
4 BOOLEAN ALGEBRA 
AND

LOGIC SIMPLIFICATION

BOOLEAN OPERATIONS AND EXPRESSIONS 

Variable, complement, and literal are terms used in Boolean algebra. A 

variable is a symbol used to represent a logical quantity. Any single variable 

can have a 1 or a 0 value. The complement is the inverse of a variable and is 

indicated by a bar over variable (overbar). For example, the complement of 

the variable A is A. If A = 1, then A = 0. If A = 0, then A = 1. The 

complement of the variable A is read as "not A" or "A bar." Sometimes a 

prime symbol rather than an overbar is used to denote the complement of a 

variable; for example, B' indicates the complement of B. A literal is a 

variable or the complement of a variable. 

Boolean Addition 

 Recall from part 3 that Boolean addition is equivalent to the OR 

operation. In Boolean algebra, a sum term is a sum of literals. In logic 

circuits, a sum term is produced by an OR operation with no AND

operations involved.  Some examples of sum terms are A + B, A + B, A + 

B + C, and  A + B + C + D. 

A sum term is equal to 1 when one or more of the literals in the term are 1. A 

sum term is equal to 0 only if each of the literals is 0.

Example

Determine the values of A, B, C, and D that make the sum term 

A + B + C + D  equal to 0.



Boolean Multiplication 

Also recall from part 3 that Boolean multiplication is equivalent to the AND 

operation. In Boolean algebra, a product term is the product of literals. In 

logic circuits, a product term is produced by an AND operation with no OR 

operations involved. Some examples of product terms are AB, AB, ABC, 

and ABCD. 

A product term is equal to 1 only if each of the literals in the term is 1. A 

product term is equal to 0 when one or more of the literals are 0. 

 Example

Determine the values of A, B, C, and D that make the product term ABCD 

equal to 1. 

LAWS AND RULES OF BOOLEAN ALGEBRA 

■ Laws of Boolean Algebra 

The basic laws of Boolean algebra-the commutative laws for addition and 

multiplication, the associative laws for addition and multiplication, and the 

distributive law-are the same as in ordinary algebra. 

Commutative Laws

►The commutative law of addition for two variables is written as 

 A+B = B+A 

This law states that the order in which the variables are ORed makes no 

difference. Remember, in Boolean algebra as applied to logic circuits, 

addition and the OR operation are the same. Fig.(4-1) illustrates the 

commutative law as applied to the OR gate and shows that it doesn't matter 

to which input each variable is applied. (The symbol ≡ means "equivalent 

to.").



Fig.(4-1) Application of commutative law of addition.

►The commutative law of multiplication for two variables is 

 A.B = B.A 

This law states that the order in which the variables are ANDed makes no 

difference. Fig.(4-2), il1ustrates this law as applied to the AND gate. 

Fig.(4-2) Application of commutative law of multiplication.

Associative Laws :

►The associative law of addition is written as follows for three variables: 

 A + (B + C) = (A + B) + C 

This law states that when ORing more than two variables, the result is the 

same regardless of the grouping of the variables. Fig.(4-3), illustrates this 

law as applied to 2-input OR gates.

Fig.(4-3) Application of associative law of addition.

►The associative law of multiplication is written as follows for three 

variables: 

 A(BC) = (AB)C 



This law states that it makes no difference in what order the variables are 

grouped when ANDing more than two variables. Fig.(4-4) illustrates this law 

as applied to 2-input AND gates.

Fig.(4-4) Application of associative law of multiplication.

Distributive Law:

►The distributive law is written for three variables as follows: 

 A(B + C) = AB + AC 

This law states that ORing two or more variables and then ANDing the result 

with a single variable is equivalent to ANDing the single variable with each 

of the two or more variables and then ORing the products. The distributive 

law also expresses the process of factoring in which the common variable A 

is factored out of the product terms, for example, 

AB + AC = A(B + C). 

Fig.(4-5) illustrates the distributive law in terms of gate

implementation. 

Fig.(4-5) Application of distributive law.



■ Rules of Boolean Algebra 

Table 4-1 lists 12 basic rules that are useful in manipulating and simplifying 

Boolean expressions. Rules 1 through 9 will be viewed in terms of their 

application to logic gates. Rules 10 through 12 will be derived in terms of 

the simpler rules and the laws previously discussed.

