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4.5 Integration by Substitution

The Fundamental Theorem of Calculus tells us that in order to evaluate an
integral, we need to find an antiderivative of the function we are integrating
(the integrand). However, the list of antiderivatives we have is rather short,
and does not cover all the possible functions we will have to integrate. For
example,

∫
xex

2

dx is not in our list. Neither is
∫

2x
√

1 + x2dx. What do we do
then? One method, the one we will study in this section, involves changing the
integral so that it looks like one we can do, by doing a change of variable, also
called a substitution. Substitution for integrals corresponds to the chain rule
for derivatives. We look at some simple examples to illustrate this.
Before we see how to do this, we need to review another concept, the differ-

ential.

4.5.1 The Differential

You will recall from differential calculus that the notation dx meant a small
change in the variable x. It has a name, it is called the differential (of the
variable x). Now, if y = f (x) and f is a differentiable function, we may also be
interested in finding the differential of y, denoted dy.

Definition 276 The differential dy is defined by

dy = f ′ (x) dx

Example 277 Find dy if y = x2

By definition

dy =
(
x2
)′
dx

= 2xdx

Example 278 Find dy if y = sinx
By definition

dy = (sinx)
′
dx

= cosxdx

4.5.2 The Substitution Rule for Indefinite Integrals

Before we start, it is important to understand what you should know so far as
well as what you do not know. In the previous sections, we reduced the problem
of computing an integral to that of finding an antiderivative. Indeed, once we
know an antiderivative of f , we can compute

∫ b
a
f (x) dx. If an antiderivative

of f is F then
∫ b
a
f (x) dx = F (b) − F (a). In the sections which follow, we

will focus more on finding antiderivatives. It is also important to note that the
name of the variable in the integral is not relevant.

∫ b
a
f (x) dx =

∫ b
a
f (t) dt =
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∫ b
a
f (u) du. What matters is that we use the same variable in the function as

in dx. For example, we know that an antiderivative of cosx is sinx. Hence,∫ b
a

cosxdx =
∫ b
a

cosudu =
∫ b
a

cos tdt = cos b − cos a. However, often, instead of

having to compute
∫ b
a

cosxdx we have to compute an integral which involves
cosu where u is a function of x. For example, the integral may involve cosx2,
cos ex, ... This section will address such cases.

Substitution applies to integrals of the form
∫
f (g (x)) g′ (x) dx where it is

assumed we know an antiderivative of f . If we let u = g (x), then du = g′ (x) dx.
Therefore, we have ∫

f (g (x)) g′ (x) dx =

∫
f (u) du (4.2)

This is the substitution rule formula. Note that the integral on the left is
expressed in terms of the variable x. The integral on the right is in terms of
u. The key when doing substitution is, of course, to know which substitution
to apply. At the beginning, it is hard. With practice, it becomes easier. Also,
looking at equation 4.2 and trying to understand the pattern will make things
easier. In that formula, it is assumed that we can integrate the function f .
Looking at the integral on the left, one sees the function f . But the integral
also has extra expressions. Inside of f , there is an expression in terms of x.
Outside of f , is the derivative of this expression. When this is the case, the
expression will be the substitution. For example, given

∫
2x sin

(
x2
)
dx, one

would use u = x2 as the substitution. Given
∫

cosx
√

sinxdx, one would use
u = sinx as the substitution. Let us look at some examples.

Example 279 Find
∫

2x sin
(
x2
)
dx

If u = x2, then du = 2xdx, therefore∫
2x sin

(
x2
)
dx =

∫
sin
(
x2
)

2xdx

=

∫
sinudu

The last integral is a known formula∫
sinudu = − cosu+ C

The original problem was given in terms of the variable x, you must give your
answer in terms of x. Therefore,∫

2x sin
(
x2
)
dx = − cos

(
x2
)

+ C

Example 280 Find
∫
xex

2

dx
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If u = x2, then du = 2xdx, therefore

