©

(AD-A235 701

WA ~ St i

Software Design Methods
for Real-Time Systems

Curriculum Module SEI-CM-22-1.0

DTIC

@ ELECTE ¥
&, MAY23 1991

91-

Software Design Methods
for Real-Time Systems

SEI Curriculum Module SEI-CM-22—1.0
December 1989

. an s e————————

Srudssiog For.
&7 BRARI

BYLT TaR O
Unsnacivrged Cl

Justification .

Hassan Gomaa

i
i
(

Br..
George Mason University Pistributlony

| AvA1lsbility Codes

it ot o < e

; lsvail aadfox
.Dist Spealal

" R

&~ Carnegle Melion University
* Software Engineering Institute

This work was sponsorad by the U.S. Department of Defense.
Approved for public release. Distribution unlimited.

S s S LD, Rn e R A ee F T St mfh ameeama s SES L s See e Na X Rwtebraul ooa Muan 32 A6 te i SRS e

AL 2t n bovards 2ea

R PR

T T) .
] ;4,\\ S~ T ¥ I N > I N .
Limas et r 2ok IR B2 2 W 2 SenSel 2 5 Bt o e,

This technical report was prepared for the
SEl Joint Program Office

ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER ‘

OHN S. HERMAN, Capt, USAF
SEl Joint Program Office

This work is sponsored by the U.S. Department of Defense.
Copyright ©® 1989 by Carnegie Melion University.

This document is available through the Defense Technical Information Center. DTIC provides access to and:transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government:
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Teehmcal lnformaﬁon
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145,

Copies of this document are also available through the National Technical Information Service. For information on ordorinu
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Spdngﬁold VA 22181

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Software Design Methods
for Real-Time Systems

Acknowledgements Contents
This module is an outgrowth of my experiences in teach- Capsule Description 1
ing the graduate course “Sofiware Engineering Methods” Philosophy 1
at the Wang Institute of Graduate Studies and graduate ..
courses “Software Requirements Analysis, Prototyping, Objectives 2
and Design” and “Software Design Methods for Real- Prerequisite Knowledge 3
Time Systems” at George Mason University. I am in- Module Content 4
debted to my students for their enthusiasm and feedback, .
which helped me improve the courses substantially and Outline 4
hence pave the way for this module. Annotated Outline 5
I would also like to gratefully acknowledge the many Glossary 23
stimulating discussions I have had with John Brackett, Bo Teaching Considerations 26
Sanden, and David Weiss that have contributed signifi-
cantly to my understanding of the design methods de- Textbooks 26
scribed in this module. Suggested Course Types 26
I am also indebted to Lionel Deimel for his considerable Suggested Schedules 26
assistance with all aspects of the production of this curric- Worked Examples 27
ulum module. Considerable effort was also expended by Exercisés 27
Jim Rankin in constructing the bibliography.

Classification of References 28
Thanks are also due to John Brackett and David Budgen, Bibli h 31
who helped in defining the scope of this module, and to ibliography

the following reviewers of an earlier draft of this module:
Lionel Deimel, Richard D'Ippolito, Gary Ford, Ken
Fowler, Frank Friedman, John Goodenough, Roger Van
Scoy, and David Wood.

SEI-CM-22-1.0

P N T T

[L TSR AL S NP

N S A Fe Tana 3.

> oin

Software Design Methods for Real-Time Systems
Module Revision History

Version 1.0 (December 1989) Initial release
Approved for publication

Software Design Methods
for Real-Time Systems

Capsule Description

This module describes the concepts and methods
used in the software design of real-time systems. It
outlines the characteristics of real-time systems, de-
scribes the role of software design in real-time sys-
tem development, svrveys and compares some soft-
ware design 1.iethods for real-time systems, and out-
lines techniques for the verification and validation of
real-time designs. For each design method treated,
its emphasis, concepts on which it is based, steps
used in its application, and an assessment of the
method are provided.

Philosophy

Real-Time Systems. Real-time systems have wide-
spread use in industrial, commercial, and military
applications. These systems are often complex be-
cause they have to deal with multiple independent
streams of input events. These events have arrival
rates that are often unpredictable, although they must
be responded to within predefined timing con-
straints.

Real-time systems are frequently classified as “hard
real-time systems” or “soft real-timc¢ systems.” A
hard real-time system has time-critical deadlines that
must be met; otherw:se a catastrophic system failure
can occur. In a soft‘real-time system, it is consid-
ercd undesirable, but not catastrophic, if deadlines
are occasionally missed.

In spite of the importance of timing constraints in
real-time systems, it is a characteristic (and a
limitation) of the current state of the art in software
design methods for real-time systems that the meth-
ods tend to emphasize structural and behavioral as-
pects of real-time systems and generally pay signifi-
cantly less attention to timing constraints.

SEl-CM-22-1.0

Software Design. A software design strategy is an
overall plan and direction for performing design.
For example, functional decomposition is # software
design strategy.

A software design concept is a fundamental idea that
can be applied to designing a system. Information
hiding is a software design concept.

A software design notation or representation is a
means nf describing a software design. It may be
diagrammatic, symbolic, or textual. Structure charts
and pseudocode are software design notations.

A software design method is a systematic approach

for carrying out design. It typically describes a se-
quence of steps for producing a design. A desizn
method is based on a set of design concepts,
employs a design strategy or strategies, and docu-
ments the resulting design using one or more design
notations.

A software design method does not provide a cook-
book approach to performing design. A designer
must use his skill and judgement in applying the
method. It should be pointed out that when a meth-
od is deficient in a cartain aspect, it is often the case
thst experienced designers will compensate for this
by developing an ad hoc solution,

Module Organization. This module builds on the
module /ntroduction to Software Design [Budgensg]
by focusing on the real-time system domain, It

points out the differences between this dommn and
other application domains. It describes design.con-
cepts that are of parucular importance. to- réal-time.
system design, such as concurrent tasks- and finite.
state machines. Life-cycle conmderations speclﬁcto; "
real-time systems are examingd. Deslgn mpnesen-;u

tations for expressing real- ume designs -are-oul

This module referénces material in Introduction -
Software Design, in particular, for those de:sxgni «
topics that are of importance to the design of all soft- .,

ware systems.

LA ey S Y 2%

A AN e A e Pattanl o N s L s bl

,,
e N
fasd, YR e e VE S

» v .
. w7
Vel W AAANE LN L LA AR ey

*

R4

Software Design Methods for Real-Tinie Systems

This module surveys suveral softwar> design meth-
ods for real-time systems. The concepts on which
each method is based are described first to show
what the method attempts to achieve. The steps in-
volved in using the method are then outlined to give
an appreciation of the method. This is followed by
an assessment of the method. The methods are sub-
sequently compared to one another to point out the
similarities and differences among them. Since the
methods are best understood by studying an ex-
ample, the support materials provide aa example of
applying each design method to s~ . .1e same real-
time problem.

Criteria for Selecting Software Design Methods.
In selecting the design methods to be included in this
survey, the following criteria for selection were
used:

1. The method must be published in the
literature and not be proprictary. This
excludes methods such as PAMELA
(Process Abstraction for Large Em-
bedded Applications) [Cherry86], whose
description is not widely available.

2.The method must actually have been
used on a real-world real-time applica-
tion. This excludes some emerging
methods that have recently been
published, such as the Box Structured
Method [Mills87], ADARTS [Gomaa83b]
and Entity Life Modeling [Sanden89).

3. The method must not be oriented toward
a specific language. This excludes meth-
ods such as that discussed in [Nielsen88),
which is oriented toward Ada.

4. The method must be a design method
and not a design notation. A design
notation suggests a particular approach
to performing a design, but does not pro-
vide a systematic approach of specific
steps for performing design. This ex-
cludes design notations such as
Statecharts [Harel88b] and MASCOT
(Modular Approach to Software Con-
struction and Test) [Simpson86}.

Module Interface, Three other SEI curriculum
raodules provide background for this one related to
particular life-cycle phases:
e Software Specifications: A Framework
[Rombach89] introduces some of the ter-
minology used by this module.

o Software Requirements [Brackett89].
The requirements phase precedes the de-

sign phase, and its outputs are the inputs
to the design pnase.

o Introduction to Software Design [Bud-
gens9] introduces the principles and con-
cepts involved in the design of large pro-
grams and systems. It may thus be
viewed as a prerequisite to this module,
which focuses specifically on the design
of real-time systems.

This module is one of several proposed modules on
real-time systems including:

e Fundamentals of Real-Time Systems,
which should introduce a range of topics
relevant to real-time systems, including
characteristics of real-time systems, soft-
ware life cycle overview for real-time
systems, and interfacing to hardware—
interrupt handling, polling, and sensor/
actuator interfaces. In the absence of this
module, the reader is referred to intro-
ductory books on real-time systems, such
as Allworth and Zobel [Allworth87] or

. Glass [Glass83].

Objectives

A student who has mastered the material presented
in this module may be expected to be able to:

e Describe the differences between real-
time systems and other kinds of software
systems,

e Discuss the design concepts of particular
importance to real-time systems.

e Describe design representations for de-
scribing real-time designs.

o State the principles behind and steps in-
volved in several design methods for
real-time systems. Discuss the
similarities and differences between
these methods.

e Apply one or more methods to solve
small real-time problems.

e Discuss how real-time designs may be
verified and validated.

SEI-CM-22-1.0 _

Soltware Design Methods for Real-Time Systems

Prerequisite Knowledge

’ Students should be familiar with the terms and con-
cepts of the software life cycle. They should under-
stand concurrent processing concepts, including
process synchronization and mutual exclusion. Stu-
dents should also have had an introduction to soft-
ware design.

SEI-CM-22-1.0

DCIRE] PIVRR 2 W SN NP O O NPT R SIS P YIS ST 2NN

i
3
i

Software Design Methods for Real-Time Systems

Module Content o |

Outline b. Design Methods Based on Concurrent Task
Structuring
I. Characteristics of Real-Time Systems c. Design Methods Based on Information {
1. Embedded Systems Hiding Module Structuring j
2. Interaction .with External Environment d. Design Methods Based on Modeling the

Problem Domain
I11. Survey of Real-Time Software Design Methods
1. Structured Analysis and Design for Real-Time

3. Real-Time Constraints
4, Real-Time Control
5. Reactive Systems

Systems
6. Concurrent Processing a. Overview
I1. The Role of Software Design in Real-Time b. Basic Concepts

System Development
1. The Design Process
2. Real-Time Design as a Software Life-Cycle

c. Steps in Method 9
d. Products of Design Process

Phase e. Assessment of Method
a. Life-Cycle Considerations for Real-Time f. Extensions and/or Variations ‘
Systems ' 2. Naval Research Lab Software Cost Reduction 3
b. Requirements Definition Method g
c. Architectural Design . a. Overview
d. Detailed Design b. Basic Concepts ’]
e. Implementation ' c. Steps in Method '
3. Real-Time System Design Concepts d. Products of Design Process
a. General Design Concepts : e. Assessment of Method ;
b. Real-Time-Specific Design Concepts f. Extensions and/or Variations {
4. Real-Time Design Representations 3. Object-Oriented Design :
a. Data Flow/Control Flow Diagrams a. Overview 3
b. Task Structure Diagrams b. Basic Concepts :
¢. MASCOT Diagrams <. Steps in Method
d. Structure Graphs (Buhr Diagrams) d. Products of Design Process .
e. Structure Charts e. Assessment of Method 1
f. Entity Structure Diagrams f. Extensions and/or Variations
g. JSD Network Diagrams 4. Jackson System Development for Real-Time ‘
h. Object Diagrams Systems. . :
i. Class Structure Diagrams & Ove'mew .
j. State Transition Diagrams . Basic C oncepts 3
k. Statecharts ¢. Steps in Method
1. Petri Nets d. Products of Design Process
5. Rele of Software Design Methods . E":::f;:‘g%ﬁ:gaﬁm
6. g;gtgnallse Design Strategies for Real-Tite 5. DARTS (Design Approach fof Real:Tidie. _
a. Design Methods Based on Functional Systems). .
Decomposition a. Overview-
4 | SEICME2
S

Software Design Methods for Real-Time Systems

b. Basic Concepts temal environment. A computerized automobile
‘ ¢. Steps in Method ;:nrggﬁe.control system is embedded in the auto
d. Products of Design Process
e. Assessment of Method
f. Extensions and/or Variations
6. Other Real-Time Software Design Methods
IV. Design Verification and Validation
1. Software Technical Reviews
2. Requirements Tracing
3. Simulation
4. Prototyping
5. Software Testing
a. Testing Concurrent Software
b. System Testing

2. Interaction with External Environment

A real-time system typically interacts with an exter-
nal environment, which is, to a large extent, non-
human. For example, the real-time system may be
controlling machines or a manufacturing processes,
or it may be monitoring chemical processes and re- i
porting alarm conditions. This situation often neces-
sitates a sensory interface for receiving data from the !
external environment and actuators for outputting

data to and controlling the external environment.

3. Real-Time Constraints

Real-time systems have timing constraints, i.e., they ;
must process events within a given time frame.
These real-time constraints are specified in the soft-
V. Review of Real-Time Software Design Methods ware requirements. Whereas, in an interactive sys-

1. Comparison of Real-Time Software Design tem, a human may be inconvenienced if the system
Methods response is delayed, in a real-time system, a delay

- . may be catastrophic. For example, inadequate re-
a. Support for Finite State Machines sponse in an air traffic control system could result in
b. Support for Concurrent Tasks a midair collision of two aircraft. The required re-
¢. Support for Information Hiding sponse time will vary by application, ranging from
d. Timing Constraints

milliseconds in some cases, to seconds, or even
. 2. Trends in Real-Time Software Design Methods

minutes, in others.
Ecl De Method 4. Real-Time Control :
a. “Eclectic” Desi ethods]
&n A real-time system often involves real-time control.

2 e e bk b kA e

b. Domain Specification and Design Methods

¢. Computer Support Tools and Software
Development Environments

d. Executable Specifications and Designs

¢. Performance Analysis of Real-Time Designs
f. Application of Knowledge-Based Techniques
g. Application of Formal Methods

Le., the real-time ‘system makes control decisions
based on input data, without any human interven-
tion. An automobile cruise control system, for ex-
ample, has to adjust the throttle based on measure-
ments of current specd to ensure that the desired
speed is maintained.

A real-time software system may also have
non-real-time components. For example, real-time
data collection necessitates gathering the data under
real-time constraints, otherwise the data may be lost.
However, once collected, the data can be stored for

subsequent non-real-time analysis.

Annotated Outline ;
S. Reactiye Systerr. k

L. Characteristics of Real-Time Systems

Real-time software systems have several characteristics
that distinguish them from other software systems:

1. Embedded Systems

Many real-time .ystems are reactive systems
[Harel88a). They are event-driven and must. respond i
to external stimuli. It is usually the case in-reactive ;
systems that the response made by the system: to an
input stimulus is state dependent, i.e., the response

. depends not only on the stimulus itself, but.also on
A real-time system is often an emtedded system, Wh;;etn has prewouysly happenéd iri the syshem. ¥
i.e., the real-time software system is a component of] - 3
a larger hardware/software system. An example of 6. Concurrent Processing S

this is a robot controller that is a component of a
‘ robot system consisting of one or more mechanical
arms, servo-mechanisms controlling axis motion,
and sensors and actuators for interfacing to the ex-

A feature of most real-time: systems is, concun'entx
processing, /.., there are many events that need:tor
be processed in- parallel Frequently, *the" i
.incoming events is not pred:ctable. Furtherm‘ e, the: -

SEI-CM-22-1.0 oL 55':',5 :

Software Design Methods for Real-Time Systems

input load may vary significantly and unpredictably
with time,
II. The Role of Software Design in Real-Time -
System Development

i. The Design Process

Design is a highly creative activity that relies on
designer skill, experience, and judgement. Several
factors need to be considered in the software design
process [Budgen89],

2. Real-Time Design as a Software Life-Cycle
Phase

a. Life-Cycle Considerations for Real-Time
Svstems

Like any software systems, real-time systems
should be developed using a life-cycle model.
The “waterfall” model [Boehm76, Fairley85] is
the most widely used life-cycle model, although,
more recently, other models have been used to
overcome some of its limitations [Agresti86].
These include the incremental development
model (also referred to as evolutionary
prototyping) [Basili75, Gomaa86b)] and the rapid
prototyping model [Agresti86].

b. Requirements Definition

Since a real-time software system is often part of
a larger embedded system, it is likely that a sys-
tem requirements definition phase precedes the
software requirements definition. In this case,
system functional requirements are allocated to
software and hardware before software require-
ments definition begins [Brackett89], In this
highly constrained environment, the emphasis is
usually on producing developer-oriented require-
ments (D-requirements) [Rombach89).

c. Architectural Design

During this phase, the system is structured into its
constituent components. An important factor that
frequently differentiates real-time systems from
other systems is the need to address the issue of
structuring a real-time system into concurrent
tasks (processes) [Buhr84]. Depending on the de-
sign method used and/or designer decisions, the
emphasis at this stage may be on decomposition
into tasks, modules, or both. Another important
factor is consideration of the behavioral aspects of
a real-time system, i.c., the sequences of events
and states that the system experiences. This pro-
vides considerable insights into understanding the
dynamic aspects of the system,

d. Detailed Design

During detailed design, the algorithmic details of
each system component are defined. This is often

achieved using a prograin design language (PDL)
notation, also referred to as structured English or
pseudocode. In real-time systems, particular at-
tention needs to be paid to algorithms for resource
sharing and deadlock avoidance, as well as inter-
facing to hardware I/O devices.

. Implementation

Since real-time systems are often embedded sys-
tems, testing is often more complex than for other
systems, possibly requiring the development of
environment simulators [Gomaa86aj. Further-
more, performance of the system needs to be
tested against the requirements,

3. Real-Time System Design Concepts
a. General Design Concepts

[Budgen89)] discusses several important general
design concepts.

b. Real-Time-Specific Design Concepts

Design cencepts of particular importance to real-
time systems are:

(i) Finite State Machines

Finite state machines may be used for model-
ing the behavioral aspects of a system. Many
real-time systems, in particular real-time con-
trol systems, are highly state-dependent. A
finite state machine consists of a finite number
of states and transitions between them. It can
be in only one of a given number of states at
any given time [Davis88]. In response to an
input event, the machine generates an output
event and may undergo a transition to a differ-
ent state. Two notations widely used to define
finite state machines are state transition
diagrams, a graphical representation, and state
transition matrices, a tabular representation,
Since large real-time systems typically have
large numbers of states, state transition
diagrams or matrices can help substantially in
providing an understanding of the complexity
of these systems,

(ii) Concurrent Tasks (Pmcesses)'

A real-time system typically has many activi-
ties occurring in parailel, A task represents.the
execution of a sequential program or a sequen-
tial component of a concurrent program;. ‘Each

task deals with one sequennal thread of execu: -

tion, Overall system concurrency is-obt ed
by having many tasks executing ifi’ :parailel, - A:
design emphas:zmg concnnent tasks

than a seqmnual program Comnm"*

esses afe described ‘in: [B""""Haﬂunn],; LA

[Dilkstra68}, and [Hoare74];”

oftcn .

Software Design Methods for Real-Time Systems

(iii) Information Hiding

Information hiding is a fundamental software
design concept that is relevant to the design of
all classes of software systems, not just real-
time systems, The information hiding princi-
ple was first proposed by Parnas [Parnas72] as
a criterion for decomposing a software system
into modules. The principle states that each
module should hide a design decision that is
considered likely to ch:.nge. Each changeable
decision is called the “secret” of the module.
The reasons for applying information hiding
are to provide modules that are modifiable and
understandable, and hence maintainable. Be-
cause modules employing information hiding
are usually self-contained, they have a much
greater potential for reuse than most procedural
modules.

