at least) k continuous derivatives on I .
Pn the vector space of all polynomials of degree ≤ n with real coefficients.

Subspaces
Usually the vector space V that underlies a given problem is known. It is often one that
appears in the list above. However, the solution of a given problem in general involves
only a subset of vectors from this vector space. The question that then arises is whether
this subset of vectors is itself a vector space under the same operations of addition and
scalar multiplication as in V . In order to answer this question, Theorem 4.3.2 tells us
that a nonempty subset of a vector space V is a subspace of V if and only if the subset
is closed under addition and closed under scalar multiplication.

Spanning Sets
A set of vectors {v1, v2, . . . , vk} in a vector space V is said to span V if every vector in
V can be written as a linear combination of v1, v2, . . . , vk—that is, if for every v ∈ V ,
there exist scalars c1, c2, . . . , ck such that

v = c1v1 + c2v2 + · · · + ckvk.
Given a set of vectors {v1, v2, . . . , vk} in a vector space V , we can form the set of all

vectors that can be written as a linear combination of v1, v2, . . . , vk . This collection of
vectors is a subspace of V called the subspace spanned by {v1, v2, . . . , vk}, and denoted
span{v1, v2, . . . , vk}. Thus,

span{v1, v2, . . . , vk} = {v ∈ V : v = c1v1 + c2v2 + · · · + ckvk}.

Linear Dependence and Linear Independence
Let {v1, v2, . . . , vk} be a set of vectors in a vector space V , and consider the vector
equation

c1v1 + c2v2 + · · · + ckvk = 0. (4.13.1)

Clearly this equation will hold if c1 = c2 = · · · = ck = 0. The question of interest is
whether there are nonzero values of some or all of the scalars c1, c2, . . . , ck such that
(4.13.1) holds. This leads to the following two ideas:

Linear dependence: There exist scalars c1, c2, . . . , ck , not all zero, such that
(4.13.1) holds.

Linear independence: The only values of the scalars c1, c2, . . . , ck such that (4.13.1)
holds are c1 = c2 = · · · = ck = 0.

To determine whether a set of vectors is linearly dependent or linearly independent we
usually have to use (4.13.1). However, if the vectors are from R

n, then we can use
Corollary 4.5.15, whereas for vectors in Ck−1(I ) the Wronskian can be useful.
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Bases and Dimension

A linearly independent set of vectors that spans a vector space V is called a basis for V .
If {v1, v2, . . . , vk} is a basis for V , then any vector in V can be written uniquely as

v = c1v1 + c2v2 + · · · + ckvk,

for appropriate values of the scalars c1, c2, . . . , ck .

1. All bases in a finite-dimensional vector space V contain the same number of
vectors, and this number is called the dimension of V , denoted dim[V ].

2. We can view the dimension of a finite-dimensional vector space V in two different
ways. First, it gives the minimum number of vectors that span V . Alternatively, we
can regard dim[V ] as determining the maximum number of vectors that a linearly
independent set in V can contain.

3. If dim[V ] = n, then any linearly independent set of n vectors in V is a basis for
V . Alternatively, any set of n vectors that spans V is a basis for V .

Inner Product Spaces

An inner product is a mapping that associates, with any two vectors u and v in a vector
space V, a scalar that we denote by 〈u, v〉. This mapping must satisfy the properties
given in Definition 4.11.10. The main reason for introducing the idea of an inner product
is that it enables us to extend the familiar idea of orthogonality and length of vectors in
R

3 to a general vector space. Thus u and v are said to be orthogonal in an inner product
space if and only if

〈u, v〉 = 0.

The Gram-Schmidt Orthonormalization Process

The Gram-Schmidt procedure is a process that takes a linearly independent set of vec-
tors {x1, x2, . . . , xm} in an inner product space V and returns an orthogonal basis
{v1, v2, . . . , vm} for span{x1, x2, . . . , xm}.

Additional Problems

For Problems 1–2, let r and s denote scalars and let v and w
denote vectors in R

5.

1. Prove that (r + s)v = rv + sv.

2. Prove that r(v + w) = rv + rw.

For Problems 3–13, determine whether the given set (to-
gether with the usual operations on that set) forms a vector
space over R. In all cases, justify your answer carefully.

