
4 AD-A235 701 Carnegie-Meion University

i1III I III I ~II I I I Software Engineering Institute

Software Design Methods
for Real-Time Systems

Curriculum Module SEI-CM-22-1.0 DTIC
EE ELE CTE 3W -1

MAY 2 3 1991

/
/

/
/

]ft

/ //

,/

,

91-00335915 2.02

91

/

Software Design Methods
for Real-Time Systems

SEI Curriculum Module SEI-CM-22-1.O

December 1989

JML~Cattor.

Hassan Gomaa
George Mason University

Dit Spec Lai

SCarnegie Mellon University
Software Engineering Institute

This work was sponsored by the U.S. Department of Defense.'
Approved for public release. Distribution unlimited.

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

OHN S. HERMAN, Capt, USAFSEl Joint Program Officet

This work is sponsored by the U.S. Department of Defense.

Copyright @ 1989 by Carnegie Melon University.

This document is available through the Defense Technical Information Center. DTIC provides aocess to ahd&transfer of
scientific and technical information for DoD personnel, DoD contractors and potetilal contractors, and other U S. GOem t,
agency personnel and their contractors. To obtain a copy, please contact DTIO directly: Defense Techni'4 In" foatlon
Center, Atn: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For information on Ordinogq
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfeld; VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Software Design Methods
for Real-Time Systems

Acknowledgements Contents

This module is an outgrowth of my experiences in teach- Capsule Description 1
ing the graduate course "Software Engineering Methods" Philosophy 1
at the Wang Institute of Graduate Studies and graduate
courses "Software Requirements Analysis, Prototyping, Objectives 2

and Design" and "Software Design Methods for Real- Prerequisite Knowledge 3
Time Systems" at George Mason University. I am in- Module Content 4
debted to my students for their enthusiasm and feedback,

which helped me improve the courses substantially and Outline 4

hence pave the way for this module. Annotated Outline 5

I would also like to gratefully acknowledge the many Glossary 23
stimulating discussions I have had with John Brackett, Bo Teaching Considerations 26
Sanden, and David Weiss that have contributed signifi- Textbooks 26
candy to my understanding of the design methods de-
scribed in this module. Suggested Course Types 26

I am also indebted to Lionel Deimel for his considerable Suggested Schedules 26
assistance with all aspects of the production of this curric- Worked Examples 27
ulum module. Considerable effort was also expended by Exercises 27
Jim Rankin in constructing the bibliography.

Classification of References 28
Thanks are also due to John Brackett and David Budgen, Bibliography 31
who helped in defining the scope of this module, and to

the following reviewers of an earlier draft of this module:
Lionel Deimel, Richard D'Ippolito, Gary Ford, Ken
Fowler, Frank Friedman, John Goodenough. Roger Van
Scoy, and David Wood.

SEI-CM-22-1 .0 i

Software Design Methods for Real-Time Systems

Module Revision History

Version 1.0 (December 1989) Initial release
Approved for publication -

iv SEldOM 2210

Software Design Methods
for Real-Time Systems

Capsule Description Software Design. A software design strategy is an

overall plan and direction for performing design.
This module describes the concepts and methods For example, functional decomposition is F software
used in the software design of real-time systems. It design strategy.
outlines the characterist'cs of real-time systems, de- A software design concept is a fundamental idea that
scribes the role of software design in real-time sys- can be applied to designing a system. Information
tem development, surveys and compares some soft- hiding is a software design concept.
ware design .iethods for real-time systems, and out- A
lines techniques for the verification and validation of asoftware design notation or representation is a
real-time designs. For each design method treated, means describing a software design. It may be
its emphasis, concepts on which it is based, steps diagrammatic, symbolic, or textual. Structure charts
used in its application, and an assessment of the and pseudocode are software design notations.

O method are provided. A software design method is a systematic approach
for carrying out design. It typically describes a se-
quence of steps for producing a design. A design
method is based on. a set of design concepts,

Philosophy employs a design strategy or strategies. and docu-
ments the resulting design using one or more design

Real-Time Systems. Real-time systems have wide- notation.
spread use in industrial, commercial, and military A software design method does not provide a cook-
applications. These systems are often complex be- book approach to performing design. A designer
cause they have to deal with multiple independent must use his skill and judgement in applying the
streams of input events. These events have arrival method. It should be pointed out that when a meth-
rates that are often unpredictable, although they must od is deficient in a c-rtain aspect, it is often the case
be responded to within predefined timing con- thst experienced designers will compensate for this
straints. by developing an ad hoc solution.

Real-time systems are frequently classified a, "hard Module Organization. This module builds on the
real-time systems" or "soft real-time systems." A module Introduction to Software Design [Budgen89]
hard real-time system has time-critical deadlines that by focusing on the real-time system domain. It
must be met; otherwise a catastrophic system failure points out the differences between this domain:and
can occur. In a soft'real-time system, it is consid- other application domains. It describes design ,cn-
ered undesirable, but not catastrophic, if deadlines cepts that are of particular importance to reW- t
are occasionally missed. system design, such as concurrent taik- 1nini,

In spite of the importance of timing constraints in state machines. Life-cycle AS I spqcific.o
real-time systems, it is a characteristic (and a real-time systems ar examd. DEsign represen
limitation) of the current state of the art in software tations for expressing real- mie designs ar out.i

* design methods for real-time systems that the meth- This module refernces nateial in Intro ton:to
ods tend to emphasize structural and behavioral as- Software Design, in paiticlr for i6,6edesign-
pects of real-time systems and generally pay signifi- topics that are of importanc to the d~sign oeall soft

cantly less attention to timing constraints. ware systems.

SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

This module surveys suveral softwar, design meth- sign phase, and its outputs are the inputs
ods for real-time systems. The concepts on which to the design pnase.
each method is based are described first to show oIntroduction to Software Design. [Bud-
what the method attempts to achieve. The steps in- gen89] introduces the principles and con-
volved in using the method are then outlined to give cepts involved in the design of large pro-
an appreciation of the method. This is followed by grams and systems. It may thus be
an assessment of the method. The methods are sub- viewed as a prerequisite to this module,
sequently compared to one another to point out the which focuses specifically on the design
similarities and differences among them. Since the of real-time systems.
methods are best understood by studying an ex-
ample, the support materials provide an example of This module is one of several proposed modules on
applying each design method to m'" . ,he same real- real-time systems including:
time problem. * Fundamentals of Real-Time Systems,

Criteria for Selecting Software Design Methods, which should introduce a range of topicsCritriafor eletin Sofwar Deign ethds.relevant to real-time systems, including
In selecting the design methods to be included in this ratto real-time systems, ldn
survey, the following criteria for selection were
used: ware life cycle overview for real-time

systems, and interfacing to hardware-
1. The method must be published in the interrupt handling, polling, and sensor/

literature and not be proprietary. This actuator interfaces. In the absence of this
excludes methods such as PAMELA module, the reader is referred to intro-
(Process Abstraction for Large Em- ductory books on real-time systems, such
bedded Applications) [Cherry86], whose as Ailworth and Zobel [AIIworth87] or
description is not widely available. Glass [Glass83].

2. The method must actually have been
used on a real-world real-time applica-
tion. This excludes some emerging
methods that have recently been Objectives
published, such as the Box Structured
Method [Mills87], ADARTS [Gomaa89b] A student who has mastered the material presented
and Entity Life Modeling [Sanden89]. in this module may be expected to be able to:

3. The method must not be oriented toward
a specific language. This excludes meth-
ods such as that discussed in [Nielsen88], time systems and other kinds of software
which is oriented toward Ada. systems.

4. The method must be a design method e Discuss the design concepts of particular

and not a design notation. A design importance to real-time systems.

notation suggests a particular approach o Describe design representations for de-
to performing a design, but does not pro- scribing real-time designs.
vide a systematic approach of specific • State the principles behind and steps in-
steps for performing design. This ex- volved in several design methods for
cludes design notations such as real-time systems. Discuss the
Statecharts [Hare188b] and MASCOT similarities and differences between
(Modular Approach to Software Con- these methods.
struction and Test) [Simpson86]. * Apply one or more methods to solve

Module Interface. Three other SEI curriculum small real-time problems.
modules provide background for this one related to * Discuss how real-time designs may be
particular life-cycle phases: verified and validated.

" Software Specifications: A Framework
[Rombach891 introduces some of the ter-
minology used by this module.

* Software Requirements [Brackett89].
The requirements phase precedes the de-

2 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

Prerequisite Knowledge

. Students should be familiar with the terms and con-
cepts of the software life cycle. They should under-
stand concurrent processing concepts, including
process synchronization and mutual exclusion. Stu-
dents should also have had an introduction to soft-
ware design.

0J

SEI-CM-22-1 .0 .. "" 3 ...

Software Design Methods for Real-Time Systems

Module Content

Outline b. Design Methods Based on Concurrent Task
Structuring

I. Characteristics of Real-Time Systems c. Design Methods Based on Information
1. Embedded Systems Hiding Module Structuring

2. Interaction-with External Environment d. Design Methods Based on Modeling the

3. Real-Time Constraints Problem Domain
4. Real-Time Control III. Survey of Real-Time Software Design Methods
5. Reactive Systems 1. Structured Analysis and Design for Real-Time

Systems
6. Concurrent Processing a. Overview

II. The Role of Software Design in Real-Time b. Basic Concepts
System Development c. Steps in Method
1. The Design Process d. Products of Design Process
2. Real-Time Design as a Software Life-Cycle

Phase e. Assessment of Method

a. Life-Cycle Considerations for Real-Time f. Extensions and/or Variations
Systems 2. Naval Research Lab Software Cost Reduction

b. Requirements Definition Method

c. Architectural Design a. Overview

d. Detailed Design b. Basic Concepts

e. Implementation c. Steps in Method

3. Real-Time System Design Concepts d. Products of Design Process
a. General Design Concepts e. Assessment of Method
b. Real-Time-Specific Design Concepts f. Extensions and/or Variations

4. Real-Time Design Representations 3. Object-Oriented Design
a. Data Flow/Control Flow Diagrams a. Overview
b. Task Structure Diagrams b. Basic Concepts

c. MASCOT Diagrams c. Steps in Method

d. Structure Graphs (Buhr Diagrams) d. Products of Design Process

e. Structure Charts e. Assessment of Method I
f. Entity Structure Diagrams f. Extensions and/or Variations
g. JSD Network Diagrams 4. Jackson System Development for Real-Time
h. Object Diagrams Systemsa. Overview
i. Class Structure Diagrams b. Basic Concepts
j. State Transition Diagrams . Bes in Mets
k. Statecharts
1. Ptaectrts d. Products of Design Process1. Petri Nets

5. Role of Software Design Methods e. Assessment of Method
6. Software Design Strategies for Real-Tume f. Extensions and/or Variations

Systems 5. DARTS (Design Approach for ReifTime.,

a. Design Methods Based on Functional Systems)
Decomposition a. Overview.

4 -EI0CM-22-1

Software Design Methods for Real-Time Systems

b. Basic Concepts ternal environment. A computerized automobileO c. Steps in Method cruise control system is embedded in the auto-mobile.
d. Products of Design Process

e. Assessment of Method 2. Interaction with External Environment

f. Extensions and/or Variations A real-time system typically interacts with an exter-
nal environment, which is, to a large extent, non-

6. Other Real-Time Software Design Methods human. For example, the real-time system may be
IV. Design Verification and Validation controlling machines or a manufacturing processes,

1. Software Technical Reviews or it may be monitoring chemical processes and re-
porting alarm conditions. This situation often neces-

2. Requirements Tracing sitates a sensory interface for receiving data from the
3. Simulation external environment and actuators for outputting
4. Prototyping data to and controlling the external environment.

5. Software Testing 3. Real-Time Constraints

a. Testing Concurrent Software Real-time systems have timing constraints, i.e., they
b. System Testing must process events within a given time frame.

These real-time constraints are specified in the soft-
V. Review of Real-Time Software Design Methods ware requirements. Whereas, in an interactive sys-

1. Comparison of Real-Time Software Design tem, a human may be inconvenienced if the system
Methods response is delayed, in a real-time system, a delay

may be catastrophic. For example, inadequate re-
a. Support for Finite State Machines sponse in an air traffic control system could result in
b. Support for Concurrent Tasks a midair collision of two aircraft. The required re-
c. Support for information Hiding sponse time will vary by application, ranging frommilliseconds in some cases, to seconds, or even
d. Timing Constraints minutes, in others.

* 2. Trends in Real-Time Software Design Methods 4. Real-Time Control

A real-time system often involves real-time control.b. Domain Specification and Design Methods Le., the real-time system makes control decisions
c. Computer Support Tools and Software based on input data, without any human interven-

Development Environments tion. An automobile cruise control system, for ex-
ample, has to adjust the throttle based on measure-d. Executable Specifications and Designs ments of current speed to ensure that the desired

e. Performance Analysis of Real-Time Designs speed is maintained.
f. Application of Knowledge-Based Techniques A real-time software system may also have
g. Application of Formal Methods non-real-time components. For example, real-time

data collection necessitates gathering the data under
real-time constraints, otherwise the data may be lost.
However, once collected, the data can be stored for

Annotated Outline subsequent non-real-time analysis.
5. Reactiye Systeir,

I. Characteristics of Real-Time Systems Many real-time ystems are reactive systems
Real-time software systems have several characteristics [Harel88a]. They are event-driven and mustrespondRea-tie sftwre ystms avesevralchaactrisicsto external stimuli. It is usually the case ifi'reictii
that distinguish them from other software systems:

systems that the response made by the system o an
1. Embedded Systems input stimulus is state depe nt, .e., the respnse

depends not only on the stimulus itelf, butal diiA real-time system is often an embedded system, what has previously happenbd in the system.
i.e., the real-time software system is a component of
a larger hardware/software system. An example of 6. Concurrent Processing
this is a robot controller that is a component of a A featre of most real-time sys s i ccurrent
robot system consisting of one or more mechanical processing, i.e., there e many ee that je to
arms, servo-mechanisms controlling axis motion, pt
and sensors and actuators for interfacing to the ex- ec ee inre Freuentl, o o

incomig events is n6t predictabFurt,

SEI-CM-22-1 .0

Software Design Methods for Real-Time Systems

input load may vary significantly and unpredictably achieved using a program design language (PDL)
with time. notation, also referred to as structured English or

pseudocode. In real-time systems, particular at-
II. The Role of Software Design in Real-Time tention needs to be paid to algorithms for resource

System Development sharing and deadlock avoidance, as well as inter-
i. The Design Process facing to hardware I/O devices.

Design is a highly creative activity that relies on e. Implementation
designer skill, experience, and judgement. Several Since real-time systems are often embedded sys-
factors need to be considered in the software design tems, testing is often more complex than for other
process [Budgen89]. systems, possibly requiring the development of

2. Real-Time Design as a Software Life-Cycle environment simulators [Gomaa86a]. Further-
Phase more, performance of the system needs to be

a. Life-Cycle Considerations for Real-Time tested against the requirements.

Systems 3. Real-Time System Design Concepts

Like any software systems, real-time systems a. General Design Concepts
should be developed using a life-cycle model. [Budgen89] discusses several important general
The "waterfall" model [Boehm76, Fairley85] is design concepts.
the most widely used life-cycle model, although,
more recently, other models have been used to b. Real-Time-Specific Design Concepts
overcome some of its limitations [Agresti86].
These include the incremental development Design concepts of particular importance to real-
model (also referred to as evolutionary time systems are:
prototyping) (Basili75, Gomaa86b] and the rapid (i) Finite State Machines
protbtyping model [Agresti86].

b. Requirements Definition Finite state machines may be used for model-
ing the behavioral aspects of a system. Manyl

Since a real-time software system is often part of real-time systems, in particular real-time con-
a larger embedded system, it is likely that a sys- trol systems, are highly state-dependent. A
tem requirements definition phase precedes the finite state machine consists of a finite number
software requirements definition. In this case, of states and transitions between them. It can
system functional requirements are allocated to be in only one of a given number of states at
software and hardware before software require- any given time [Davis88]. In response to an
ments definition begins [Brackett89]. In this input event, the machine generates an output
highly constrained environment, the emphasis is event and may undergo a transition to a differ-
usually on producing developer-oriented require- ent state. Two notations widely used to define
ments (D-requirements) [Rombach89]. finite state machines are state transition

diagrams, a graphical rtlesentation, and state
c. Architectural Design transition matrices, a tabular representation.

During this phase, the system is structured into its Since large real-time systems typically have
constituent components. An important factor that large numbers of states, state transition
frequently differentiates real-time systems from diagrams or matrices can help substantially in
other systems is the need to address the issue of providing an understanding of the complexity
structuring a real-time system into concurreit of these systems.
tasks (processes) [Buhr84]. Depending on the de- (ii) Concurrent Tasks (Processes)
sign method used and/or designer decisions, the
emphasis at this stage may be on decomposition A real-time system typically has many activi-
into tasks, modules, or both. Another important ties occurring in parallel. A task represents the
factor is consideration of the behavioral aspects of execution of a sequential program or a sequen-
a real-time system, i..., the sequences of events tial component of a oncurrent progra E h
and states that the system experiences. This pro- task deals with one sequential thriad of execu
vides considerable insights into understanding the tion. Overall system concurrency is -
dynamic aspects of the system. by having many tasks executingin;parall A , .design emphasizing cbncuiint- taw ..f,In. 'o tend. Detailed Design clearer and easier toudsd,,sinc .i -'

more realistic model, o6f lfi,-" - ' ' --During detailed design, the algorithmic details of more astmoel o r, don

each system component are defined. This is often than a sequential prog . lconciftntroc- "
asses ame descried In. [Bdinh, anm10
[Dijkstra6SJ,and([Hoam74,

6

Software Design Methods for Real-Time Systems

(iii) Information Hiding [Page-Jones88, Yourdon79] to show how a pro-

Information hiding is a fundamental software gram is decomposed into modules, where a mod-

design concept that is relevant to the design of ule is typically a procedure or function.

all classes of software systems, not just real- f. Entity Structure Diagrams
time systems. The information hiding princi-
ple was first proposed by Parnas [Parnas72] as Entity structure diagrams are used in Jackson Sys-
a criterion for decomposing a software system ter Development (JSD) to show the structure of a
into modules. The principle states that each real-world entity, in the form of the sequence of
module should hide a design decision that is events experienced by it tJacksons3, Cameron86t
considered likely to chr.nge. Each changeable Cameron89]. The graphical notation is similar to
decision is called the "secret" of the module. that used in Jackson Structured Programming
The reasons for applying information hiding (JSP) structure diagrams [Jackson75].
are to provide modules that are modifiable and g. JSD Network Diagrams
understandable, and hence maintainable. Be-
cause modules employing information hiding JSD network diagrams are used to show all the
are usually self-contained, they have a much processes in a JSD design and the interfaces be-
greater potential for reuse than most procedural tween them. Interfaces are represented in the
modules. form of data stream (message) communication or

state vector inspections [Jackson83, Cameron86,
4. Real-Time Design Representations Cameron89].

a. Data Flow/Control Flow Diagrams h. Object Diagrams

Data flow/control flow diagrams are used in Real- Object diagrams are used in object-oriented de-
Time Structured Analysis [Ward85, Hatley88]. Objec t s he used in therientem d
They are an extension of data flow diagrams to sign (tiD) to show the objects in the system and
include control flows and control transformations. to identify the visibility of each object in relation
Control flows represent event signals that carry to other objects [Botch861.
no data.. Control transformations control the ex- i. Class Structure Diagrams
ecution of data transformations and are specified
by means of state tra,iticn diagrams or decision Class structure diagrams are used in OOD to
tables' show the relationships between classes of objects

b. Task Structure Dir grams [Booch86].