4. Real-Time Design Representations
a. Data Flow/Control Flow Diagrams

Data flow/control flow diagrams are used in Real-
Time Structured Analysis [Ward85, Hatley88].
They are an extension of data flow diagrams to
include control flows and control transformations.
Control flows represent event signals that carry
no data. Control transformations control the ex-
ecution of data transformations and are specified
by means of state trar iticn diagrams or decision
tables.

b. Task Structure Dizgrams

Task structure diagrams are used by the DARTS
design method [Gomaa84] to show the decom-
position of a system into concurrent tasks and the
interfaces between them, in the form of messages,
event signals, and information hiding modules.

. MASCOT Diagrams

MASCOT diagrams [Allworth87, Simpson79,
Simpson86) are used to show the decomposition
of a system into subsystems consisting of concur-
rent tasks. The interfaces between tasks are in the
form of channels (message queues) and pools
(information hiding modules).

d. Structure Graphs (Buhr Diagrams)

Structure graphs are used to describe the structure
of a system in terms of concurrent tasks, packages
(information hiding modules), and procedures
[Buhrg4]., These graphs are oriented toward use
with the Ada programming language, but they
may also be used with languages such as
Modula-2,

e. Structure Charts

Structure charts are used in Structured Design

SEI-CM-22-1.0

[Page-Jones88, Yourdon79] to show how a pro-
gram is decomposed into modules, where a2 mod-
ule is typically a procedure or function.

f. Entity Structure Diagrams

Entity structure diagrams are used in Jackson Sys-
tem Development (JSD) to show the structure of 2
real-world entity, in the form of the sequence of
events experienced by it [Jackson83, Cameron8s,
Cameron89]. The graphical notation is similar to
that used in Jackson Structured Programming
(JSP) structure diagrams [Jackson75).

g. JSD Network Diagrams

JSD network diagrams are used to show all the
processes in a JSD design and the interfaces be-
tween them. Interfaces are represented in the
form of data stream (message) communication or
state vector inspections [Jackson83, Cameron86,
Cameron89).

h. Object Diagrams

Object diagrams are used in object-oriented de-
sign (OOD) to show the objects in the system and
to identify the visibility of each object in relation
to other objects [Booch86).

i. Class Structure Diagrams

Class structure diagrams are used in OOD to
show the relationships between classes of objects
[Booch86].

j. State Transition Diagrams

State transition diagrams are a graphical represen-
tation of finite state machines (FSMs) in which
the nodes represent states and the arcs represent
state transitions [Allworth87], They are used by
the Real-Time Structured Analysis [Ward8s,
Hatley88] and DARTS [Gomaa84] methods.

k. Statecharts

Statecharts are an extension of FSMs that provide
a notation and approach for hierarchically struc-
turing FSMs and allowing concurrent FSMs that
interact with each other [Harel88b]. The objective
is to provide a notation that it is clearer and more
sttuctured than state transition diagrams.

1. Petri Nets

Petri nets [Peterson81] are a graphical represen-
tation for modeling concurrent systems. Two
types of nodes are supported: places that are used
to represent conditions and transitions that are
used to represent events. The execution of a Petri

net is controlled by the position and movement of. -
markers called “tokens.” Tokens are moved byg

the firing of the transitions.of -the net,. A-transi:

tion iz enabled to fire when all its- mput placcs*

~

e

[

S

N s -
. PR N . B

\

Software Design Methods for Real-Time Systems

- have tokens in them. When the transition fires, a III. Survey of Real-Time Software Design Methods :
token is removed from each input place and a

ken is pl h t place. Timed Petri Below is a survey of real-time structured design meth-
:ﬁet: I;rl: gnagyi?eggigﬁcm %‘;t&ung;samat aﬁgf;, finite ods. chh method treated is .descnbe_d and evaluated in
times to be associated with the firing of transi- subsections under the following headings:
tions. a. Overview
5. Role of Software Design Methods b. Basic Concepts

c. Steps in Method

d. Products of Design Process
6. Software Design Strategies for Real-Time e. Assessment of Method
Systems

The various design methods described in this mod-
ule use different strategies and emphasize different
design concepts in decomposing the system into its

This material is covered in [Budgen89].

f. Extensions and/or Variations

1. Structured Analysis and Design for Real-Time
Systems

components. A classification of them, based on the a. Overview

strategy used, is given below.

a. Design Methods Based on Functional
Decomposition

This strategy is used by Real-Time Structured
Analysis and Design [Ward85, Hatley88]. The
system is decomposed into functions (called
transformations or processes), and interfaces be-
tween them are defined in the form of data flows
or control flows. Functions (i.e., data or control
_transformations) are mapped onto processors,
tasks, and modules [Ward8s).

- b. Design Methods Based on Concurrent Task
Structuring

This strategy is emphasized by DARTS
[Gomaa84). Concurrent tasking is considered a
key aspect in real-time design. DARTS provides
a set of task-structuring criteria to assist the real-
time system designer in identifying the concurrent
tasks in the system. DARTS also provides guide-
lines for defining task interfaces.

c. Design Methods Based on Information
Hiding Module Structuring

This strategy aims at providing software compo-
nents that are modifiable and maintainable, as
well as being potentially more reusable. This is
achieved through the use of information hiding in
the design of components. Thi: strategy is used
by the Naval Research Lab Software Cost Reduc-
ticn method [Parnas84] and thz object-oriented
design method [Booch86).

d. Design Methods Based on Modeling the
Problem Domain

This strategy is emphasized by the Jackson Sys-
tem Development method [Jackson83,
Cameron86, Cameron89], With this strategy, the
objective is to model entities in the problem
domain and then map them onto software proc-
esses,

Real-Time Structured Analysis and Design
(RTSAD) is an extension of Structured Analysis
and Structured Design to address the needs of
real-time systems. Real-Time Structured Anal-
ysis (RTSA) is viewed by many of its users as
primarily a specification method addressing the
software requirements of the system being devel-
oped. Two variations of RTSA have been devel-
oped—the Ward/Mellor [Ward85, Ward86] and
Boeing/Hatley [Hatley88] approaches. A third
variation, ESML, the Extended System Modeling
Language [Bruyn88], is a recent attempt to merge
the Ward/Mellor and Boeing/Hatley methods for
Real-Time Structured Analysis.

The extensions to Structured Analysis are driven
by the desire to represent more precisely the be-
havioral characteristics of the system being devel-
oped. This is achieved primarily through the use
of state transition diagrams, control flows, and in-
tegrating state transition diagrams with data flow
diagrams through the use of control transfor-
mations (specifications).

Structured Design [Myers78, Page-Jones8s,
Yourdon79] is a program design method that uses
the criteria of module coupling and cohesion in
conjunction with the transform-centered and
transaction-centered design strategies to develop a
design, starting from a Structured Analysis speci-

fication.

b. Basic Concepts

(i) Data and Control Flow Analysis -

In RTSAD, the system is structured. in:0 func-
tions (called transformations .or- processes). and
the interfaces between’ them are-defined: m«the,
form of data flows or control flows, Transfor-
mations may be data of control transfor-

mations. The system-is strcturéd:as:a‘hierar"-

chical set of data. flow/control: flow+
that may be checked for complewness and con
sistency.)

' :.sélifc:M-éé’ :

Software Design Methods for Real-Time Systems

(ii) Finite State Machines

Finite state machines, in the form of state tran-
sition diagrams, are used to define the be-
havioral characteristics of the system. The
major extension to Structured Analysis is the
introduction of control considerations, through
the use of state transition diagrams. A control
transformation represents the execution of a
state transition diagram. Input event flows
trigger state transitions, and output event flows
control the execution of data transformations
[Ward8s].

In the Boeing/Hatley and ESML methods, it is
also possible for a control transformation to be
described by means of a decision table. Proc-
ess activation tables are also used in Boeing/
Hatley to show when processes
(transformations) are activated.

(iil) Entity-Reiationship Modeling

Entity-relationship diagrams are used to show
the relationships between the data stores of the
system [Yourdon89]. They are used for identi-
fying the data stores (either internal data struc-
tures or files) and for defining the contents
(attributes) of the stores. These are particularly
useful in data-intensive systems.

(iv) Module Cohesion

Module cohesion is used in module decom-
position as a criterion for identifying the
strength or unity within a module [Myers78,
Page-Jones88, Yourdon79]. Functional and in-
formational cohesion are considered the
strongest (and best) form of cohesion. In the
early practice of Structured Design
[Yourdon79], functionally cohesive modules in
the form of procedures were emphasized. The
informational cohesion criterion was added
later by Myers [Myers78] to identify informa-
tion hiding modules.

(v) Module Coupling

Module coupling is used in module decomposi-
tion as a criterion for determining the connec-
tivity between modules [Myers78, Page-
Jones88, Yourdon79]. Data coupling is consid-
ered the lowest (and best) form of coupling, in
which parameters are passed between modules.
Undesirable forms of coupling include com-
mon coupling, where global data are used.

c. Steps in Method

During the Real-Time Structured Analysis stage,
the following activities take place. (It should be
noted that steps (ii) - (v) are not necessarily se-
quential and that the steps are usually applied
iteratively):

SEI-CM-22-1.0

(i) Develop the System Context Diagram

The system context diagram defines the bound-
ary between the system to be developed and
the external environment. The data flow and
control flow interfaces between the system and
the external entities that the system has to in-
terface to are defined.

(ii) Perform Data Flow/Control Flow

Decomposition

A hierarchical data flow/control flow decom-
position is performed, starting from the system
context diagram. The Boeing/Hatley approach
emphasizes hierarchical decomposition of both
function and data. The Ward/Mellor approach
starts with an event list, which is a list of input
events, and then identifies the functions that
operate on each input event. These functions
are then aggregated to achieve a top-level data
flow diagram and decomposed to determine
lower-level functions.

(iii) Develop Control Transformations

(Ward/Mellor) or Control Specifications
(Boeing/Hatley)

A control transformation is defined by means
of a state transition diagram. A control specifi-
cation may be defined by one or more of state
transition diagrams (tables), decision tables,
and process activation tables. It is associated
with a data flow diagram at any level of the
hierarchy.

Each state transition diagram shows the differ-
ent states of the system or subsystem. It also
shows the input events (or conditions) that
cause state transitions and actions resulting
from state transitions. In the Boeing/Hatley
method, the process activation table shows the
activation of processes (data transformations)
resulting from the actions of the state transition
diagram.

(iv) Define Mini-Specification (Process

Specification)

Each leaf node data transformation on a data
flow diagram is defined by writing a mini-
specification, usually in structured English, al-
though other approaches are considered accept-
able as long as the specification is a precise and
understandable statement of requirements
[Yourdon89].

(v) Develop Data Dictionary

A data dictionary is developed that defines all
data flows, event flows, and data stores,

Following the RTSA phase, the Ward/Mellor.

9

Software Design Methods for Real-Time Systems

and Boeing/Hatley approaches diverge. The
Boeing/Hatley approach uses system architec-
ture diagrams [Hatley88). The Ward/Mellor ap-
proach continues as follows {Ward85]:

(vi) Allocate Transformations to Processors

The RTSA transformations are allocated to the
processors of the target system. If necessary,
the data flow diagrams are redrawn for each
Processor.

(vii) Allocate Transformations to Tasks

The transformations for each processor are al-
located to concurrent tasks. Each task
represents a sequential program,

(viii) Structured Design

Transformations allocated to a given task are
then structured into modules using the Struc-
tured Design method. Structured Design uses
the criteria of module coupling and cohesion in
conjunction with two design strategies, trans-
form analysis and transaction analysis, to de-
velop a program design starting from a Struc-
tured Analysis specification.

Transform analysis is a strategy used for trans-
forming a data flow diagram into a structure
chart whose emphasis is on input-process-out-
put flow [Myers78, Page-Jones88, Yourdon79).
Thus, the structure of the design is derived
from the functional structure of the specifica-
tion. The input branches, central transforms,
and output branches are identified on the data
flow diagram and are structured as separate
branches on the structure chart.

Transaction analysis is a strategy used for
transforming a data flow diagram into a struc-
ture chart whose structure is based on identi-
fying the different transaction types [Myers78,
Page-Jones88, Yourdon79]. The processing
required for each transaction type is identified
from the data flow diagram, and the system is
structured such that there is one branch on the
structure chart for each transaction type. There
is one controiling “transaction center” module.

d. Products of Design Process
For the RTSA specification, these consist of:

(i) System Context Diagram

(ii) Hierarchical Set of Data Flow/Control
Flow Diagrams

(iii) Data Dictionary
(iv) Mini-Specifications

For each primitive transformation, i.e., one that
is not decomposed further, a data transfor-

mation is described by a structured English
mini-specification, while a control transfor-
mation (Ward/Mellor) is defined by means of a
state transition diagram.

A control specitication (Boeing/Hatley) may be
defined by one or more of state transition
diagrams (tables), decision tables, and process
activation tables, and is associated with each
data flow diagram.

(v) Program Structure Charts

For each program, there is a structure chart
showing how it is decomposed into modules.
Each module is defined by its external specifi-
cation, namely, input parameters, output
parameters, and function. The internals of the
module are described by means of pseudocode.

e. Assessment of Method
(i) Strengths

o Structured Analysis and the real-time
extensions have been used on a wide
variety of projects, and there is much
experience in applying the method.

o There are a wide variety of CASE
tools to snpport RTSA.

¢ The use of data flow and control flow
diagrams can assist in understanding
and reviewing the system. For ex-
ample, a good overview of the sys-
tem can be obtained.

¢ Emphasizes the use of state transition
diagrams/matrices, which is particu-
larly important in the design of real-
time control systems.

eThe Structured Design module
decomposition criteria of cohesion
and coupling help in assessing the
quality of a design.

(ii) Weaknesses

o There is not much guidance as to
how to perform a system decomposi-
tion, Consequently, different devel-
opers could structure the system in
substantially different ways.

*RTSA is usually considered a re-
quirements specification method.
However, unlike the NRL Require-
ments Specification method, which
treats the system to be developed as a
black box, RTSA addresses system
decomposition. Hence, there is a ten-
dency in many projects to make de-
sign decisions during this phase, par-
ticularly if the specification gets de-

SEI-CM-22-1.0

A et A A s f

Software Design Methods for Real-Time Systems

tailed. This makes the boundary be-
tween requirements and design fuzzy.

o Although Structured Design can be
used for designing individual tasks, it
is limited for designing concurrent
systems, and hence real-time sys-
tems, because of its weaknesses in
the areas of task structuring. Thus,
Structured Design is a program de-
sign method leading primarily to
functional modules and does not ad-
dress the issues of structuring a sys-
tem into concurrent tasks.

eIn its application of information
hiding, Structured Design lags behind
the Naval Research Lab and object-
oriented design methods. This is dis-
cussed in more detail in Section V.

f. Extensions and/or Variations

ESML, the Extended System Modeling Language
[Bruyn88], is a recent attempt to merge the
Ward/Mellor and Boeing/Hatley methods for
Real-Time Structured Analysis. As an example,
consider the ESML. approach to developing state
transition diagrams. The Ward/Mellor approach
supports events, but not conditions, whereas the
Boeing/Hatley approach supports conditions, but
not events. Each of these restrictions is overcome
in ESML, which supports both events and con-
ditions, in common with the NRL method
[Parnas86] and Statecharts [Harel88a, Harel88b].

2. Naval Research Lab Software Cost Reduction
Method

a. Overview

The Naval Research Laboratory Software Cost
Reduction method (NRL) originated to address
the perceived growing gap between software en-
gineering principles advocawed in academia and
the practice of software engineering in industry
and government [Parnas84), These principles
formed the basis of a design method that has been
applied to the development of a complex real-
time system, namely the onboard flight program
for the U.S. Navy’s A-7 aircraft. Several prin-
ciples were refined as a result of experience in
applying them in this project.

Applications of the design method is preceded by
a specification phase in which a black hox re-
quirements specification = is produced
[Heninger80). During the requirements phase,
consideration js given to factors that could have a
profound effect on the future evolution of the sys-
tem, namely the desirable system subsets (this in-
formation is used during the design phase in de-
veloping the uses hierarchy) and the likely future
changes to the system requirements (this infor-

SEI-CM-22-1.0

mation is used during the design phase in devel-
oping the module structure).

The software structure of a system is considered
as consisting of three orthogonal structures—the
module structure, the uses structure, and the proc-
ess (task) structure [Parnas74, Parnas84]. The
module structure is based on information hiding.
Each module is a work assignment for a program-
mer or team of programmers. The uses structure
determines the executable subsets of the software.
The process (task) structure is the decomposition
of run-time activities of the system.

b. Basic Concepts

(i) Information Hiding

The NRL method applies the information
hiding concept to the design of large scale sys-
tems [Parnas84). The use of information
hiding emphasizes that each aspect of a system
that is considered likely to change, such as a
system requirement, 2 hardware interface, or a
software design decision, should be hidden in a
separate module, The changeable aspect is
called the “secret” of the module. Each mod-
ule has an abstract interface that provides the
external view of the module to its users.

(ii) Information Hiding Module Hierarchy

To manage the complexity of handling large
numbers of information hiding modules, the
NRL method organizes these modules into a
tree-structured hierarchy and documents them
in a module guide. Criteria are provided for
structuring the system into modules.

(iii) Abstract Interface Specifications

An abstract interface specification defines the
visible part of an information hiding module,
that is all the information required by the user
of the module. It is a specification of the
operations provided by the module. The ab-
stract interface to a module is intended to
remain unchanged, even if the module’s secret
changes.

(iv) Design for Extension and Contraction

Design for extension and- contraction is
achieved by means of the uses hierarchy,
which is a hierarchy of operations (access pro-
cedures or functions) provided by-the informa-
tion hiding modules. An operation A'uses an
operation B if and only if A cannot.meet-its

specification unless there is a correct version of
B. By considering subsets and-supersets, dé- -

signing systems is seen as a process of design-
ing program families.

"

Software Design Methods for Real-Time Systems

12

¢. Steps in Method

The following steps in the NRL method are based
on [Parnas86]. Reviews are considered an inte-
gral part of the method and are conducted for
each work product [Parnas8s).

(i) Establish and Document Requirements

The software reqrirements specification is a
black-box specification of the system. The
method emphasizes the outputs of the system
over its inputs. The system is viewed as a
finite state machine whose outputs define the
system outputs as functions of the state of the
system'’s environment.

The method uses separation of concerns in or-
ganizing the specification document. Sections
are provided on the computer (hardware and
software) specification, the input/output inter-
faces, specification of output values, timing
constraints, accuracy constraints, likely
changes to 'the system, and undesired event
handling. The requirements method is dis-
cussed in more detail in [Heninger80]

(ii) Design and Document the Module
Structure

To manage the complexity of handling large
numbers of modules, the NRL method organ-
izes information hiding modules into a tree-
structured hierarchy and documents them in a
module guide. The guide defines the responsi-
bilities of each module by describing the de-
sign decisions that are to be encapsulated in the
module. The module guide helps to provide
structure, a check on completeness, and to
avoid duplication of function. The guide al-
lows modules to be referenced more easily dur-
ing the subsequent development and mainte-
nance phases of the project.

The module hierarchy is an “is composed of”
relation. Each non-leaf module is composed of
lower-level modules. Leaf modules are ex-
ecutable. The main categories of modules, as
determined on the A-7 project, are:

¢ Hardware hiding modules

o Behavior hiding modules

o Software decision modules
Further categorization of modules may be car-
ried out, although this is likely to be
application-dependent. Module structuring is
described in more detail in [Pamas84],

(1) Hardware Hiding Modules

These are either extended computer modules
or device interface modules. The former
hide the characteristics of the hardware/soft-

ware interface that are likely to change,
whereas the latter hide the characteristics of
I/O devices that are likely to change.