∫
xex

2

dx =

∫
ex

2

xdx

=

∫
eu
du

2

=
1

2

∫
eudu

=
1

2
eu + C

=
1

2
ex

2

+ C

Example 281 Find
∫
x3 cos

(
x4 + 1

)
dx

If u = x4 + 1, then du = 4x3dx, therefore

∫
x3 cos

(
x4 + 1

)
dx =

∫
cos
(
x4 + 1

)
x3dx

=

∫
cosu

du

4

=
1

4

∫
cosudu

=
1

4
sinu+ C

=
1

4
sin
(
x4 + 1

)
+ C

Example 282 Find
∫

tanxdx

If we think of tanx as
sinx

cosx
and let u = cosx, then du = − sinxdx, therefore

∫
tanxdx =

∫
sinx

cosx
dx

=

∫
1

u
(−1) du

= −
∫

1

u
du

= − ln |u|+ C

= − ln |cosx|+ C

This is not the formula usually remembered. Since cosx =
1

secx
, and, one of
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the properties of logarithmic functions says that ln
a

b
= ln a− ln b, we have

∫
tanxdx = − ln |cosx|+ C

= − ln
1

|secx| + C

= − ln 1− (− ln |secx|) + C

= ln |secx|+ C

Example 283 Find
∫

2x
√
x2 + 1dx

If u = x2 + 1, then du = 2xdx, therefore∫
2x
√
x2 + 1dx =

∫ √
udu

=

∫
u
1
2 du

=
2

3
u
3
2 + C

=
2

3

(
x2 + 1

) 3
2 + C

4.5.3 The Substitution Rule for Definite Integrals

With definite integrals, we have to find an antiderivative, then plug in the limits
of integration. We can do this one of two ways:

1. Use substitution to find an antiderivative, express the answer in terms of
the original variable then use the given limits of integration.

2. Change the limits of integration when doing the substitution. This way,
you won’t have to express the antiderivative in terms of the original vari-
able. More precisely,

∫ b

a

f (g (x)) g′ (x) dx =

∫ g(b)

g(a)

f (u) du

We illustrate these two methods with examples.

Example 284 Find
∫ e
1

lnx

x
dx using the first method.

First, we find an antiderivative of the integrand, and express it in term of x. If
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u = lnx, then du =
1

x
dx. Therefore∫

lnx

x
dx =

∫
udu

=
u2

2

=
(lnx)

2

2

It follows that ∫ e

1

lnx

x
dx =

(lnx)
2

2

∣∣∣∣∣
e

1

=
(ln e)

2

2
− (ln 1)

2

2

=
1

2

Example 285 Same problem using the second method.
The substitution will be the same, but we won’t have to express the antiderivative
in terms of x. Instead, we will find what the limits of integration are in terms
of u. Since u = lnx, when x = 1, u = ln 1 = 0. When x = e, u = ln e = 1.
Therefore, ∫ e

1

lnx

x
dx =

∫ 1

0

udu

=
u2

2

∣∣∣∣1
0

=
1

2

Remark 286 A special case of substitution is renaming a variable in an in-
tegral. You will recall that

∫ b
a
f (x) dx =

∫ b
a
f (u) du. In this case, we just

performed the trivial substitution u = x, in other words, we simply renamed the
variable. This can always be done, however, it does not accomplish anything.
Sometimes we do it for display purposes, as we will see in the next theorem.

4.5.4 Integrating Even and Odd Functions

Definition 287 A function f is even if f (−x) = f (x). It is odd if f (−x) =
−f (x)

Example 288 f (x) = x2 is even. In fact f (x) = xn is even if n is even.

Example 289 f (x) = x3 is odd. In fact f (x) = xn is odd if n is odd.
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Figure 4.14: Even Function

Example 290 sin (−x) = − sinx, therefore sinx is odd.

Example 291 cos (−x) = cosx, therefore cosx is even.