Task structure diagrams are used by the DARTS j. State Transition Diagrams

design method [Gomaa84] to show the decom- State transition diagrams are a graphical represen-
position of a system into concurrent tasks and the tation of finite state machines (FSMs) in which
interfaces between them, in the form of messages, the nodes represent states and the arcs represent
event signals, and information hiding modules. state transitions [AlIworthB7]. They are used by

the Real-Time Structured Analysis [Ward85,
c. MASCOT Diagrams Hatley88] and DARTS [Gomaa84] methods.

MASCOT diagrams [AIlworth87, Simpson79, k. Statecharts
Simpson86] are used to show the decomposition
of a system into subsystems consisting of concur- Statecharts are an extension of FSMs that provide
rent tasks. The interfaces between tasks are in the a notation and approach for hierarchically struc-
form of channels (message queues) and pools turing FSMs and allowing concurrent FSMs that
(information hiding modules). interact with each other [Hare188b]. The objective

is to provide a notation that it is clearer and more
d. Structure Graphs (Buhr Diagrams) structured than state transition diagrams.

Structure graphs are used to describe the structure I. Petri Nets
of a system in terms of concurrent tasks, packages
(information hiding modules), and procedures Petri nets [Peterson81] are a graphical represe n-
[Buhr84]. These graphs are oriented toward use tation for modeling concurrfnt systems. Two
with the Ada programming language, but they types of nodes are supported: places ta are used
may also be used with languages such as to represent conditions and transitions that are
Modula-2. used to represent events. The execution of a-Petri

net is controlled by the position and movement of,
e. Structure Charts markers called "tokens." Tokensaire mov d bythe fr'ing of the transiiong~of:the niet., Ai

Structure charts are used in Structured Design tin o e to nsr henit. A Imsi
tion is enabled to fire when Al its input places

SEI-CM-22-1 .0T

Software Design Methods for Real-Time Systems

have tokens in them. When the transition fires, a I. Survey of Real-Time Software Design Methods
token is removed from each input place and a B
token is placed on each output place. Timed Petri Below is a survey of real-time structured design meth-
nets are an extension to Petri nets that allow finite ods. Each method treated is described and evaluated in
times to be associated with the firing of transi- subsections under the following headings:
tions. a. Overview

5. Role of Software Design Methods b. Basic Concepts

c. Steps in Method
This material is covered in [Budgen89]. d. Products of Design Process

6. Software Design Strategies for Real-Time e. Assessment of Method
Systems f. Extensions and/or Variations

The various design methods described in this mod- 1. Structured Analysis and Design for Real-Time
ule use different strategies and emphasize different Systems
design concepts in decomposing the system into its
components. A classification of them, based on the a. Overview
strategy used, is given below. Real-Time Structured Analysis and Design

a. Design Methods Based on Functional (RTSAD) is an extension of Structured Analysis
Decomposition and Structured Design to address the needs of

real-time systems. Real-Time Structured Anal-
This strategy is used by Real-Time Structured ysis (RTSA) is viewed by many of its users as
Analysis and Design [Ward85, Hatley88]. The primarily a specification method addressing the
system is decomposed into functions (called software requirements of the system being devel-
transformations or processes), and interfaces be- oped. Two variations of RTSA have been devel-
tween them are defined in the form of data flows oped-the Ward/Mellor [Ward85, Ward86] and
or control flows. Functions (i.e., data or control Boeing/Hatley [Hatley88] approaches. A third

* transformations) are mapped onto processors, variation, ESML, the Extended System Modeling
tasks, and modules [Ward85]. Language [Bruyn88], is a recent attempt to merge

the Ward/Mellor and Boeing/Hatley methods for W
b. Design Methods Based on Concurrent Task Real-Time Structured Analysis.

Structuring
The extensions to Structured Analysis are driven

This strategy is emphasized by DARTS by the desire to represent more precisely the be-
[Gomaa84]. Concuremnt tasking is considered a havioral characteristics of the system being devel-
key aspect in real-time design. DARTS provides oped. This is achieved primarily through the use
a set of task-structuring criteria to assist the real- of state transition diagrams, control flows, and in-
time system designer in identifying the concurrent tegrating state transition diagrams with data flow
tasks in the system. DARTS also provides guide- diagrams through the use of control transfor-
lines for defining task interfaces. mations (specifications).

c. Design Methods Based on Information Structured Design [Myers78, Page.Jones88,
Hiding Module Structuring Yourdon79] is a program design method that uses

This strategy aims at providing software compo- the criteria of module coupling and cohesion inconjunction with the transform-centered and
nents that are modifiable and maintainable, as
well as being potentially more reusable. This is transaction-centered design strategies to develop a
achieved through the use of information hiding in design, starting from a Strucu.red Analysis speci-
the design of components. Th, strategy is used fication.
by the Naval Research Lab Software Cost Reduc- b. Basic Concepts
ticai method [Pamas4] and the object-orienteddesin mtho [Bech6].(i) Data and Control Flow-Analysis,
design method [BoochB6]. InRTSAD, the system is strucft'ed, irv~o-func .

d. Design Methods Based on Modeling tSethe ystissfouctiredor ~ s),nc
Problem Domain tos(aldtasomtoso~rcse) nthe interfaces between tem aredefinediithe
This strategy is emphasized by the Jackson Sys- form of data flows or controlflowS. T m --inf-
tem Development method (Jackson83, mations may be data or contiol W tmn sfo
Cameron86, Cameron89]. With this strategy, the mations. The system is, sftrcr 'da a l hirar-
objective is to model entities in the problem chical set of dataflow/control flow -ram,
domain and then map them onto software proc- that may be checked, for coAi~le .and con-
esses. sistency.

8 S~-M22',.

Software Design Methods for Real-Time Systems

(ii) Finite State Machines (i) Develop the System Context Diagram

Finite state machines, in the form of state tran- The system context diagram defines the bound-
sition diagrams, are used to define the be- ary between the system to be developed and
havioral characteristics of the system. The the external environment. The data flow and
major extension to Structured Analysis is the control flow interfaces between the system and
introduction of control considerations, through the external entities that the system has to in-
the use of state transition diagrams. A control terface to are defined.
transformation represents the execution of a
state transition diagram. Input event flows (ii) Perform Data Flow/Control Flow
trigger state transitions, and output event flows Decomposition
control the execution of data transformations A hierarchical data flow/control flow decom-
[Ward851. position is performed, starting from the system

In the Boeing/Hatley and ESML methods, it is context diagram. The BoeingfHatley approach
also possible for a control transformation to be emphasizes hierarchical decomposition of both
described by means of a decision table. Proc- function and data. The Ward/Mellor approach
ess activation tables are also used in Boeing/ starts with an event list, which is a list of input
Hatley to show when processes events, and then identifies the functions that
(transformations) are activated, operate on each input event. These functions

are then aggregated to achieve a top-level data
(iii) Entity-Reiationship Modeling flow diagram and decomposed to determine

Entity-relationship diagrams are used to show lower-level functions.

the relationships between the data stores of the (iii) Develop Control Transformations
system [Yourdon89]. They are used for identi- (Ward/Mellor) or Control Specifications
fying the data stores (either internal data struc- (Boeing/Hatley)
tures or files) and for defining the contents
(attributes) of the stores. These are particularly A control transformation is defined by means
useful in data-intensive systems. of a state transition diagram. A control specifi-

cation may be defined by one or more of state
(iv) Module Cohesion transition diagrams (tables), decision tables,

Module cohesion is used in module decom- and process activation tables. It is associated
position as a criterion for identifying the with a data flow diagram at any level of the
strength or unity within a module [Myers78, hierarchy.
Page-Jones88, Yourdon79]. Functional and in- Each state transition diagram shows the differ-
formational cohesion are considered the ent states of the system or subsystem. It also
strongest (and best) form of cohesion. In the shows the input events (or conditions) that
early practice of Structured Design cause state transitions and actions resulting
[Yourdon79], functionally cohesive modules in from state transitions. In the Boeing/Hatley
the form of procedures were emphasized. The method, the process activation table shows the
informational cohesion criterion was added activation of processes (data transformations)
later by Myers [Myers78] to identify informa- resulting from the actions of the state transition
tion hiding modules. diagram.

(v) Module Coupling (iv) Define Mini-Specification (Process

Module coupling is used in module decomposi- Specification)
tion as a criterion for determining the connec- Each leaf node data transformation on a data
tivity between modules [Myers78, Page- flow diagram is defined by writing a mini-
Jones88, Yourdon7g]. Data coupling is consid- specification, usually in structured English, al-
ered the lowest (and best) form of coupling, in though other approaches are considered accept-
which parameters are passed between modules. able as long as the specification is a precise and
Undesirable forms of coupling include com- understandable statement of requirements
mon coupling, where global data are used. [Yourdon89].

c. Steps in Method (v) Develop Data Dictionary

* During the Real-Time Structured Analysis stage, A data dictionary is developed that defines all
the following activities take place. (It should be data flows, event flows, and data stores.
noted that steps (ii) - (v) are not necessarily se-
quential and that the steps are usually applied Following the RTSA phase, the WaVellor.
iteratively):

SEI-CM-22-1.0 9

Software Design Methods for Real-Time Systems

and Boeing/Hatley approaches diverge. The mation is described by a structured English
Boeing/Hatley approach uses system architec- mini-specification, while a control transfor-
ture diagrams [Hatley88]. The Ward/Mellor ap- mation (Ward/Mellor) is defined by means of a
proach continues as follows [Ward85]: state transition diagram.

(vi) Allocate Transformations to Processors A control specilication (Boeing/Hatley) may be
The RTSA transformations are allocated to the defined by one or more of state transitionThe TSAtrasfomatons re lloate tothediagrams (tables), decision tables, and process

processors of the target system. If necessary, activation tables, and is associated with each

the data flow diagrams are redrawn for each data flow diagram.

processor.

(vii) Allocate Transformations to Tasks (v) Program Structure Charts

The transformations for each processor are al- For each program, there is a structure chart
loated tr ormaonsrn ta s s r Each tak showing how it is decomposed into modules.
located to concurrent tasks. Each Each module is defined by its external specifi-
represents a sequential program. cation, namely, input parameters, output

(viii) Structured Design parameters, and function. The internals of themodule are described by means of pseudocode.

Transformations allocated to a given task are

then structured into modules using the Struc- e. Assessment of Method
tured Design method. Structured Design uses (i) Strengths
the criteria of module coupling and cohesion in
conjunction with two design strategies, trans- * Structured Analysis and the real-time
form analysis and transaction analysis, to de- extensions have been used on a wide
velop a program design starting from a Struc- variety of projects, and there is much
tured Analysis specification. experience in applying the method.

* There are a wide variety of CASE
Transform analysis is a strategy used for trans- t t are RT ofA
forming a data flow diagram into a structure tools to support RTSA.

chart whose emphasis is on input-process-out- - The use of data flow and control flow

put flow [Myers78, Page-Jones88, Yourdon79]. diagrams can assist in understanding
Thus, the structure of the design is derived and reviewing the system. For ex-
from the functional structure of the specifica- ample, a good overview of the sys-
tion. The input branches, central transforms, tern can be obtained.
and output branches are identified on the data e Emphasizes the use of state transition
flow diagram and are structured as separate diagrams/matrices, which is particu-
branches on the structure chart. larly important in the design of real-

Transaction analysis is a strategy used for time control systems.

transforming a data flow diagram into a struc- The Structured Design module
ture chart whose structure is based on identi- decomposition criteria of cohesion
fying the different transaction types [Myers78, and coupling help in assessing the
Page-Jones88, Yourdon79]. The processing quality of a design.
required for each transaction type is identified (ii) Weaknesses
from the data flow diagram, and the system is
structured such that there is one branch on the * There is not much guidance as to
structure chart for each transaction type. There how to perform a system decomposi-
is one controlling "transaction center" module. tion. Consequently, different devel-

opers could structure the system ind. Products of Design Process opesancould strctret yst
substantially different ways.

For the RTSA specification, these consist of: , RTSA is usually considered a re-
quirements specification method.

(i) System Context Diagram However, unlike the NRL Require-
(ii) Hierarchical Set of Data Row/Control meats Specification method, which

Flow Diagrams treats the system to be developed as a
black box, RTSA addresses system

(iii) Data Dictionary decomposition. Hence, there is a ten-
(iv) Mini-Specifications dency in many projects to make de-

sign decisions during this phase, par-
For each primitive transformation, i.e., one that ticularly if the specification gets de-
is not decomposed further, a data transfor-

10 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

tailed. This makes the boundary be- mation is used during the design phase in devel-
tween requirements and design fuzzy. oping the module structure).

Although Structured Design can beAlhus htued esigningindiv l ta, it The software structure of a system is considered

is limited for designing concurrent as consisting of three orthogonal structures-the
isylitesad henc rel-timcnuent module structure, the uses structure, and the proc-
systems, and hence real-time sys- ess (task) structure tParnas74, Parnas84]. The
tems, because of its weaknesses in module structure is based on information hiding.
the areas of task structuring. Thus, Each module is a work assignment for a program-
Structured Design is a program de- mer or team of programmers. The uses structure
sign method leading primarily to determines the executable subsets of the software.
functional modules and does not ad- The process (task) structure is the decomposition
dress the issues of structuring a sys- of run-time activities of the system.

tem into concurrent tasks.

In its application of information b. Basic Concepts
hiding, Structured Design lags behind (i) Information Hiding
the Naval Research Lab and object-
oriented design methods. This is dis- The NRL method applies the information
cussed in more detail in Section V. hiding concept to the design of large scale sys-

tems [Parnas84]. The use of information
f. Extensions and/or Variations hiding emphasizes that each aspect of a system

ESML, the Extended System Modeling Language that is considered likely to change, such as a
system requirement, a hardware interface, or a

[Bruyn88], is a recent attempt to merge the software design decision, should be hidden in a
Ward/Mellor and Boeing/Hatley methods for separate module, The changeable aspect is
Real-Time Structured Analysis. As an example, called the "secret" of the module. Each mood-

consider the ESML approach to developing state ule has an abstract interface that provides the
transition diagrams. The Ward/Mellor approach external view of the module to its users.
supports events, but not conditions, whereas the
Boeing/Hatley approach supports conditions, but (ii) Information Hiding Module Hierarchy
not events. Each of these restrictions is overcome
in ES IL, which supports both events and con- To manage the complexity of handling large
ditions, in common with the NRL method numbers of information hiding modules, the
[Parnas86] and Statecharts [HareI88a, Hare188b]. NRL method organizes these modules into a

tree-structured hierarchy and documents them
2. Naval Research Lab Software Cost Reduction in a module guide. Criteria are provided for

Method structuring the system into modules.
a. Overview (iii) Abstract Interface Specifications

The Naval Research Laboratory Software Cost An abstract interface specification defines the
Reduction method (NRL) originated to address visible part of an infomation hiding module,
the perceived growing gap between software et- vis art tha information id modle J

gineering principles advociued in academia and that is all the information reouired by the user

the practice of software engineering in industry operations provided by the module. The ab-

and government [Parnas84]. These principles stract interface to a module is intended to
formed the basis of a design method that has been remain unchanged, even if thoe module's secret
applied to the development of a complex real- changes.
time system, namely the onboard flight program
for the U.S. Navy's A-7 aircraft. Several prin- (iv) Design for Extension and Contraction
ciples were refined as a result of experience inapplying them in this project. Design for extension and. contraction is

achieved by means of the uses hierarchy,

Applications of the design method is preceded by which is a hierarchy of operations (Access pro-
a specification phase in which a black box re- cedures or functions) proVidd bythe ifora-
quirements specification is produced don hiding modules. An operaftonAuss an
[HeningerSO]. During the requirements phase, operation B if and only if A cannot-m1tits
consideration is given to factors that could have a specification unless there is a correct versionofd
profound effect on the future evolution of the sys- B. By considering subsets andoperiets, de-
tem, namely the desirable system subsets (this in- signing systems is seen as a process of design;-
formation is used during the design phase in de- ing program families.
veloping the uses hierarchy) and the likely future
changes to the system requirements (this infor-

SEI-CM-22-1.0 11!'

Software Design Methods for Real-Time Systems

c. Steps in Method ware interface that are likely to change,
whereas the latter hide the characteristics of

The following steps in the NRL method are based I/O devices that are likely to change.
on [Parnas86]. Reviews are considered an inte-
gral part of the method and are conducted for (2) Behavior Hiding Modules
each work product [Parnas85]. These are modules that hide the behavior of

(i) Establish and Document Requirements the system as specified by the functions de-
fined in the requirements specification.

The software reqi'irements specification is a Thus, if the requirements change, these
black-box specification of the system. The modules are affected.
method emphasizes the outputs of the system
over its inputs. The system is viewed as a (3) Software Decision Modules
finite state machine whose outputs define the
system outputs as functions of the state of the These are modules that hide software desig-
system's environment, ner decisions that are likely to change.