(2) Behavior Hiding Modules

These are modules that hide the behavior of
the system as specified by the functions de-
fined in the requirements specification.
Thus, if the requirements change, these
modules are affected.

(3) Software Decision Modules

These are modules that hide software desig-
ner decisions that are likely to change.

(iii) Design and Document Module Abstract

Interfaces

The abstract interface specification for each
leaf module in the module hierarchy is devel-
oped. This specification defines the external
view of the information hiding module, i.e., all
the information required by the user of the
module. It is intended to contain just enough
information for the programmer of another
module to be able to use it. The interface spec-
ification includes the operations provided by
the module, the parameters for these opera-
tions, the externally visible effects of the
module’s operations, timing and accuracy con-
straints, assumptions that users and implemen-
tors can make about the module, and definition
of undesired events raised. More information
on designing abstract interfaces is given in
(Britton81]

(iv) Design and Document Uses Hierarchy

The uses hierarchy defines the subsets that can
be obtained by deleting operations and without
rewriting any operations. This is important for
staging system development and for develop-
ing families of systems. During this stage, the
operations used by each operation (provided by
a module) are determined. By this means a
hierarchy of operations is developed. The
“allowed-to-use structure” defines the possible
choices of operations, while the ‘“uses
structure” specifies the choice of operations for
a particular version (member of the family).
More information on the uses hierarchy is
given in [Parnas79]

(v) Design and Document Module Internal

Structures

After designing the module abstract interface,
the internal design of each module is devel-
oped. This includes designing the internal data
structures and algorithms used by the modules,
In some cases, the module may be decomposed
further into sub-modules.

SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

During this phase, the process (task) structure
of the system is developed [Faulk88). Separa-
tion of concerns is used in designing the task
structure. Inter-task synchronization i
achieved by means of events. Tasks may be

demand or periodic tasks.

d. Products of Design Process
(i) Software Requirements Specification
(ii) Module Guide

(iii) Module Abstract Interface
Specifications.

(iv) Uses Hierarchy
(v) Module Intemnal Structures
(vi) Task Structure

e. Assessment of Method

(i) Strengths

¢ Emphasis on information hiding
leads to modules that are relatively
modifiable and maintainable.

¢ In addition to the emphasis on infor-
mation hiding, the module hierarchy
provides a means of managing large
numbers of modules by organizing
them into a tree-structured hierarchy,

¢ Emphasis is placed on designing for
change. This starts during the re-
quirements phase when likely
changes in requirements are consid-
ered. It continues into design with
the module structure, where -each
module hides an independently
changeable aspect of the system.

¢ Emphasis is placed on identifying
system subsets. This also starts dur-
ing the requirements phase when de-
sirable subsets are identified. It con-
tinues in the design phase with the
uses hierarchy.

o There is a clear separation between
requirements and design. The re-
quirements present a black-box view
of the system, emphasizing inputs,
outputs, externally visible states and
their transitions, as well as output-
oriented functions.

e Emphasizes the use cf finite state
machines, which is particularly im-
portant in the design of real-time
control systems.

(ii) Weaknesses

o It is usually difficult to get an over-
view of the system. In particular, it

SEI-CM-22-1.0

is often difficult to see how the major
components of the system fit togeth-
er. This is compounded by the lack
of any graphical notation.

o There is less emphasis on task struc-
turing, Although recognized as an
important software structure, little
guidance is given as to how to iden-
tify the tasks in the system.

¢ Proceeding from the software re-
quirements specification to the mod-
ule structure is often a big step. It is
possible for significant components
of the system to be omitted, partic-
ularly those not directly visible from
the requirements specification, e.g.,
software decision modules.

f. Extensions and/or Variations

The ADARTS method [Gomaa89b, Gomaa$§9c]
uses a set of module structuring criteria that are
based on the NRL module structuring criteria for
identifying information hiding modules, in addi-
tion to a set of task structuring criteria for identi-
fying concurrent tasks.

3. Object-Oriented Design
a. Overview :

Object-oriented design (OOD) is a design method
based on the concepts of abstraction and infor-
mation hiding. There has been much debate on
whether inheritance is an essential feature of
object-oriented design. Two views of OOD are to
be found. The first is in the Ada world, and its
most widely known advocate is Booch [Booci.. ,
Booch87a, Booch87b). It holds that inheritance is
a desirable but not essential feature of OOD. The
second view originated in the object-oriented pro-
gramming area, as illustrated by Smalitalk
[Goldberg83], C++ [Stroustrup86], and Eiffel
[Meyer88]. This view states that inheritance is an
essential feature of COD.

In a recent taxonomy of languages supporting ob-
jects, Wegner [Wegner87] has referred to lan-
guages that support information hiding modules
(objects) but not inheritance, such as Ada.and
Modula-2, as object-based languages, while lan-
guages that suppourt objects, classes, and in-
heritance are considered object-oriented lan-
guages. However, a similar taxonomy for object-
oriented design methods has not been constructed.

In this section, the Booch viéw is used, since it is
widely referenced in the Ada-based real-time sys-
tem domain. Booch starts with an English:lan-
guage or RTSA system specification and then
provides object structuring criteria; for .determin-
ing the objects in the system.

L

Srn g e e

et Ch S P i o o ok s

A AL R S s o ey X

Software Desigh Methods for Real-Time Systems

b. Basic Concepts
(i) Object Identification

Objects are identified by determining the en-
tities in the problem domain. Each real-world
entity is mapped onto a suftware object.

(ii) Abstraction

Abstraction is used in the separation of an
object’s specification from its body. The spec-
ification is the visible part of the object and
defines the operations that may be performed
on the object, i.e., how other cbjects may use
it. The body of the object, i.e., its internal part,
is hidden from other objects. Abstraction is
also used in developing object hierarchies.

(iii) Information Hiding

Information hiding is used in structuring the
object, ie., in deciding what information
should be visible and what information should
be hidden. Thus, those aspects of a module
that need not be visible to other objects are
hidden. Hence, if the internals of the object
change, only this object is impacted.

c. Steps in Method
(i) Identify the Objects and Their Attributes

In OOD, an object is considered to have state,
i.e., persistent data. The state of the object
changes as a result of operations on the object.
The characteristics of an object are that it:

o has state

¢ is characterized by the actions it suf-
fers (operations it provides) and re-
quires (uses) of other objects

e is a unique instance of some class

o has restricted visibility of and by
other objects

e can be viewed either by its specifi-
cation or implementation

An informal strategy is used for identifying ob-
jects. Initially, Booch [Booch87a] advocated
identifying objects by underlining all nouns
(which are candidates for objects) and verbs
(candidates for operations) in the specification.
However, this is not practical for large-scale or
even medium-size systems.

Booch later advocated the use of Structured
Analysis as a starting point for the design, and
then identifying objects from the data flow
diagrams by applying a set of object structur-
ing criteria [Booch86, Booch87b), For each ex-
ternal entity on the system context diagram,
there is a corresponding software object. For
each data store on the data flow diagrams, there
is a corresponding software object.
14

(ii) Identify the Operations Suffered by and
Required of Each Object

In this step, the behavior of each object is
characterized by identifying the operations that
it provides and that are used by other objects,
as well as the operations it uses from other ob-
jects. Starting with a Structured Analysis spec-
ification, operations are identified from the
transformations on the data flow diagrams.

(iii) Establish the Visibility of Each Object in
Relation to Other Objects

The static dependencies between objects are
identified. Visibility is considered on an object
basis (corresponding to the Ada “with” clause).
A decision might be made to create a new class
that defines the common behavior of a group of
similar objects. ' An object diagram is drawn to
show these dependencies.

Three kinds of objects are possible: servers
(that provide operations for other objects but
do not use ope:ations from other objects), ac-
tors (that use operations from other objects but
do not provide any), and agents (that provide
opsrations and also use operations from other
obyects),

(iv) Establish the Interface of Each Object

Tre outside view of each object is developed.
The interface forms the boundary between the
ooject’s outside view and inside view. An Ada
package specification may now be developed
for the object.

(v) ‘mplement Each Object

The internals of each object are developed.
7 his involves designing the data structures and
internal logic of each object.

d. Priducts of Design Process

Bcoch [Booch8é) has described four products of
an object-oriented design. In addition, each pack-
ag: is specified by means of an Ada package
specification.

(i A Hardware Diagram

This captures the organization of the under-
lying target hardware system.

(i:) A Class Structure Diagram

This shows the relationships among classes of
objects.

(:ii) An Object Diagram
This shows the visibility of each object in rela-
tion to other objects.

SEI-CM-22-1.0

el Bttt Br AL BN

Software Design Methods for Real-Time Systems

(iv) The Architecture Diagram

This represents the physical design of the sys-
tem and shows the system structured into Ada
packages.

e. Assessment of Method

This assessment is made in terms of how ap-
plicable OOD is to the design of real-time sys-
tems,

(i) Strenvths

e Is based on the concepts of abstrac-
tion and information hiding, two key
concepts in software design.

e Structuring the system into objects,
which are implemented as packages,
should make the system more main-
tainable and components potentially
reusable.

¢ Maps well to languages that support
information hiding modules such as
Ada and Modula-2.

(i) Weaknesses

¢ Does not adequately address the im-
portant issues of task structuring, an
important limitation in real-time de-
sign.

e The form of the solution depends
substantially on the informal strategy
used for identifying objects.

® Does not address timing constraints.

¢ The object structuring criteria are not
as comprehensive as the NRL mod-
ule structuring criteria. This is dis-
cussed in more detail in section V.

f. Extensions and/or Variations

More recently, object-oriented analysis {Shlaer88]
methods have emerged. These methods use
entity-relationship modeling techniques for iden-
tifying objects in the problem domain. Seidewitz
[Seidewitz86, Seidewitz88] has also developed a
method called the General Object-Oriented De-
sign (GOOD) method. With this approach, the
specification effort begins by identifying entities
in the problem domain. The ADARTS method
[Gomaa89b, Gomaa89c] applies task stmicturing
criteria in addition to module structuring criteria
t{xat incorporate the OOD object structuring crite-
ria.

4. Jackson System Development for Real-Time
Systems

a. Overview
Jackson System Development (JSD) is a model-

SEl-CM-22-1.0

ing approach to software design. A JSD design
models the behavior of -eal-world entities over
time., Each entity is mapped onto a software
process (task). JSD is an outgrowth of Jackson
Structured . Programming (JSP), which is a pro-
gram design method [Jackson75]. As JSD has
evolved over several years, this section describes
JSD as presented in the latest material available to
the author [Cameron89].

Although JSD is, in principle, applicable to real-
time systems, the emphasis of earlier work
[Jackson83, Cameron86] has been on data proc-
essing applications. More recently, however, a
number of articles have directly addressed the is-
sue of zpplying JSD to real-time systems
[Renold88, Cameron89, Sanden8d]. Renold de-
scribed mapping JSD designs to concurrent proc-
essing implementations. A report in {[Cameron88]
descnbes mapping a JSD design to the MASCOT
notation {Simpson86], which specifically ad-
dresses concurrent processing. Sanden
[Sanden89] describes a variation on JSD that ad-
dresses the needs of real-time systems and also
maps directly to Ada.

b. Basic Concepts
(i) Modeling the Real World

A fundamental concept of JSD is that the de-
sign should model reality first [Jackson83], be-
fore considering the functions of the system.
The system is considered a simulation of the
real world. The functions of the system are
then added to this simulation.

(ii) Entities and Concurrent Processes

Each real-world entity is modeled by means of
a concurrent process called a model process.
This process faithfully models the entity in the
real world. Since real-world entities usually
have long lives, each model process typically
also has a long life.

(iii) Transformation to Computer
Representation

The model of reality in terms of potentially
large numbers of software processes is trans-
formed in a series of steps to an implemen-
tation version that consists of one or more con-
current tasks.

c. Steps in Method
(i) Model Phase

During the modeling phase, the real-world en-
tities are identitied. Each entity is-defined in
terms of the actions (events) it experiences.
The attributes of each action experienced by
the entity are defincd: Furthermore, the attri-

15

an e ket nn A s e s i o 4 s & Yo it S

bt Bt e o il s B

Software Design Methods for Real-Time Systems

16

butes of the entity itself are also defined. An
entity structure diagram is developed, in which
the sequence of actions experienced by the en-
tity is explicitly shown. A software model
process is created for each entity and has the
same basic structure as the entity.

(ii) Network Phase

During this phase, the communication between
processes is defined, function is added to
model processes, and function processes are
added.

Commuuication between processes is in the
form of data streams of messages or by means
of state vector inspections. In the first case, a
producer process sends a message to a con-
sumer, whereas in the latter case, a process
may read data belonging to another process. A
network diagram is developed showing the
communication between the model processes.

The functions of the system are considered
next. Some simple functions are added to the
model processes, providing they can be directly
associated with an action experienced by the
process. Other independent functions are
represented by function processes. Typical
function processes are input data collection
processes, error handling processes, output
processes, and interactive processes. The net-
worl iiagram is updated to show the function
proc. 3ses and their communication with other
function or model processes.

After the network diagram has been estab-
lished, the timing constraints of the system are
considered. Thus, it can be specified that cer-
tain system outputs must be generated within a
specified time from the arrival of certain in-
puts.

(iii) Implementation Phase

During the implementation phase, the JSD
specification, consisting potentially of a very
large numbers of processes, is mapped onto an
implementation version that is directly ex-
ecutable. Originally, with the emphasis on
data processing, the specification was mapped
onto one program using the concept of program
inversion [Jackson75), Each process is trans-
formed into a subroutine; a scheduler
(supervisory) routine decides when to call the
process routines,

During the implementation phase, JSD specifi-
cations can be mapped to real-time designs.
Mappings have heen defined from JSD to
MASCOT subsystems, activities, channels, and
pools [Cameron89). With this approach, there

is little or no need for program inversion.
Mappings to Ada implementations have also
been defined [Camerongg).

d. Products of Design Process
(i) Process Definitions

Given as structure diagrams and structure text.
In the case of model processes, this also in-
cludes the definition of the entity attributes, as
well as each input action and its attributes.

(ii) System Network Diagram

Shows the concurrent model and function proc-
esses in the system and ‘their data stream and
state vector interfaces.

(iii) System Implementation Diagram

Shows the physical implementation of the sys-
tem, as well as structure text for the system
implementation.

e. Assessment of Method

This assessment is made in terms of how ap-
plicable JSD is to the design of real-time systems.

(i) Strengths

e The emphasis on modeling real-
world entities is a theme that has
since been followed by several of the
object oriented analysis and design
methods.

» Modeling each real-wcrld entity by
emphasizing the sequence of events
experienced by the eatity is espe-
cially relevant in real-tiine system de-
sign.

o Concurrent processing is a central
theme of the method.

o Clear steps are provided for mapping
a JSD design to an implementation,

(ii) Weaknesses

o Since the entity structure—and con-
sequently the proccess structure—
models the sequence of events in the
real-world so faithfully, relatively
small changes in the real world can
impact the software structure. This
could make maintainability more dif-
ficult and is a potential hindrance to
reuse [Cameron8g).

¢ It is often easier to model event se-
quences in a complex entity using a
state transition diagram than an entity
structure diagram. This is particular-
ly the case in real-time systems

SEI-CM-22-1.0

A I

oy s

Software Design Methods for Real-Time Systems

where complex event sequences are
not unusual, a fact recognized by
some real-time system advocates of
JSD [Renold88, Sanden89].

« The guidelines for the identification
of function processes are rather
vague, In many JSD examples
[Jackson83, Cameron86,
Cameron89], there are substantially
more function processes than model
processes.

¢ JSD does not emphasize data abstrac-
tion and information hiding. This
could have a negative impact on
maintainability.

f. Extensions and/or Variations

Sanden {Sanden89] describes a variation on JSD
that addresses the needs of real-time systems and
also maps directly to Ada. The approach, called
Entity-Life Modeling, eliminates the distinction
between model and function processes, maps
processes directly onto Ada tasks, uses state tran-
sition diagram.. 1nstead of entity structure
diagrams when this is considered desirable, and
uses information hiding modules to encapsulate
data structures and state vectors.

5. DARTS (Design Approach for Real-Time
Systems)
¢. Overview

The DARTS design method emphasizes the
decomposition of a real-time system into concur-
rent tasks and defining the interfaces between
these tasks. The method originated because of a
perceived problem with a frequently used ap-
proach for real-time system development. This
involves using Structured Analysis, and more re-
cently Real-Time Structured Analysis (RTSA),
during the analysis phase, followed by Structured
Design during the design phase. The problem
with this approach is that it does not take into
account the characteristics of real-time systems,
which typically consist of several concurrent
tasks (processes).

The DAR.TS design method aadresses these is-
sues by providing the decomposition principles
and steps for allowing the software designer to
proceed from a Real-Time Structured Analysis
specification to a design consisting of concurrent
tasks. DARTS [Gomaa84, Gomaa86a, Gomaa87]
provides a set of task structuring criteria for struc-
turing a real-time system into concurrent tasks, as
well as a mechanism for defining the interfaces
between tasks. These criteria may be applied to a
specification developed using RTSA. Each task,
which represents a sequential program, may then
be designed using Structured Design.

SEI-CM-22-1.0

The DARTS method has evolved over ume, In-
itially, it started with a Stzuctured Analysis speci-
fication {Gomaa84]. Later, after the introduction
of Real-Time Structured Analysis [Ward85], it
was extended to start with a Real-Time Structured
Analysis specification {Gomaa87], A more recent
development has been an extension to DARTS
called ADARTS, Ada-based Design Approach for
Real-Time Systems [Gomaa89b, Gomaa8Sc], 10
address structuring a real-time system into con-
current tasks and information hiding modules.
Another extension, DARTS/DA [(Gomaa8%a],
deals with structuring a real-time application into
distributed real-time subsystems. More informa-
tion on these extensions is given below.

b. Basic Concepts
(i) Task Structuring Criteria

A set of task structuring criteria are provided to
assist the designer in structuring a real-time
system into concurrent tasks. These criteria are
a set of heuristics derived from experience ob-
tained n the design of concurrent systems.
The main consideration in identitying the tasks
is the concurrent nature of the functions within
the system. In DARTS, the task structuring
criteria are applied to the transformations
(functions) on the data flow/control flow
diagrams developed using Real-Time Struc-
tured Analysis. Thus, a function is grouped
with other functions into a task based on the
temporal sequence in which the functions are
executed.

(ii) Task Interfaces

Guidelines are provided for defining the inter-
faces between concurrent tasks. Task inter-
faces are in the form of message communica-
tion, event synchronization, or information
hiding modules (IHMs). Message communi-
cation may be either loosely coupled or tightly
coupled. Event synchronization is provided in
cases where no data are passed between tasks,
Access to shared data is provided by means of
IHMs.

(iii) Information Hiding

Information hiding is used as a criterion for
encapsulating data stores. IHMs are used for
hiding the contents and representation of data
stores and state transition tables. Where an
IHM is accessed by more than one-task, the
access procedures must synchronize, the access
to the data.

(iv) Finite State Machines .

Finite state machines, in the form.of staté tran-
sition diagrams, are used fo défine.the be-

17

2 e gt iy

Software Desi - » Methods for Real-Time Systems

18

havioral characteristics of the system. State
transition diagrams are an effective tool for
showing the different states of the system and
the transitions between them.