Example 292 From the previous two examples, it follows that tanx and cotx
are odd

The graph of an even function is symmetric with respect to the y-axis. The
graph of an odd function is symmetric with respect to the origin. Another way
of thinking about it is the following. If f is even and (a, b) is on the graph of f ,
then (−a, b) is also on the graph of f . If f is odd and (a, b) is on the graph of
f , then (−a,−b) is also on the graph of f . This is illustrated on figure 4.14 for
even functions, and on figure 4.15 for odd functions.

Knowing if a function is even or odd can make integrating it easier.

Theorem 293 Suppose that f is continuous on [−a, a] then:

1. If f is even, then
∫ a
−a f (x) dx = 2

∫ a
0
f (x) dx

2. If f is odd, then
∫ a
−a f (x) dx = 0
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Figure 4.15: Odd Function

Proof. Using the properties of integrals, we have:∫ a

−a
f (x) dx =

∫ 0

−a
f (x) dx+

∫ a

0

f (x) dx

= −
∫ −a
0

f (x) dx+

∫ a

0

f (x) dx

In the first integral, we use the substitution u = −x so that du = −dx, we obtain∫ a

−a
f (x) dx =

∫ a

0

f (−u) du+

∫ a

0

f (x) dx

For clarity, use the substitution u = x to obtain∫ a

−a
f (x) dx =

∫ a

0

f (−x) dx+

∫ a

0

f (x) dx (4.3)

We now consider the cases f is even and odd separately.

• case 1: f is even. In this case, f (−x) = f (x). Therefore, equation 4.3
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becomes ∫ a

−a
f (x) dx =

∫ a

0

f (x) dx+

∫ a

0

f (x) dx

= 2

∫ a

0

f (x) dx

• case 2: f is odd. In this case, f (−x) = −f (x). Therefore, equation 4.3
becomes ∫ a

−a
f (x) dx = −

∫ a

0

f (x) dx+

∫ a

0

f (x) dx

= 0

Remark 294 The first part of the theorem does not save us a lot of work. We
still have to be able to find an antiderivative in order to evaluate the integral.
However, in the second part, we only need to know the function is odd. If it is,
then the integral will be 0, there is no need to be able to find an antiderivative
of the integrand.

Example 295 Find
∫ 1
−1

tanx

x4 + x2 + 1
dx

Let f (x) =
tanx

x4 + x2 + 1
. The reader can verify that f is an odd function,

therefore ∫ 1

−1

tanx

x4 + x2 + 1
dx = 0

4.5.5 Things to Know

• Be able to integrate using the substitution method. In particular, know
how to identify the integrals for which substitution might work. They
are integrals of the form

∫
g′ (x) f (g (x)) dx where f is a function for

which we know an antiderivative. Note that the function outside of f
is the derivative of the function inside of f . For this this to work, the
function outside of f does not have to be exactly the derivative of the
function inside of f . Even if it is missing a constant, we can still do
substitution. Examples include

∫
2x sin

(
x2
)
dx,

∫
x2 sin

(
x3
)
dx (we are

just missing a constant). Keep in mind that g′ (x) might involve a fraction

as in
∫ sin (lnx)

x
dx.

• Know what odd and even functions are, be able to recognize them and
know how to integrate them on an interval of the form [−a, a].
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4.5.6 Problems

1. Evaluate the given integrals by making the given substitution.

(a)
∫

cos 3xdx, u = 3x

(b)
∫
x2
√

1 + x3dx, u = 1 + x3

(c)
∫ sin

√
x√

x
dx, u =

√
x

(d)
∫

cos tesin tdt, u = sin t

(e)
∫ 1√

5x+ 8
dx, u = 5x+ 8

(f)
∫ 1√

5x+ 8
dx, u =

√
5x+ 8

2. Evaluate
∫ √

3 + 2xdx

3. Evaluate
∫ 1√

3x+ 5
dx

4. Evaluate
∫

(3x+ 5)
10
dx

5. Evaluate
∫

2x
(
x2 + 1

)4
dx

6. Evaluate
∫ (lnx)

2

x
dx

7. Evaluate
∫ dx

3− 5x

8. Evaluate
∫
ex
√

1 + exdx

9. Evaluate
∫

cos t sin4 tdt

10. Evaluate
∫ sin 2x

1 + cos2 x
dx

11. Evaluate
∫ 1 + x

1 + x2
dx

12. Evaluate
∫ dx

x lnx

13. Evaluate
∫ 1
0
x2
(
1 + 2x3

)4
dx

14. Evaluate
∫ 1
0

ex + 1

ex + x
dx

15. Evaluate
∫ π

6

−π6
tan3 tdt
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16. If f is continuous and
∫ 4
0
f (x) dx = 10, find