The method uses separation of concerns in or- (iii) Design and Document Module Abstract
ganizing the specification document. Sections Interfaces
are provided on the computer (hardware and The abstract interface specification for each
software) specification, the input/output inter- leaf module in the module hierarchy is devel-
faces, specification of output values, timing oped. This specification defines the external
constraints, accuracy constraints, likely view of the information hiding module, i.e., all
changes to)the system, and undesired event the information required by the user of the
handling. The requirements method is dis- module. It is intended to contain just enough
cussed in more detail in [Heninger80] information for the programmer of another

(ii) Design and Document the Module module to be able to use it. The interface spec-

Structure ification includes the operations provided by
the module, the parameters for these opera-

To manage the complexity of handling large tions, the externally visible effects of the
numbers of modules, the NRL method organ- module's operations, timing and accuracy con-
izes information hiding modules into a tree- straints, assumptions that users and implemen-
structured hierarchy and documents them in a tors can make about the module, and definition
module guide. The guide defines the responsi- of undesired events raised. More information
bilities of each module by describing the de- on designing abstract interfaces is given in
sign decisions that are to be encapsulated in the [Britton8l]
module. The module guide helps to provide (iv) Design and Document Uses Hierarchy
structure, a check on completeness, and to
avoid duplication of function. The guide al- The uses hierarchy defines the subsets that can
lows modules to be referenced more easily dur- be obtained by deleting operations and without
ing the subsequent development and mainte- rewriting any operations. This is important for
nance phases of the project. staging system development and for develop-
The module hierarchy is an "is composed f" ing families of systems. During this stage, theoTeahon modul hirach isc oprano "isvd copseyf
relation. Each non-leaf module is composed of operations used by each operation (provided by
lower-level modules. Leaf modules are ex- a module) are determined. By this means al -leve main categories of modules, as hierarchy of operations is developed. Thedetermined on the A-7 project, are: "allowed-to-use structure" defines the possible

choices of operations, while the "uses
* Hardware hiding modules structure" specifies the choice of operations for
e Behavior hiding modules a particular version (member of the family).
* Software decision modules More information on the uses hierarchy is* Sotwar deisio modlesgiven in [Pamas79]

Further categorization of modules may be car-
ried out, although this is likely to be (v) Design and Document Module Internal
application-dependent. Module structuring is Structures
described in more detail in (Pamas84]. After designing the module abstract interfae,

(1) Hardware Hiding Modules the internal design of each module is devel-

These are either extended computer modules oped. This includes designing the internal data

or device interface modules. The former structures and algorithms used by the modules.
hidevthe harateriics mofs The rre - In some cases, the module may be decomposehide the characteristics of the hardware/soft- further into sub-modules.

12 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

During this phase, the process (task) structure is often difficult to see how the major
of the system is developed [Faulk88]. Separa- components of the system fit togeth-
tion of concerns is used in designing the task er. This is compounded by the lack
structure. Inter-task synchronization is of any graphical notation.
achieved by means of events. Tasks may be There is less emphasis on task struc-
demand or periodic tasks. turing. Although recognized as an

d. Products of Design Process important software strucrare, little
guidance is given as to how to iden-

(i) Software Requirements Specification tify the tasks in the system.
(ii) Module Guide *Proceeding from the software re-
(iii) Module Abstract Interface quirements specification to the mod-

Specifications. ule structure is often a big step. It is
possible for significant components

(iv) Uses Hierarchy of the system to be omitted, partic-
(v) Module Internal Structures ularly those not directly visible from

(vi) Task Structure the requirements specification, e.g.,
software decision modules.

e. Assessment of Method
(i) Strengths f. Extensions and/or Variations

The ADARTS method [Gomaa89b, Gomaa89c]* Emphasis on information hiding uses a set of module structuring criteria that are
leads to modules that are relatively based on the NRL module structuring criteria for
modifiable and maintainable, identifying information hiding modules, in addi-

* In addition to the emphasis on infor- tion to a set of task structuring criteria for identi-
mation hiding, the module hierarchy fying concurrent tasks.
provides a means of managing large
numbers of modules by organizing 3. Object-Oriented Design
them into a tree-structured hierarchy. a. Overview

.Emphasis is placed on designing for Object-oriented design (OOD) is a design method
change. This starts during the re- based on the concepts of abstraction and infor-
quirements phase when likely mation hiding. There has been much debate onchanges in requirements are consid- whether inheritance is an essential feature of
ered. It continues into design with object-oriented design. Two views of OOD are to
the module structure, where each be found. The first is in the Ada world, and its
module hides an independently most widely known advocate is Booch [Booc;.. ,
changeable aspect of the system. Booch87a, Booch87b]. It holds that inheritance is

* Emphasis is placed on identifying a desirable but not essential feature of OOD. The
system subsets. This also starts dur- second view originated in the object-oriented pro-
ing the requirements phase when de- gramming area, as illustrated by Smalltalk
sirable subsets are identified. It con- [Goldberg83], C++ [Stroustrup86], and Eiffel
tinues in the design phase with the [Meyer88]. This view states that inheritance is an
uses hierarchy. essential feature of OOD.

* There is a clear separation between In a recent taxonomy of languages supporting ob-
requirements and design. The re- jects, Weger [Wegner87] has referred to lan-
quirements present a black-box view jes Wegner nfrmto ha d todln
of the system, emphasizing inputs, guages that support information hiding modules
outputs, externally visible states and (objects) but not inheritance, such as Ada and

Modula-2, as object-based languages, while Ian-their transitions, as well as output- guages that support objects, classes, and in-oriented functions.
heritance are considered object-oriented laW-

*Emphasizes the use of finite state guages. However, a similar taxonomy for object-
machines, which is particularly im- oriented design methods has not been constructed.
portant in the design of real-time
control systems. In this section, the Booch view is used, sinceit is

widely referenced in the Ada-based real-time sys-
(ii) Weaknesses tem domain. Booch starts with an English Ilan-

guage or RTSA system specification "nd thenIt is usually difficult to get an over- provides object structurig criteria for.6dtermin-view of the system. In particular, it ing the objects in the system.

SEI-CM-22-1.0 13

Software Design Methods for Real-Time Systems

b. Basic Concepts (ii) Identify the Operations Suffered by and
(i) Object Identification Required of Each Object

Objects are identified by determining the en- In this step, the behavior of each object is
tities in the problem domain. Each real-world characterized by identifying the operations that
entity is mapped onto a software object. it provides and that are used by other objects,

as well as the operations it uses from other ob-
(ii) Abstraction jects. Starting with a Structured Analysis spec-

Abstraction is used in the separation of an ification, operations are identified from the

object's specification from its body. The spec-transformations on the data flow diagrams.

ification is the visible part of the object and (iii) Establish the Visibility of Each Object in
defines the operations that may be performed Relation to Other Objects
on the object, i.e., how other objects may use
it. The body of the object, i.e., its internal part, The static dependencies between objects are
is hidden from other objects. Abstraction is identified. Visibility is considered on an object
also used in developing object hierarchies. basis (corresponding to the Ada "with" clause).

A decision might be made to create a new class
(iii) Infonnation Hiding that defines the common behavior of a group of

Information hiding is used in structuring the similar objects. An object diagram is drawn to

object, i.e., in deciding what information show these dependencies.

should be visible and what information should Three kinds of objects are possible: servers
be hidden. Thus, those aspects of a module (that provide operations for other objects but
that need not be visible to other objects are do not use operations from other objects), ac-
hidden. Hence, if the internals of the object tors (that use operations from other objects but
change, only this object is impacted. do not provide any), and agents (that provide

c. Steps in Method oprations and also use operations from otherobjects).
(i) Identify the Objects and Their Attributes o'et)

(iv) Establish ihe Interface of Each Object
In OOD, an object is considered to have state,
i.e., persistent data. The state of the object T.e outside view of each object is developed.
changes as a result of operations on the object. The interface forms the boundary between the
The characteristics of an object are that it: ooject's outside view and inside view. An Ada

Shas state package specification may now be developed
f)r the object.

" is characterized by the actions it suf-
fers (operations it provides) and re- (v) mplement Each Object
quires (uses) of other objects he internals of each object are developed.

* is a unique instance of some class "bis involves designing the data structures and
" has restricted visibility of and by internal logic of each object.

other objects other bjectsd. Pn~ducts of Design Process

" can be viewed either by its specifi-
cation or implementation Bcch [Booch86] has described four products of

an object-oriented design. In addition, each pack-
An informal strategy is used for identifying ob- age is specified by means of an Ada package
jects. Initially, Booch [Booch87a] advocated specification.
identifying objects by underlining all nouns
(which are candidates for objects) and verbs (i) A Hardware Diagram
(candidates for operations) in the specification. This captures the organization of the under-
However, this is not practical for large-scale or lying target hardware system.
even medium-size systems.

Booch later advocated the use of Structured (i) A Class Structure Diagram
Analysis as a starting point for the design, and This shows the relationships among classes of
then id,!ntifying objects from the data flow objects.
diagrams by applying a set of object structur- 1
ing criteria [Booch86, Booch87b]. For each ex- (ii) An Object Diagram
ternal entity on the system context diagram, This shows the visibility of each object in rela-
there is a corresponding software object. For t
each data store on the data flow diagrams, there
is a corresponding software object.

14 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

(iv) The Architecture Diagram ing approach to software design. A JSD design
f models the behavior of -eal-world entities overThis represents the physical design of the sys- time. Each entity is mapped onto a software

tern and shows the system structured into Ada process (task). JSD is an outgrowth of Jackson
packages. Structured.Programming (JSP), which is a pro-

e. Assessment of Method gram design method [Jackson75]. As JSD has
evolved over several years, this section describes

This assessment is made in terms of how ap- JSD as presented in the latest material available to
plicable QOD is to the design of real-time sys- the author [Cameron89].
tems.

Although JSD is, in principle, applicable to real-
(i) Strengths time systems, the emphasis of earlier work

[Jackson83, Cameron86] has been on data proc-* Is based on the concepts of abstrac- essing applications. More recently, however, a
tion and information hiding, two key number of articles have directly addressed the is-
concepts in software design. sue of applying JSD to real-time systems

" Structuring the system into objects, [Renold88, Cameron89, Sanden89]. Ranold de-
which are implemented as packages, scribed mapping JSD designs to concurrent proc-
should make the system more main- essing implementations. A report in [Cameron89]
tainable and components potentially descnbes mapping a JSD design to the MASCOT
reusable. notation [Simpson86], which specifically ad-

* Maps well to languages that support dresses concurrent processing. Sanden
information hiding modules such as [Sanden89] describes a variation on JSD that ad-
Ada and Modula-2. dresses the needs of real-time systems and also

maps directly to Ada.(ii) Weaknesses b. Basic Concepts

* Does not adequately address the im- (i) Modeling the Real World
portant issues of task structuring, an
important limitation in real-time de- A fundamental concept of JSD is that the de-
sign. sign should model reality first [Jackson83], be-

* The form of the solution depends fore considering the functions of the system.
on the informal strategy The system is considered a simulation of the

used for identifying objects. real world. The functions of the system arethen added to this simulation.
" Does not address timing constraints.
" The object structuring criteria are not (ii) Entities and Concurrent Processes

as comprehensive as the NRL mod- Each real-world entity is modeled by means ofule structuring criteria. This is dlis- a concurrent process called a model process.
cussed in more detail in section V. This process faithfully models the entity in the

f. Extensions and/or Variations real world. Since real-world entities usually
have long lives, each model process typically

More recently, object-oriented analysis [Shlaer88] also has a long life.
methods have emerged. These methods use
entity-relationship modeling techniques for iden- (iii) Transformation to Compute
tifying objects in the problem domain. Seidewitz Representation
[Seidewitz86, Seidewitz88] has also developed a The model of reality. in terms of potentially
method called the General Object-Oriented De- large numbers of software processes is trans-
sign (GOOD) method. With this approach, the formed in a series of steps to an implemen-
specification effort begins by identifying entities tation version that consists of one or more con-
in the problem domain. The ADARTS method current tasks.
[Gomaa89b, Gomaa89c] applies task structuring
criteria in addition to module structuring criteria c. Steps in Method
that incorporate the OOD object structuring crite- (i) Model Phase
ria.

During the modeling phase, the real-world en-4. Jackson System Development for Real-Timetiearidnfed Eahniyisein i
tidles are identitied. Each entity is-defined in

Systems terms of the actions (events) it experiences.
a. Overview The attributes of each action experienced'bythe entity are defined& Fuiihermori the attfi-

Jackson System Development (JSD) is a model-

SEI-OM-22-1.0 15

Software Design Methods for Real-Time Systems

butes of the entity itself are also defined. An is little or no need for program inversion.
entity structure diagram is developed, in which Mappings to Ada implementations have also
the sequence of actions experienced by the en- been defined [Cameron89].
tity is explicitly shown. A software model d. Products of Design Process
process is created for each entity and has the d. Process Deinios
same basic structure as the entity. (i) Process Definitions

(ii) Network Phase Given as structure diagrams and structure text.
In the case of model processes, this also in-During this phase, the communication between cludes the definition of the entity attributes, as

processes is defined, function is added to well as each input action and its attributes.
model processes, and function processes are
added. (ii) System Network Diagram

Communication between processes is in the Shows the concurrent model and function proc-
form of data streams of messages or by means esses in the system and -their data stream and
of state vector inspections. In the first case, a state vector interfaces.
producer process sends a message to a con- (iii) System Implementation Diagram
sumer, whereas in the latter case, a process
may read data belonging to another process. A Shows the physical implementation of the sys-
network diagram is developed showing the tem, as well as structure text for the system
communication between the model processes. implementation.

The functions of the system are considered e. Assessment of Method
next. Some simple functions are added to the
model processes, providing they can be directly This assessment is made in terms of how ap-
associated with an action experienced by the plicable JSD is to the design of real-time systems.
process. Other independent functions are
represented by function processes. Typical
function processes are input data collection * The emphasis on modeling real-
processes, error handling processes, output world entities is a theme that has
processes, and interactive processes. The net- since been followed by several of the
worl..,agram is updated to show the function object oriented analysis and design
proc,. ses and their communication with other methods.
function or model processes. * Modeling each real-world entity by

After the network diagram has been estab- emphasizing the sequence of events
lished, the timing constraints of the system are experienced by the eatity is espe-
considered. Thus, it can be specified that cer- cially relevant in real-tine system de-
tain system outputs must be generated within a sign.
specified time from the arrival of certain in- * Concurrent processing is a central
puts. theme of the method.

(iii) Implementation Phase o Clear steps are provided for mapping
a JSD design to an implementation.

During the implementation phase, the JSD
specification, consisting potentially of a very (ii) Weaknesses
large numbers of processes, is mapped onto an o Since the entity structure-and con-
implementation version that is directly ex- sequently the process struture-
ecutable. Originally, with the emphasis on
data processing, the specification was mapped models the sequence of events in the
onto one program using the concept of program small changes in the real world can
inversion [Jackson75]. Each process is trans- smal chesithe re wrcn
formed into a subroutine; a scheduler impact the software structure. This
(supervisory) routine decides when to call the could make maintainability more dif-

process routines. ficult and is a potential hindrance to
reuse [Cameron89].

During the implemntation phase, JSD specifi- * It is often easier to model event se-
cations can be mapped to real-time designs. quences in a complex entity using a
Mappings have been defined from JSD to state transition diagram than an entity
MASCOT subsystems, activities, channels, and structure diagram. This is particular-
pools [Cameron89]. With this approach, there ly the case in real-time systems

16 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

where complex event sequences are The DARTS method has evolved over ume. In-
not unusual, a fact recognized by itially, it started with a Structured Analysis speci-
some real-time system advocates of fication [Gomaa84]. Later, after the introduction
JSD [Renold88, Sanden89]. of Real-Time Structured Analysis (Ward85], it
The guidelines for the identification was extended to start with a Real-Time Structured
of function processes are rather Analysis specification [Gomaa87]. A more recent
vague. In many JSD examples development has been an extension to DARTS
[Jackson83, Cameron86, called ADARTS, Ada-based Design Approach for
Cameron89], there are substantially Real-Time Systems [Gomaa89b, Gomaa89c], to
more function processes than model address structuring a real-time system into con-
processes. current tasks and information hiding modules.

Another extension, DARTS/DA (Gomaa89a],
SJSD does not emphasize data abstrac- deals with structuring a real-time application into
tion and information hiding. This distributed real-time subsystems. More informa-
could have a negative impact on tion on these extensions is given below.
maintainability.

f. Extensions and/or Variations b. Basic Concepts(i) Task Structuring Criteria
Sanden [Sanden89] describes a variation on JSD

that addresses the needs of real-time systems and A set of task structuring criteria are provided to
also maps directly to Ada. The approach, called assist the designer in structuring a real-time
Entity-Life Modeling, eliminates the distinction system into concurrent tasks. These criteria are
between model and function processes, maps a set of heuristics derived from experience ob-
processes directly onto Ada tasks, uses state tran- tained m the design of concurrent systems,
sition diagrarr.. instead of entity structure The main consideration in identifying the tasks
diagrams when this is considered desirable, and is the concurrent nature of the functions within
uses information hiding modules to encapsulate the system. In DARTS, the task structuring
data structures and state vectors, criteria are applied to the transformations

(funations) on the data flow/control flow. 5. DARTS (Design Approach for Real-Time diagrams developed using Real-Time Struc-
,ystems) tured Analysis. Thus, a function is grouped
a. Overview with other functions into a task based on the

temporal sequence in which the functions are
The DARTS design method emphasizes the executed.
decomposition of a real-time system into concur-
rent tasks and defining the interfaces between (ii) Task Interfaces
these tasks. The method originated because of a Guidelines are provided for defining the inter-
perceived problem with a frequently used ap- faces between concurrent tasks. Task inter-
proach for real-time system development. This faces are in the form of message communica-
involves using Structured Analysis, and more re- tion, event synchronization, or information
cently Real-Time Structured Analysis (RTSA), hiding modules croM). Message coimani-
during the analysis phase, followed by Structured cation may be either loosely coupled or tightly
Design during the design phase. The problem coupled. Event synchronization is provided in
with this approach is that it does not take into cases where no data are passed between tasks.
account the characteristics of real-time systems, Access to shared data is provided by means of
which typically consist of several concurrent IHMs.
tasks (processes). (ii!) Information Hiding
The DARTS design method aadresses these is-
sues by providing the decomposition principles Information hiding is used as a criterion for
and steps for allowing the software designer to encapsulating data stores. IHMs are used for
proceed from a Real-Time Structured Analysis hiding the contents and representation of data
specification to a design consisting of concurrent stores and state transition tables. Where an
tasks. DARTS [Gomaa84, Gomaa86a, Gomaa87] IBM is accessed by more than one-talk, the
provides a set of task structuring criteria for struc- access procedures must synchronize, e access
turing a real-time system into concurrent tasks, as to the data.
well as a mechanism for defining the interfaces (iv) Finite State Machines
between tasks. These criteria may be applied to a (•
specification developed using RTSA. Each task, Finite state machines, in the formof state tran-
which represents a sequential program, may then sition diagrams, are used to define the be.
be designed using Structured Design.

SEI-CM-22-1.0 '17

Software Des - Methods for Real-Time Systems

havioral characteristics of the system. State ing the sequence of task execution from exter-
transition diagrams are an effective tool for nal input to system response.
showing the different states of the system and
the transitions between them. (iv) Design Each Task

(v) Evolutionary Prototyping and Each task represenis the execution of a sequen-

Incremental Implementation tial program. Using the Structured Design
method, each task is structured into modules.

Evolutionary prototyping and incremental im- Either transform analysis or transaction anal-
plementation are assisted by the identification ysis is used for this purpose. The function of
of system subsets using event sequence each module and its interface to other modules
diagrams. These diagrams identify the se- are defined. The internals of each module are
quence of execution of tasks and modules that designed.
are required to process an external event. Sys-
tem subsets form the basis for incremental de- d. Products of Design Process
velopment. (i) RTSA Specification

c. Steps in Method See section on RTSA.