(v) Evolutionary Prototyping and
Incremental Implementation

Evolutionary prototyping and incremental im-
plementation are assisted by the identification
of system subsets using event sequence
diagrams. These diagrams identify the se-
quence of execution of tasks and modules that
are required to process an external event. Sys-
tem subsets form the basis for incremental de-
velopment.

c. Steps in Method

(i) Develop Structured System Specification
using Real-Time Structured Analysis

The system context diagram and state transi-
tion diagrams are developed. The system con-
text diagram is decomposed into hierarchically
structured data flow/control flow diagrams.
The relationship between the state transition
diagrams and the control and data transfor-
mations (functions) is established. This step is
similar to RTSA steps (i) - (v).

_ (i) Structure the System into Concurrent
Tasks

The task structuring criteria are applied to the
leaf nodes of the hierarchical set of data flow/
control flow diagrams. A preliminary task
structure diagram is drawn, showing the tasks
identified using the task structuring criteria.
I/O transforms that interface to external de-
vices are mapped to asynchronous I/O tasks or
periodic I/O tasks. Internal transforms are
mapped onto control or periodic tasks and/or
may be combined with other transforms ac-
cording to the sequential, tempora!, or func-
tional cohesion criteria.

(iii) Define Task Interfaces

Task interfaces are defined by analyzing the
data flow and control flow interfaces between
the tasks identified in the previous stage. Data
flows between tasks are transformed into ¢ither
loosely coupled or tightly coupled message in-
terfaces, Control flows are transformed into
event signals, Data stores form the basis of
information hiding modules.

At this stage, a timing analysis may be per-
formed. Given the required response times to
external events, timing budgets are allocated to
each task, Event sequence diagrams
{Gomaa86a] can help in this analysis by show-

ing the sequence of task execution from exter-
nal input to system response.

(iv) Design Each Task

Each task represents the execution of a sequen-
tial program. Using the Structured Design
method, each tesk is structured into modules.
Either transform analysis or transaction anal-
ysis is used for this purpose. The function of
each module and its interface to other modules
are defined. The internals of each module are
designed.

d. Products of Design Process
(1) RTSA Specification

See section on RTSA.
(ii) Task Structure Specification

Defines the concurrent tasks in the system. The
function of each task and its interface to other
tasks are specified.

(iii) Task Decomposition

The decomposition of each task into modules
is defined. The function of each module, its
interface, and detailed design in PDL, are also
defined. '

e. Assessment of Method
(i) Strengths

¢ Emphasizes the decomposition of the
system into concurrent tasks and pro-
vides criteria for identifying the
tasks, an important consideration in
real-time system design.

e Provides detailed guidelines for de-
fining the interfaces between tasks.

¢ Emphasizes the use of state transition
diagrams, which is particularly im-
portant in the design of real-time
control systems.

¢ Provides a transition from a Real-
Time Structured Analysis specifica-
tion to a real-time design. Real-Time
Structured Analysis is probably the
most widely used analysis and speci-
fication method for real-time sys-
tems. Its use is being encouraged by
the proliferation of CASE tools sup-
porting the method. However, many
designers then find it difficult to
proceed to a real-time design.
DARTS directly addresses this issue
by providing the decomposition prin-
ciples and steps for allowing the soft-
ware designer to proceed from a
Real-Time Structured Analysis speci-

SEI-CM-22-1.0

LN A

A B4 v e a e e

Software Design Methods for Real-Time Systems

fication to a design consisting of con-
current tasks.

(if) Weaknesses

o Although DARTS uses information
hiding for encapsulating data stores,
it does not use information hiding as
extensively as the NRL and OOD
methods. Instead, it uses the Struc-
tured Design method, not information
hiding, for structuring tasks into
procedural modules.

¢ A potential problem in using DARTS
is that if the RTSA phase is not done
well, this could make task and pack-
age structuring more difficult. One
of the problems of RTSA is that it
does not provide many guidelines as
to how to perform a system decom-
position. The approach recom-
mended with DARTS is to develop
the state tramsition diagrams before
the data flow diagrams, i.e., to pay
attention to control considerations
before functional considerations.

f. Extencions and/or Variations
(i) DARTS/DA

Ir large systems, it is usually necessary to
structure a system into subsystems before
structuring the subsystems into tasks and mod-
ules. One approach for structuring a system
into subsystems is an extension to DARTS to
support distributed real-time applications,
called DARTS/DA [Gomaa89a].

(ii) ADARTS

The DARTS weakness in information hiding is
addressed by the ADARTS method
[Gomaa89b, Gomaa89¢]. ADARTS uses the
DARTS task structuring criteria for identifying
tasks, but it replaces Structured Design with an
information hiding module structuring phase in
which modules are identified using a set of
module structuring criteria, These criteria are
based on the Naval Research Laboratory meth-
od [Parnas84] module structuring criteria, sup-
ported by the object-oriented design [Booch86)
object structuring criteria, ADARTS designs
may be described using a graphical notation
similar to Buhr diagrams [Buhr84},

6. Other Real-Time Software Design Methods

Some other software design methods for real-time
systems are briefly reviewed in this section.

The Distributed Computing Design System (DCDS)
is an outgrowth of the SREM (Systems Require-

SEI-CM-22-1.0

ments Engineering Methodology) method [Alford85).
DCDS provides a graphical notation for hierarchi-
cally decomposing a real-time system design, em-
phasizing events, as well as both sequential and con-
current functions. With each high-level function, a
performance index (i.e., maximum allowed response
time) is provided. As the function is hierarchically
decomposed, the performance index is divided
amongst the lower-level functions. Eventually, at
the lowest level of decomposition, sequential and
concurrent functions are allocated to the components
of the real-time system.

PAMELA [Cherry86] is a software design method
that is strongly oriented toward Ada. The method
uses a hierarchical decomposiion approach, based
on data flow diagrams, in which transformations are
eventually decomposed into concurrent tasks at the
lowest level. The tasks and their interfaces are
mapped to Ada.

Some real-time design approaches are actually de-
sign notations that suggest a particular approach to
performing a decomposition. However, they do not
provide the principles and steps for performing a
design, and hence are not strictly design methods.
Statecharts [Harel88b] are a graphical notation for
hierarchically decomposing state transition
diagrams. Statemate [Harel88a] is a tool based on
statecharts that also includes activity charts and
module charts, Statemate can be used to support
various specification and design methods. For ex-
ample, an industrial course is available showing how
a Real-Time Structured Analysis {Ward85] specifi-
cation can be expressed in Statemate.

MASCOT diagrams [Simpson79, Simpson86] aré a
notation for concurrent systems, This notation has
been used in conjunction with JSD, as described in
Section II1.4 and [Cameron89).

IV. Design Verification and Validation

This section addresses design verification and valida-
tion. For more detailed information on software verifi-
cation and validation, refer to the introduction of
[Collofello88b).

1. Software Technical Reviews

The purpose of software technical reviews is to de-
tect errors in software products. Reviews should be
carried out throughout the life cycle. Studies have
shown that the longer an error goes undetected, the
more costly it is to correct [Boehm76] Technical
reviews can be very effective at uncovering deslgn

errors. Most design methods do not specifically ad-

dress reviews. However, software development: or-

ganizations frequently incorporate design methods-
and technical review procedures fof products of the .
design process into a software life cycle that is-

tailored to the organizations’ needs.

RS T T A R

O . R
SR YR £eg Do S

b oY e naa b aae

NN

Software Design Methods for Real-Time Systems

One design method that also addresses design re-
views is the NRL method, which uses a procedure
called Active Design Reviews [Parnas85], With this
approach, each reviewer is expected to answer a set
of questions about the product under review. Ques-
tions are organized by area of expertise.

More information on technical reviews is given in
[Collofello88a), A classic paper on the topic is
{Fagan76].

. Requirements Tracing

Requirements tracing is a means of determining the
completeness of a design. This is achieved by
checking whether all the software requirements of
the system have been incorporated into the design.
This is typically carried out using requirements
matrices. For checking that the design meets its
requirements, the matrix should map each software
requirement to one or more design components, such
as tasks and/or modules. More information on re-
quirements tiacing is given in [Collofello88b).

3. Simulation

Simulation can be an effective way of verifying that
the design is sound and that it meets its timing re-
quirements. With this approach, the software sys-
tem under development, as well as the environment
in which it is to operate, are simulated. To be of
most value, the simulation should be performed be-
fore system development is started. Although much
useful information can be obtained from a simula-
tion exercise, simulation models are often very de-
tailed. The time to develop them can therefore be
considerable. Care must also be taken to ensure that
the assumptions made in the model are realistic.

In many real-time system development projects, en-
vironment simulators are used. In this case, the real-
time application itself is developed, but the environ-
ment in which it is to operate is simulated. This has
the advantage of creating a controlled environment
that can greatly assist in software regression testing
and performance testing [Beizer84, Gomaa86a,
Myers79].

4. Prototyping

20

Agresti [Agresti86] states that “[p]rototyping is the
process of building a working model of a system or
part of a system. The objective of prototyping is to
clarify the characteristics of a product or system by
constructing a version that can be exercised.” Two
main classes of prototypes are throw-away
prototypes and evolutionary prototypes [Gomaa8éb).

Throw-away prototypes can be used to help clarify
user requirements [Agresti86, Gomaa81). This ap-
proach is particularly useful for helping develop the
user interface, and it can be used for real-time sys-
tems that have a complex user interface. For more

detailed information on this topic, refer to
[Periman88). Throw-away prototypes can also be
used for experimental prototyping of the design.
They can be used to determine if certain algorithms
are logically correct or to determine if they meet
their performance goals.

The evolutionary prototyping approach is a form of
incremental development, in which the prototype
evolves through several intermediate operational
systems into the delivered system {McCracken82,
Gomaa86b). This approach can help in determining
whether the system meets its performance goals, for
testing critical components of the design and for
reducing development risk by spreading the imple-
mentw: .0 over a longer period. Event sequence
diagrams may be used to assist in selecting system
subsets for each increment [Gomaa86a].

5. Software Testing

Some aspects of software testing of real-time sys-
tems are no different than for non-real-time systems.
Most differences arise either from the software
system’s consisting of several concurrent tasks or
from its interfacing to external devices.

More information on software testing can be found
in [Collofellc88b], [Beizer84], and [Myers79].

a. Testing Concurrent Software ‘

A major problem in testing real-time systems—
indeed any concurrent system-—is that execution
of such a system is non-deterministic. An ap-
proach for the deterministic testing of concurrent
systems is described in [Tai87], A systematic
method for the integration testing of concurrent
tasks is described in [Gomaa86a]. A method for
analyzing and testing transaction flow through a
system is described in [McCabe85].

b. System Testing

System testing is the process of testing an inte-
grated hardware and software system to verify
that the system meets its specified requirements
(IEEES83), During system testing, several aspects
of a real-time system need to be tested [Beizerg4,
Myers79]. These include:

o Functional testing to determine that the
system performs the functions described
in the requirements specification.

eLoad (stress) testing to determine
whether the system can handle the large'
and varied workload it is expected to”’
handle when operational..

o Performance testing to test that the sys-- g .

tem meets its response-time . require- . ‘
ments. ‘ ' ”“
System testing of real-time systenis ¢an'be greatly:

SEI-CM22:1:0: L

. .
AT

PR

Software Design Methods for Real-Time Systems

assisted by the construction of environment
simulators [Gomaa86a, Myers79] that simulate
the behavior of the external devices to which the
system must interface.

V. Review of Real-Time Software Design Methods
1. Comparison of Real-Time Software Design

Methods

In comparing real-time software design methods, the
approach taken here is to evaluate how each ad-
dresses the three real-time-specific design concepts
outlined in section II.3.b, namely, finite state
machines for defining the control aspects of a real-
time system, concurrent tasks for defining the con-
currency in the system, and information hiding for
defining modifiable and potentially reusable soft-
ware components. A fourth criterion is how each
handles timing constraints, an important character-
istic of real-time systems. A comparison of real-
time software design methods is also given in
[Kelly87].

a. Support for Finite State Machines

The use of finite state machines is a major con-
sideration in three of the methods, RTSAD,
DARTS, and NRL. It is a secondary considera-
tion in OOD. In JSD, a different approach is
taken, with event sequences depicted using entity
structure diagrams.

The major extension to Structured Analysis for
real-time applications is to address the control as-
pects of a system, primarily through the use of
finite state machines. The use of state transition
diagrams and tables have been well-integrated
into the method through the use of control trans-
formations and specifications.

Finite state machines are also an important feature
of the DARTS method, which advr-ates analyz-
ing the control aspects of the system before the
functional aspects. DARTS uses RTSA as a
front-end to the design method. Control tasks ex-
ecute finite state machines, and state transition
tables are encapsulated into information hiding
modules.

Finite state machines are also an important aspect
of the NRL method. A key feature of the specifi-
cation method is the identification of system
modes (super-states) and the transitions between
them. In the design phase, each mode transition
table is encapsulated in a mode determination
module,

In object-oriented design, an object may be de-
fined by means of a finite state machine that is
encapsulated within the object. However, OOD
does not give as much prominence to finite state
machines as the previous thres methods.

SEI-CM-22-1.0

In JSD, entities in the problem domain are
modeled using entity structure diagrams that
show the sequence of events experienced by the
entity. The regular expression notation used by
entity structure diagrams is mathematically equiv-
alent to finite state machine notation. However,
for complex entities, where there are compara-
tively many transitions in relation to the number
of states, it is frequently clearer and more concise
to use a finite state machine notation, rather than
entity structure diagrams.

b. Support for Concurrent Tasks

Although all the methods address concurrent
tasks to some extent, there is a wide variation in
the emphasis placed on them. Concurrent tasks
are fundamental to two of the methods, DARTS
and JSD. The NRL and OOD methods place less
emphasis on task structuring.

The Ward/Mellor (Ward8s] version of RTSAD
addresses structuring the system into concurrent
tasks, but provides few guidelines for this pur-
pose. Structured Design is a program design
method, and hence does not address the issue of
task structuring. However, Structured Design can
be used for designing individual tasks.

DARTS addresses the weaknesses of RTSAD in

the task structuring area by introducing the task -

structuring criteria for identifying concurrent
tasks in the system and by providing guidelines
for defining task interfaces.

Concurrent processing plays an important role in
JSD, since each external entity is mapped ontv a
model process. Funcidon processes are then
added. Model processes are similar to control
tasks in DARTS. In Renold’s view, many of the
DARTS task structuring criteria are almost equiv-
alent to the criteria for the definition of function
processes in JSD [Renold88].

The NRL method views the task (process) struc-
ture as an important software structure that is or-
thogonal to the module and uses structures. How-
ever, it provides few guidelines for identifying
concurrent tasks.

The OOD method assumes that the same object
structuring criteria can be used for identifying
tasks (active objects) and information hiding
modules (passive abjects). This view is contrary
to that of the DARTS and NRL methods, which
assume that different criteria are required for
tasks and modules.

¢. Support for Information Hiding

Information hiding is the fundamental underlying
principle in two of the methods, NRL and OOD.
It is also addressed by the DARTS and RTSAD

21

SRR TSGR G R SO S

Software Design Methods for Real-Time Systems

methods. Information hiding is not addressed by
JSD.

Both the NRL and OOD methods emphasize the
structuring of a system into information hiding
modules (objects). The NRL module structuring
criteria are more comprehensive than those of
OOD. In particular, there is a whole category of
modules, namely software decision modules, ad-
dressed bv the NRL method that is not identified
in OOD. The NRL method is also more con-
cerned about each module hiding a secret, namely
a decision that could change independently.
Thus, in the NRL method, a module can hide the
details of an algorithm that could potentially
change.

Object structuring in OOD does not pay as much
attention as the NRL method to each object/inod-
ule hiding one secret. Thus, an object could hide
more than one secret. Consequently, OOD-
derived components may not be as moaifiable and
reusable as NRL-derived components.

RTSAD is weak in the area of information hiding.
In its application of information hiding, Struc-
tured Design lags behind the NRL method and
OOD. Although the concept of informational
strength (information hiding) modules was added
by Myers [Myers78], the design strategies of
transform analysis and transaction analysis do not
address information hiding. A designer using this
method is liable to arrive at a design that is
mainly functional. Because of this, requirements
and design changes are likely to have a more
severe effect on systems developed using
RTSAD.

Although DARTS uses information hiding for en-
capsulating data stores, it does not use informa-
tion hiding as extensively as NRL and OOD. It
uses the Structured Design method, and not infor-
mation hiding, for structuring tasks into
procedural modules.

d. Timing Constraints

Four of the methods, RTSAD, NRL, DARTS, and
JSD, address timing constraints. The required
system response times are defined during system
specification. During design, the timing require-
ments for each task are determined. OOD does
not specifically address timing constraints.

RTSAD addresses uisiing constraints during the
analysis and design phases. During analysis, the
response time specification is developed. This
includes response times to external events, sam-
pling times of external inputs, required frequency
of periodic output, and response times to user in-
puts [Hatley88]. During design, the timing re-
quirements of each task are determined. Fre-

quency of task activation and context switching
overhead are also considered in arriving at a
timing estimate {Ward85).

DARTS uses the RTSA .iming specification to
allocate time budgets to each task. Eveat se-
quence diagrams [Gomaa86a] are used to show
the sequence of tasks executed from external in-
put to system response. Percentages of this re-
sponse time are then allocated to each task in the
sequence and to system overhead.

In the NRL method, timing constraints are speci-
fied at the requirements stage for periodic and de-
mand functions that generate system outputs.
During design, the timing requirements for each
process include its deadline and worst case execu-
tion time [Faulk88].

In JSD, timing requirements in the forr:. of system
responses to external inputs are analyzed with the
assistance of the network diagram to determine
timing constraints on individual processes in-
volved in generating the response [Jackson83].
This approach is similar to the use of event se-
quence diagrams in DARTS.

2. Trends in Real-Time Software Design Methods

Many of the trends in software design methods are
not specific to real-time systems. The trend most
specific to real-time systems relates to the perfor-
mance analysis of real-time designs,

a. “Eclectic” Design Methods

Greater efforts are likely to be made to incorpo-
rate concepts from different design methods and
to integrate them to produce “eclectic” design
methods. Efforts in this direction can be seen in
ADARTS [Gomaa89b, Gomaa89c] and Entity
Life Modeling {Sanden89]. ADARTS attempts to
integrate task structuring concepts from DARTS
with module and object structuring concepts from
the NRL and OOD methods. Entity Life Mode!l-
ing attempts to integrate JSD concepts with infor-
mation hiding and Ada tasking,

b. Domain Specification and Design Methods

Existing specification and design methods are for
the development of specific systems. In the fu-
ture, domain methods are likely to be developed
for specifying and designing families of systems
[Parnas79, Lubars87, Prieto-Diaz87]. Individual
target systems are then developed by tailoring the
domain specifications and designs to the needs of
the target system. :

c. Computer Support Tools and Software
Development Environments

Many existing computer support tools for soft-

SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

ware specification and design methods are little
more than graphical editors with some limited ca-
pability for checking for consistency amongst dif-
ferent components of a specification or design.
Trends in software development environments
[Dart87] are in the direction of making them sup-
port the entire software life cycle and orienting
them toward supporting specific software design
methods by incorporating the rules of the design
methods.

d. Executable Specifications and Designs

Computer support tools are being developed to
allow specifications and designs to be executed,
and hence to allow designers to validate their de-
signs. A good example of these tools is Statemate
[Harel88a]. Statemate allows a prototype of the
system to be developed that describes the func-
tionality and behavior of the system. The ap-
proach of developing executable specifications
and designs has been termed the operational ap-
proach to software development [Zave8d).

e. Performance Analysis of Real-Time Designs

Software design methods for real-time systems
need to be integrated with performance analysis
techniques to allow real-time designers to analyze
their designs from a performance perspective.
Alternative designs could then be evaluated, and
the designer ~ould select the design that best
meets the system objectives. One approach for
achieving this is to transform the design into a
Petri net model [Peterson81] whose performance
can be analyzed using timed Petri net modeling
techniques [Coolahan83].