   Table 4-1 Basic rules of Boolean algebra.

Rule 1. A + 0 = A 

A variable ORed with 0 is always equal to the variable. If the input variable 

A is 1, the output variable X is 1, which is equal to A. If A is 0, the output is 

0, which is also equal to A. This rule is illustrated in Fig.(4-6), where the 

lower input is fixed at 0.

 Fig.(4-6)



Rule 2. A + 1 = 1

A variable ORed with 1 is always equal to 1. A 1 on an input to an OR gate 

produces a 1 on the output, regardless of the value of the variable on the 

other input. This rule is illustrated in Fig.(4-7), where the lower input is fixed 

at 1. 

Fig.(4-7)

Rule 3. A . 0 = 0

A variable ANDed with 0 is always equal to 0. Any time one input to an

AND gate is 0, the output is 0, regardless of the value of the variable on the 

other input. This rule is illustrated in Fig.(4-8), where the lower input is fixed 

at 0.

Fig.(4-8)

Rule 4. A . 1 = A 

A variable ANDed with 1 is always equal to the variable. If A is 0 the output 

of the AND gate is 0. If A is 1, the output of the AND gate is 1 because both 

inputs are now 1s. This rule is shown in Fig.(4-9), where the lower input is 

fixed at 1.

Fig.(4-9)



Rule 5.  A + A = A 

A variable ORed with itself is always equal to the variable. If A is 0, then 0

+ 0 = 0; and if A is 1, then 1 + 1 = 1. This is shown in Fig.(4-10), where both 

inputs are the same variable. 

Fig.(4-10)

Rule 6. A + A = 1

A variable ORed with its complement is always equal to 1. If A is 0, then 0 + 

0 = 0 + 1 = 1. If A is l, then 1 + 1 = 1+ 0 = 1. See Fig.(4-11), where one 

input is the complement of the other.

Fig.(4-11) 

Rule 7.  A . A = A 

A variable ANDed with itself is always equal to the variable. If A = 0, 

then 0.0 = 0; and if A = 1. then 1.1 = 1.  Fig.(4-12) illustrates this rule. 

 

Fig.(4-12)



Rule 8.  A . A = 0

A variable ANDed with its complement is always equal to 0. Either A or A 

will always be 0: and when a 0 is applied to the input of an AND gate. the 

output will be 0 also. Fig.(4-13) illustrates this rule. 

Fig.(4-13)

 

Rule 9  A = A 

The double complement of a variable is always equal to the variable. If you 

start with the variable A and complement (invert) it once, you get A. If you 

then take A and complement (invert) it, you get A, which is the original 

variable. This rule is shown in Fig.(4-14) using inverters. 

Fig.(4-14)

Rule 10.  A + AB = A

This rule can be proved by applying the distributive law, rule 2, and rule 4 as 

follows:

 A + AB = A( 1 + B)             Factoring (distributive law)

      = A . l   Rule 2: (1 + B) = 1

      = A   Rule 4: A . 1 = A 

The proof is shown in Table 4-2, which shows the truth table and the 

resulting logic circuit simplification.



Table 4-2

Rule 11. A + AB = A + B 

This rule can be proved as follows: 

A + AB  = (A + AB) + AB Rule 10: A = A + AB

   = (AA + AB) + AB Rule 7: A = AA 

  =AA +AB +AA +AB           Rule 8: adding AA = 0

   = (A + A)(A + B) Factoring

  = 1. (A + B)           Rule 6: A + A = 1

   =A + B   Rule 4: drop the 1

The proof is shown in Table 4-3, which shows the truth table and the 

resulting logic circuit simplification. 

Table 4-3



Rule 12. (A + B)(A + C) = A + BC 

This rule can be proved as follows: 

 (A + B)(A + C) = AA + AC + AB + BC Distributive law

            = A + AC + AB + BC Rule 7: AA = A  

             = A( 1 + C) + AB + BC Rule 2: 1 + C = 1

             = A. 1 + AB + BC Factoring (distributive law) 

                = A(1 + B) + BC Rule 2: 1 + B = 1

              = A. 1 + BC  Rule 4: A . 1 = A 

                             = A + BC 

The proof is shown in Table 4-4, which shows the truth table and the 

resulting logic circuit 

simplification. 