(i) Develop Structured System Specification (ii) Task Structure Specification
using Real-Time Structured Analysis Defines the concurrent tasks in the system. The
The system context diagram and state transi- function of each task and its interface to other
tion diagrams are developed. The system con- tasks are specified.
text diagram is decomposed into hierarchically
structured data flow/control flow diagrams. (ifl) Task Decomposition
The relationship between the state transition The decomposition of each task into modules
diagrams and the control and data transfor- is defined. The function of each module, its
mations (functions) is established. This step is interface, and detailed design in PDL, are also
similar to RTSA steps (i) - (v). defined.

(ii) Structure the System into Concurrent e. Assessment of Method
Tasks (i) Strengths

The task structuring criteria are applied to the
leaf nodes of the hierarchical set of data flow/ *Emphasizes the decomposition of the
control flow diagrams. A preliminary task system into concurrent tasks and pro-
structure diagram is drawn, showing the tasks vides criteria for identifying the
identified using the task structuring criteria. tasks, an important consideration in
I/O transforms that interface to external de- real-time system design.
vices are mapped to asynchronous /0 ta:;ks or *Provides detailed guidelines for de-
periodic I/O tasks. Internal transforms are fining the interfaces between tasks.
mapped onto control or periodic tasks and/or Emphasizes the use of stat, transition
may be combined with other transforms ac- diagrams, which is particularly im-
cording to the sequential, tempora!, or func- portant in the design of real-time
tional cohesion criteria. control systems.

(iii) Define Task Interfaces *Provides a transition from a Real-
Time Structured Analysis specifica-

Task interfaces are defined by analyzing the tion to a real-time design. Real-Time
data flow and control flow interfaces between Structured Analysis is probably the
the tasks identified in the previous stage. Data most widely used aflysis and spei
flows between tasks are transformed into either mostidl ed analin sc-
loosely coupled or tightly coupled message in- tes. Its use is being encor aged by

terfaces. Control flows are transformed into the proliferation of CASE tools sup-
event signals. Data stores form the basis of porting the method. However, many
information hiding modules. designers then find it difficult to

At this stage, a timing analysis may be per- proceed to a real-time design.
formed. Given the required response times to DARTS directly addresses this issue
external events, timing budgets are allocated to by providing the decomposition prin.
each task. Event sequence diagrams ciples and steps for allowing the soft-
[Gomaa86a] can help in this analysis by show- ware designer to proceed from a

Real-T'mue Struetured Analysis speci-

18 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

fication to a design consisting of con- ments Engineering Methodology) method [Alford85].
current tasks. DCDS provides a graphical notation for hierarchi-

(ii) Weaknesses cally decomposing a real-time system design, em-
phasizing events, as well as both sequential and con-

Although DARTS uqes information current functions. With each high-level function, a
hiding for encapsulating data stores, performance index (i.e., maximum allowed response
it does not use information hiding as time) is provided. As the function is hierarchicallyitde ls no te nranhidig a decomposed, the performance index is dividedmethods. Instead, it uses the Struc- amongst the lower-level functions. Eventually, at
tured Design method, not information the lowest level of decomposition, sequential and
hiding, for structuring tasks into concurrent functions are allocated to the components
procedural modules. of the real-time system.

" A potential problem in using DARTS PAMELA [Cherry86] is a software design method
is that if the RTSA phase is not done that is strongly oriented toward Ada. The method
well, this could make task and pack- uses a hierarchical decomposition approach, based
age structuring more difficult. One on data flow diagrams, in which transformations are
of the problems of RTSA is that it eventually decomposed into concurrent tasks at the
does not provide many guidelines as lowest level. The tasks and their interfaces are
to how to perform a system decom- mapped to Ada.
position. The approach recom-
mended with DARTS is to develop Some real-time design approaches are actually de-
the state transition diagrams before sign notations that suggest a particular approach to
the data flow diagrams, i.e., to pay performing a decomposition. However, they do not
attention to control considerations provide the principles and steps for performing a
before functional considerations. design, and hence are not strictly design methods.

Statecharts [Harel88b] are a graphical notation for
f. Exter zions and/or Variations hierarchically decomposing state transition

(i) DARTS/DA diagrams. Statemate [Harel88a] is a tool based on
statecharts that also includes activity charts and

Ip large systems, it is usually necessary to module charts. Statemate can be used to support
structure a system into subsystems before various specification and design methods. For ex-
structuring the subsystems into tasks and mod- ample, an industrial course is available showing how
ules. One approach for structuring a system a Real-Time Structured Analysis [Ward85] specifi-
into subsystems is an extension to DARTS to cation can be expressed in Statemate.
support distributed real-time applications,
called DARTS/DA [Gomaa89a]. MASCOT diagrams [Simpson7g, Simpson86] are a

notation for concurrent systems. This notation has
(ii) ADARTS been used in conjunction with JSD, as described in

The DARTS weakness in information hiding is Section 111.4 and [CameronSg].
addressed by the ADARTS method IV. Design Verification and Validation
(Gomaa89b, Gomaa89c]. ADARTS uses the
DARTS task structuring criteria for identifying This section addresses design verification and valida-
tasks, but it replaces Structured Design with an tion. For more detailed information on software verifi-
information hiding module structuring phase in cation and validation, refer to the introduction of
which modules are identified using a set of [Collofello88b].
module structuring criteria. These criteria are 1. Software Technical Reviews
based on the Naval Research Laboratory meth-

od [Parnas84] module structuring criteria, sup- The purpose of software technical reviews is to de-
ported by the object-oriented design [Booch86] tect errors in software products. Reviews should be
object structuring criteria. ADARTS designs carried out throughout the life cycle. Studies have
may be described using a graphical notation shown that the longer an error goes undetected, the
similar to Buhr diagrams [Buhr84]. more costly it is to correct [Boehm76]. Technical

reviews can be very effective at uncovering design
6. Other Real-Time Software Design Methods errors. Most design methods do not specif y a-

Some other software design methods for real-time dress reviews. However, software devel4int or.
systems are briefly reviewed in this section. ganizations frequently incorporate design- methods,"

and technical review predures fo" pioducts Of the
The Distributed Computing Design System (DCDS) design process into a software life cycle 'that is,
is an outgrowth of the SREM (Systems Require- tailored to the organizations' needs.

SEI-CM-22-1.0 19

Software Design Methods for Real-Time Systems

One design method that also addresses design re- detailed information on this topic, refer to
views is the NRL method, which uses a procedure [Perlman88]. Throw-away prototypes can also be
called Active Design Reviews (Parnas85]. With this used for experimental prototyping of the design.
approach, each reviewer is expected to answer a set They can be used to determine if certain algorithms
of questions about the product under review. Ques- are logically correct or to determine if they meet
tions are organized by area of expertise. their performance goals.

More information on technical reviews is given in The evolutionary prototyping approach is a form of
[Collofello88a]. A classic paper on the topic is incremental development, in which the prototype
[Fagan76]. evolves through several intermediate operational

systems into the delivered system fMcCracken82,
2. Requirements Tracing Gomaa86b]. This approach can help in determining

Requirements tracing is a means of determining the whether the system meets its performance goals, for
completeness of a design. This is achieved by testing critical components of the design and for
checking whether all the software requirements of reducing development risk by spreading the imple-

the system have been incorporated into the design. menta .ji over a longer period. Event sequence
This is typically carried out using requirements diagrams may be used to assist in selecting system
matrices. For checking that the design meets its subsets for each increment [Gomaa86a].
requirements, the matrix should map each software 5. Software Testing
requirement to one or more design components, such
as tasks and/or modules. More information on re- Some aspects of software testing of real-time sys-
quirements tiacing is given in [Collofello88b]. tems are no different than for non-real-time systems.

Most differences arise either from the software
system's consisting of several concurrent tasks or

Simulation can be an effective way of verifying that from its interfacing to external devices.
the design is sound and that it meets its timing re- More information on software testing can be found
quirements. With this approach, the software sys- in [Collofello88bj, [Beizer84], and [Myers791.
tem under development, as well as the environment
in which it is to operate, are simulated. To be of a. Testing Concurrent Software
most value, the simulation should be performed be-
fore system development is started. Although much A major problem in testing real-time systems-
useful information can be obtained from a simula- indeed any concurrent system-is that execution
tion exercise, simulation models are often very de- of such a system is non-deterministic. An ap-
tailed. The time to develop them can therefore be proach for the deterministic testing of concurrent
considerable. Care must also be taken to ensure that systems is described in [Tai87]. A systematic
the assumptions made in the model are realistic, method for the integration testing of concurrent

tasks is described in [Gomaa86a]. A method for
In many real-time system development projects, en- analyzing and testing transaction flow through a
vironment simulators are used. In this case, the real- system is described in [McCabe85].
time application itself is developed, but the environ-
ment in which it is to operate is simulated. This has b. System Testing
the advantage of creating a controlled environment System testing is the process of testing an inte-
that can greatly assist in software regression testing grated hardware and software system to verify
and performance testing [Beizer84, Gomaa86a,grtdhawransowreytmtovifthat the system. meets its specified requirements
Myers79]. [IEEE83]. During system testing, several aspects

4. Prototyping of a real-time system need to be tested [Belzer84,
Myers79]. These include:

Agresti [Agresti86] states that "[p]rototyping is the * Functional testing to determine that the
process of building a working model of a system or system performs the functions described
part of a system. The objective of prototyping is to in the requirements specification.
clarify the characteristics of a product or system by
constructing a version that can be exercised." Two whetaer(stesstemtcn handeterge
main classes of prototypes are throw-away d varie wkt is eaete tge'
prototypes and evolutionary prototypes [Gomaa86b]. and varied workload it is eopenald.16

handle when operational..
Throw-away prototypes can be used to help clarify .Performance testing to test that the sys-,
user requirements [Agresti86, Gomaa8l]. This ap- tem. meets its response-time. require-
preach is particularly useful for helping develop the ments.
user interface, and it can be used for real-time sys-
tems that have a complex user interface. For more a .e gretl

20 SEI-CM-22-1.0

Software Design Methods for FReal-Time Systems

assisted by the construction of environment In JSD, entities in the problem domain are
simulators [Gomaa86a, Myers79] that simulate modeled using entity structure diagrams that
the behavior of the external devices to which the show the sequence of events experienced by the
system must interface, entity. The regular expression notation used by

entity structure diagrams is mathematically equiv-
V. Review of Real-Time Software Design Methods alent to finite state machine notation. However,

1. Comparison of Real-Time Software Design for complex entities, where there are compara-
Methods tively many transitions in relation to the number

of states, it is frequently clearer and more concise
In comparing real-time software design methods, the to use a finite state machine notation, rather than
approach taken here is to evaluate how each ad- entity structure diagrams.
dresses the three real-time-specific design concepts
outlined in section II3.b, namely, finite state b. Support for Concurrent Tasks
machines for defining the control aspects of a real-
time system, concurrent tasks for defining the con- Although all the methods address concurrent

currency in the system, and information hiding for th e e s edto them. Concure asks
defining modifiable and potentially reusable soft- the emphasis placed on them. Concurrent tasks

ware components. A fourth criterion is how each are fundamental to two of the methods, DARTS

handles timing constraints, an important character- and JSD. The NRL and OD methods place less
istic of real-time systems. A comparison of real- emphasis on task structuring.
time software design methods is also given in The Ward/Mellor [Ward85] version of RTSAD
[Kelly87]. addresses structuring the system into concurrent

a. Support for Finite State Machines tasks, but provides few guidelines for this pur-
pose. Structured Design is a program design

The use of finite state machines is a major con- method, and hence does not address the issue of
sideration in three of the methods, RTSAD, task structuring. However, Structured Design can
DARTS, and NRL. It is a secondary considera- be used for designing individual tasks.
tion in OOD. In JSD, a different approach is
taken, with event sequences depicted using entity DARTS addresses the weaknesses of RTSAD in

structure diagrams. the task structuring area by introducing the task
structuring criteria for identifying concurrent

The major extension to Structured Analysis for tasks in the system and by providing guidelines
real-time applications is to address the control as- for defining task interfaces.
pects of a system, primarily through the use of
finite state machines. The use of state transition Concurrent processing plays an important role in
diagrams and tables have been well-integrated JSD, since each external entity is mapped onto a
into the method through the use of control trans- model process. Function processes are then
formations and specifications, added. Model processes are similar to control

tasks in DARTS. In Renold'q view, many of the
Finite state machines are also an important feature DARTS task structuring criteria are almost equiv-
of the DARTS method, which adv-'ates analyz- alent to the criteria for the definition of function
ing the control aspects of the system before the processes in JSD [Renold88].
functional aspects. DARTS uses RTSA as a
front-end to the design method. Control tasks ex- The NRL method views the task (process) struc-
ecute finite state machines, and state transition ture as an important software structure that is or-
tables are encapsulated into information hiding thogonal to the module and uses structures. How-
modules. ever, it provides few guidelines for identifying

concurrent tasks.
Finite state machines are also an important aspect
of the NRL method. A key feature of the specifi- rhe OOD method assumes that the same object

cation method is the identification of system structuring criteria can be used for identifying
modes (super-states) and the transitions between tasks (active objects) and information hiding

them. In the design phase, each mode transition odules (passive objects). This view is contrary

table is incapsuated in a mode determination to that of the DARTS and NRL methods, which
module. assume that different criteria are required for

tasks and modules.
In object-oriented design, an object may be de-
fined by means of a finite state machine that is c. Support for Information Hiding
encapsulated within the object. However, OOD Information hiding is the fundamental underlying
does not give as much prominence to finite state principle in two of the methods, NRL and OOD.
machines as the previous three methods. It is also addressed by the DARTS and RTSAD

SEI-CM-22-1.0 21

Software Design Methods for Real-Time Systems

methods. Information hiding is not addressed by quency of task activation and context switching
JSD. overhead are also considered in arriving at a

Both the NRL and OOD methods emphasize the timing estimate [Ward851.

structuring of a system into information hiding DARTS uses the RTSA iming specification to
modules (objects). The NRL module structuring allocate time budgets to each task. Evenft se-
criteria are more comprehensive than those of quence diagrams [Gomaa86a] are used to show
OOD. In particular, there is a whole category of the sequence of tasks executed from external in-
modules, namely software decision modules, ad- put to system response. Percentages of this re-
dressed bv the NRL method that is not identified sponse time are then allocated to each task in the
in OOD. The NRL method is also more con- sequence and to system overhead.
cerned about each module hiding a secret, namely
a decision that could change independently. In the NRL method, timing constraints are speci-
Thus, in the NRL method, a module can hide the fied at the requirements stage for periodic and de-
details of an algorithm that could potentially mand functions that generate system outputs.
change. During design, the timing requirements for each

process include its deadline and worst case execu-
Object structuring in OOD does not pay as much tion time [Faulk88].
attention as the NRL method to each object/mod-
ule hiding one secret. Thus, an object could hide In JSD, timing requirements in the forr:. of system
more than one secret. Consequently, OOD- responses to external inputs are analyzed with the
derived components may not be as mooifiable and assistance of the network diagram to determine
reusable as NRL-derived components. timing constraints on individual processes in-

volved in generating the response (Jackson83].
RTSAD is weak in the area of information hiding. This approach is similar to the use of event se-
In its application of information hiding, Struc- quence diagrams in DARTS.
tured Design lags behind the NRL method and
OOD. Although the concept of informational 2. Trends in Real-Time Software Design Methods
strength (information hiding) modules was added Many of the trends in software design methods are
by Myers [Myers78], the design strategies of not specific to real-time systems. The trend most
transform analysis and transaction analysis do not specific to real-time systems relates to the perfor-
address information hiding. A designer using this mance analysis of real-time designs.
method is liable to arrive at a design that is
mainly functional. Because of this, requirements a. "Eclectic" Design Methods
and design changes are likely to have a more
severe effect on systems developed using Greater efforts are likely to be made to incorpod
RTSAD. rate concepts from different design methods and

to integrate them to produce "eclectic" design
Although DARTS uses information hiding for en- methods. Efforts in this direction can be seen in
capsulating data stores, it does not use informa- ADARTS [Gomaa89b, Gomaa8gc] and Entity
tion hiding as extensively as NRL and OOD. It Life Modeling [Sanden89]. ADARTS attempts to
uses the Structured Design method, and not infor- integrate task structuring concepts from DARTS
mation hiding, for structuring tasks into with module and object structuring concepts from
procedural modules. the NRL and OOD methods. Entity Life Model-

ing attempts to integrate JSD concepts with infor-
d. Timing Constraints mation hiding and Ada tasking.

Four of the methods, RTSAD, NRL, DARTS, and b. Domain Specification and Design Methods
JSD, address timing constraints. The required
system response times are defined during system Existing specification and design methods are for
specification. During design, the timing require- the development of specific systems. In the fu-
ments for each task are determined. OOD does ture, domain methods are likely to be developed
not specifically address timing constraints, for specifying and designing families of systems

[Parnas79, Lubars87, Prieto-Diaz87]. Individual
RTSAD addresses 1nii,,,g constraints during the target systems are then developed by tailoring the
analysis and design phases. During analysis, the domain specifications and designs to the needs of
response time specification is developed. This the target system.
includes response times to external events, sam-
pling times of external inputs, required frequency c. Computer Support Tools and Software
of periodic output, and response times to user in- Development Environments
puts [Hatley88]. During design, the timing re-
quirements of each task are determined. Fre- Many existing computer supt tools for soft-

22 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

ware specification and design methods are little sign methods is in the use of formal methods. A
more than graphical editors with some limited ca- formal method uses a formal specification Ian-
pability for checking for consistency amongst dif- guage, i.e., a language with mathematically de-
ferent components of a specification or design. fined syntax and semantics. A good example of
Trends in software development environments one of the more mature formal methods is the
[Dart87] are in the direction of making them sup- Vienna Development Method, described in
port the entire software life cycle and orienting [Pedersen89]. VDM has been successfully ap-
them toward supporting specific software design plied in the areas of programming language
methods by incorporating the rules of the design semantics and compiler construction.
methods.

Formal methods for real-time systems are current-
d. Executable Specifications and Designs ly in the research stage. Methods that show

promise include temporal logic and Petri net
Computer support tools are being developed to based methods. A computer support tool with a
allow specifications and designs to be executed, formal basis is Statemate [Hare188a], which is
and hence to allow designers to validate their de-
signs. A good example of these tools is Statemate
[Harel88a]. Statemate allows a prototype of the
system to be developed that describes the func-
tionality and behavior of the system. The ap-
proach of developing executable specifications Glossary
and designs has been termed the operational ap-
proach to software development (Zave84]. Abstract data type

e. Performance Analysis of Real-Time Designs A data type defined by the operations that ma-
Software design methods for real-time systems nipulate it, thus hiding its representation details.
need to be integrated with performance analysis
techniques to allow real-time designers to analyze Abstraction
their designs from a performance perspective. A view of a problem that extracts the essential
Alternative designs could then be evaluated, and information relevant to a particular purpose and
the designer could select the design that best ignores the remainder of the information
meets the system objectives. One approach for [IEEE83].
achieving this is to transform the design into a
Petri net model [Peterson8l] whose performance Behavior hiding module (NRL)
can be analyzed using timed Petri net modeling
techniques (Coolahan83]. A module that hides the behavior of the system

as specified by a function defined in the require-
Real-time scheduling is an approach that is partic- ments specification.
ularly appropriate for hard real-time systems that
have deadlines that must be met [Goodenough89]. Class
With this approach, the real-time design is
analyzed to determine whether it can meet its A template for objects.
deadlines.