Real-time scheduling is an approach that is partic-
ularly appropriate for hard real-time systems that
have deadlines that must be met [Goodenough89).
With this approach, the real-time design is
analyzed to determine whether it can meet its
deadlines.

f. Application of Knowledge-Based Techniques

Many design methods use heuristics, such as the
DARTS task structuring criteria and the Struc-
tured Design module coupling and cohesion crite-
ria. Heuristics are based on designer experience
and are “rules of thumb.” Because of this, it is
usually not possible to incorporate these heuris-
tics into algorithms. However, knowledge based
tools could be developed that incorporate rules
embodying these heuristics [Tsai88]. By this
means, a designer’s assistant [Balzer83] could be
provided to help the design team during architec-
tural design.

g. Application of Formal Methods
Another trend in software specification and de-

SE|-CM-22-1.0

sign methods is in the use of formal methods. A
formal method uses a formal specification lan-
guage, i.e., a language with mathematically de-
fined syntax and semantics. A good example of
one of the more maturc formal methods is the
Vienna Development Method, described in
[Pedersen89]. VDM has been successfully ap-
plied in the areas of programming language
semantics and compiler construction.

Formal methods for real-time systems are current-
ly in the research stage. Methods that show
promise include temporal logic and Petri net
based methods. A computer support tool with a
formal basis is Statemate [Harel88a), which is
based on finite state machine theory.

Glossary

Abstract data type

A data type defined by the operations that ma-
nipulate it, thus hiding its representation details.

Abstraction

A view of a problem that extracts the essential
information relevant to a particular purpose and
ignores the remainder of the information
[IEEES83].

Behavior hiding module (NRL)

A module that hides the behavior of the system
as specified by a function defined in the require-
ments specification.

Class
A template for objects.

Cohesion (Structured Design)

The degree to which the functions performed by
a module are related (adapted from [IEEE83]).

Context diagram (Structured Analysis)

The highest level data flow diagram in a Struc-
tured Analysis specification. It is used to define
the boundary between the system to be devel-
oped and the extemnal environment.

Control flow (Boeing/Hatley Real-Time Struc-
tured Analysis)

A binary signal or multi-valued discrete signal.

23

s

e Sinn ot e For e A 4B omt s Seb e e b e ek AT e

PSPPI WY

PER NI

RO IR

v

Software Design Methods for Real-Time Systems

Control flow diagram (Boeing/Hatley Real-Time
Structured Analysis)

A graphic representation showing the control
flows between data and control transformations.

Control specification (Boeing/Hatley Real-Time
Structured Analysis)
A specification that describes the behavior of the
system in terms of decision tables, state transi-
tion tables, state transition diagrams, and/or
process activation tables.

Control transformation (Ward/Mellor Real-Time
Structured Analysis)

A control function that is defined by means of a
state transition diagram.

Coupling (Structured Design)

A measure of the interdependence between mod-
ules in a computer program [IEEES3).

Data abstraction

Definirg a data structure or data type by the set
of operations that manipulate it, thus separating
and hiding the representation details.

Data dictionary

A collection of the names of all data items used
in a software system, together with relevant
properties of those items [IEEE83]. Defines the
contents of all data flows, event flows, and data
stores in the system (Real-Time Structured
Analysis).

Data flow (Structured Analysis)

The data that are passed between a source trans-
formation and a destination transformation or
to/from the external environment.

Data flow diagram (Structured Analysis)

A graphic representation showing a network of
related functions (transformations) and the data
interfaces between those functions.

Data store (Structured Analysis)

A repository of data, usually shown on a data
flow diagram.

Design method

A systematic approach to creating a design, con-
sisting of the ordered application of a specific
collection of tools, techniques, and guidelines
[{EEE83].

24

Device interface module (NRL)

A module that hides the characteristics of an I/O
device. Presents an abstract device interface to
its users.

Embedded system

A software system that is a component of a
larger hardware/software system.

Event flow (Ward/Mellor Real-Time Structured
Analysis)

A signal that indicates an event has taken place.

Information hiding

The technique of encapsulating software design
decisions in modules in such a way that the
module’s interface reveals only what its users
need to know; thus each module is a “black box”
to the other modules in the system (adapted from
[IEEES83)).

Information hiding module

A module that is structured according to the in-
formation hiding technique. The module hides
some data and is accessed by means of access
procedures or functions.

Modularity

The extent to which software is composed of -

discrete components, such that a change to one
component has minimal impact on other compo-
nents [IEEE83].

Module hierarchy (NRL)

A hierarchical classification of information
hiding modules.

Object (OOD)
An instance of a class. An object is an infor-

mation hiding module that contains both data
and operations on that data.

Process (concurrent processing)
Same as task.

Process (Structured Analysis)

A function of the system, also called transfor-
mation or bubble.

Real-time

Pertaining to the processing of data by a com-
puter in connection with another process outside

the computer, according to time requirements-

SEI-CM-22-1.0

el T A TIVRIULS. L RPN L S PP 0

Software Design Methods for Real-Time Systems

imposed by the outside process. This term is
also used to describe systems operating in con-
versational mode and processes that can be in-
fluenced by human intervention while they are
in progress [I[EEE83].

Reusability

The extent to which software can be used in
multiple applications (adapted from [IEEE83]).

Software decision module (NRL)

A module that hides a design decision that is
likely to change.

State transition diagram

A diagram that shows the different states of a
system or subsystem and the transitions between
them

Task (concurrent processing)
A task represents the execution of a sequential
program or a sequential component of a concur-
rent program. Each task deals with a sequential
thread of execution—there is no concurrency
within a task.

Task structuring criteria (DARTS)

A set of heuristics for assisting a designer in
structuring a system into concurrent tasks.

Transaction analysis (Structured Design)

A design strategy used for transforming a data
flow diagram into a structure chart whose struc-
ture is based on identifying the different trans-
action types.

Transform analysis (Structured Design)

A design strategy used for transforming a data
flow diagram into a structure chart whose em-
phasis is on input-process-output flow.

Transformation (Structured Analysis)

A function of the system, also celled process or
bubble.

SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

Teaching Considerations

Textbooks

There is no one textbook that can be used for teach-
ing the material in this module. Several textbooks
address specific topics. An introductory textbook on
real-time systems is [Allworth87]. [Pressman87]
contains overviews of several design methods, in-
cluding RTSAD, OOD, JSD, and DARTS. There
are several books on Structured Analysis and De-
sign. A comprehensive and up-to-date treatment of
Structured Analysis is given in [Yourdon89). In-
depth, though different, treatments of Real-Time
Structured Analysis and Design are given in
[Hatley88] and [Ward85]). A readable version of
Structured Design is given in [Page-Jones88). OOD
is covered briefly in [Booch87b]. A different view
of OOD is given in [Meyer88]. Several of Pamas’s
ideas that form the basis of the NRL method are in-
troduced in [Lamb88]. DARTS is described in
[Nielsen88]. Ada-oriented design is described in
[Buhrg84] and [Nielsen88].

Since it is not practical to expect students to pur--

chase or read all these books, the instructor can as-
semble a collection of papers covering the material
described in this module. A suggested collection
consists of those papers classified as “essential” in
Classification of References, below.

Suggested Course Types

The material in this module may be taught in differ-

ent ways, depending upon the time available and the -

knowledge level of the students. Possible treatments
include:

1. As part of a graduate-level course on design
methods, with special emphasis on the design
of real-time systems. In this case, the material
can be combined with the material in the cur-
riculum module Introduction to Software
Design [Budgen89].

2. A variation on the above is to survey several of
the design methods but to teach one in more

detail, such that students can solve a substantial
problem using that method.

3. As part of a graduate-level course on real-time
systems. In this case, the material can be
preceded by other topics in real-time system

26

development, as described in, for example,
[Aliworth87] or [Buhr84).

4. As an advanced graduate-level course on soft-
ware design methods for real-time systems that
could follow an earlier course serving as an in-
troduction to software design.

For treatments (1), (2), and (4), students should al-
ready be familiar with concurrent processing con-
cepts. In (3), concurrent processing concepts can be
taught as part of the real-time systems course.

The material in this module has been used by the
author in settings (1), (2), and (4).

In the next séction, possible syllabi are outlined.

Suggested Schedules

1. Graduate course on design methods, emphasiz-
ing real-time systems: '
e Topics I and II in {Budgen89] (14
hours)
¢ Topic Il in {Budgen89]: Structured
Analysis and Design (2 hours);
JSP: (2 hours)
e Topics I and II in this module (6
hours)
e.Topic III in this module: survey of
real-time software design methods
(3 hours per method = 15 hours)
e Review of design methods: based
on topic IV in [Budgen89] and topic
V in this module (3 hours)
TOTAL TIME. 42 hours ,
2. Variation on (1), emphasizing one design
method: Expand coverage of selected design
method from 3 to 9 hours. This could be done

by reducing time allotted to each of the other
methods by 1 hour.

3. Graduate course on real-time systems:

o General material on real-time sys-
tems from [Allworth87] or [Buhr84],
including topic I in this module (18
hours)

o Topic I in this module (6 hours)

SEI-CM-22-1.0

Maldencs Jranomoa¥s

Cave £ R

Software Design Methods for Fieal-1ime Systems

e Topic III in this module: survey of
real-time software design methods
(3 hours per method = 15 hours)

e Review of design methods: based
on topic V in this module (3 hours)

TOTAL TIME: 42 hours

4. Advanced graduate course on software design
methods for real-time systems:

e Topics I and II in this module (6
hours)

e Topic III in this module: survey of
real-time software design methods
(6 hours per method: 3 hours lec-
ture, 3 hours student solution pres-
entations and discussion = 30
hours)

e Topic IV in this module (3 hours)

e Review of design methods: based
on topic V in this module (3 hours)

TOTAL TIME: 42 HOURS

Worked Examples

It is difficult, if not impossible, to teach this material
without worked examples illustrating the different
design methods. It is especially instructive if the
same problem can be used to illustrate each of the
methods. The author has used the problem of de-
signing an automobile cruise control system to il-
lustrate each of the real-time software design meth-
ods. These worked examples are included in the
support materials package for this module, which is
soon to be released.

The suggested approach for using the worked ex-
amples is to first present an overview of a given
method and then to follow this by illustrating the
method applyed to the cruise control problem.

Exercises

As part of any course treating real-time design meth-
ods, students should work on one or more real-time
problems, either individually or in groups. Whether
one or more problems are tackled depends on the
size of the problem(s) and the length of the course.
However, sufficient time should be allocated for stu-
dents to work on problems, since this is the best way
for them to really understand the methods.

SEI-CM-22-1.0

Real-time problems that may be used are:

¢ Elevator control system iJacksonea,
Sanden89]

¢ Cruise control system

¢ Buoy system (Booch86]

e Patient monitoring system

¢ Automated teller machine system
e Flexible manufacturing system

Problem definitions for thz cruise control and
flexible manufacturing system problems are given in
the suppor: materials package.

Possible teaching approaches to the use of these
problems are:

a. Work on one problem throughout the semester
using one of the methods. This has the advan-
tage that students get an in-depth appreciation
of one of the methods. This approach has been
used for a relatively complex flexible manufac-
turing system.

b. Divide the class up into groups. Each group
uses a different method to solve the same prob-
lem. Time is allocated at the end of the term
for each group to present its solution. A class
discussion is held on the strengths and
weaknesses of each method, as found through
students’ application of them to the problem.

¢. Work on the same problem using each of the
methods. This approach has been used with
the elevator problem. Class discussions are
held after teaching each method, so that stu-
dents can compare their solutions.

d. Offer a design lab course in the following term,
in which the students work in groups to devel-
op a solution to a substantial real-time problem
using one of the methods. In this case, students
can also begin implementation.

The author has used approaches (a), (c), and (d).
Approach (c) is probably the most demanding and
should only be used in conjunction with course type
(4). Approaches (a) and (d) can be used in conjunc-
tion with course types (1), (2), or (4).

27 .

i A L T s e

N ALY,

Software Design Methods for Real-Time Systems

o J)etailed: More detailed references on
ibe topics covered in the module. These .
references are likely to be of greater in-
terest to instructors, but may also be
relevant to students undertaking more

Classification of References

In the lists below, the references in the bibliography
are classified by subject matter and by applicability.
The categories used in the subject matter classifica-

tion are:

Categories in the applicability classification are:

o General SE: General references on soft-
ware engineering

e Concurrency: General references on
concurrent processing

¢ Real-Time: Ceneral references on real-
time systems

¢ RTSAD: Real-Time Structured Analysis
and Design

e NRL: Naval Research Laboratory Soft-
ware Cost Reduction method

* OOD: Object-oriented design
¢ JSD: Jackson System Development

¢ DARTS: Design Approach for Real-
Time Systems

e Modules: SEI curriculum modules

e Essential: Instructors and students
should read these references, which are

directly relevant to the material in this

module.

detailed investigations into a particalar
topics.

» Background: Background material that
can be covered in courses prior to treat-
ing the material in this module. This list
includes curriculum modules listed in
PFilosophy under “Module Interface.”

o Additional: References to additional in-
formation on topics related to real-time

design. These references are useful for"

getting a broader view of the area and
cover other design methods, testing real-
time systems, etc.

o Advanced: References for instructors or
students wishing to get an in-depth view
of current research or advanced develop-
ment topics of interest in the area of real-
time systems.

L28AE A S

s tadelat

IR (PO JE R PPF TS

[

T, 8
., 4
b A h

28 SEI-CM:22:1.0°

1, S TNk

Software Design Methods for Real-Time Systems

Classification by Subject Matter

General SE Concurrency RTSAD 00D DARTS

Agresti8é Bic88 Bruyn88 Booch86 Gomaag4

Balzerg3 BrinchHansen73 DeMarco78 Booch87a Gomaagéa

Basili75 Buhr84 Gane79 Booch87b Gomaa87

Beizerg4 Dijkstra68 Hatley88 Goldberg83 Gomaag9a

Boehm76 Gehanig4 Myers78 Meyers7 Gomaaggb

Brooks75 Hoare74 Page-Jones88 Meyerg8 Gomaagsc

Dartg87 Hoare85 Ward85 Seidewitz86 Nielsen88

Davis88 Peterson81 Wardi36 Seidewitz88

Fagan76 Peterson85 Yourclon79 Shiaerg8

Fairley85 Yourcon89 Stroustrup86é Modules

g':;r::g_‘ss Real-Time Wegnerg? Brackett89
NRL Budgen89

Gomaas3 Alfordgs JSD Collofello88a

Gomaa86b Allworthe7 Brittong1 ' Collofellogab

Harel88b Cherry86 Faulk8s Cameron86 Pedersen89

IEEESS Coolahan83 Heningerg80 Cameron89 Perimang8

L.ubarsB7 Glass83 Lamb8s Jackson75 Rombach8g

Marting5 Goodenough8d Pamas74 Jackson83

McCabe85 Harel88a Pamas79 Kato87

McCrackeng2 Kelly8? Pamas84 Renoldss

Mills87 Simpson79 Pamas85 Sanden89

Myers79 Simpsong6 Pamas86

Parmas72 Stankovic88

Pressman87 .

Prieto-Diaz87

Tai87

Tsaig8

Zave84

SEI-CM-22-1.0

29

Software Design Methods for Real-Time Systems

Categorization by Applicability

Essential Detailed Background Additional Advanced
Booch86 Booch87b Aliworthg7 Alfords5s Agresti86
Camerong6é Britton81 Basili75 Beizer84 Balzer83
Davic88 Bruyng8 Bic88 Cherry86 Coolahan83
Gomaas4 Buhrg4 Boehm76 Collofello88a Dart87
Gomaa86a Camerong9 Booch87a Sollofello88b Goodenough89
Gomaa89a DeMarco78 Brackett89 Fagan76 Harel88b
Gomaa8sb Faulk8s BrinchHansen73 Freeman83 Hoare85
Kelly87 Gane79 Brooks75 Goldberg83 Kato87
Meyerg?7 Gomaas7 Budgens89 Gomaag3 Lubars87
Parnas79 Gomaa89c Dijkstra68 Gomaaséb Petersong1
Parnas84 Hatley88 Fairley85 Harel88a Prieto-Diaz87
Parnas85 - Heninger80 Gehanig4 IEEE83 Tai87
Parnasg6 Jackson83 Glass83 Jackson75 TsaiBs
Renoldss Lamb88s Gomaast Marting5
Sanden89 Meyer88 Hoare74 McCabe85
Seidewitz88 Myers78 McCracken82 Mills87
Wardgé Nielsen8s Parmas72 Myers79
Wegner87 Page-Jones8s Peterson85 Pedersen89

Parnas74 Pressman87 Perimang8

Seidewitz86 Rombach89 Shlaerg8

Wardss ' Simpson79

Yourdon79 Simpson86

- Yourdon89 Stroustrup86
Zave84

30

Software Design Methods for Real-Time Systems

Bibliography

Agresti86

Agresti, W. W. New Paradigms for Software
Development. Washington, D. C.: IEEE Computer
Society Press, 1986.

A very good collection of papers covering critiques
of the conventional software life-cycie model,
prototyping, operational specification, and transfor-
mational implementation.

Good source mawesial for the instructor. Forms an
excellent basic for a gracuate seminar.

Alford85

Alford, M. “SREM at the Age of Eight: The Distri-
buted Computing Design System.” Computer 18, 4
(April 1985), 36-46.

Provides a good overview of the DCIS method.

Allworth87

Allworth, S. T., and R. N. Zobel. Introduction to
Real Time Software Design, 2nd Ed. New York:
Springer-Verlag, 1987.

A good introductory book on real-time system de-
sign, although much of the discussion is concerned
with detailed design issues. Also, good coverage of
the MASCOT notation and hardware interfacing is-
sues. Good source material for the iistructor and
students.

Balzer83

Balzer, R., et al. “Software Technology in the
1990’s: Using a New Paradigm.” Computer 16, 11
(Nov. 1983), 30-37.

Advocates a revolutionary paradigm for software
development using a transformational approach.

Baslli75

Basili, B. R,, and A, J. Tumer, “Iterative Enhance-
ment: A Practical Technique for Software
Development.” IEEE Trans. Software Eng. SE-1, 4
(Dec. 1975), 390-396.

Abstract: This paper recommends the 'iterative
enhancement” technique as a practical means for
using a top-down, stepwise refinement approach to
software development. This technique begins with a
simple initial implementation of a properly chosen
(skeletal) subproject which is followed by the
gradual enhancement of successive implementations
in order to build the full implementation. The de-

SEI-CM-22-1.0

velopment and quantitative analysis of a production
compiler for the language SIMPL-T is used to dem-
onstrate that the application of iterative enhance-
ment to software development is practical and effi-
cient, encourages the generation of an easily
modifiable product, and facilitates reliability.

One of the first papers to advocate the incremental
development approach to software engineering.

Belzerg4
Beizer, B. Software Systeri1 Testing ard Quality
Assurance. New York: Van Nostrand, 1984,

See comments in {Collofello88b] bibliography.

Bic8s

Bic, L., and A. C. Shaw. The Logical Design of
Operating Systems, 2nd Ed. Englewood CIliffs,
N. J.: Prentice-Hall, 1988.

A good reference book on operating systems.

Boehm76

Boehm, B. “Software Engineering.” IEEE Trans.
Computers C-25, 12 (Dec. 1976), 1226-1241.