∫ 2
0
f (2x) dx. Hint: use

substitution.

17. If f is continuous and
∫ 9
0
f (x) dx = 4, find

∫ 3
0
xf
(
x2
)
dx. Hint: use

substitution.

18. If f is continuous on R, prove that
∫ b
a
f (−x) dx =

∫ −a
−b f (x) dx. Hint: use

substitution.

19. Try this more challenging problem: Evaluate
∫ xe2x

(2x+ 1)
2 dx

4.5.7 Answers

1. Evaluate the given integrals by making the given substitution.

(a)
∫

cos 3xdx, u = 3x∫
cos 3xdx =

1

3
sin 3x+ C

(b)
∫
x2
√

1 + x3dx, u = 1 + x3∫
x2
√

1 + x3dx =
√
x3 + 1

(
2

9
x3 +

2

9

)
+ C

(c)
∫ sin

√
x√

x
dx, u =

√
x∫ sin

√
x√

x
dx = −2 cos

√
x+ C

(d)
∫

cos tesin tdt, u = sin t∫
cos tesin tdt = esin t + C

(e)
∫ 1√

5x+ 8
dx, u = 5x+ 8∫ 1√

5x+ 8
dx =

2

5

√
5x+ 8 + C

(f)
∫ 1√

5x+ 8
dx, u =

√
5x+ 8∫ 1√

5x+ 8
dx =

2

5

√
5x+ 8 + C

2.
∫ √

3 + 2xdx =
1

3
(2x+ 3)

3

2 + C

3.
∫ 1√

3x+ 5
dx =

2

3

√
3x+ 5 + C

4.
∫

(3x+ 5)
10
dx =

(3x+ 5)
11

33
+ C
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5.
∫

2x
(
x2 + 1

)4
dx =

(
x2 + 1

)5
5

+ C

6.
∫ (lnx)

2

x
dx =

1

3
(lnx)

3
+ C

7.
∫ dx

3− 5x
=
−1

5
ln |3− 5x|+ C

8.
∫
ex
√

1 + exdx =
2

3
(ex + 1)

3

2 + C

9.
∫

cos t sin4 tdt =
sin5 t

5
+ C

10.
∫ sin 2x

1 + cos2 x
dx = − ln

(
1 + cos2 x

)
+ C

11.
∫ 1 + x

1 + x2
dx =

1

2
ln
(
x2 + 1

)
+ arctanx+ C

12.
∫ dx

x lnx
= ln |lnx|+ C

13.
∫ 1
0
x2
(
1 + 2x3

)4
dx = 121

15

14.
∫ 1
0

ex + 1

ex + x
dx = ln (e+ 1)

15.
∫ π

6

−π6
tan3 tdt = 0

16. If f is continuous and
∫ 4
0
f (x) dx = 10, find

∫ 2
0
f (2x) dx. Hint: use

substitution.∫ 2
0
f (2x) dx = 5

17. If f is continuous and
∫ 9
0
f (x) dx = 4, find

∫ 3
0
xf
(
x2
)
dx. Hint: use

substitution.∫ 3
0
xf
(
x2
)
dx = 2

18. If f is continuous on R, prove that
∫ b
a
f (−x) dx =

∫ −a
−b f (x) dx. Hint: use

substitution.

19. Try this more challenging problem: Evaluate
∫ xe2x

(2x+ 1)
2 dx =

e2x

8x+ 4
+C
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