Cohesion (Structured De-'gn)
f. Application of Knowledge-Based Techniques The degree to which the functions performed by

Many design methods use heuristics, such as the a module are related (adapted from [IEEE83]).
DARTS task structuring criteria and the Struc-
tured Design module coupling and cohesion crita- Context diagram (Structured Analysis)
ria. Heuristics are based on designer experience The highest level data flow diagram in a Struc-
and are "rules of thumb." Because of this, it is tred Analysis specification. It is used to define
usually not possible to incorporate these heuris-
tics into algorithms. However, knowledge based ope and the exteemaloevironment
tools could be developed that incorporate rules aped and the external environment.
embodying these heuristics [Tsai88]. By this
means, a designer's assistant (Balzer83] could be Control flow (Boeing/Hatley Real-Time Struc-
provided to help the design team during architec- tured Analysis)
tural design. A binary signal or multi-valued discrete signal.

g. Application of Formal Methods

Another trend in software specification and de-

SEI-CM-22-1.0 23

Software Design Methods for Real-Time Systems

Control flow diagram (Boeing/Hatley Real-Time Device interface module (NRL)
Structured Analysis) A module that hides the characteristics of an I/O
A graphic representation showing the control device. Presents an abstract device interface to
flows between data and control transformations. its users.

Control specification (Boeing/Hatley Real-Time Embedded system
Structured Analysis) A software system that is a component of a
A specification that describes the behavior of the larger hardware/software system.
system in terms of decision tables, state transi-
tion tables, state transition diagrams, and/or Event flow (Ward/Mellor Real-Time Structured
process activation tables. Analysis)

A signal that indicates an event has taken place.Control transformation (Ward/Mellor Real-Time
Structured Analysis) Information hiding
A control function that is defined by means of a The technique of encapsulating software design
state transition diagram. decisions in modules in such a way that the

module's interface reveals only what its users
Coupling (Structured Design) need to know; thus each module is a "black box"

A measure of the interdependence between mod- to the other modules in the system (adapted from
ules in a computer program [IEEE83]. [IEEE83]).

Data abstraction Information hiding module
Defining a data structure or data type by the set A module that is structured according to the in-
of operations that manipulate it, thus separating formation hiding technique. The module hides
and hiding the representation details, some data and is accessed by means of access

procedures or functions.Data dictionary

A collection of the names of all data items used Modularity
in a software system, together with relevant The extent to which software is composed of
properties of those items [IEEE83]. Defines the discrete components, such that a change to one
contents of all data flows, event flows, and data component has minimal impact on other compo-
stores in the system (Real-Time Structured nents [IEEE83].Analysis).

Module hierarchy (NRL)
Data flow (Structured Analysis) A hierarchical classification of information

The data that are passed between a source trans- hiding modules.
formation and a destination transformation or
to/from the external environment. Object (OOD)

An instance of a class. An object is an infor-
Data flow diagram (Structured Analysis) mation hiding module that contains both data

A graphic representation showing a network of and operations on that data.
related functions (transformations) and the data
interfaces between those functions. Process (concurrent processing)

Same as task.
Data store (Structured Analysis)

A repository of data, usually shown on a data Process (Structured Analysis)
flow diagram. A function of the system, also called transfor-

mation or bubble.
Design method

A systematic approach to creating a design, con- Real-time
sisting of the ordered application of a specific Pertaining to the processing of data by a corn-
collection of tools, techniques, and guidelines puter in connection with another process outside
[IEEE83]. the computer, according to time requiireiets.

24 SEI-CM-22-1.0-

Software Design Methods for Real-Time Systems

imposed by the outside process. This term is. also used to describe systems operating in con-
versational mode and processes that can be in-
fluenced by human intervention while they are
in progress [IEEE83].

Reusability
The extent to which software can be used in
multiple applications (adapted from [IEEE83]).

Software decision module (NRL)
A module that hides a design decision that is
likely to change.

State transition diagram
A diagram that shows the different states of a
system or subsystem and the transitions between
them

Task (concurrent processing)
A task represents the execution of a sequential
program or a sequential component of a concur-
rent program. Each task deals with a sequential
thread of execution-there is no concurrency
within a task.

. Task structuring criteria (DARTS)
A set of heuristics for assisting a designer in
structuring a system into concurrent tasks.

Transaction analysis (Structured Design)
A design strategy used for transforming a data
flow diagram into a structure chart whose struc-
ture is based on identifying the different trans-
action types.

Transform analysis (Structured Design)
A design strategy used for transforming a data
flow diagram into a structure chart whose em-
phasis is on input-process-output flow.

Transformation (Structured Analysis)
A function of the system, also celled process or
bubble.

SEI-CM-22-1 .0 2

Software Design Methods for Real-Time Systems

Teaching Considerations

Textbooks development, as described in, for example,
[Allworth87] or [Buhr84].

There is no one textbook that can be used for teach- 4. As an advanced graduate-level course on soft-
ing the material in this module. Several textbooks ware design methods for real-time systems that
address specific topics. An introductory textbook on could follow an earlier course serving as an in-
real-time systems is [Allworth87]. [Pressman87] troduction to software design.
contains overviews of several design methods, in- For treatments (1), (2), and (4), students should al-
cluding RTSAD, OOD, JSD, and DARTS. There ready be familiar with concurrent processing con-
are several books on Structured Analysis and De- cepts. In (3), concurrent processing concepts can be
sign. A comprehensive and up-to-date treatment of taught as part of the real-time systems course.
Structured Analysis is given in [Yourdon89]. In-
depth, though different, treatments of Real-Time The material in this module has been used by the
Structured Analysis and Design are given in author in settings (1), (2), and (4).
[Hatley88] and [Ward85]. A readable version of In the next section, possible syllabi are outlined.
Structured Design is given in [Page-Jones88]. OOD
is covered briefly in [Booch87b]. A different view
of OOD is given in [Meyer88]. Several of Pamas's
ideas that form the basis of the NRL method are in-
troduced in [Lamb88]. DARTS is described in Suggested Schedules
[Nielsen88]. Ada-oriented design is described in
[Buhr84] and [Nielsen88]. 1. Graduate course on design methods, emphasiz-

Since it is not practical to expect students to pur- ing real-time systems:

chase or read all these books, the instructor can as- * Topics I and II in [Budgen$9] (14
semble a collection of papers covering the material hours)
described in this module. A suggested collection * Topic III in [Budgen89]: Structured
consists of those papers classified as "essential" in Analysis and Design (2 hours);
Classification of References, below. JSP: (2 hours)

* Topics I and II in this module (6
hours)

S.Topic III in this module: survey of
Suggested _CourseTypes real-time software design methods

(3 hours per method = 15 hours)
The material in this module may be taught in differ- * Review of design methods: based
ent ways, depending upon the time available and the on topic IV in [Budgen89] and topic
knowledge level of the students. Possible treatments V in this module (3 hours)
include: TOTAL TlMIE. 42 hours

1. As part of a graduate-level course on design
methods, with special emphasis on the design 2. Variation on (1), emphasizing one design
of real-time systems. In this case, the material method: Expand coverage of selected design
can be combined with the material in the cur- method from 3 to 9 hours. This could be done
riculum module Introduction to Software by reducing time allotted to each of the other
Design [Budgen89]. methods by 1 hour.

2. A variation on the above is to survey several of 3. Graduate course on real-time systems:
the design methods but to teach one in more e General material on real-time sys-
detail, such that students can solve a substantial tems from [Allworth87] or [Buhr84],
problem using that method. including topic I in this module (18

3. As part of a graduate-level course on real-time hours)
systems. In this case, the material can be * Topic I1 in this module (6 hours)
preceded by other topics in real-time system

26 SEI-CM-22-1.0

Software Design Methods for heal-Time Systems

" Topic III in this module: survey of Real-time problems that may be used are:
real-time software design methods * Elevator control system iackson83,
(3 hours per method = 15 hours) Sanden89]

" Review of design methods: based * Cruise control system
on topic V in this module (3 hours) * Buoy system [Boech86]

TOTAL TIME: 42 hours
. Patient monitoring system

4. Advanced graduate course on software designmethds fr ral-tme ystes: Automated teller machine systemmethods for real-time systems:

* Topics I and II in this module (6 9 Flexible manufacturing system
hours) Problem definitions for th. cruise control and

III in this module: survey of flexible manufacturing system problems are given in* Topicthe suppor materials package.
real-time software design methods
(6 hours per method: 3 hours lec- Possible teaching approaches to the use of these
ture, 3 hours student solution pres- problems are:
entations and discussion = 30 a. Work on one problem throughout the semester
hours) using one of the methods. This has the advan-

* Topic IV in this module (3 hours) tage that students get an in-depth appreciation
* Review of design methods: based of one of the methods. This approach has been

on topic V in this module (3 hours) used for a relatively complex flexible manufac-

TOTAL TIME: 42 HOURS turing system.
b. Divide the class up into groups. Each group

uses a different method to solve the same prob-
lem. Time is allocated at the end of the term
for each group to present its solution. A class

Worked __Examplesdiscussion is held on the strengths and
t iweaknesses of each method, as found through

It is difficult, if not impossible, to teach this material students' application of them to the problem:
without worked examples illustrating the different
design methods. It is especially instructive if the c. Work on the same problem using each of the
same problem can be used to illustrate each of the methods. This approach has been used with
methods. The author has used the problem of de- the elevator problem. Class discussions are
signing an automobile cruise control system to il- held after teaching each method, so that stu
lustrate each of the real-time software design meth- dents can compare their solutions.
ods. These worked examples are included in the d. Offer a design lab course in the following term,
support materials package for this module, which is in which the students work in groups to devel-
soon to be released. op a solution to a substantial real-time problem

The suggested approach for using the worked ex- using one of the methods. In this case, students

amples is to first present an overview of a given can also begin implementation.

method and then to follow this by illustrating the The author has used approaches (a), (c), and (d).
method applyed to the cruise control problem. Approach (c) is probably the most demanding and

should only be used in conjunction with course type
(4). Approaches (a) and (d) can be used in conjunc-
tion with course types (1), (2), or (4).

Exercises

As part of any course treating real-time design meth-
ods, students should work on one or more real-time
problems, either individually or in groups. Whether
one or more problems are tackled depends on the. size of the problem(s) and the length of the course.
However, sufficient time should be allocated for stu-
dents to work on problems, since this is the best way
for them to really understand the methods.

SEI-CM-22-1.0 27

Software Design Methods for Real-Time Systems

Classification of References • Detailed: More detailed references on
ihe topics covered in the module. These *

In the lists below, the references in the bibliography references are likely to be of greater in- W
are classified by subject matter and by applicability. ;erest to instructors, but may also be
The categories used in the subject matter classifica- relevant to students undertaking more
tion are: detailed investigations into a particalar

* General SE: General references on soft- topics.
ware engineering * Background: Background material that

can be covered in courses prior to treat-
ing the material in this module. This list

concurrent processing includes curriculum modules listed in
" Real-Time: General references on real- Philosophy under "Module Interface."

time systems * Additional: References to additional in-
* RTSAD: Real-Time Structured Analysis foimation on topics related to real-time

and Design design. These references are useful for'
" NRL: Naval Research Laboratory Soft- getting a broader view of the area and

ware Cost Reduction method cover other design methods, testing real-

OOD: Object-oriented design time systems, etc.
* Advanced: References for instructors or

students wishing to get an in-depth view
* DARTS: Design Approach for Real- of current research or advanced develop-

Time Systems ment topics of interest in the area of real-
* Modules: SEI curriculum modules time systems.

Categories in the applicability classification are:
* Essential: Instructors and students

should read these references, which are
directly relevant to the material in this
module.

28 SEI-CM22--1 .0,-

_______________ ____________________ Software Design Methods for Real-Time Systems

Classification by Subject Matter

General SE Concurrency RTSAD OOD DARTS

Agresti86 Bic88 Bruyn88 Booch86 Gomaa84
Balzer83 BrinchHansen73 DeMarco78 Booch87a Gomaa86a
Basili75 Buhr84 Gane79 Booch87b Gomaa87
Beizer84 Dijkstra68 Hatley88 Goldberg83 Gomaa89a
Boehm76 Gehani84 Myers78 Meyer87 Gomaa89b
Brooks75 Hoare74 Page-Jones88 Meyer88 Gomaa89c
Dart87 Hoare85 Ward85 Seidewitz86 Nielsen88
Davis88 Peterson8l WarcV36 Seidewitz88
Fagan76 Peterson85 Yourclon79 Shlaer8B oue
Fairley85 Yourcon89 Stroustrup86Moue
Freeman83 Wegner87 Brackett89

Gomaa~lReal-Time
Budgen89

Gomaa83 Alford85 NLCollofello88a
Goaa6bAllworth87 Britton8l Collofello88b

Harel8Sb Cherry86 Faulk88 Cameron86 Pedersen89
IEEE83 Coolahan83 Heninger8O Cameron89 Perlman88

Luas7Glass83 Lamb88 Jackson75 Rombach89
MartIn85

Mcab85Goodenough89 Pamas74 Jackson83
Mcrake82Hare[88a Pamas79 Kato87

Kly7Pamas84 Renold88
MilIs87Key8

Myrs9Simpson79 Pamas85 Sanden89

Parnas72 Simpson86 Pamas86
Pressan87Stankovic88

Prieto-Diaz87
TaI87
Tsai88
Zave84

SEI-CM-22-1 .0 29

Software Design Methods for Real-lime Systems

Categorization by Applicability

Essential Detailed Background Additional Advanced

Booch86 Booch87b Allworth87 AlfordB5 Agresti86
Cameron86 Britton8l Basi1i75 Beizer84 Balzer83
Davis88 Bruyn88 BiM8 Cherry86 Coolahan83
Gomaa84 Buhr84 Boehm76 Collofello88a Dart87
Gomaa86a Cameron89 Booch87a Coliofeiio88b Goodenough89
Gomaa89a DeMarco78 Brackett89 Fagan76 HareI88b
Gomaa89b Faulk88 BrinchHansen73 Freeman83 Hoare85
KelIy87 Gane79 Brooks75 Goldberg83 Kato87
Meyer87 Gomaa87 Budgen89 Gomaa83 Lubars87
Parnas79 Gomaa89c Dijkstra68 Gomaa86b Peterson8l
Parnas84 Hatley88 Fairley85 Hare188a Prieto-Diaz87
Parnas85 Heninger8O Gehani84 IEEE83 Tai87
Parnas86 Jackson83 Glass83 Jackson75 Tsai88
Renold88 Lamb88 Gomaa8l Martin85
Sanden89 Meyer88 Hoare74 McCabe85
Seidewitz88 Myers78 McCracken82 MiIls87
Ward86 Nielsen88 Pamas72 Myers79
Wegner87 Page-Jones88 Peterson85 Pedersen89

Parnas74 Pressman87 Periman88
Seidewitz86 Rombach89 Shlaer88
Ward85 Simpson79
Yourdon79 Simpson86

*Yourdon89 Stroustrup86
Zave84

30 SEI-CM-22-1 .0

Software Design Methods for Real-Time Systems

Bibliography

Agrestl86 velopment and quantitative analysis of a production
Agresti, W. W. New Paradigms for Software compiler for the language SIMPL-T is used to dem-

Development. Washington, D. C.: IEEE Computer onstrate that the application of iterative enhance-

Society Press, 1986. ment to software development is practical and effi-
cient, encourages the generation of an easily

A very good collection of papers covering critiques modifiable product, and facilitates reliability.
of the conventional software life-cycle model,
prototyping, operational specification, and transfor- One of the first papers to advocate the incremental
mational implementation. development approach to software engineering.

Good source maerial for the instructor. Forms an Beizer84
excellent basis for a graduate seminar. Beizer, B. Software System Testing and Quality

Alford85 Assurance. New York: Van Nostrand, 1984.

Alford, M. "SREM at the Age of Eight: The Distri- See comments in [Collofello88b] bibliography.
buted Computing Design System." Computer 18, 4
(April 1985), 36-46. Bic88

Bic, L., and A. C. Shaw. The Logical Design of
Provides a good overview of the DCPS method. Operating Systems, 2nd Ed. Englewood Cliffs,

N. J.: Prentice-Hall, 1988.
Allworth87
Allworth, S. T., and R. N. Zobel. Introduction to A good reference book on operating systems.
Real Time Software Design, 2nd Ed. New York:

* Springer-Verlag, 1987. Boehm76

A good introductory book on real-time system de- Boehm, B. "Software Engineering." IEEE Trans.

sign, although much of the discussion is concerned Computers C-2S, 12 (Dec. 1976), 1226-1241.
with detailed design issues. Also, good coverage of Abrtract: This paper provides a definition of the
the MASCOT notation and hardware interfacing is- term "software engineering" and a survey of the
sues. Good source material for the instructor and current state of the art aid likely future trends in
students. the field. The survey covers the technology avail-

able in the various phases of the software life cycle
Balzer83 -requirements engineering, design, coding, test,
Balzer, R., et al. "Software Technology in the and maintenance---and in the overall area of soft-

1990's: Using a New Paradigm." Computer 16, 11 ware management and integrated technology-
management approaches. It is oriented primarily('Nov. 983), 30-7. toward discussing the domain of applicability of

Advocates a revolutionary paradigm for software ;echaiques (where and when they work), rather than
development using a transformational approach. how they work l4 detail. To cover the latter, an

extensive set of 104 references is provided.