Abctract: This paper provides a definition of the
ierre “software engineering” and a survey of the
current state of the art and likely future trends in
the field. The survey covers the technology avail-
able in the various phases of the software life cycle
~requirements engineering, design, coding, test,
and maintenance—and in the overall area of soft-
ware management and integrated technology-
management approaches. It is oriented primarily
toward discussing the domain of applicability of
sechaiques (where and when they work), rather than
how they work in aetail. To cover the latter, an
extensive set of 104 references is provided.

A classic paper on the waterfall model of the soft-
ware life cycle.

Boochgé
Booch, G. “Object-Oriented Development.” /[EEE
Trans. Software Eng. SE-12, 2 (Feb. 1986), 211-221.

Abstract: Object-oriented development is a partial-
lifecycle software development method in which-the.
decomposition of a.system is based upon the con-
cept of an ovject. This mechod is fundamentally.
different from traditional functional approaches to
design and serves to help manage the complexity of
massive software-intensive systems. The paper-ex-

3

\ C
e bz e

P 2

PRSI EE JICIT

P, LT T TR WS SR W JOr

il drente

Software Design Methods for Real-Time Systems

amines the process of object-oriented development
as well as the influences upon this approach from
advances in abstraction mechanisms, programming
languages, and hardware. The concept of an object
is central to object-oriented development and so the
properties of an object are discussed in detail. The
paper concludes with an examination of the map-
ping of object-oriented techniques to Ada using a
design case study.

This paper presents an overview of object-oriented
design, as viewed in the Ada world, i.e., with em-
phasis on information hiding, but not inheritance.
The paper outlines how a Structured Analysis speci-
fication can be mapped to OOD. The method is
illustrated by means of two examples, a cruise con-
trol problem and a navigational/weather collection
bucy. This paper is also included in [Booch87b).

A good source of material for the instructor and a
paper that can reasonably be read by students.

Booch87a
Booch, G. Software Engineering with Ada, 2nd Ed.
Menlo Park, Calif.: Benjamin/Cummings, 1987.

Describes Ada and its use, with particular emphasis
on the features of the language that support large-
scale software system development, such as
packages, tasks, and generics. It also provides an
introduction to a version of object-oriented design
that typically can only be readily applied to small
programs.

Good source of material for the instructor.

Booch87b
Booch, G. Software Components with Ada. Menlo
Park, Calif.: Benjamin/Cummings, 1987.

This book presents a large collection of Ada
packages that form the basis of a software reuse
library. It advocates a “software by composition”
approach to software development. Also includes
[Boochgs].

Brackett89

Brackett, J. W. Software Requirements. Curriculum
Module SEI-CM-19-1.1, Software Engineering Insti-
tute, Carnegie Mellon University, Pittsburgh, Pa.,
Dec. 1989.

Capsule Description: This curriculum module is
concerned with the definition of software require-
ments—the software engineering process of deter-
mining what is to be produced—and the products
generated in that definition. The process involves
all of the following:

e requirements identification
o requirements analysis

32

® requirements representation
® requirements communication

e development of acceptance criteria and
procedures
The outcome of requirements definition is a precur-
sor of software design.

BrinchHansen73
Brinch Hansen, P. Operating System Principles.
Englewood Cliffs, N. J.: Prentice-Hall, 1973.

A classic book on operating systems, although now
somewhat dated. .

Britton81

Britton, K., R. Parker, and D. Parnas. “A Procedure
for Designing Abstract Interfaces for Device Inter-
face Modules.” Proc. 5th Intl. Conf. Software Eng.
New York: IEEE, 1981, 195-204.

Abstract: This paper describes the abstract inter-
face principle and shows how it can be applied in
the design of device interface modules. The pur-
pose of this principle is to reduce maintenance costs
for embedded real-time software by facilitating the
adaptation of the software to altered hardware in-
‘terfaces. This principle has been applied in the
Naval Research Laboratory's redesign o the flight
software for the Navy's A-7 aircraft. This paper
discusses a design approach based on the abstract
interface principle and presents solutions to inter-
esting problems encountered in the A-7 redesign.
The specification document for the A-7 device inter-
face modules is available on request; it provides a
fully worked out example of the design approach
discussed in this paper.

Describes the application of the information hiding
concept to the design of device interface modules.

Good source of material for the instructor.

Brooks75

Brooks, F. The Mpythical Man-Month. Reading,
Mass.. Addison-Wesley, 1975. “Reprinted with
corrections” in 1982,

A true classic covering the problems that are fre-
quently encountered in developing and managing
large scale software systems, based on the author’s
experience managing the development of IBM’s
0S/360 operating system.

This book should be read by all those interested in
software engineering.

Bruyn88

Bruyn, W., R. Jensen, D. Keskar, and P. Ward.
“ESML: An Extended Systems Modeling

SEI-CM:22-1.0

. pes
et i s S ki

GV (M a b s

Software Design Methods for Real-Time Systems

Language.” ACM Software Engineering Notes 13, 1
(Jan. 1988), 58-67.

Abstract: ESML (Extended Systems Modeling
Language) is a new system modeling language
based on the Ward-Mellor and Boeing structured
methods techniques, both of which have proposed
certain extensions of the DeMarco data flow
diagram notation to capture control and timing in-
formation. The combinzd notation has a broad
range of mechanisms for describing both com-
binatorial and sequential control logic.

This paper presents the basic features of ESML, the
recent attempt to merge the Ward/Mellor and
Boeing/Hatley approaches to Real-Time Structured
Analysis. The ESML method is illustrated by
means of a cruise control example.

A good source of material for the instructor.

Budgen89
Budgen, D. Introduction to Software Design. Cur-
riculum Module SEI-CM-2-2.1, Software Engineer-
ing Institute, Camegie Mellon University, Pitts-
burgh, Pa., Jan. 1989.

Capsule Description: This curriculum module pro-
vides an introduction to the principles and concepts
relevant to the design of large programs and sys-
tems. It examines the role and context of the design
activity as a form of problem-solving process, de-
scribes how this is supported by current design
methods, and considers the strategies, strengths,
limitations, and main domains of application of
these methods.

Buhrg4

Buhr, R. System Development with Ada. Englewood
Cliffs, N. J.: Prentice-Hall, 1984.

This book presents a design-oriented introduction to
Ada, with special emphasis on concurrent process-
ing. Introduces a graphical design notation—the
structure graph—that is gaining widespread accep-
tance in the Ada community.

A good source of material for the instructor and
students, particularly if the orientation of the course
is toward Ada.

Cameron86
Cameron, J. “An Overview of ISD.” [EEE Trans.
Software Eng. SE-12, 2 (Feb. 1986), 222-240.

Abstract: The Jackson System Development (JSD)
method addresses most of the software lifecycle.
JSD specifications consist mainly of a distributed
network of processes that communicate by message-
passing and by read-only inspection of each other’s
data. A JSD specification is therefore directly ex-

SEI-CM-22-1.0

ecutable, at least in principle. Specifications are
developed middle-out from an initial set of “model”
processes. The model processes define a set of
events, which limit the scope of the system, define
its semantics, and form the basis for defining data
and outputs. Implementation often involves recon-
figuring or transforming the network to run on a
smal!:r number of real or virtual processors. The
main phases of JSD are introduced and illustrated
by a small example system. The rationale for the
approach is also discussed.

A clear summary of JSD. As the method is still
evolving, the steps described are slightly different
from [Jackson83]. The method is illustrated by
means of a detailed library example. This paper is
also included in [Cameron89].

Good source material for the instructor. For a real-
time course, a different example would be more ap-
propriate,

Cameron89
Cameron, J., ed. JSP & JSD: The Jackson Approach
to Software Development, 2nd Ed. Washington,
D. C.: IEEE Computer Society Press, 1989.

A collection of articles and papers describing JSP
and JSD and illustrating these methods using a
range of examples of reasonable size and com-
plexity. Covers the latest developments in JSD and
has some interesting papers on JSD applied to real-
time systems, including [Renold88], as well as
papers addressing mapping JSD specifications to
MASCOT and Ada. Also includes [Cameron86]
and a comparison of JSD with OOD.

An excellent source of material for the instructor.
Good material for studenis requiring an in-depth
view of JSD.

Cherry86
Cherry G. The PAMELA Designer's Handbook.
Reston, Va.: Thought Tools, 1986. .

One of the few references on the PAMELA method.

Collofello88a
Collofello, J. Software Technical Review Process.
Curriculum Module SEI-CM-3-1.5, Software Engi-
neering Institute, Camegie Mellon University, Pitts-
burgh, Pa., June 1988.

Capsule Description: This module .consists of a
comprehensive examination of the technical review
process in the software development and mainte-
nance life cycle. Formal review methodologies.are
analyzed in detail from the perspective of the review
participants, project management and software.
quality assurance. Sample review agendas are also
presented for common types of reviews. The.objec-

\

Y

Software Design Methods for Real-Time Systems

tive of the module is to provide the studeni with the
information necessary to piun and execute highly
efficient and cost effective technical reviews.

Collofello88b

Collofello, J. Introduction to Software Verification
and Validation. Curriculum Module SEI-CM-13-
1.1, Software Engineering Institute, Camegie Mellon
University, Pittsburgh, Pa., Dec. 1988.

Capsule Description: Software verification and
validation techniques are introduced and their ap-
plicability discussed. Approaches to integrating
these techniques into comprehensive verification
and validation plans are also addressed. This cur-
riculum module provides an overview needed to un-
derstand in-depth curriculum modules in the verifi-
cation and validation area.

Coolahan83

Coolahan, J., and N. Roussopoulos. “Timing Re-
quirements for Time-Driven Systems Using Aug-
mented Petri Nets.” I[EEE Trans. Software Eng.
SE-9, 5 (Sept. 1983), 603-616.

Abstract: A methodology for the statement of
timing requirements is presented for a class of em-
bedded computer systems. The notion of a “time-
driven” system is introduced which is formalized
using a Petri net model augmented with timing in-
formation, Several subclasses of time-driven sys-
tems are defined with increasing levels of com-
plexity. By deriving the conditions under which the
Petri net model can be proven to be safe in the
presence of time, timing requirements for modules
in the system can be obtained. Analytical tech-
niques are developed for proving safeness in the
presence of time for the net constructions used in
the defined subclasses of time-driven systems.

This paper describes extensions to Petri nets to
handle timing requirements for real-time systems.

Dart87

Dart, S., R, Ellison, P. Feiler, and N. Habermann.
“Software Development Environments.” Computer
20, 11 (Nov. 1987), 18-28.

A very good introductory paper on this topic.

Davis88

Davis, A. “A Comparison of Techniques for the
Specification of External System Behavior.” Comm.
ACM 31,9 (Sept. 1988), 1098-1115.

An excellent survey and comparison of different
specification techniques. Includes data flow
diagrams, finite state machines, Petri nets and
statecharts,

34

An excellent source of material for instructor and
students.

DeMarco78
DeMarco, T. Structured Analysis and System
Specification. Englewood Cliffs, N. J.: Yourdon
Press, 1978.

A very popular book on Structured Analysis, al-
though a more up to-date treatment of the subject is
given in [Yourdong9].

Dijkstra68

Dijkstra, E. W. “Cooperating Sequential Processes.”
In Programming Languages, F. Genuys, ed. New
York: Academic Press, 1968, 43-112.

A classic paper which first introduced the concept
of concurrent processes and process synchroniza-
tion using semaphores. Illustrated by means of sev-
eral examples.

Good source material for the instructor, However,
the concepts have been described in several text
books, such as [Bic88] and {[Peterson85), which are
probably more readable for students.

Fagan76 :

Fagan, Michael E. “Design and Code Inspections to
Reduce Errors in Program Development.” IBM Sys-
tems J. 15, 3 (1976), 182-211.

See comments in [Collofelio88a] bibliography.

Fairley85
Fairley, R. Software Engineering Concepts. New
York: McGraw-Hill, 1985.

One of the best textbooks on software engineering
available. Describes the basic concepts and major
issues in the field. Contains a chapter on design
that covers fundamental design concepts, design
notations, and design methods.

Good source of material for the instructor. Should
be read by all software engineering students and is
considered a prerequisite to the material in this cur-
riculum module.

Faulk88

Faulk, S. R, and D, L, Pamas. “On Synchronization
in Hard Real Time Systems.” Comm. ACM 31, 3
(March 1988), 274-287.

A detailed description of how concurrent processes
are supported in the NRL method.

Excellent source material for the instructor. How-
ever, probably rather difficult for students.

SElCM-22-1,0°

K
Anicde Kl e fres Parn

X
“ E

S A Y FATA 28 T a2 N

Software Design Methods for Real-Time Systems

Freeman83

Freeman, P., and A. I. Wasserman, eds. Software
Design Techniques, 4th Ed. Silver Spring, Md.:
IEEE Computer Society Press, 1980.

A wide-ranging collection of papers on software de-
sign covering basic concepts, analysis and specifi-
cation, architectural design, detailed design, and
management issues.

Very good source material for the instructor and for
students who want to get a broad perspective on
software design.

Gane79
Gane, C., and T. Sarson. Structured Systems Anal-

ysis: Tools and Techniques. Englewood Cliffs,
N. J.: Prentice-Hall, 1979.

A popular book on Structured Analysis, although a
more up-to-date treatment of the subject is given in
[Yourdon89].

Gehani84
Gehani, N. Ada Concurrent Programming. Engle-
wood Cliffs, N. J.: Prentice-Hall, 1984.

Good book on concurrency in Ada. Several ex-
amples are covered, including the multiple readers/
writers problem.

Glass83
Real-Time Software. Glass, R. L., ed. Englewood
Cliffs, N. J.: Prentice-Hall, 1983.

An interesting and varied collection of papers and
articles on real-time software.

Good source material for the instructor.

Goidberg83
Goldberg, A., and D. Robson. Smalitalk-80: The

Language and Its Implementation. Reading, Mass.:
Addison-Wesley, 1983.

A detailed reference on Smallitalk-80.

Gomaa8s1

Gomaa, H., and D. B. H. Scott. “Prototyping as a
Tool in the Specification of User Requirements.”
Proc. 5th Intl. Conf. Software Eng. New York:
IEEE, 1981, 333-339.

Abstract: One of the major problems in developing
new computer applications is specifying the user's
requirements such that the requirements specifica-
tion is correct, complete, and unambiguous. Al-
though prototyping is often considered too expen-
sive, correcting ambiguities and misunderstandings
at the specification stage is significantly cheaper

SEI-CM-22-1.0

than correcting a system after it has gone into pro-
duction. This paper describes how a prototype was
used to help specify the requirements of a computer
system to manage and control a semiconductor
processing facility. The cost of developing and run-
ning the prototype was less than 10% of the total
software development cost.

Describes, with a detailed case study, how prototyp-
ing may be used to assist in the requirements speci-
fication process.

- Gomaas3

Gomaa, H. “The Impact of Rapid Prototyping on
Specifying User Requirements.” ACM Saoftware En-
gineering Notes 8, 2 (April 1983), 17-28.

Abstract: Prototyping has been recognized as
being a powerful and indeed essential tool in many
branches of engineering. Although software
prototyping is often considered too expensive, cor-
recting ambiguities and misunderstandings at the
requirements specification stage is significantly
cheaper than correcting a system after it has gone
into production. This paper describes how rapid
prototyping impacts the Requirements Analysis and
Specification phase of the software life cycle. This
is illustrated by describing the experience gained
from a prototype used to assist in the requirements
specification of a system to manage and control an
integrated circuit fabrication facility. The cost of
the prototype was less than 10 percent of the total
software development cost.

Describes a prototyping based method for require-
ments specification and gives an example of its use.

Gomaas4

Gomaa, H. “A Software Design Method for Real
Time Systems.” Comm. ACM 27, 9 (Sept. 1984),
938-949.

This paper describes the DARTS design method
and illustrates its use by means of an example of a
robot controller system. A later veision of the
method is given in [Gomaa87]. The task structuring
criteria are refined in [Gomaa88b).

Good source of material for instructor and students.

Gomaa86a

Gomaa, H. “Software Developmeni of Real Time

Systems.” Comm. ACM 29, 7 (July 1986), 657-668:
This paper describes how DARTS is used in a soft-
ware life-cycle context for real-time systems. “The

paper also describes the use of event sequence
diagrams to assist in incremental development.

Good source of material for instructor and students,

TEPORSSTE RS

2 e

RPN L,

hLE ¥ 8

ERRYTTILM

Software Design Methods for Real-Time Systems

Gomaa8éb

Gomaa, H. “Prototypes-Keep Them or Throw Them
Away?” In State of the Art Report on Prototyping,
M. E. Lipp, ed. Maidenhead, Berkshire, England:

Pergamon Infotech Ltd., 1986, 41-54, 125-126.

Abstract: This paper describes two different types
of software prototype: throw-away prototypes and
evolutionary prototypes. The throw-away prototype
is a rapid prototype, developed for experimental
purposes, and can be used to assist in specifying
user requirements—in particular the user interface.
The evolutionary prototype is the result of using an
incremental development approach. Initially, a
subset of the final system is identified and devel-
oped, so the prototype is actually an early version
of the production system. The paper identifies the
main characteristics and benefits of each type of
prototype. The impact on the software life-cycle in
each case is also described and examples of actual
projects which used these approaches, as well as
the lessons learned from them, are given.

This paper points out the differences between
throw-away prototyping and evolutionary prototyp-
ing and the need for very different approaches when
applying these techniques.

Gomaas?7

Gomaa, H. “Using the DARTS Software Design
Method for Real Time Systems.” Proc. 12th Struc-
tured Methods Conf. Chicago: Structured Tech-

niques Association, Aug, 1987, 76-90.

Abstract: This paper describes a software design
method for real time systems and gives an example
of its use. The method is called DARTS, the Design
Approach for Real Time Systems. DARTS starts by
developing a data flow model of the system using
the real time extensions to Structured Analysis. The
next stage involves transforming the data flow
model into a task structure model defining the con-
current tasks in the system and the interfaces be-
tween them. The emphasis of this transformation
process is on concurrent processing and data ab-
straction. Next, each task, which represents a se-
quential program, is structured into modules using
Structured Design.

This paper describes how DARTS may be used in
conjunction with Real-Time Structured Analysis.
The robot controller example (Gomaa84] is updated
to reflect this.

Gomaa89a
Gomaa, H. “A Software Design Method for Distri-
buted Real-Time Applications.” J. Syst. and Soft-

ware 9, 2 (Feb. 1989), 81-94,
Abstract: This paper describes a software design

36 -

method for distributed real-time applications that
typically consist of several concurrent tasks execut-
ing on multiple nodes supported by a local area
network. The design method is an extension of
DARTS, the design approach for real-time systems,
and is called DARTSIDA, DARTS for distributed
real-time applications. The method starts by devel-
oping a data flow model of the distributed appli-
cation using structured analysis. The next stage
involves decomposing the applicatior into distribu-
ted subsystems based on a set of subsystem struc-
turing criteria and defining the interfaces between
them. Next, each subsystem is structured into con-
current tasks using the DARTS task structuring cri-
teria and the interfaces between tasks are defined.
Finally, each task, which represents a sequential
program, is structured into modules using the struc-
tured design method. As an example, DARTSIDA is
applied to the design of a distributed factory
automation system.

This paper extends DARTS to address the design of
distributed real-time applications. The new method,
DARTS/DA is illustrated by means of a factory
automation example.

Good source material for instructor and students.