3. The set of polynomials of degree 5 or less whose co-
efficients are even integers.

4. The set of all polynomials of degree 5 or less whose
coefficients of x2 and x3 are zero.

5. The set of solutions to the linear system

− 2x2 + 5x3 = 7,
4x1 − 6x2 + 3x3 = 0.
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6. The set of solutions to the linear system

4x1 − 7x2 + 2x3 = 0,
5x1 − 2x2 + 9x3 = 0.

7. The set of 2× 2 real matrices whose entries are either
all zero or all nonzero.

8. The set of 2 × 2 real matrices that commute with the
matrix [

1 2
0 2

]
.

9. The set of all functions f : [0, 1] → [0, 1] such that
f (0) = f ( 1

4 ) = f ( 0
2 ) = f ( 3

4 ) = f (1) = 0.

10. The set of all functions f : [0, 1] → [0, 1] such that
f (x) ≤ x for all x in [0, 1].

11. The set of n×nmatricesA such thatA2 is symmetric.

12. The set of all points (x, y) in R
2 that are equidistant

from (−1, 2) and (1,−2).

13. The set of all points (x, y, z) in R
3 that are a distance

5 from the point (0,−3, 4).

14. Let

V = {(a1, a2) : a1, a2 ∈ R, a2 > 0}.
Define addition and scalar multiplication on V as
follows:

(a1, a2)+ (b1, b2) = (a1 + b1, a2b2),

k(a1, a2) = (ka1, a
k
2), k ∈ R.

Explicitly verify that V is a vector space over R.

15. Show that

W = {(a, 2a) : a ∈ R}
is a subspace of the vector space V given in the pre-
ceding problem.

16. Show that {(1, 2), (3, 8)} is a linearly dependent set in
the vector space V in Problem 14.

17. Show that {(1, 4), (2, 1)} is a basis for the vector space
V in Problem 14.

18. What is the dimension of the subspace of P2 given by

W = span{2+ x2, 4− 2x + 3x2, 1+ x}?

For Problems 19–24, decide (with justification) whether W
is a subspace of V .

19. V = R
2, W = {(x, y) : x2 − y = 0}.

20. V = R
2, W = {(x, x3) : x ∈ R}.

21. V = M2(R), W = {2× 2 orthogonal matrices}. [An
n × n matrix A is orthogonal if it is invertible and
A−1 = AT .]

22. V = C[a, b], W = {f ∈ V : f (a) = 2f (b)}.
23. V = C[a, b], W = {f ∈ V : ∫ b

a
f (x) dx = 0}.

24. V = M3×2(R),

W =



 a bc d
e f


 : a+b= c+f and a−c = e−f −d


.

For Problems 25–32, decide (with justification) whether or
not the given set S of vectors (a) spans V , and (b) is linearly
independent.

25. V = R
3, S = {(5,−1, 2), (7, 1, 1)}.

26. V = R
3, S = {(6,−3, 2), (1, 1, 1), (1,−8,−1)}.

27. V =R
4, S = {(6,−3,2,0),(1,1,1,0),(1,−8,−1,0)}.

28. V = R
3, S = {(10,−6, 5), (3,−3, 2), (0, 0, 0),

(6, 4,−1), (7, 7,−2)}.
29. V = P3, S = {2x − x3, 1+ x + x2, 3, x}.
30. V =P4, S = {x4+x2+1,x2+x+1,x+1,x4+2x+3}.
31. V = M2×3(R),

S =
{[−1 0 0

0 1 1

]
,

[
3 2 1
1 2 3

]
,

[−1 −2 −3
3 2 1

]
,[−11 −6 −5

1 −2 −5

]}
.

32. V = M2(R),

S =
{[

1 2
2 1

]
,

[
3 4
4 3

]
,

[−2 −1
−1 −2

]
,[−3 0

0 3

]
,

[
2 0
0 0

]}
.

33. Prove that if {v1, v2, v3} is linearly independent and
v4 is not in span{v1, v2, v3}, then {v1, v2, v3, v4} is
linearly independent.
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34. Let A be anm× nmatrix, let v ∈ colspace(A) and let
w ∈ nullspace(AT ). Prove that v and w are orthogonal.

35. Let W denote the set of all 3 × 3 skew-symmetric
matrices.

(a) Show that W is a subspace of M3(R).

(b) Find a basis and the dimension of W .

(c) Extend the basis you constructed in part (b) to a
basis for M3(R).

36. LetW denote the set of all 3× 3 matrices whose rows
and columns add up to zero.

(a) Show that W is a subspace of M3(R).