Basl175 A classic paper on the waterfall model of the soft-
Basili, B. R., and A. J. Turner. "Iterative Enhance- war lifH cycle.
ment: A Practical Technique for Software
Development" IEEE Trans. Software Eng. SE-I, 4 BoOch8J
(Dec. 1975), 390-396. Booch, 0. "Object-Oriented Development." IEEE

Abstract: This paper recommends the "iterative Trans. Software Eng. SE-12, 2 (Feb. 1986), 211-221,
enhancement" technique as a practical means for Abstact: Object-oriented development is a partial-
using a top-down, stepwise refinement approach to lifecycle software development method in which the
software development. This technique begins with a decomposition of a, system is based upon the con-
simple initial implementation of a properly chosen cept of an object. This method is fundameitally,
(skeletal) subproject which is followed by the different from traditional functtional approaches to
gradual enhancement of successive Implementations design and serves to help manage the compleity of
in order to build the full implementation. The de- massive software-intensive sytems. The paperoex-

SEI-CM-22-1.0 31

Software Design Methods for Real-Time Systems

amines the process of object-oriented development * requirements represen)tation
as well as the influences upon this approach from • requirements communication
advances in abstraction mechanisms, programming
languages, and hardware. The concept of an object * development of acceptance criteria and
is central to object-oriented development and so the procedures
properties of an object are discussed in detail. The The outcome of requirements definition is a precur-
paper concludes with an examination of the map- sor of software design.
ping of object-oriented techniques to Ada using a
design case study. BrinchHansen73

This paper presents an overview of object-oriented Brinch Hansen, P. Operating System Principles.
design, as viewed in the Ada world, i.e., with em- Englewood Cliffs, N. J.: Prentice-Hall, 1973.
phasis on information hiding, but not inheritance. A classic book on operating systems, although now
The paper outlines how a Structured Analysis speci- somewhat dated.
fication can be mapped to OOD. The method is
illustrated by means of two examples, a cruise con-
trol problem and a navigational/weather collection BrItton81
buoy. This paper is also included in [Booch87b]. Britton, K., R. Parker, and D. Parnas. "A Procedure
A good source of material for the instructor and a for Designing Abstract Interfaces for Device Inter-

paper that can reasonably be read by students. face Modules." Proc. 5th Intl. Conf Software Eng.
New York: IEEE, 1981, 195-204.

Booch87a Abstract: This paper describes the abstract inter-
Booch, G. Software Engineering with Ada, 2nd Ed. face principle and shows how it can be applied in
Menlo Park, Calif.: Benjamin/Cummings, 1987. the design of device interface modules. The pur-

pose of this principle is to reduce maintenance costs
Describes Ada and its use, with particular emphasis for embedded real-time software by facilitating the
on the features of the language that support large- adaptation of the sofroware to altered hardware in-
scale software system development, such as terfaces. This principle has been applied in the
packages, tasks, and generics. It also provides an Naval Research Laboratory's redesign q the flight
introduction to a version of object-oriented design software for the Navy's A-7 aircraft. This paper
that typically can only be readily applied to small discusses a design approach based on the abstract
programs. interface principle and presents solutions to inter-

Good source of material for the instructor. esting problems encountered in the A-7 redesign.
The specification document for the A-7 device inter-
face modules is available on request; it provides a

Booch87b fully worked out example of the design approach
Booch, G. Software Components with Ada. Menlo discussed in this paper.
Park, Cal.: Benjamin/Cummings, 1987. Describes the application of the information hiding

This book presents a large collection of Ada concept to the design of device interface modules.
packages that form the basis of a software reuse Good source of material for the instructor.
library. It advocates a "software by composition"
approach to software development. Also includes[Booh86]. Brooks75

Brooks, F. The Mythical Man-Month. Reading,

Brackett89 Mass.: Addison-Wesley,. 1975. "Reprinted with

Brackett, J. W. Software Requirements. Curriculum corrections" in 1982.

Module SEI-CM-19-1.1, Software Engineering Insti- A true classic covering the problems that are fre-
tute, Carnegie Mellon University, Pittsburgh, Pa., quently encountered in developing and managing
Dec. 1989. large scale software systems, based on the author's

experience managing the development of IBM's
Capsule Description: This curriculum module is 0S/360 operating system.
concerned with the definition of software require-
ments--the software engineering process of deter- This book should be read by all those interested in
mining what is to be produced-and the products software engineering.
generated in that definition. The process involves
all of the following: Bruyn88

" requirements identification Bruyn, W., R. Jensen, D. Keskar, and P. Ward.
" requirements analysis "ESML: An Extended Systems Modeling

32 SEI-CM-22-1 .0

Software Design Methods for Real-Time Systems

Language." ACM Software Engineering Notes 13, 1 ecutable, at least in principle. Specifications are
(Jan. 1988), 58-67. developed middle-out from an initial set of "model"

processes. The model processes define a set of
Abstract. ESML (Extended Systems Modeling events, which limit the scope of the system, define
Language) is a new system modeling language its semantics, and form the basis for defining data
based on the Ward-Mellor and Boeing structured and outputs. Implementation often involves recon-
methods techniques, both of which have proposed figuring or transforming the network to run on a
certain extensions of the DeMarco data flow smal!,r number of real or virtual processors. The
diagram notation to capture control and timing in- main phases of JSD are introduced and illustrated
formation. The combined notation has a broad by a small example system. The rationale for the
range of mechanisms for describing both com- approach is also discussed.
binatorial and sequential control logic. A clear summary of JSD. As the method is still

This paper presents the basic features of ESML, the evolving, the steps described are slightly different
recent attempt to merge the Ward/Mellor and from [Jackson83]. The method is illustrated by
Boeing/Hatley approaches to Real-Time Structured means of a detailed library example. This paper is
Analysis. The ESML method is illustrated by also included in [Cameron89].
means of a cruise control example. Good source material for the instructor. For a real-
A good source of material for the instructor, time course, a different example would be more ap-

propriate.
Budgen89
Budgen, D. Introduction to Software Design. Cur- Cameron89
riculum Module SEI-CM-2-2. 1, Software Engineer- Cameron, J., ed. JSP & JSD: The Jackson Approach
ing Institute, Carnegie Mellon University, Pitts- to Software Development, 2nd Ed. Washington,
burgh, Pa., Jan. 1989. D. C.: IEEE Computer Society Press, 1989.

Capsule Description: This curriculum module pro- A collection of articles and papers describing JSP
vides an introduction to the principles and concepts and JSD and illustrating these methods using a
relevant to the design of large programs and sys- range of examples of reasonable size and com-
tems. It examines the role and context of the design plexity. Covers the latest developments in JSD and
activity as a form of problem-solving process, de- has some interesting papers on JSD applied to real-
scribes how this is supported by current design time systems, including [Renold88], as well as
methods, and considers the strategies, strengths, papers addressing mapping JSD specifications to
limitations, and main domains of application of MASCOT and Ada. Also includes [Cameron86]
these methodv. and a comparison of JSD with OOD.

Buhr84 An excellent source of material for the instructor.

Buhr, R. System Development with Ada. Englewood Good material for students requiring an in-depth

Cliffs, N. J.: Prentice-Hall, 1984.

This book presents a design-oriented introduction to Cherry86
Ada, with special emphasis on concurrent process- Cherry G. The PAMELA Designer's Handbook.
ing. Introduces a graphical design notation-the Reston, Va.: Thought Tools, 1986.
structure graph-that is gaining widespread accep-
tance in the Ada community. One of the few references on the PAMEA method.

A good source of material for the instructor and Collofello88a
students, particularly if the orientation of the course
is toward Ada. CP1ofello, J. Software Technical Review Process.

Curriculum Module SEI-CM-3-1.5, Software Engi-
Cameron86 neering Institute, Carnegie Mellon University, Pitts-

Cameron, J. "An Overview of JSD." IEEE Trans. burgh, Pa., June 1988.

Software Eng. SE-12, 2 (Feb. 1986), 222-240. Capsule Description: This module ,consists of a
comprehensive examination of the technical reviewAbstract: The Jackson System Development (JSD) process in the software development and main te-

method addresses most of the software lifecycle. proce in the soarev t ndlmae

~ JSD specifications consist mainly of a distributed ance i cycle. Frm reie th e eV neworkof roceses hatcommmcat bymessge-analyzed in detailfrom the perspective of th reviewnetwork of processes that communicate by message- participants, project management dl software,
passing and by read-only inspection of each other's quality assurance. Sample review zgenda s Iare lSO
data. A JSD specification is therefore directly ex- qualit asr Sm pe review s lso

presentedfor common types of reviews. The objc-
SEI-CM-22-1 .0 '33-

" Software Design Methods for Real-Time Systems

tive of the module is to provide the student with the An excellent source of material for instructor and
information necessary to plan and execute highly students.
efficient and cost effective technical reviews.

DeMarco78
Collofello88b DeMarco, T. Structured Analysis and System
Collofello, J. Introduction to Software Verification Specification. Englewood Cliffs, N. J.: Yourdon
and Validation. Curriculum Module SEI-CM-13- Press, 1978.
1.1, Software Engineering Institute, Carnegie Mellon A very popular book on Structured Analysis, al-
University, Pittsburgh, Pa., Dec. 1988. though a more up to-date treatment of the subject is

Capsule Description: Software verification and given in [Yourdon89].
validation techniques are introduced and their ap-
plicability discussed. Approaches to integrating Dllkstra68
these techniques into comprehensive verification Dijkstra, E. W. "Cooperating Sequential Processes."
and validation plans are also addressed. This cur-
riculum module provides an overview needed to un- In Programming Languages, F. Genuys, ed. New

derstand in-depth curriculum modules in the verifl- York: Academic Press, 1968, 43-112.
cation and validation area. A classic paper which first introduced the concept

of concurrent processes and process synchroniza-
Coolahan83 tion using semaphores. Illustrated by means of sev-
Coolahan, J., and N. Roussopoulos. "Timing Re- eral examples.
quirements for Time-Driven Systems Using Aug- Good source material for the instructor. However,
mented Petri Nets." IEEE Trans. Software Eng. the concepts have been described in several text
SE-9, 5 (Sept. 1983), 603-616. books, such as [Bic8S] and [Peterson85], which are

Abstract: A methodology for the statement of probably more readable for students.

timing requirements is presented for a class of em-
bedded computer systems. The notion of a "time- Fagan76
driven" system is introduced which is formalized Fagan, Michael E. "Design and Code Inspections to
using a Petri net model augmented with timing in- Reduce Errors in Program Development." IBM Sys-
formation. Several subclasses of time-driven sys- tems J. 15, 3 (1976), 182-211.
tems are defined with increasing levels of com-
plexity. By deriving the conditions under which the See comments in [Collofello88a] bibliography.
Petri net model can be proven to be safe in the
presence of time, timing requirements for modules Fairley85
in the system can be obtained. Analytical tech- Fairley, R. Software Engineering Concepts. New
niques are developed for proving safeness in the
presence of time for the net constructions used in York: McGraw-Hill, 1985.
the defined subclasses of time-driven systems. One of the best textbooks on software engineering

available. Describes the basic concepts and major
This paper describes extensions to Petri nets to issues in the field. Contains a chapter on designhandle timing requirements for real-time systems. that covers fundamental design concepts, design

notations, and design methods.Dart87
Dart, S., R. Ellison, P. Feller, and N. Habermann. Good source of material for the instructor. ShouldDar, S , RNo. E19i8, P. Fbe read by all software engineering students and is
"Software Development Environments." Computer considered a prerequisite to the material in this cur-
20, 11 (Nov. 1987), 18-28. riculum module.

A very good introductory paper on this topic.
Faulk88

Davis88 Faulk, S. R., and D. L. Parnas. "On Synchronization
Davis, A. "A Comparison of Techniques for the in Hard Real Time Systems." Comm. ACM 31, 3
Specification of External System Behavior." Comm. (March 1988), 274-287.
ACM 31, 9 (Sept. 1988), 1098-1115. A detailed description of how concurrent processes

An excellent survey and comparison of different are supported in the NRL method.
specification techniques. Includes data flow Excellent source material for the instructor. How-
diagrams, finite state machines, Petri nets and ever, probably rather difficult for students.
statecharts.

34 SEI-CM-22-1 .0

Software Design Methods for Real-Time Systems

Freeman83 than correcting a system after it has gone into pro-
* Freeman, P., and A. I. Wasserman, eds. Software duction. This paper describes how a prototype was

Design Techniques, 4th Ed. Silver Spring, Md.: used to help specify the requirements of a computer
system to manage and control a semiconductor
processing facility. The cost of developing and run-

A wide-ranging collection of papers on software de- ning the prototype was less than 10% of the total
sign covering basic concepts, analysis and specifi- software development cost.
cation, architectural design, detailed design, and Describes, with a detailed case study, how prototyp-
management issues. ing may be used to assist in the requirements speci-

Very good source material for the instructor and for fication process.
students who want to get a broad perspective on
software design. Gomaa83

Gomaa, H. "The Impact of Rapid Prototyping on
Gane79 Specifying User Requirements." ACM Software En-
Gane, C., and T. Sarson. Structured Systems Anal- gineering Notes 8, 2 (April 1983), 17-28.
ysis: Tools and Techniques. Englewood Cliffs, Abstract. Prototyping has been recognized asN. J.: Prentice-Hall, 1979. Asrc:Pooyighsbe eonzda

being a powerful and indeed essential tool in many
A popular book on Structured Analysis, although a branches of engineering. Although software
more up-to-date treatment of the subject is given in prototyping is often considered too expensive, cor-
[Yourdon89]. recting ambiguities and misunderstandings at the

requirements specification stage is significantly
Gehani84 cheaper than correcting a system after it has goneinto production. This paper describes how rapid
Gehani, N. Ada Concurrent Programming. Engle- prototyping impacts the Requirements Analysis and
wood Cliffs, N. J.: Prentice-Hall, 1984. Specification phase of the software life cycle. This

Good book on concurrency in Ada. Several ex- is illustrated by describing the experience gained
amples are covered, including the multiple readers/ from a prototype used to assist in the requirements
writers problem. specification of a system to manage and control an

integrated circuit fabrication facility. The cost of
the prototype was less than 10 percent of the totalGlass83 software development cost. ,

Real-Time Software. Glass, R. L., ed. Englewood
Cliffs, N. J.: Prentice-Hall, 1983. Describes a prototyping based method for require-

ments specification and gives an example of its use.
An interesting and varied collection of papers and
articles on real-time software. Gomaa84

Good source material for the instructor. Gomaa, H. "A Software Design Method for Real
Time Systems." Comm. ACM 27, 9 (Sept. 1984),

Goldberg83 938-949.
Goldberg, A., and D. Robson. Smalltalk-80: The This paper describes the DARTS design method
Language and Its Implementation. Reading, Mass.: and illustrates its use by means of an example of a
Addison-Wesley, 1983. robot controller system. A later veision of the

A detailed reference on Smalltalk-80. method is given in [Gomaa87]. The task structuring
criteria are refined in [Gomaa89b].

Gomaa8l Good source of material for instructor and students.

Gomaa, H., and D. B. H. Scott. "Prototyping as a
Tool in the Specification of User Requirements." Goma86a
Proc. 5th Intl. Conf. Software Eng. New York: Gomaa, H. "Software Development of Real Time
IEEE, 1981, 333-339. Systems." Comm. ACM 29, 7 (July 1986), 657-668

Abstract: One of the major problems in developing This paper describes how DARTS is used in a soft-
new computer applications is specifying the user's ware life-cycle context for real-time systems.. The
requirements such that the requirements specifica- paper also describes the use of event sequence
tion is correct, complete, and unambiguous. Al- diagrams to assist in incremental developmn6t.
though prototyping is often considered too expen- Good source of material for instructor and studbts.
sive, correcting ambiguities and misunderstandings
at the specification stage is significantly cheaper

SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

Gomaa86b method for distributed real-time applications that
Gomaa, H. "Prototypes-Keep Them or Throw Them typically consist of several concurrent tasks execut-
Away?" In State of the Art Report on Prototyping, ing on multiple nodes supported by a local area

M. E. Lipp, ed. Maidenhead, Berkshire, England: network. The design method is an extension of
DARTS, the design approach for real-time systems,

Pergamnon Infotech Ltd., 1986, 41-54, 125-126. and is called DARTSIDA, DARTS for distributed

Abstract: This paper describes two different types real-time applications. The method starts by devel-
of software prototype: throw-away prototypes and oping a data flow model of the distributed appli-
evolutionary prototypes. The throw-away prototype cation using structured analysis. The next stage
is a rapid prototype, developed for experimental involves decomposing the applicatior into distribu-
purposes, and can be used to assist in specifying ted subsystems based on a set of subsystem struc-
user requirements-in particular the user interface. turing criteria and defining the interfaces between
The evolutionary prototype is the result of using an them. Next, each subsystem is structured into con-
incremental development approach. Initially, a current tasks using the DARTS task structuring cri-
subset of the final system is identified and devel- teria and the interfaces between tasks are defined.
oped, so the prototype is ac:,ally an early version Finally, each task, which represents a sequential
of the production system. The paper identifies the program, is structured into modules using the struc-
main characteristics and benefits of each type of tured design method. As an example, DARTSIDA is
prototype. The impact on the software life-cycle in applied to the design of a distributed factory
each case is also described and examples of actual automation system.
projects which used these approaches, as well as This paper extends DARTS to address the design of
the lessons learned from them, are given. distributed real-time applications. The new method,

This paper points out the differences between DARTS/DA is illustrated by means of a factory
throw-away prototyping and evolutionary prototyp- automation example.
ing and the need for very different approaches when Good source material for instructor and students.
applying these techniques.

Gomaa87 Gomaa89b
Gomaa, H. "Structuring Criteria for Real Time Sys-

Gomaa, H. "Using the DARTS Software Design tem Design." Proc. 11th Intl. Conf. Software Eng. W

Method for Real Time Systems." Proc. 12th StrUC- Washington, D. C.: IEEE Computer Society Press,
tured Methods Conf. Chicago: Structured Tech- May 1989,290-301.
niques Association, Aug. 1987,76-90.

Abstract: This paper discusses and compares the
Abstract: This paper describes a software design criteria used by different design methods for decom-
method for real time systems and gives an example posing a real time system into tasks and modules.
of its use. The method is called DARTS, the Design The criteria considered are coupling, cohesion and
Approach for Real Time Systems. DARTS starts by information hiding for module structuring and con-
developing a data flow model of the system using currency for tasks. The Structured Design method
the real time extensions to Structured Analysis. The uses the module coupling and cohesion criteria.
next stage involves transforming the data flow The NRL method and Object Oriented Design use
model into a task structure model defining the con- information hiding as the primary criterion for
current tasks in the system and the interfaces be- identifying modules and objects respectively. The
tween them. The emphasis of this transformation Darts design method uses a set of task structuring
process is on concurrent processing and data ab- criteria for identifying the concurrent tasks in the
straction. Next, each task, which represents a se- system. A new design method for real time systems
quential program, is structured into modules using is introduced that uses both task structuring and
Structured Design. information hiding module structuring criteria. The

This paper describes how DARTS may be used in method is described and illustrated by mens of an
conjunction with Real-Time Structured Analysis. example of an automobile cruise control system.
The robot controller example [Gomaa84] is updated Describes the task and module structuring criteria
to reflect this. used by different real-time design methods includ-

ing RTSAD, NRL, OOD, and DARTS. Attempts to
Gomaa89a blend the task structuring criteria of DARTS: with
Gomaa, H. "A Software Design Method for Distri- the information module structuring crite'a of NRL
buted Real-Time Applications." J. Syst. and Soft- and OOD into a new method called ADARTS.
ware 9, 2 (Feb. 1989), 81-94. Good source material for instructor and studehts.