Gomaa8gdb
Gomaa,

Abstract: This paper discusses and compares the
criteria used by different design methods for decom-
posing a real time system into tasks and modules.
The criteria considered are coupling, cohesion and
information hiding for module structuring and con-
currency for tasks. The Structured Design method
uses the module coupling and cohesion criteria.
The NRL method and Object Oriented Design use
information hiding as the primary criterion for
identifying modules and objects respectively. The
Darts design method uses a set of task structuring
criteria for identifving the concurrent tasks in the
system. A new design method for real time systeins
is introduced that uses both task structuring and
information hiding module structuring criteria. The
method is described and illustrated by mens of an
example of an automobile cruise control system.

Describes the task and module structuting criteria
used by different real-time design methods inclad-
ing RTSAD, NRL, OOD, and DARTS. Attempts to
blend the task structuring criteria of DARTS. with
the information module structuring criteria of NRL
and OOD inco a new method called ADARTS.

Good source material for instructor and students.

SERCM22A0

S

H. “Structuring Criteria for Real Time Sys-
tem Design.” Proc. 11th Intl. Conf. Software Eng.
Washington, D. C.: IEEE Computer Society Press,
May 1989, 290-301.

‘
. 5

L1 NSO

AL

,‘./,,H_\
AR
(V5 L

Software Design Methods for Real-Time Systems

Gomaasg9c ware. It enables a user to prepare, analyze and
Gomaa, H. “A Software Design Method for Ada debug diagrammatic, yet precise, descriptions of the

. Based Real Time Systems.” Prac. 6th ACM system under development from three inter-related
; N ' . points of view, capturing structure, functionality
%c;sghzgggo-;sﬁda Symposium. New York: ACM, and behavior. These views are represented by three

Abstract: This paper describes a software design
method for structuring real time systems into con-
current tasks and information hiding packages. The
method is called Adarts, an Ada based Design Ap-
proach for Real Time Systems. Adarts uses iwo sets
of structuring criteria; task structuring criteria are
used to identify the concurrent tasks in the system
while package structuring criteria are used to iden-
tify the information hiding packages.

A description of the ADARTS method with partic-
ular reference to Ada-based real-time systems.

Of particular interest to Ada-based real-time system
design.

graphical languages, the most intricate of which is
the language of statecharts used to depict reactive
behavior over time. In addition to the use of
statecharts, the main novelty of STATEMATE is in
the fact that it ‘understands’ the entire descriptions
perfectly, to the point of being able to analyze them
for crucial dynamic properties, to carry out rigor-
ous animated executions and simulations of the de-
scribed system, and to create runing code automat-
ically. These features are invaluable when it comes
to the quality and reliability of the final outcome.

A good overview of tie Statemate tool. Also de-
scribes how statecharts have been incorporated into
Statemate.

Harel88b

Goodenough89 Harel, D. “On Visual Formalisms.” C ACM 31
Goodenough, J. B., and C. Sha. Real-Time Schedul- 5 ?ﬁéy 1.988;1, 5;2%530.01“1 1SS, Comit ,

ing Theory and Ada. CMU/SEI-89-TR-14, Software _ .
Engineering Institute, Pittsburgh, Pa., 1989. Abstract: The higraph, a general kind of diagram-

Abstract: The Ada tasking model was intended to
support the management of concurrency in a
priority-driven scheduling environment. In this
paper, we review some important results of a
priority-based scheduling theory, illustrate its ap-
plications with examples, discuss its implications
for the Ada tasking model, and suggest
workarounds that permit us to implement analytical
Scheduling algorithms within the existing
Sframework of Ada. This paper is a revision of
CMUI/SEI-88-TR-33. (The most important revisions
affect our discussion of aperiodic tasks and our
analysis of how to support the priority ceiling
protocol.) A shortened version is also being
presented at the 1989 Ada-Europe Conference.

A readable and informative paper on a complex
topic.

ming object, forms a visual formalism of topologi-
cal nature. Higraphs are suited for a wide array of
applications to databases, knowledge representa-
tion, and, most notably, the behavioural specifica-
tion of complex concurrent systems using the
higraph-based language of statecharts.

This paper describes a number of important issues
concemning design representation. The paper dis-
cusses general issues as well as presenting a good
introduction to statecharts, illustrated by the digital
watch example.

Good source material for instructor and students.

Hatley88

Hatley, Derek J., and I. Pirbhai. Strategies for Real
Time System Specification. New York: Dorset
House, 1988.

Harel88a A comprehensive dt_zscription of the Boein_g/Hatley
Harel, D., ez al. “STATEMATE: A Working Envi- app&g:gl} %Rggge Structured A“r‘:lys‘s' The
ronment for the Development of Complex Reactive method 1s 1ustraled by means OI severa! exampies
Systems.” Proc. 10th 15 " Cozf. onn.IS% ft):vare E:z‘ig }ncludmg the cruise control system and home heat-
Washington, D. C.: IEEE Computer Society Press, ing system.
1988, 396-406. Good source material for the instructor. Probably
too detailed for students, unless they are carrying
Abstract: This paper provides a brief overview of out an in-depth study of the method.
the STATEMATE system, constructed over the past
three years by i-Logix Inc., and Ad Cad Ltd.
STATEMATE is a graphical working environment, Hen}ngerBO “ - frware Requi
‘ intended for the specification, analysis, design and Heninger, K. “Speciiying Software Requirements
documentation of large and complex reactive sys- for Complex ”Systems: New Techniques and Their
tems, such as real-time embedded systems, control Applications.” IEEE Trans. Software Eng. SE-6, 1
and communication systems, and interactive soft- (Jan. 1980), 2-13.

SEI-CM-22-1.0 37

L o aa® i xy et ain came wemrans e oo b

Software Design Methods for Real-Time Systems

Abstract: This paper concerns new techniques for
making requirements specifications precise, con-
cise, and easy to check for completeness and consis-
tency. The techniques are well-suited for complex
real-time sofiware systems; they were developed to
document the requirements of existing flight soft-
ware for the Navy's A-7 aircraft. The paper out-
lines the information that belongs in a requirements
document and discusses the objectives behind the
techniques. Each technique is described and il-
lustrated with examples from the A-7 document.
The purpose of the paper is to introduce A-7 docu-
ment as a model of a disciplined approach to re-
quirements specification; the document is available
to anyone who wishes to see a fully worked-out ex-
ample of the approach.

An overview of the NRL black-box requirements
specification method with examples from the A-7
aircraft project.

Good source material for the instructor. Probably
difficult reading for students, however.

Hoare74
Hoare, C. A. R. “Monitors: An Operating System

Structuring Concept.” Comm. ACM 17, 10 (Oct.
1974), 549-557.

Abstract: This paper develops Brinch-Hansen's
concept of a monitor as a method of structuring an
operating system. It introduces a form of
synchronization, describes a possible method of im-
plementation in terms of semaphores and gives a
suitable proof rule. Illustrative examples include a
single resource schedule, a bounded buffer, an
alarm clock, a buffer pool, a disk head optimizer,
and a version of the problem of readers and writers.

A classic paper on operating systems.

Hoare85

Hoare, C. A. R. Communicating Sequential
Processes. Englewood Cliffs, N. J.: Prentice/Hall
International, 1985.

IEEES83

IEEE. IEEE Standard Glossary of Software Engi-
neering Terminology. New York: IEEE, 1983.
ANSV/IEEE Std 729-1983.

This standard provides definitions for many of the
terms used in software engineering,

Jackson75
Jackson, M. A. Principles of Program Design. Lon-
don: Academic Press, 1975.

The original source book on JSP. JSP is also
covered in detail in [Cameron89).

38

Jackson83
Jackson, M. A. System Development.
Cliffs, N. J.: Prentice-Hall, 1983.

The original source book on JSD. A more current
version of the method is presented in {Cameron86)
and [Cameron89]. The book is rather difficult to
read, as the description of the method is intertwined
with three worked examples. The elevator example
has been extracted and included in [Sanden89].

A source of material for the instructor, rather than
the student.

Englewood

Kato87

Kato, J., and Y. Morisawa. “Direct Execution of a
JSD Specification.” Proc. COMPSAC §&7.
Washington, D: C.: IEEE Computer Society Press,
1987, 30-37.

Abstract: This paper presents the direct execution
of a Jackson System Development (JSD) specifica-
tion as a part of the Jackson System development
Environment (JSE). When we have a tool for ex-
ecuting a JSD specification, we can use it as a rapid
prototyping tool of system development. We intro-
duce a language, named the Jackson System devel-
opment Language (JSL) which is a JSD specifica-
tion language.

This paper describes the main part of JSL and ex-
plains its interpreter.

Describes a tool to support the execution of JSD
specifications.

Kelly87

Kelly, J. “A Comparison of Four Design Methods
for Real Time Systems.” Proc. 9th Intl. Conf. Soft-
ware Eng. Washington, D. C.: IEEE Computer So-
ciety Press, 1987, 238-252.

Abstract: The purpose of this paper is to compare
four design methods which are of current interest in
real-time software development. The comparison
presents the relative strengths and weakness of each
method with additional information on graphic
notation and the recommended sequence of steps
involved in the use of each method. The methods
selected for comparison were:

¢ STRUCTURED DESIGN FOR REAL-
TIME SYSTEMS

® OBJECT ORIENTED DESIGN

o PAMELA (Process Abstraction Method for
Embedded Large Applications)

o SCR (Software Cost Reduction project -
Naval Research Laboratory)

Readers interested in a framework for comparing:- -
methods, an overview of the four selectéd method-

SEi:CM:22:1.0 .

(e

Software Design Methods for Real-Time Systems

ologies, and an aid to narrowing candidates for
adoption should find this paper helpful

Provides a framework for comparing real-time de-
sign methods. Uses this framework to compare
RTSAD, PAMELA, OOD, and NRL methods.

Good source material for the instructor and stu-
dents.

Lamb88

Lamb, David Alex. Software Engineering: Planning
for Change. Englewood Cliffs, N. J.: Prentice-Hall,
1988. -

This book provides a very good overview of many
of the ideas of David Parnas that formed the basis of
the NRL method.

Good source material for the instructor and stu-
dents. Chapters 4, 5, and 6 are particularly relevant
to this module.

Lubars87

Lubars, M. D., and M. T. Harandi. “Knowledge-
Based Software Design Using Design Schemas.”
Proc. 9th Intl. Conf. Software Eng. Washington,
D. C.. IEEE Computer Society Press, 1987,
253-262.

Abstract: Design schemas provide a means for
abstracting software designs into broadly reusable
components that can be assembled and refined into
new software designs. This paper describes a
knowledge-based software development paradigm
that is based on the design schema representation.
It combines design schemas, domain knowledge,
and various types of rules to assist in the quick gen-
eration of software designs from user specifications.
A prototypical environment, IDeA (Intelligent De-
sign Aid), is described that supports the knowledge-
based paradigm. The schema-based techniques
used in IDeA are presented along with some ex-
amples of their use.

An interesting paper addressing a promising area of
research—domain modeling.

Martin85
Martin, J., and C. McClure. Structured Techniques
for Computing. Englewood Cliffs, N. J.: Prentice-
Hall, 1985.

A wide ranging survey of several d:agramming
techniques and design methods. Compares JSP,
Structured Analysis/Design, and the Wamier/Orr
method. The book is oriented toward information
systems.

SEI-CM-22-1.0

McCabe85

McCabe, T., and G. Schulmeyer. “System Testing
Aided by Structured Analysis: A Practical
Experience.” IEEE Trans. Software Eng. SE-11, 9
(Sept. 1985), 917-921.

Abstract: This paper deals with the use of Struc-
tured Analysis just prior to system acceptance test-
ing. Specifically, the drawing of data flow
diagrams (DFD) was done after integration testing.
The DFD's provided a pic:ure of the logical flow
through the integrated system for thorough system
acceptance testing. System test sets, [sic] were de-
rived from the flows in the DFD's. System test
repeatability was enhanced by the matrix which
flowed from the test sets.

See comments in [Collofello88b] bibliography.

McCracken82

McCracken, D., and M. Jackson. “Life Cycle Con-
cept Considered Harmful.” ACM Software Engineer-
ing Notes 7,2 (April 1982), 29-32.

A brief note advocating an evolutionary prototyping
approach to software development.

Meyer87

Meyer, B. “Reusability: The Case for Object-
Oriented Design.” IEEE Software 4,2 (March 1987),
50-64.

An excellent paper describing the benefits of using
inheritance in object-oriented design. Illustrated by
means of a detailed example of an airline reserva-
tion system. The material is covered in more detail
in [Meyer88).

Excellent source of material for the instructor.
However, students may find the paper difficult and
prefer the lengthier treatment given in [Meyer88].

Meyer88
Meyer, B. Object-Oriented Software Construction.
New York: Prentice-Hall, 1988.

A comprehensive description of designing object-
oriented systems using inheritance, in addition to
information hiding, Several examples are given
using the object-oriented programming language
Eiffel,

This book warrants a course of its own on object-
oriented software development.

Milis87

Mills, H. D, R. C. Linger, and A. R. Hevher: “Box .

Structured Information Systems. * IBM Systems
J. 26, 4 (Dec. 1987), 395-413.

Software Design Methods for Real-Time Systems

A description of the Box-Structured Information
System design method.

Myers78
Myers, G. Composite/Structured Design. New
York: Van Nostrand, 1978.

An early book on the Structured Design method by
one of its developers. The book introduces the in-
formation hiding concept as a module cohesion cri-
terion, something still not done in later books, e.g.,
{Page-Jones88].

" Myers79
Mvers, G. The Art of Software Testing. New York:
John Wiley, 1979.

See comments in [Collofelio88b] bibliography.

Nielsen88

Nielsen, K., and K. Shumate. Designing Large Real
Time Systems with Ada. New York: McGraw-Hill,
1988.

A detailed book for those interested in developing
Ada-based real-time systems. Addresses many
Ada-specific issues. The design method is based on
DARTS [Gomaa84], Several detailed case studies
are covered, including the robot controller example
{Gomaa84] and an air traffic control system.

Good reference material for the instructor, This is a
good reference book for a real-time design course
oriented toward Ada.

Page-Jones8s
Page-Jones, M. The Practical Guide to Structured

Systems Design, 2nd Ed. Englewood Cliffs, N. J.:
Yourdon Press, 1988.

A readable book on the popular Structured Design
method, Also has an overview of Structured Anal-
ysis. Although recently revived, the book does not
cover recent developments in design methods. Un-
like [Myers78}, it views information hiding as a de-
sign heuristic, rather than as a module cohesion cri-
terion, which is probably confusing for both stu-
dents and practitioners,

A good source of material for the instructor.

Parnas72

Parnas, D. “On the Criteria for Decomposing a Sys-
tem into Modules.” Comm. ACM 15, 12 (Dec. 1972),
1053-1058.

Abstract: This paper discusses modularization as a
mechanism for improving the flexibility and com-
prehensibility of a system while allowing the shor-
tening of its development time. The effectiveness of

40

a “modularization” is dependent upon the criteria
used in dividing the system into modules. A system
design problem is presented and both a convention-
al and unconventional decomposition are described.
It is shown that the unconventional decompositions
have distinct advantages for the goals outlined. The
criteria used in arriving at the decompositions are
discussed. The unconventional decomposition, if
implemented with the conventional assumption that
a module consists of one or more subroutines, will
be less efficient in most cases. An alternative ap-
proach to implementation which does not have this
effect is sketched.

A classic paper that introduces the concept of infor-
mation hiding as a design criterion.

A good source of material for the instructor.

Parnas74

Parmas, D. “On a ‘Buzzword’: Hierarchical
Structure.” Proc. IFIP Congress 1974. Amsterdam:
North-Holland, 1974, 336-339.

Abstract: This paper discusses the use of the term
“hierarchially structured” to describe the design of
operating systems. Although the various uses of
this term are often considered to be closely related,
close examination of the use of the term shows that
it has a number of quite different meanings. For
example, one can find two different senses of
“hierarchy” in a single operating system [3] and
(6]. An understanding of the different meanings of
the term is essential, if a designer wishes to apply
recent work in Software Engineerine ~nd Design
Methodology. This paper attempts : vide such
an understcnding.

An infrequently referenced paper that describes in
detail the interesting view that a software system
consists of three orthogonal structures, the informa-
tion hiding module structure [Pamasgd), the uses
structure [Pamas79], and the process structure
(Faulk88]. A paper that shonld be read by all sys-
tem designers, particularly those who believe that
the same structuring criteria may be used for tasks
and objects.

An essential source of material for the instructor.
Students may do better to settle for the instructor’s
interpretation,

Parnas79 4
Parnas, D. “Designing Software for Ease of Exten-
sion and Contracuon." IEEE Trans. Software Eng
SE-5,2 (March 1979), 128-138..

Abstract: Designing software to be extensible and
easily contracted is discussed as-a special case of
design for change. A number of ways lhac/extension

and contraction problems manifest themselve, z’n‘: '

N TP S P IV WP S

e for ks

Software Design Methods for Real-Time Systems

current software are explained. Four steps in the
design of software that is more flexible are then
discussed. The most critical step is the design of a
software structure called the “uses” relation. Some
criteria for design decisions are given and il-
lustrated using a small example. It is shown that
the identification of minimal subsets and minimal
extensions can lead to software that can be tailored
to the needs of a broad variety of users.

An important paper that describes the uses structure,
a hierarchy of operations provided by modules, and
how this structure may be used for determining sub-
sets and extensions of a software system.

A good source of material for the instructor and
students, although the example may be difficult to
understand.

Parnas84

Parnas, D., P. Clements, and D. Weiss. “The Modu-
lar Structure of Complex Systems.” Proc. 7th Intl.

Conf. Software Eng. Long Beach, Calif.:
Computer Society, 1984, 408-416.

IEEE

Abstract: This paper discuses the organization of
software that is inherently complex because there
are very many arbitrary details that must be
precisely right for the software to be correct. We
show how the software design technique known as
information hiding or abstraction can be supple-
mented by a hierarchically-structured document,
which we call a module guide. The guide is in-
tended to allow both designers and maintainers to
identify easily the parts of the software that they
must understand without reading irrelevant details
about other parts of the software. The paper in-
cludes an extract from a software module guide to
illustrate our proposals.

A very important paper that describes the applica-
tion of the information hiding concept to the design
of a complex real-time system. Detailed example of
the A-7 aircraft.

Essential reading for the instructor and students,

Parnas8s

Parnas, D., and D. Weiss. “Active Design Reviews:

Principles and Practices.” Proc. 8th Intl. Conf.

Soft-

ware Eng. Washington, D. C.: IEEE Computer So-

ciety Press, 1985, 132-136.

Abstract: Although many new soft uare design

focussed on those aspects of the design
that suit his experience and expertise.

2.The characteristics of the reviewers
needed should be explicitly specified be-
fore reviewers are selected.

3. Reviewers should be asked to make posi-
tive assertions about the design rather
than simply allowed to point out defects.

4.The designers pose questions to the
reviewers, rather than vice versa. These
questions are posed on a set of question-
naires that requires careful study of some
aspect of the design.

5.Interaction between designers and
reviewers occurs in small meetings involy-
ing 2 - 4 people rather than meetings of
large groups.

lilustrations of these ideas drawn from the appli-
cation of active design reviews to the Naval Re-
search Laboratory's Software Cost Reduction Proj-
ect are included.

An interesting paper that advocates a highly par-
ticipatory role by design reviewers.

Parnas86

Pamnas, D., and P. Clemens. “A Rational Design
Process: How and Why to Fake It.” IEEE Trans.
Software Eng. SE-12, 2 (Feb. 1986), 251-257.

Abstract: Many have sought a software design
process that allows a program to be derived sys-
tematically from a precise statement of require-
ments. This paper proposes that, although we will
not succeed in designing a real product in that way,
we can produce documentation that makes it appear
that the sofiware was designed by such a process.
We first describe the ideal process, and the docu-
mentation that it requires. We then explain why one
should attempt to design according to the ideal
process and why one should produce the documen-
tation that would have been produced by that proc-
ess. We describe the contents of each of the re-
quired documents.