(b) Find a basis and the dimension of W .

(c) Extend the basis you constructed in part (b) to a
basis for M3(R).

37. Let (V ,+V , ·V ) and (W,+W, ·W) be vector spaces
and define

V ⊕W = {(v,w) : v ∈ V and w ∈ W }.
Prove that

(a) V ⊕W is a vector space, under componentwise
operations.

(b) Via the identification v �→ (v, 0), V is a subspace
of V ⊕W , and likewise for W .

(c) If dim[V ] = n and dim[W ] = m, then dim[V ⊕
W ] = m+ n. [Hint: Write a basis for V ⊕W in
terms of bases for V and W .]

38. Show that a basis forP3 need not contain a polynomial
of each degree 0, 1, 2, 3.

39. Prove that ifA is a matrix whose nullspace and column
space are the same, then Amust have an even number
of columns.

40. Let

B =



b1
b2
...

bn


 and C = [ c1 c2 . . . cn

]
.

Prove that if all entries b1, b2, . . . , bn and
c1, c2, . . . , cn are nonzero, then the n × n matrix
A = BC has nullity n− 1.

For Problems 41–44, find a basis and the dimension for the
row space, column space, and null space of the given matrix
A.

41. A =
[−3 −6
−6 −12

]
.

42. A =

−1 6 2 0

3 3 1 5
7 21 7 15


.

43. A =



−4 0 3

0 10 13
6 5 2
−2 5 10


.

44. A =




3 5 5 2 0
1 0 2 2 1
1 1 1 −2 −2
−2 0 −4 −2 −2


.

For Problems 45–46, find an orthonormal basis for the row
space, column space, and null space of the given matrix A.

45. A =




1 2 6
2 1 6
0 1 2
1 0 2


 .

46. A =




1 3 5
−1 −3 1

0 2 3
1 5 2
1 5 8


.

For Problems 47–50, find an orthogonal basis for the span
of the set S, where S is given in

47. Problem 25.

48. Problem 26.

49. Problem 29, using p · q = ∫ 1
0 p(t)q(t) dt .

50. Problem 32, using the inner product defined in Prob-
lem 4 of Section 4.11.

For Problems 51–54, determine the angle between the given
vectors u and v using the standard inner product on R

n.

51. u = (2, 3) and v = (4,−1).

52. u = (−2,−1, 2, 4) and v = (−3, 5, 1, 1).

53. Repeat Problems 51–52 for the inner product on R
n

given by

〈u, v〉 = 2u1v1 + u2v2 + u3v3 + · · · + unvn.
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54. Let t0, t1, . . . , tn be real numbers. For p and q in Pn,
define

p · q = p(t0)q(t0)+ p(t1)q(t1)+ · · · + p(tn)q(tn).
(a) Prove that p · q defines a valid inner product on

Pn.

(b) Let t0 = −3, t1 = −1, t2 = 1, and t3 = 3.
Let p0(t) = 1, p1(t) = t , and p2(t) = t2. Find
a polynomial q that is orthogonal to p0 and p1,
such that {p0, p1, q} is an orthogonal basis for
span{p0, p1, p2}.

55. Find the distance from the point (2, 3, 4) to the line in
R

3 passing through (0, 0, 0) and (6,−1,−4).

56. Let V be an inner product space with basis
{v1, v2, . . . , vn}. If x and y are vectors in V such that
x · vi = y · vi for each i = 1, 2, . . . , n, prove that
x = y.

57. State as many conditions as you can on an n×nmatrix
A that are equivalent to its invertibility.

Project I: Orthogonal Complement
Let V be an inner product space and let W be a subspace of V .

Part 1 Definition Let

W⊥ = {v ∈ V : 〈v,w〉 = 0 for all w ∈ W }.
Show that W⊥ is a subspace of V and that W⊥ and W share only the zero vector:
W⊥ ∩W = {0}.

Part 2 Examples

(a) Let V = M2(R) with inner product

〈 [ a11 a12
a21 a22

]
,

[
b11 b12
b21 b22

] 〉 = a11b11 + a12b12 + a21b21 + a22b22.

Find the orthogonal complement of the set W of 2× 2 symmetric matrices.

(b) Let A be an m× n matrix. Show that

(rowspace(A))⊥ = nullspace(A)

and

(colspace(A))⊥ = nullspace(AT ).