Abstract: This paper describes a software design

36 SEI-.M-221IO____ ____ ___ ____ ___ ____ ____ ___ __ __ i

Software Design Methods for Real-Time Systems

Gomaa89c ware. It enables a user to prepare, analyze and
O Gomaa, H. "A Software Design Method for Ada debug diagrammatic, yet precise, descriptions of the

Based Real Time Systems." Prec. 6th ACM system under development from three inter-related
Washington Ada Symposium. New York: ACM, points of view, capturing structure, functionality

asig, Ada284 S poand behavior. These views are represented by three
1989, 273-284. graphical languages, the most intricate of which is

Abstract: This paper describes a software design the language of statecharts used to depict reactive
method for structuring real time systems into con- behavior over time. In addition to the use of
current tasks and information hiding packages. The statecharts, the main novelty of STATEMATE is in
method is called Adarts, an Ada based Design Ap- the fact that it 'understands' the entire descriptions
proach for Real Time Systems. Adarts uses two sets perfectly, to the point of being able to analyze them
of structuring criteria; task structuring criteria are for crucial dynamic properties, to carry out rigor-
used to identify the concurrent tasks in the system ous animated executions and simulations of the de-
while package structuring criteria are used to iden- scribed system, and to create runing code automat-
tify the information hiding packages. ically. These features are invaluable when it comes

to the quality and reliability of the final outcome.A description of the ADARTS method with partic-AgodveiwofteStmaeol. lsd-
ular reference to Ada-based real-time systems. A good overview of thie Statemnate tool. Also de-

scribes how statecharts have been incorporated into

Of particular interest to Ada-based real-time system Statemate.
design.

Harel88b
Goodenough89 Harel, D. "On Visual Formalisms." Comm. ACM 31,
Goodenough, J. B., and C. Sha. Real-Time Schedul- 5 (May 1988), 514-530.
ing Theory and Ada. CMU/SEI-89-TR- 14, Software
Engineering Institute, Pittsburgh, Pa., 1989. Abstract: The higraph, a general kind of diagram-

ming object, forms a visual formalism of topologi-
Abstract: The Ada tasking model was intended to cal nature. Higraphs are suited for a wide array of
support the management of concurrency in a applications to databases, knowledge representa-
priority-driven scheduling environment. In this tion, and, most notably, the behavioural specifica-
paper, we review some important results of a tion of complex concurrent systems using the
priority-based scheduling theory, illustrate its ap- higraph-based language of statecharts.
pliccions with examples, discuss its implications
for the Ada tasking model, and suggest This paper describes a number of important issues
workarounds that permit us to implement analytical concerning design representation. The paper dis-
scheduling algorithms within the existing cusses general issues as well as presenting a good
framework of Ada. This paper is a revision of introduction to statecharts, illustrated by the digital
CMUISEI-88-TR-33. (The most important revisions watch example.
affect our discussion of aperiodic tasks and our Good source material for instructor and students.
analysis of how to support the priority ceiling
protocol.) A shortened version is also being
presented at the 1989 Ada-Europe Conference. Halley88

Hatley, Derek J., and I. Pirbhai. Strategies for Real
A readable and informative paper on a complex Time System Specification. New York: Dorset
topic. House, 1988.

Hare188a A comprehensive description of the Boeing/Hatley
Harel, D., et al. "STATEMATE: A Working Envi- approach to Real-Time Structured Analysis, The
ronment for the Development of Complex Reactive method is illustrated by means of several examplesincluding the cruise control system and home heat-
Systems." Proc. 10th Intl. Conf. on Software Eng. ing system.
Washington, D. C.: IEEE Computer Society Press,
1988, 396-406. Good source material for the instructor. Probably

too detailed for students, unless they are carrying
Abstract. This paper provides a brief overview of out an in-depth study of the method.
the STATEMATE system, constructed over the past
three years by i-Logix Inc., and Ad Cad Ltd.
STATEMATE is a graphical working environment, Henlnger8O

~ intended for the specification, analysis, design and Heninger, K. "Specifing Software Requirements
documentation of large and complex reactive sys- for Complex Systems: New Techniques and Their
tems, such as real-time embedded systems, control Applications." IEEE Trans. Software Eng. SE-6, 1
and communication systems, and interactive soft- (Jan. 1980), 2-13.

SEI-CM-22-1.0 37

Software Design Methods for Real-Time Systems

Abstract: This paper concerns new techniques for Jackson83
making requirements specifications precise, con- Jackson, M. A. System Development. Englewood *
cise, and easy to check for completeness and consis- Cliffs, N. J.: Prentice-Hall, 1983. w
tency. The techniques are well-suited for complex

real-time software systems; they were developed to The original source book on JSD. A more current
document the requirements of existing flight soft- version of the method is presented in [Cameron86]
ware for the Navy's A-7 aircraft. The paper out- and [Cameron89]. The book is rather difficult to
lines the information that belongs in a requirements read, as the description of the method is intertwined
document and discusses the objectives behind the with three worked examples. The elevator example
techniques. Each technique is described and il- has been extracted and included in [Sanden89].
lustrated with examples from the A-7 document.
The purpose of the paper is to introduce A-7 docu- A source of material for the instructor, rather thanthe student.
ment as a model of a disciplined approach to re-
quirements specification; the document is available
to anyone who wishes to see a fully worked-out ex- Kato87
ample of the approach. Kato, J., and Y. Morisawa. "Direct Execution of a

An overview of the NRL black-box requirements JSD Specification." Proc. COMPSAC 87.
specification method with examples from the A-7 Washington, D: C.: IEEE Computer Society Press,
aircraft project. 1987, 30-37.

Good source material for the instructor. Probably Abstract: This paper presents the direct execution
difficult reading for students, however, of a Jackson System Development (JSD) specifica-

tion as a part of the Jackson System development
Htoare74 Environment (JSE). When we have a tool for ex-Hoare C .ecuting a JSD specification, we can use it as a rapid
Hoare, C. A. R. "Monitors: An Operating System prototyping tool of system development. We intro-
Structuring Concept." Comm. ACM 17, 10 (Oct. duce a language, named the Jackson System devel-
1974), 549-557. opment Language (JSL) which is a JSD specifica-

Abstract: This paper develops Brinch-Hansen's tion language.
concept of a monitor as a method of structuring an This paper describes the main part of JSL and ex-
operating system. It introduces a form of plains its interpreter.
synchronization, describes a possible method of im-
plementation in terms of semaphores and gives a Describes a tool to support the execution of JSD
suitable proof rule. Illustrative examples include a specifications.
single resource schedule, a bounded buffer, an
alarm clock, a buffer pool, a disk head optimizer, Kelly87
and a version of the problem of readers and writers. Kelly, J. "A Comparison of Four Design Methods

A classic paper on operating systems. for Real Time Systems." Proc. 9th Intl. Conf. Soft-
ware Eng. Washington, D. C.: IEEE Computer So-

Hoare85 ciety Press, 1987, 238-252.

Hoare, C. A. R. Communicating Sequential Abstract: The purpose of this paper is to compare
Processes. Englewood Cliffs, N. J.: Prentice/Hall four design methods which are of current interest in
International, 1985. real-time software development. The comparison

presents the relative strengths and weakness of each

IEEE83 method with additional information on graphic
notation and the recommended sequence of steps

IEEE. IEEE Standard Glossary of Software Engi- involved in the use of each method. The methods
neering Terminology. New York: IEEE, 1983. selected for comparison were:
ANSI/IEE Std 729-1983. * STRUCTURED DESIGN FOR REAL-

This standard provides definitions for many of the TIME SYSTEMS
terms used in software engineering. 9 OBJECT ORIENTED DESIGN

* PAMELA (Process Abstraction Method for
Jackson75 Embedded Large Applications)
Jackson, M. A. Principles of Program Design. Lon- 9 SCR (Software Cost Reduction project -

don: Academic Press, 1975. Naval Research Laboratory)

The original source book on JSP. JSP is also Readers interested in a framework for comparing.
covered in detail in [Cameron89]. methods, an overview of the four selected method.

38 SEi.M -221 .0

Software Design Methods for Real-Time Systems

ologies, and an aid to narrowing candidates for McCabe85
* adoption shouldfind this paper helpful McCabe, T., and G. Schulmeyer. "System Testing

Provides a framework for comparing real-time de- Aided by Structured Analysis: A Practical
sign methods. Uses this framework to compare Experience." IEEE Trans. Software Eng. SE-11, 9
RTSAD, PAMELA, OOD, and NRL methods. (Sept. 1985), 917-921.

Good source material for the instructor and stu- Abstract: This paper deals with the use of Struc-
dents. tured Analysis just prior to system acceptance test-

ing. Specifically, the drawing of data flow

Lamb88 diagrams (DFD) was done after integration testing.

Lamb, David Alex. Software Engineering: Planning The DFD's provided a pic:ure of the logical flow
forb C age. Enlewoo ftware ENineer: P nningH , through the integrated system for thorough system
for Change. Englewood Cliffs, N. J.: Prentice-Hall, acceptance testing. System test sets, [sic] were de-
1988. - rived from the flows in the DFD's. System test

This book provides a very good overview of many repeatability was enhanced by the matrix which
of the ideas of David Parnas that formed the basis of flowedfrom the test sets.
the NRL method. See comments in [Collofello88b] bibliography.

Good source material for the instructor and stu-
dents. Chapters 4, 5, and 6 are particularly relevant McCracken82
to this module. McCracken, D., and M. Jackson. "Life Cycle Con-

cept Considered Harmful." ACM Software Engineer-
Lubars87 ing Notes 7, 2 (April 1982), 29-32.
Lubars, M. D., and M. T. Harandi. "Knowledge- A brief note advocating an evolutionary prototyping
Based Software Design Using Design Schemas."
Proc. 9th Intl. Conf. Software Eng. Washington, approach to software development.
D. C.: IEEE Computer Society Press, 1987, Meyer87
253-262.

Meyer, B. "Reusability: The Case for Object-
Abstract: Design schemas provide a means for Oriented Design." IEEE Software 4, 2 (March 1987),
abstracting software designs into broadly reusable 50-64.
components that can be assembled and refined into
new software designs. This paper describes a An excellent paper describing the benefits of using
knowledge-based software development paradigm inheritance in object-oriented design. Illustrated by
that is based on the design schema representation. means of a detailed example of an airline reserva-
It combines design schemas, domain knowledge, tion system. The material is covered in more detail
and various types of rules to assist in the quick gen- in [Meyer88].
eration of software designs from user specifications. Excellent source of material for the instructor.
A prototypical environment, IDeA (Intelligent De-
sign Aid), is described that supports the knowledge- However, students may find the paper difficult and
based paradigm. The schema-based techniques prefer the lengthier treatment given in [Meyer88].

used in 1DeA are presented along with some ex-
amples of their use. Meyer88

Meyer, B. Object-Oriented Software Construction.
An interesting paper addressing a promising area of MeyrB Obetiented S w C t i
research-domain modeling. New York: Prentice-Hall, 1988.

A comprehensive description of designing object-
Martln85 oriented systems using inheritance, in addition to
Martin, J., and C. McClure. Structured Techniques information hiding. Several examples are givenusing the object-oriented programming language
for Computing. Englewood Cliffs, N. J.: Prentice- Eiffel.
Hall, 1985.

This book warrants a course of its own on object-
A wide ranging survey of several d!agramming oriented software development.
techniques and design methods. Compares JSP,
Structured Analysis/Design, and the Warnier/Orr
method. The book is oriented toward information MIlls87
systems. Mills, H. D., R. C. Linger, and A. R. Hevher. "Box

Structured Information Systems." IB r Systems
J. 26, 4.(Dec. 1987), 395-413.

S Mj
SEI-CM-22-1 .0 -' .1:. .("::~

Software Design Methods for Real-Time Systems

A description of the Box-Structured Information a "modularization" is dependent upon the criteria
System design method. used in dividing the system into modules. A system

design problem is presented and both a convention-

Myers78 al and unconventional decomposition are described.
C p t tc e eg NIt is shown that the unconventional decompositions

Myers, G. Composite/Structured Design. New have distinct advantages for the goals outlined. The
York: Van Nostrand, 1978. criteria used in arriving at the decompositions are

An early book on the Structured Design method by discussed. The unconventional decomposition, if

one of its developers. The book introduces the in- implemented with the conventional assumption that

formation hiding concept as a module cohesion cri- a module consists of one or more subroutines, will

terion, something still not done in later books, e.g., be less efficient in most cases. An alternative ap-

(Page-Jones88]. proach to implementation which does not have this
effect is sketched.

Myers79 A classic paper that introduces the concept of infor-
Myers, G. The Art of Software Testing. New York: mation hiding as a design criterion.
John Wiley, 1979. A good source of material for the instructor.

See comments in [CollofeIo88b] bibliography. Parnas74

Nlelsen88 Parnas, D. "On a 'Buzzword': Hierarchical

Nielsen, K., and K. Shumate. Designing Large Real Structure." Proc. IFIP Congress 1974. Amsterdam:

Time Systems with Ada. New York: McGraw-Hill, North-Holland, 1974, 336-339.
1988. Abstract: This paper discusses the use of the term

A detailed book for those interested in developing "hierarchially structured" to describe the design of
operating systems. Although the various uses of

Ada-specific issues. The design method is based on this term are often considered to be closely related,
DARTS [Gomaa84]. Several detailed case studies close examination of the use of the term shows that

it has a number of quite different meanings. For
are covered, including the robot controller exampleexample, one can find two differentsensesFof V
[Gomaa84] and an air traffic control system. "hierarchy" in a single operating system [31 and

Good reference material for the instructor. This is a [6]. An understanding of the different meanings of
good reference book for a real-time design course the term is essential, if a designer wishes to apply
oriented toward Ada. recent work in Software Engineerinp ,nd Design

Methodology. This paper attempts: vide such
Page-Jones88 an understanding.

Page-Jones, M. The Practical Guide to Structured An infrequently referenced paper that describes in
Systems Design, 2nd Ed. Englewood Cliffs, N. J.: detail the interesting view that a software system
Yourdon Press, 1988. consists of three orthogonal structurs, the informa-

tion hiding module structure [Pamas84], the uses
A readable book on the popular Structured Design structure [Pamas79], and the process structure
method. Also has an overview of Structured Anal- [Faulk88]. A paper that should be read by all sys-
ysis. Although recently revived, the book does not tern designers, particularly those who believe that
cover recent developments in design methods. Un- the same structuring criteria may be used for tasks
like (Myers78], it views information hiding as a de- and objects.
sign heuristic, rather than as a module cohesion cri-
terion, which is probably confusing for both stu- An essential source of material for the instructor.
dents and practitioners. Students may do better to settle for the instructor's

interpretation.
A good source of material for the instructor.

Pamas2
Pamas79
Parnas, D. "Designing Software for Ease of Exten-

Parnas, D. "On the Criteria for Decomposing a Sys- sion and Contraction." IEEE Trans. SoftwareEng.
tern into Modules." Comm. ACM 15, 12 (Dec. 1972), SE-5, 2 (March 1979), 128-138.,
1053-1058.

Abstract: Designing software to be exiensble 'and
Abstract: This paper discusses modularization as a easily contracted is discussed as a special cae.
mechanism for improving the flexibility and com- design for change. A number of ways thid#t" ee In
prehensibility of a system while allowing the shor- and contraction problems man.fest t hemelies II
tening of its development time. The effectiveness of

404

Software Design Methods for Real-Time Systems

current software are explained. Four steps in the focussed on those aspects of the design
design of software that is more flexible are then that suit his experience and expertise.
discussed. The most critical step is the design of a 2. The characteristics of the reviewers
software structure called the "uses" relation. Some needed should be explicitly specified be-
criteria for design decisions are given and il- fore reviewers are selected.
lustrated using a small example. It is shown that fr Reviewers are seted.
the identification of minimal subsets and minimal 3. Reviewers should be asked to make posi-
extensions can lead to software that can be tailored tive assertions about the design ratherto the needs of a broad variety of users. than simply allowed to point out defects.

4. The designers pose questions to the
An important paper that describes the uses structure, reviewers, rather than vice versa. These
a hierarchy of operations provided by modules, and questions are posed on a set of question-
how this structure may be used for determining sub- naires that requires careful study of some
sets and extensions of a software system. aspect of the design.

A good source of material for the instructor and 5. Interaction between designers and
students, although the example may be difficult to reviewers occurs in small meetings involv-
understand. ing 2 - 4 people rather than meetings of

large groups.
Parnas84 Illustrations of these ideas drawn from the appli-
Pamas, D., P. Clements, and D. Weiss. "The Modu- cation of active design reviews to the Naval Re-
lar Structure of Complex Systems." Proc. 7th Intl. search Laboratory's Software Cost Reduction Proj-
Conf. Software Eng. Long Beach, Calif.: IEEE ect are included.
Computer Society, 1984, 408-416. An interesting paper that advocates a highly par-

Abstract: This paper discuses the organization of ticipatory role by design reviewers.
software that is inherently complex because there
are very many arbitrary details that must be Parnas86
precisely right for the software to be correct. We Pamas, D., and P. Clemens. "A Rational Design
show how the software design technique known as Process: How and Why to Fake It." IEEE Trans.
information hiding or abstraction can be supple- Software Eng. SE-12, 2 (Feb. 1986), 251-257.
mented by a hierarchically-structured document,

which we call a module guide. The guide is in- Abstract: Many have sought a software design
tended to allow both designers and maintainers to process that allows a program to be derived sys-
identify easily the parts of the software that they tematically from a precise statement of require-
must understand without reading irrelevant details ments. This paper proposes that, although we will
about other parts of the software. The paper in- not succeed in designing a real product in that way,
cludes an extract from a software module guide to we can produce documentation that makes it appear
illustrate our proposals. that the sofware was designed by such a process.

We first describe the ideal process, and the docu-
A very important paper that describes the applica- mentation that it requires. We then explain why one
tion of the information hiding concept to the design should attempt to design according to the ideal
of a complex real-time system. Detailed example of process and why one should produce the documen-
the A-7 aircraft. tation that would have been produced by that proc.

Essential reading for the instructor and students. ess. We describe the contents of each of the re-
quired documents.

Parnas85 A clear overview of the NRL method that also de-
Parnas, D., and D. Weiss. "Active Design Reviews: scribes the rationale behind it and stresses the im-
Principles and Practices." Proc. 8th Intl. Con'. Soft- portance of documentation throughout the life cy-
ware Eng. Washington, D. C.: IEEE Computer So- cle. Several aspects of the method are described in
ciety Press, 1985, 132-136. more detail in other papers, e.g., [Parnas84].