A clear overview of the NRL method that also de-
scribes the rationale behind it and stresses the im-
portance of documentation throughout the life cy-
cle. Several aspects of the method are describéd in
more detail in other papers, e.g., [Parnas84].

Essential reading for the instructor and students.

techniques have emerged in the past 15 years, there
have been few changes to the procedures for re-
viewing the designs produced using these tech-
niques. This paper describes an improved tech-
nique, based on the following ideas, for reviewing
designs.

1.The efforts of each reviewer should be

SEI-CM-22-1.0

Pederseng9

Pedersen, J. S. Software Development Using VDM.
Curriculum Module SEI-CM-16-1.1, Software Engi- -
neering Institute, Camegie Mellon: Umversxty, Pitts-

burgh, Pa., Dec. 1989.

RIS

:
By
F]
J
4
.5
2
P
;

O WP TN

S atat

Software Design Methods for Real-Time Systems

Capsule Description: This module introduces the
Vienna Development Method (VDM) approach to
software development. The method is oriented
toward a formal model view of the software to be
developed. The emphasis of the module is on for-
mal specification and systematic development of
programs using VDM. A major part of the module
deals with the particular specification language
(and abstraction mechanisms) used in VDM.

Perimangs8

Perlman, G. User Interface Development. Curricu-
ium Module SEI-CM-17-1.0, Software Engineering
Institute, Camegie Mellon University, Pittsburgh,
Pa., April 1988.

Capsule Description: This module covers the is-
sues, information sources, and methods used in the
design, implementation, and evaluation of user
interfaces, the parts of software systems designed to
interact with people. User interface design draws
on the experiences of designers, current trends in
input/output technology, cognitive psychology,
human factors (ergonomics) research, guidelines
and standards, and on the feedback from evaluating
working systems. User interface implementation
applies modern software development techniques to
building user interfaces. User interface evaluation
can be based on empirical evaluation of working
systems or on the predictive evaluation of system
design specifications.

Peterson81

Peterson, J. Petri Net Theory and the Modeling of
Systems. Englewood Cliffs, N. J.: Prentice-Hall,
1981.

An excellent reference book on Petri nets, providing
a readable treatment of the subject, with many ex-
amples.

Peterson85s

Peterson, J., and A. Silberschatz. Operating System
Concepts, 2nd Ed. Reading, Mass.: Addison-Wes-
ley, 1985.

A very good reference book on operating systems.

Pressman87

Pressman, R. Software Engineering: A
Practitioner’s Approach, 2nd Ed. New York:
McGraw-Hill, 1987.

A very good introduction to software engineering.
Also has chapters on several design methods, in-
cluding Structured Analysis and Design, DARTS,
object-oriented design, and JSD.

A good source of material for the instructor and
students.

42

Prieto-Diaz87

Prieto-Diaz, R. “Domain Analysis for Reusability.”
Proc. COMPSAC 87. Washington, D. C.: IEEE
Computer Society Press, 1987, 23-29.

Abstract: Domain analysis is a knowledge inten-
sive activity for which no methodology or any kind
of formalization is yet available. Domain analysis
is conducted informally and all reported experi-
ences concentrate on the outcome, not on the proc-
ess. We propose a model domain analysis process
derived from analyzing some domain analysis cases
and two existing approaches. After decomposition
of the activities analyzed, we were able to capture
the domain analysis process in a set of data flow
diagrams. The model identifies intermediate activi-
ties and workproducts for which support tools can
be developed. A project is currently under way to
verify our model,

An interesting research paper that presents an ap-
proach to analyzing application domains.

Renold8s

Renold, A. “Jackson System Development for Real
Time Systems.” In JSP & JSD: The Jackson Ap-
proach to Software Development, 2nd Ed.,
J. Cameron, ed. Washington, D. C.: IEEE Computer
Society Press, 1989, 235-278.

A good description of how JSD may be used for
designing real-time systems. Also includes a com-
parison of JSD with Structured Analysis/Design and
DARTS.

Rombach89

Rombach, D. Software Specifications: A
Framework. Curriculum Module SEI-CM-11-2.0,
Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa., Dec. 1989,

Capsule Description: This curriculum module
presents a framework for understanding software
product and process specifications. An unusual ap-
proach has been chosen in order to be able to ad-
dress all aspects related to “specification” without
confusing the many existing uses of the term. In this
module, the term specification refers to any plan (or
standard) according to which products of some type
are constructed or processes of some type are per-
formed, not to the products or processes themselves.
In this sense, a specification is itself a product that
describes how products of some type should look.or
how processes of some type should be performed
The framework includes

e g reference software life-cycle mudel and
terminology,

ea characterizing scheme for software-
product and process specifications;, . - .

sen-cm-aé_ oz :

’
Nl et s

~,
i

9

Software besign Methods for Real-Time Systems

e guidelincs for using the characterization
scheme to identify clearly certain life-cycle
phases, and

o guidelines for using the characterization

Scheme to select and evaluate specification
techniques.

Sanden89

Sanden, B. “An Entity Life Modeling approach to
the Design of Concurrent Software.” Comm. ACM
32,3 (March 1989), 330-343.

Describes a variation on JSD that addresses the
needs of real-time systems and also maps directly to
Ada. Illustrates the method by comparing it to JSD,
using Jackson’s elevator example (Jackson83].

Seldewitz86
Seidewitz, Ed, and Mike Stark. “Towards a General
Object-Oriented Software Development

Methodology.” Proc. Ist Intl. Conf. on Ada® Pro-
gramming Language Applications for the NASA
Space Station, vol. II. Houston: University of
Houston-Clear Lake, 1986, D.4.6.1-D.4.6.14.

An early paper on the GOOD method for object-
oriented design.

Seldewitz88
Seidewitz, Ed. “General Object-Oriented Software
Development: Background and Experience.” Proc.
21st Ann, Hawaii Intl. Conf. System Sciences, vol. II.
Washington, D. C.: IEEE Computer Society Press,
1988, 262-270.

Abstract: The effective use of Ada™ requires the
adoption of modern software-engineering tech-
niques such as object-oriented methodologies. A
Goddard Space Flight Center Software Engineering
Laboratory Ada pilot project has provided an op-
portunity for studying object-oriented design in
Ada. The project involves the development of a
simulation system in Ada in parallel with a similar
FORTRAN development. As part of the project, the
Ada development team trained and evaluated
object-oriented and process-oriented design meth-
odologies for Ada. Finding these methodologies
limited in various ways, the team created a general
object-oriented development methodology which
they applied to the project. This paper discusses
some background on the development of the meth-
odology, describes the main principles of the ap-
proach and presents some experiences with using
the methodology, including a general comparison of
the Ada and FORTRAN simulator designs.

A later paper on the GOOD method. Interesting in
its application of entity-relationship modeling to
help identify objects in the problem domain.

SEI-CM-22-1.0

A good source of material for the instructor and
students.

Shiaer88

Shlaer, Sally, and Stephen J. Mellor.
Object-Oriented Systems Analysis: Modeling the
World in Data. Englewood Cliffs, N. J.: Yourdon
Press, 1988.

A rather narrow view of object-oriented require-
ments analysis, concentrating on semantic data
modeling. However, the treatment given is read-
able, though somewhat introductory.

Good source of material for the instructor. Prob-
ably too narrow for students.

Simpson79

Simpson, H., and K. Jackson. “Process Synchroniza-
tion in MASCOT.” Computer J. 22, 4 (Nov. 1979),
332-345.

An early paper on MASCOT, concentrating on the
concurrent process synchronization aspects of
MASCOT.

Simpson86
Simpson, H. “The MASCOT Method.” Software
Eng.J. 1,3 (May 1986), 103-120.

A more recent paper on MASCOT that covers the
extensions and notation for MASCOT 3.

Stankovic88

Stankovic, J. A., and K. Ramamritham. Hard Real-
Time Systems. Washington, D. C.: IEEE Computer
Society Press, 1988.

A wide-ranging collection of papers covering the
specification, design and analysis of real-time sys-
tems (with particular emphasis on timing
constraints), real-time languages, real time operat-
ing systems, architecture and hardware, communi-
cation, and fault tolerance.

Good source material for the instructor. Forms an
excellent basis for a graduate seminar on this topic.

Stroustrup86

Stroustrup, B. The C++ Programming Language
Reading, Mass.: Addison-Wesley, 1986.

A good reference book on this object-oriented lan-
guage.

Tai87

Tai, Kuo-Chung, and Sanjiv Ahuja. “Reproducxblel‘ ‘

Testing of Communication Software:” Pro

o

PSAC 87. Washington, D. C.:TEEE Compu Sodt: -

ety Press, 1987, 331-337

AN ANAFS I St 2 Lk B

Sy

Software Design Methods for Real-Time Systems

Abstract: Communication software uses timers and
constructs such as SEND/RECEIVE and ENQIDEQ
to control synchronization between concurrent
processes. As a result, repeated executions of a
communication program with the same test se-
quence may produce different results. This unpre-
dictable program behavior makes the debugging
and testing of communication software difficult.
The reproducible testing problem is to exercise a
given sequence of synchronization events between
concurrent processes. In this paper, we present
solutions to the reproducible testing problems for
SENDIRECEIVE and timers.

Presents an interesting approach to testing concur-
rent systems.

Tsal88

Tsai, J. J.-P., and J. C. Ridge. “Intelligent Support
for Specifications Transformation.” [EEE Software
5, 6 (Nov. 1988), 28-36.

Ward85

Ward, P. T., and S. J. Mellor. Structured Develop-
ment for Real-Time Systems. New York: Yourdon
Press, 1985-1986. The three volumes in this series
are Introduction and Tools, Essential Modeling
Techniques, and Implementation Modeling
Techniques.

A comprehensive treatment of the Ward/Mellor ap-
proach to Real-Time Structured Analysis and De-.
sign.

A good source of material for the instructor, Prob-
ably toc detailed for students, unless they are carry-
ing out an in-depth study of the method.

Ward86

Ward, P. “The Transformation Schema: An Exten-
sion of the Data Flow Diagram to Represent Control
and Timing.” IEEE Trans. Software Eng. 12, 2 (Feb.
1986), 198-210.

Abstract: The data flow diagram has been exten-
sively used to model the data transformation as-
pects of proposed systems. However, previous
definitions of the data flow diagram have not pro-
vided a comprehensive way to represent the inter-
action between the timing and control aspects of a
system and its data transformation behavior. This
paper describes an extension of the data flow
diagram called the transformation schema. The
transformation schema provides a notation and for-
mation rules for building a comprehensive system
model, and a set of execution rules to allow predic-
tion of the behavior over time of a system modeled
in this way. The notation and formation rules allow
depiction of a system as a network of potentially
concurrent “centers of activity” (transformations),

44

and of data repositories (stores), linked by commu-
nication paths (flows). The execution rules provide
a qualitative prediction rather than a quantitative
one, describing the acceptance of inputs and the
production of outputs by the transformations but not
input and output values.

The transformation schema permits the creation
and evaluation of two different types of system
models. In the essential (requirements) model, the
schema is used to represent a virtual machine with
infinite resources. The elements of the schema
depict idealized processing and memory compo-
nents. In the implementation model, the schema is
used to represent a real machine with limited
resources, and the results of the execution predict
the behavior of an implementation of requirements.
The transformations of the schema can depict soft-
ware running on digital processors, hard-wired
digital or analog circuits, and so on, and the stores
of the schema can depict disk files, tables in mem-
ory, and so on.

An overview of RTSA, with some refinement and
terminology changes in the notation of [Ward85].

A good source of material for the instructor and
students.

Wegner87

Wegner, P. “Dimensions of Object Based Language
Design.” Proc. OOPSLA '87. New York: ACM,
1987, 168-182. Proceedings available as special is-
sue of SIGPLAN Notices 22, 12 (Dec. 1987).

Abstract: The design space of object-based lan-
guages is characterized in terms of objects, classes,
inheritance, data abstraction, strong typing, con-
currency, and persistence. Language classes
(paradigms) associated with interesting subsets of
these features are identified and language design -
issues for selected paradigms are examined. Or-
thogonal dimensions that span the object-oriented
design space are related to non-orthogonal features
of real languages. The self-referential application
of object-oriented methodology to the development
of object-based language paradigms is demon-
sirated.

Delegaiion is defined as a generalization of in-
heritance and design alternatives such as non-strict,
multiple, and abstract inheritance are considered.
Actors and prototypes are presented as examples of
classless (delegation based) languages. Processes
are classified by their degree of internal concir- -
rency. The potential inconsistency of object-»
oriented sharing and distributed. autonomy is: -dis-

cussed, suggesting that compromises "between shars-

ing and autonomy will be necessary in designing
strongly typed object-oriented distribuled database
languages. LA

- Sercuzzo

. ‘
:
H

22 S A,

Software Design Methods for Real-Time Systems

A very interesting paper giving a comprehensive
taxonomy of languages supporting objects.

Required reading for the instructor and students
who want a clear overview of object-oriented con-
cepts and how they are supported by object-oriented
languages.

Yourdon79
Yourdon, E., and L. Constantine. Structured Design.
Englewood Cliffs, N. J.: Prentice-Hall, 1979.

The classic text on Structured Design, although
somewhat dated and not as readable as {Page-
Jones88). .

Yourdong9

Yourdon, E. Modern Structured Analysis.
Englewood CIiffs, N. J.: Prentice-Hall, 1989.

Probably the most comprehensive and up-to-date
book on the popular Structured Analysis method.
Includes material on the real-time extensions to
Structured Analysis and Entity-Relationship model-
ing. There are also two detailed case studies. If
you need one book on Structured Analysis, this is
probably the one to get.

Wery good source material for instructor and stu-
dents.

Zave84

Zave, P. “The Operational Versus the Conventional
Approach to Software Development.” Comm. ACM
27,2 (Feb. 1984), 104-118.

This paper advocates an alternative approach to
software development in which a problem-oriented
executable operational specification is developed,
followed by a transformation phase that results in an
implementation-oriented spex ‘fication. A character-
istic of the operational specification is that, in order
to be executable, it freely interleaves requirements
(external behavior) and internal structure.

SEI-CM-22-1.0

oo e N
2SR et e A et

SR 2 A

B

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

REPOMT SECURITY CLASSIFICATION

10. RESTRICTIVE MAARKINGS

UNCLASSIFIED NONE
T SECUAITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT
N/A APPROVED FOR PUBLIC RELEASE
2b. OECLASSIFICATION/OOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED
N/A

4 PEAFORMING QRGANIZATION REPORT NUMBER(S)

SEI-CM-22~1.,0

S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION b OFFICE SYMBOL
(il spplicadle)
SOFTWARE ENGINEFRING INST. SEI

7a. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE

Ay

6c. ADORESS (City, Stete and Z1P Code)

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

70.-ADDRESS (Cily, Sidé¢ end ZIP Code)

ESD/AVS

HANSCOM AIR FORCE BASE
HANSCOM, MA_ 01711

8b, OFFICE SYMBOL
(If applicable)

ESD/ AVS

B8s. NAME OF FUNDING/SPONSORING
ORGANIZATION

SEI JOINT PROGRAM OFFICE

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962890C0003

8c. ADDRESS (City, State aad ZIP Code)
CARNEGIE MELLON UNIVERSITY

L PITTSBURGH, PA 15213

10. SOURCE OF FUNOING NOS.

11. TITLE (Include Security Classificstion)

oftware Design Methods for Real-Time Svstems
PERSONAL AUTHO A:S)
Hassan Gomaa, George Mascn University

PROGRAM PACJECT TASK WORK UMNIT
ELEMENT NO. NO. NO. NO. ;
63752F N/A N/A NA |

134 TYPE OF REPOAT 130 Tit4€ COVERED

14. OATE OF REFPORT (Yr., Me., Dey) 18. PAGE COUNT

R

PINAL EROM TO December 1989 45
16. SUPPLEMENTARY NOTATION
CQOSATI CODES 18 SUBJECT TERMS (Continue on rueree if necessery ond idendfly by Mock Rumber)
gRoue Sue gp. real-time systems

software design

design method]
design assessment {

systems.

validation of real-time designs.

provided.

19. ABSTRACT (Continue on reverse !f nacessery end identify by block number)

This module describes the concepts and methods used in the software design of real-time
It outlines the characteristics of real~time systems, describes the role of
software design in real-time system development, surveys and compares some software
design methods for reai-time systems, and outlines techniques for the verification and

] For each design method treated, its emphasis, concepts
on which it is based, steps used in its application, and an assessment of the method are

. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIEO/UNLIMITED fJ same as aer. O oric usens B

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED DISTRIBUTION . .. |

22s. NAME OF RESPQONSISLE INOIVIOUAL

~JOHN S. HERMAN, Capt, USAP
DD FORM 1473, 83 APR

220, TELEPHONE NUMBER 22¢c. OFFICE.SYMBOL -~
tinciude Ares Cods) S

EOITION OF 1 JAN 73 IS ORSOLEYE, .

412 268-7630

The Software Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mellon University undar contract with the United States Department of Defense.

The SEI Software Engineering Curriculum Project is developing a wide range of materials to support software engineering
education. A curriculum module (CM) identifies and outlines the content of a specific topic area, and is intendwd to be
used by an instructor in designing a course. A support materials package (SM) contains materials related to a module
that may be helpful in teaching a course. An educational materials package (EM) contains other materials not necessarily
related to a curriculum module. Other publications include software enginesring curriculum recommendations and course
designs.

SEl educational materials are being made available to educators throughout the academic, industrial, and governmant
communities. The use of these materials in a course does not in any way constitute an endarsement of the course by the
SEl, by Carnegie Mellon University, or by the Uniled States government.

Permission to make copies or derivative works of SEI curriculum modules, support materials, and educational materials is
granted, without fee, provided that the copies and derivative works are not made or distributed for direct commercial
advantage, and that all copies and derivative works cite the original document by namae, author's name, and document
number and give notice that the copying is by permission of Carnegie Mallon University.

Comments on SEI educational materials and requests for additional information should be addressed to the Software
Engineering Curriculum Project, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
15213, Elactronic mail can be sent to education@sei.cmu.edu on the Internet.

Cumculum Modules (* Support Materials available) Educational Materials

CM-1 [superseded by CM-19] EM-1 Software Maintanance Exercises for a Software
CM-2 Introduction to Software Design Engineering Project Course

CM-3 The Software Technical Review Process® EM-2 QPSE |ntpra<2i£ Monitor: An Artifact for Software
CM-4 Software Configuration Management’ ngineering tducaton .

CM-§ Information Protection -EM-3 2:::1&22 fomputar Programs: Instructor's Guide and

CM-6 Soltware Safety

CM-7 Assurance of Software Quality

CM-8 Fommal Specification of Software*

CM-9 Unit Testing and Analysis

CM-10 Models of Software Evolution: Life Cycle and Process

CM-11 Software Specifications: A Framework

CM-12 Software Metrics

CM-13 Introduction to Software Verification and Validation

CM-14 Intellectual Property Protaction for Software

CM-15 Software Development and Licensing Contracts

CM-16 Software Development Using VOM

CM-17 User interface Development’

CM-18 [superseded by CM-23)

CM-19 Software Requirements

CM-20 Formal Venification of Programs

CM-21 Software Project Management

CM-22 Software Design Mathods for Real-Time Systems*

CM-23 Technical Writing for Software Engineers

CM-24 Concepts of Concurrent Programming

CM-25 Language and System Support for Concurrent
Programming®

CM-26 Understanding Program Dependencies

PR X

