4.8 Trigonometric Applications and Models

Objectives:

- Use right triangles to solve real-life problems.
- Use directional bearings to solve real-life problems.
- •Use harmonic motion to solve real-life problems.

Terminology

Angle of elevation –
 angle from the
 horizontal upward to
 an object.

Angle of depression –
angle from the
horizontal downward
to an object.

Example

• Solve the right triangle for all missing sides and angles.

You Try

 Solve the right triangle for all missing sides and angles.

Example – Solving Rt. Triangles

At a point 200 feet from the base of a building, the angle of elevation to the bottom of a smokestack is 35°, and the angle of elevation to the top of the smokestack is 53°. Find the height of the smokestack.

You try:

• A swimming pool is 20 meters long and 12 meters wide. The bottom of the pool is slanted so that the water depth is 1.3 meters at the shallow end and 4 meters at the deep end, as shown. Find the angle of depression of the bottom of the pool.

Trigonometry and Bearings

 In surveying and navigation, directions are generally given in terms of bearings. A bearing measures the acute angle that a path or line of sight makes with a fixed north-south line.

Trig and Bearings

You try. Draw a bearing of:

Trig and Bearings

• You try. Draw a bearing of:

Example – Finding Directions Using Bearings

 A hiker travels at 4 miles per hour at a heading of S 35° E from a ranger station.
After 3 hours how far south and how far east is the hiker from the station?

Example – Finding Directions Using Bearings

A ship leaves port at noon and heads due west at 20 knots, or 20 nautical miles (nm) per hour. At 2 P.M. the ship changes course to N 54° W. Find the ship's bearing and distance from the port of departure at 3 P.M.

A ship leaves port at noon and heads due west at 20 knots, or 20 nautical miles (nm) per hour. At 2 P.M. the ship changes course to N 54° W. Find the ship's bearing and distance from the port of departure at 3 P.M. E.

Two lookout towers are 50 kilometers apart. Tower A is due west of tower B. A roadway connects the two towers. A dinosaur is spotted from each of the towers. The bearing of the dinosaur from A is N 43° E. The bearing of the dinosaur from tower B is N 58° W. Find the distance of the dinosaur to the roadway that connects the two towers.

$$x \cdot \tan(47^\circ) = h$$

$$(50-x)\tan(32^\circ) = h$$

$$\frac{50\tan(32^\circ)}{\tan(47^\circ) + \tan(32^\circ)} \cdot \tan(47^\circ) = h$$

$$\frac{50\tan(32^{\circ})}{47^{\circ}) + \tan(32^{\circ})} \cdot \tan(47^{\circ}) = h \qquad x \cdot \tan(47^{\circ}) = \left(50 - x\right)\tan(32^{\circ})$$

$$19.741 = h$$

$$x \cdot \tan(47^{\circ}) = 50 \tan(32^{\circ}) - x \tan(32^{\circ})$$
$$x \cdot \tan(47^{\circ}) + x \tan(32^{\circ}) = 50 \tan(32^{\circ})$$

$$x \left[\tan(47^{\circ}) + \tan(32^{\circ}) \right] = 50 \tan(32^{\circ})$$

$$x = \frac{50\tan(32^{\circ})}{\tan(47^{\circ}) + \tan(32^{\circ})}$$

Two lookout towers spot a fire at the same time. Tower B is Northeast of Tower A. The bearing of the fire from tower A is N 33° E and is calculated to be 45 km from the tower. The bearing of the fire from tower B is N 63° W and is calculated to be 72 km from the tower. Find the distance between the two towers and the bearing from tower A to tower B.