Use this to find the orthogonal complement of the row space and column space of
the matrices below:

(i) A =
[

3 1 −1
6 0 −4

]
.

(ii) A =

−1 0 6 2

3 −1 0 4
1 1 1 −1


.

(c) Find the orthogonal complement of

(i) the line in R
3 containing the points (0, 0, 0) and (2,−1, 3).

(ii) the plane 2x + 3y − 4z = 0 in R
3.
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Part 3 Some Theoretical Results Let W be a subspace of a finite-dimensional inner
product space V .

(a) Show that every vector in V can be written uniquely in the form w + w⊥, where
w ∈ W and w⊥ ∈ W⊥. [Hint: By Gram-Schmidt, v can be projected onto the
subspaceW as, say, projW(v), and so v = projW(v)+w⊥, where w⊥ ∈ W⊥. For
the uniqueness, use the fact that W ∩W⊥ = {0}.]

(b) Use part (a) to show that

dim[V ] = dim[W ] + dim[W⊥].
(c) Show that

(W⊥)⊥ = W.

Project II: Line-Fitting Data Points
Suppose data points (x1, y1), (x2, y2), . . . , (xn, yn) in the xy-plane have been collected.
Unless these data points are collinear, there will be no line that contains all of them. We
wish to find a line, commonly known as a least-squares line, that approximates the data
points as closely as possible.

How do we go about finding such a line? The approach we take12 is to write the line
as y = mx + b, where m and b are unknown constants.

Part 1 Derivation of the Least-Squares Line

(a) By substituting the data points (xi, yi) for x and y in the equation y = mx + b,
show that the matrix equation Ax = y is obtained, where

A =



x1 1
x2 1
...
...

xn 1


 , x =

[
m

b

]
, and y =



y1
y2
...

yn


 .

Unless the data points are collinear, the systemAx = y obtained in part (a) has no
solution for x. In other words, the vector y does not lie in the column space of A.
The goal then becomes to find x0 such that the distance ||y−Ax0|| is as small as
possible. This will happen precisely when y−Ax0 is perpendicular to the column
space of A. In other words, for all x ∈ R

2, we must have

(Ax) · (y− Ax0) = 0.

(b) Using the fact that the dot product of vectors u and v can be written as a matrix
multiplication,

u · v = uT v,

show that
(Ax) · (y− Ax0) = x · (AT y− ATAx0).

(c) Conclude that
AT y = ATAx0.

Provided that A has linearly independent columns, the matrix ATA is invertible
(see Problem 34, in Section 4.13).

12We can also obtain the least-squares line by using optimization techniques from multivariable calculus,
but the goal here is to illustrate the use of linear systems and projections.



“main”
2007/2/16
page 341

�

�

�

�

�

�

�

�

4.13 Chapter Review 341

(d) Show that the least-squares solution is

x0 = (AT A)−1AT y

and therefore,

Ax0 = A(AT A)−1AT y

is the point in the column space of A that is closest to y. Therefore, it is the
projection of y onto the column space of A, and we write

Ax0 = A(AT A)−1AT y = Py,

where

P = A(AT A)−1AT (4.13.2)

is called a projection matrix. If A is m× n, what are the dimensions of P ?

(e) Referring to the projection matrix P in (4.13.2), show that PA = A and P 2 = P .
Geometrically, why are these facts to be expected? Also show thatP is a symmetric
matrix.

Part 2 Some Applications In parts (a)–(d) below, find the equation of the least-squares
line to the given data points.

(a) (0,−2), (1,−1), (2, 1), (3, 2), (4, 2).

(b) (−1, 5), (1, 1), (2, 1), (3,−3).

(c) (−4,−1), (−3, 1), (−2, 3), (0, 7).

(d) (−3, 1), (−2, 0), (−1, 1), (0,−1), (2,−1).

In parts (e)–(f), by using the ideas in this project, find the distance from the point
P to the given plane.

(e) P(0, 0, 0); 2x − y + 3z = 6.

(f) P(−1, 3, 5); −x + 3y + 3z = 8.

Part 3 A Further Generalization Instead of fitting data points to a least-squares line,
one could also attempt to do a parabolic approximation of the form ax2 + bx + c. By
following the outline in Part 1 above, try to determine a procedure for finding the best
parabolic approximation to a set of data points. Then try out your procedure on the data
points given in Part 2, (a)–(d).