Abstract: Although many new soft tre design Essential reading for the instructor and students.
techniques have emerged in the past 15 years, there
have been few changes to the procedures for re- Pedersen89
viewing the designs produced using these tech- Pedersen, J. S. Software Development Using VDM.
niques. This paper describes an improved tech- Curriculum Module SEI-CM-16-1.1, SWftWaeEngi-
nique, based on the following ideas, for reviewing neering Instimtite, Carnegie MelloniUrniversity,' Pis
designs. burgh, Pa., Dec. 1989.

1. The efforts of each reviewer should be bD

SEI-CM-22-1 .0 ' 41;

Software Design Methods for Real-Time Systems

Capsule Description: This module introduces the Prleto-Diaz87
Vienna Development Method (VDM) approach to Prieto-Diaz, R. "Domain Analysis for Reusability."
software development. The method is oriented Proc. COMPSAC 87. Washington, D. C.: IEEE
toward a formal model view of the software to be
developed. The emphasis of the module is on for- Computer Society Press, 1987, 23-29.
mal specification and systematic development of Abstract: Domain analysis is a knowledge inten-
programs using VDM. A major part of the module sive activity for which no methodology or any kind
deals with the particular specification language of formalization is yet available. Domain analysis
(and abstraction mechanisms) used in VDM. is conducted informally and all reported experi-

ences concentrate onz the outcome, not on the proc-
Perlman88 ess. We propose a model domain analysis process

Perlman, G. User Interface Development. Curricu- derived from analyzing some domain analysis cases

lum. Module SEI-CM-17-1.0, Software Engineering and two existing approaches. After decomposition
Initute, Carngie SEI-Mellon Softr Eniurg of the activities analyzed, we were able to capture
Institute, Carnegie Mellon Univcrsity, Pittsburgh, the domain analysis process in a set of data flow
Pa., April 1988. diagrams. The model identifies intermediate activi-

Capsule Description: This module covers the is- ties and workproducts for which support tools can
sues, information sources, and methods used in the be developed. A project is currently under way to

design, implementation, and evaluation of user verify our model.
interfaces, the parts of software systems designed to An interesting research paper that presents an ap-
interact with people. User interface design draws proach to analyzing application domains.
on the experiences of designers, current trends in
input/output technology, cognitive psychology,
human factors (ergonomics) research, guidelines Renold88
and standards, and on the feedback from evaluating Renold, A. "Jackson System Development for Real
working systems. User interface implementation Time Systems." In JSP & JSD: The Jackson Ap-
applies modern software development techniques to proach to Software Development, 2nd Ed.,
building user interfaces. User interface evaluation J. Cameron, ed. Washington, D. C.: IEEE Computer
can be based on empirical evaluation of working Society Press, 1989, 235-278.
systems or on the predictive evaluation of system 0
design specifications. A good description of how JSD may be used for

designing real-time systems. Also includes a com-
Peterson81 parison of JSD with Structured Analysis/Design andPeteron~lDARTS.
Peterson, J. Petri Net Theory and the Modeling of
Systems. Englewood Cliffs, N. J.: Prentice-Hall, Rombach89
1981. Rombach, D. Software Specifications: A

An excellent reference book on Petri nets, providing Framework. Curriculum Module SEI-CM-11-2.0,
a readable treatment of the subject, with many ex- Software Engineering Institute, Carnegie Mellon
amples. University, Pittsburgh, Pa., Dec. 1989.

Peterson85 Capsule Description: This curriculum module
Peterson, J., and A. Silberschatz. Operating System presents a framework for understanding software

product and process specifications. An unusual ap-
Concepts, 2nd Ed. Reading, Mass.: Addison-Wes- proach has been chosen in order to be able to ad-
ley, 1985. dress all aspects related to "specification" without

A very good reference book on operating systems. confusing the many existing uses of the term. In this
module, the term specification refers to any plan (or
standard) according to which products of some type

Pressman87 are constructed or processes of some type are per-
Pressman, R. Software Engineering: A formed, not to the products or processes themselves.
Practitioner's Approach, 2nd Ed. New York: In this sense, a specification is itself a product that
McGraw-Hill, 1987. describes how products of some type should look or

how processes of some type should be performed.
A very good introduction to software engineering. Theframework includes
Also has chapters on several design methods, in-
cluding Structured Analysis and Design, DARTS, "areferencesoftwarelecycle mde"!and

object-oriented design, and JSD.
o a characterizing scheme for software-

A good source of material for the instructor and product and process specificaitons,
students.

42 SEI-CM-22-1 .Q

Software Design Methods for Real-Time Systems

* guideliucs for using the characterization A good source of material for the instructor and
scheme to identify clearly certain life-cycle students.
phases, and

* guidelines for using the characterization Shlaer88
scheme to select and evaluate specification Shlaer, Sally, and Stephen J. Mellor.
techniques. Object-Oriented Systems Analysis: Modeling the

World in Data. Englewood Cliffs, N. J.: Yourdon
Sanden89 Press, 1988.
Sanden, B. "An Entity Life Modeling approach to A rather narrow view of object-oriented require-
the Design of Concurrent Software." Comm. ACM ments analysis, concentrating on semantic data32,t 3lss concntrtin 199) se3a0tc4dat
32, 3 (March 1989), 330-343. modeling. However, the treatment given is read-

Describes a variation on JSD that addresses the able, though somewhat introductory.
needs of real-time systems and also maps directly to Good source of material for the instructor. Prob-
Ada. Illustrates the method by comparing it to JSD, ably too narrow for students.
using Jackson's elevator example [Jackson83].

Simpson79
Seldewltz86 Simpson, H., and K. Jackson. "Process Synchroniza-
Seidewitz, Ed, and Mike Stark. "Towards a General tion in MASCOT." Computer J. 22, 4 (Nov. 1979),
Object-Oriented Software Development 332-345.
Methodology." Proc. 1st Intl. Conf. on Ada® Pro-
gramming Language Applications for the NASA An early paper on MASCOT, concentrating on the
Space Station, vol. 11. Houston: University of concurrent process synchronization aspects of
Houston-Clear Lake, 1986, D.4.6.1-D.4.6.14. MASCOT.

An early paper on the GOOD method for object- Slmpson86
oriented design. Simpson, H. "The MASCOT Method." Software

Seldewitz88 Eng. J. 1, 3 (May 1986), 103-120.
Seidewitz, Ed. "General Object-Oriented Software A more recent paper on MASCOT that covers the
Development: Background and Experience." Proc. extensions and notation for MASCOT 3.
21st Ann. Hawaii Intl. Conf. System Sciences, vol. I1.
Washington, D. C.: IEEE Computer Society Press, Stankovic88
1988, 262-270. Stankovic, J. A., and K. Ramamritham. Hard Real-

Time Systems. Washington, D. C.: IEEE Computer
Abstract: The effective use of Ada"m requires the Society Press, 1988.
adoption of modern software-engineering tech-
niques such as object-oriented methodologies. A A wide-ranging collection of papers covering the
Goddard Space Flight Center Softvare Engineering specification, design and analysis of real-tim. , sys-
Laboratory Ada pilot project has provided an op- tems (with particular emphasis on timing
portunity for studying object-oriented design in constraints), real-time languages, real time operat-
Ada. The project involves the development of a ing systems, architecture and hardware, communi-
simulation system in Ada in parallel with a similar cation, and fault tolerance.
FORTRAN development. As part of the project, the Good source material for the instructor. Forms anAda development team trained and evaluatedGodsuemarilfrtentrtr.Fmsn
Adaeeomentte a trasoined ande ated excellent basis for a graduate seminar on this topic.
object-oriented and process-oriented design meth-
odologies for Ada. Finding these methodologies
limited in various ways, the team created a general Stroustrup86
object-oriented development methodology which Stroustrup, B. The C++ Programming Language.
they applied to the project. This paper discusses Reading, Mass.: Addison-Wesley, 1986.
some background on the development of the meth-
odology, describes the main principles of the ap- A good reference book on this object-oriented Ian-
proach and presents some experiences with using gage.
the methodology, including a general comparison of

* the Ada and FORTRAN simulator designs. Ta87

A later paper on the GOOD method. Interesting in Tai, Kuo-Chung, and Sanjiv Ahua. "Repr pducble,
its application of entity-relationship modeling to Testing of Communication Software." 'r COM-
help identify objects in the problem domain. PSAC 87. Washingtn, D. C.: IIE Comj iter Soci-

ety Press, 1987, 331-337.
SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

Abstract: Communication software uses timers and and of data repositories (stores), linked by commu-
constructs such as SENDIRECEIVE and ENQIDEQ nication paths (flows). The execution rules provide
to control synchronization between concurrent a qualitative prediction rather than a quantitative
processes. As a result, repeated executions of a one, describing the acceptance of inputs and the
communication program with the same test se- production of outputs by the transformations but not
quence may produce different results. This unpre- input and output values.
dictable program behavior makes the debugging The transformation schema permits the creation
and testing of communication software difficult, and evaluation of two different types of system
The reproducible testing problem is to exercise a models. In the essential (requirements) model, the
given sequence of synchronization events between schema is used to represent a virtual machine with
concurrent processes. In this paper, we present infinite resources. The elements of the schema
solutions to the reproducible testing problems for iciize rcess an meor cm

SENDIRECEIVE and timers. depict idealized processing and memory compo-
nents. In the implementation model, the schema is

Presents an interesting approach to testing concur- used to represent a real machine with limited
rent systems. resources, and the results of the execution predict

the behavior of an implementation of requirements.
Tsai88 The transformations of the schema can depict soft-

ware running on digital processors, hard-wired
Tsai, J. J.-P., and J. C. Ridge. "Intelligent Support digital or analog circuits, and so on, and the stores
for Specifications Transformation." IEEE Software of the schema can depict disk files, tables in mem-
5, 6 (Nov. 1988), 28-36. ory, and so on.

Ward85 An overview of RTSA, with some refinement and

Ward, P. T., and S. J. Mellor. Structured Develop- terminology changes in the notation of [Ward85].

mentfor Real-Time Systems. New York: Yourdon A good source of material for the instructor and
Press, 1985-1986. The three volumes in this series students.
are Introduction and Tools, Essential Modeling
Techniques, and Implementation Modeling Wegner87
Techniques. Wegner, P. "Dimensions of Object Based Language V

Design." Proc. OOPSLA '87. New York: ACM,
comprehensive treatment of the Ward/Mellor ap- 1987, 168-182. Proceedings available as special is-

proach to Real-Time Structured Analysis and De-.
sign.sue of SIGPLAN Notices 22, 12 (Dec. 1987).

A good source of material for the instructor. Prob- Abstract: The design space of object-based lan-
ably toe detailed for students, unless they are carry- guages is characterized in terms of objects, classes,ably oetaildpth students, of es thd, ainheritance, data abstraction, strong typing, con-currency, and persistence. Language classes

(paradigms) associated with interesting subsets ofWard86 these features are identified and language design
Ward, P. 'The Transformation Schema: An Exten- issues for selected paradigms are examined. Or-
sion of the Data Flow Diagram to Represent Control thogonal dimensions that span the object-oriented
and Timing." IEEE Trans. Software Eng. 12, 2 (Feb. design space are related to non-orthogonal features
1986), 198-210. of real languages. The self-referential application

of object-oriented methodology to the development
Abstract: The data flow diagram has been exten- of object-based language paradigms is demon-
sively used to model the data transformation as- strated.
pects of proposed systems. However, previous
definitions of the data flow diagram have not pro- Delegation is defined as a generalization of in-
vided a comprehensive way to represent the inter- heritance and design alternatives such as non-strict,action between the timing and control aspects of a multiple, and abstract inheritance are considered.
syton tte tminan o ntrol peior. Ts Actors and prototypes are presented as examples ofsystem and its data transformation behavior. This classless (delegation based) languages. Processes
paper describes an extension of the data flow classed btreg eel n era cocs-are classified by their degree .of -itfternal conciw- '"
diagram called the transformation schema. The
transformation schema provides a notation and for- rency. The potentia inconsit ency of .o bjit
mation rules for building a comprehensive system cussed, suggesting that cotpromisebetwe n Slids-
model, and a set of execution rules to allow predic-
tion of the behavior over time of a system modeled tng and autonomy will be necessay In desgning
in this way. The notation and formation rules allow strongly typed object-oriented dstriba¢dtb .
depiction of a system as a network of potentially languages.
concurrent "centers of activity" (transformations),

44SE[22iO

Software Design Methods for Real-Time Systems

A very interesting paper giving a comprehensive.taxonomy of languages supporting objects.

Required reading for the instructor and students
who want a clear overview of object-oriented con-
cepts and how they are supported by object-oriented
languages.

Yourdon79
Yourdon, E., and L. Constantine. Structured Design.
Englewood Cliffs, N. J.: Prentice-Hall, 1979.

The classic text on Structured Design, although
somewhat dated and not as readable as [Page-
Jones88].

Yourdon89
Yourdon, E. Modern Structured Analysis.
Englewood Cliffs, N. J.: Prentice-Hall, 1989.

Probably the most comprehensive and up-to-date
book on the popular Structured Analysis method.
Includes material on the real-time extensions to
Structured Analysis and Entity-Relationship model-
ing. There are also two detailed case studies. If
you need one book on Structured Analysis, this is
probably the one to get.

Very good source material for instructor and stu-. dents.

Zave84
Zave, P. "The Operational Versus the Conventional
Approach to Software Development." Comm. ACM
27, 2 (Feb. 1984), 104-118.

This paper advocates an alternative approach to
software development in which a problem-oriented
executable operational specification is developed,
followed by a transformation phase that results in an
implementation-oriented speL fication. A character-
istic of the operational specification is that, in order
to be executable, it freely interleaves requirements
(external behavior) and internal structure.

SEI-CM-22-1.0 :46i-
• _ _ . .- A

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PA GE

REPORT DOCUMENTATION PAGE
OREPORT SECURITY CLASSIFICATION 1L. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2.L SECURITY CLASSIfICATION AUTHORITY 3. OISTRIOUTION/AVAILASALITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE
2b. OECLASSIFICATION/OOWNGRAOING SCHEOULE DISTRIBUTION UNLIMITED

N/A
4 PERFORMING ORGANIZATION REPORT NUMOER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

SEI-CM-22-1 .0

6*& NAME OF PERFORMING ORGANIZATION tb. OFFICE SYMBOL 7&. NAME Of MONITORING ORGANIZATION

SOFTWARE ENGINEERING INST. JS EI SEI JOINT PROGRAM OFFICE

ft. ADDRESS (City. Stele and 7IP CO&.I 7b.-AOALM (City. St and ZIP Codol

CARNEGIE-MELLON UNIVERSITY ESD/AVS
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE

- I~A~C.AMMA al7 I
go. NAME OF FUNOING/SPONSORING 6ab. OFFICE SYM13OL 9. PROCUREMENT INSTRUMENT IOENTIF(CATIOM NUMBER

ORGANIZATION I(if opptkcable)

SEI JOINT PROGRAM OFFICE ESD/ AVS F129003
Sc. AORESS (City. State GAd ZIP Code) 10. SOURCE OF FUNDING NO11. _______

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT
PITSURHPA1513ELEMENT NO. NO. No. NO.

63752F I A N/A N/A
7I TITLE (Include Security Clautricationj

ftware Design Methods for Real-Time Sstems ______

PEIRSONAL AUTHO 4Mh
Hassan Gomaa. George Maso~n Univigrgity

13*. TYPE Of REPORT 13b. T&MG COVERED 14. DATE OF REPORT (re.. Me.. D"j IS. PAGE COUNT

1PTNAT. FROM ___ TO _ - December 1989 I45
16. SUPPLIEMENTARY NOTATION

17. COSATI CODIS I6t SUBJECT TERM$ (Contmnue on ivwfu if secemwy &nd Idetity by block number)
PIELO GROUP SlUs. am. real-time systems design method

software design design assessment

It. ABSTRACT (Continue on meverm 4f nects~? ad Wodl~y by block mumberi

This module describes the concepts and methods used in the software design of real-time
systems. It outlines the characteristics of real-time systems, describes the role of
software design in real-time system development, surveys and compares some software
design methods for real-time systems, and outlines techniques for the verification and
validation of real-time designs. For each design method treated, its emphasis, concepts
on which it is based; steps used in its application, and an assessment of the method are
provided.

OISTRISUTION/AVAILAGILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIPIEO/ UNLIMITED J3 SAME AS APT. 03 OTIC USERS G UNCLASSIFIED, UNLIMITED DISTRIBUTION
22&. NAMIE OF RESPONSISLE1 INDIVIDUAL 221L TELEPHONIC NUMBER r22i. OFFoCE IYMID

11noluge A me Codes4O811S. HERMAN, Capt, USAF 1 6873

00 FORM 1473,83 APR 60ITIONOF I JAN 7

The Software Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mellon University under contract with the United States Department of Defense.

O The SEI Software Engineering Curriculum Project is developing a wide range of materials to support software engireering
education. A curriculum module (CM) identifies and outlines the content of a specific topic area, and is intendwd to be
used by an instructor in designing a course. A support materials package (SM) contains materials related to a module
that may be helpful in teaching a course. An educational materials package (EM) contains other materials not necessarily
related to a curriculum module. Other publications include software engineering curriculum recommendations and course
designs.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI, by Carnegie Mellon University, or by the United States governmenL

Permission to make copies or derivative works of SEI curriculum modules, support materials, and educational materials is
granted, without fee, provided that the copies and derivative works are not made or distributed for direct commercial
advantage, and that all copies and derivative works cite the original document by name, author's name, and document
number and give notice that the copying is by permission of Carnegie Mellon University.

Comments on SEI educational materials and requests for additional information should be addressed to the Software
Engineering Curriculum Project, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
15213. Electronic mail can be sent to education@sei.cmu.edu on the Internet.

Curriculum Modules (* Support Materials available) Educational Materials

CM-I (superseded by CM-191 EM-1 Software Maintenance Exercises for a Software
CM-2 Introduction to Software Design Engineering Project Course
CM-3 The Software Technical Review Process* EM-2 APSE Interactive Monitor: An Artifact for Software
CM-4 Software Configuration Managemenr Engineering Education
CM-5 Information Protection EM-3 Reading Computer Programs: Instructors Guide and
CM6 Softwao Safety Exercises

CM-7 Assurance of Software Quality
CM-8 Formal Specirfyation of Software'
CM-9 Unit Testing and Analysis
CM-t0 Models of Software Evolution: Life Cycle and Process
CM-11 Software Specifications: A Framework
CM-12 Software Metrics
CM-13 Introduction to Software Verification and Validation
CM-14 Intellectual Property Protection for Software
CM-15 Software Development and Licensing Contracts
CM-16 Software Development Using VDM
CM-17 User Interface Development'
CM-18 (superseded by CM-23)
CM-19 Software Requirements
CM-20 Formal Verification of Programs
CM-21 Software Project Management
CM-22 Software Design Methods for Real-Time Systems'
CM-23 Technical Writing for Software Engineers
CM-24 Concepts of Concurrent Programming
CM-25 Language and System Support for Concurrent

Programming'
CM-26 Understanding Program Dependencies