 

Table 4-4

 

  

 

 



DEMORGAN'S THEOREMS

DeMorgan, a mathematician who knew Boole, proposed two theorems that 

are an important part of Boolean algebra. In practical terms. DeMorgan's 

theorems provide mathematical verification of the equivalency of the NAND 

and negative-OR gates and the equivalency of the NOR and negative-AND 

gates, which were discussed in part 3.

One of DeMorgan's theorems is stated as follows: 

The complement of a product of variables is equal to the sum of the 

complements of the variables, 

 Stated another way, 

The complement of two or more ANDed variables is equivalent to the OR 

of the complements of the individual variables. 

The formula for expressing this theorem for two variables is 

 XY = X + Y 

 

DeMorgan's second theorem is stated as follows: 

The complement of a sum of variables is equal to the product of the 

complements of the variables. 

 Stated another way, 

The complement of two or more ORed variables is equivalent to the AND 

of the complements of the individual variables, 

The formula for expressing this theorem for two variables is 

 X + Y = X Y 

Fig.(4-15) shows the gate equivalencies and truth tables for the two 

equations above.



Fig.(4-15) Gate equivalencies and the corresponding truth tables that

illustrate DeMorgan's theorems.

As stated, DeMorgan's theorems also apply to expressions in which there are 

more than two variables. The following examples illustrate the application of 

DeMorgan's theorems to 3-variable and 4-variable expressions. 

Example 

Apply DeMorgan's theorems to the expressions XYZ and X + Y + z. 

 XYZ = X + Y + Z 

X + y + Z = X Y Z 

Example

Apply DeMorgan's theorems to the expressions WXYZ and W + X + y + z. 

 WXYZ = W + X + y + Z 

W + X + y + Z = W X Y Z 



Applying DeMorgan's Theorems 

The following procedure illustrates the application of DeMorgan's theorems 

and Boolean algebra to the specific expression 

Step l. Identify the terms to which you can apply DeMorgan's theorems, and 

think of each term as a single variable. Let A + BC = X and D(E + F) = Y. 

 

Step 2. Since X + Y = X Y, 

 

 = (A + BC) (D(E + F)) 

Step 3. Use rule 9 (A = A) to cancel the double bars over the left term (this is 

not part of DeMorgan's theorem). 

 

(A + BC) (D(E + F)) = (A + BC)(D(E + F )) 

Step 4. Applying DeMorgan's theorem to the second term, 

 

(A + BC)(D(E + F)) = (A + BC)(D + (E + F )) 

Step 5. Use rule 9 (A = A) to cancel the double bars over the E + F part of 

the term. 

 (A + BC)(D + E + F) = (A + BC)(D + E + F) 

Example

Apply DeMorgan's theorems to each of the following expressions: 

 

(a) (A + B + C)D (b) ABC + DEF (c) AB + CD + EF 



Example

The Boolean expression for an exclusive-OR gate is AB + AB. With this as a 

starting point, use DeMorgan's theorems and any other rules or laws that are 

applicable to develop an expression for the exclusive-NOR gate. 

   

BOOLEAN ANALYSIS OF LOGIC CIRCUITS 

Boolean algebra provides a concise way to express the operation of a logic 

circuit formed by a combination of logic gates so that the output can be 

determined for various combinations of input values.      

Boolean Expression for a Logic Circuit 

To derive the Boolean expression for a given logic circuit, begin at the left-

most inputs and work toward the final output, writing the expression for each 

gate. For the example circuit in Fig.(4-16), the Boolean expression is 

determined as follows: 

 The expression for the left-most AND gate with inputs C and D is CD.

 The output of the left-most AND gate is one of the inputs to the OR 

gate and B is the other input. Therefore, the expression for the OR 

gate is B + CD.

  The output of the OR gate is one of the inputs to the right-most AND 

gate and A is the other input. Therefore, the expression for this AND 

gate is A(B + CD), which is the final output expression for the entire 

circuit.



Fig.(4-16) A logic circuit showing the development of the Boolean

expression for the output.

Constructing a Truth Table for a Logic Circuit 

Once the Boolean expression for a given logic circuit has been 

determined, a truth table that shows the output for all possible values of the 

input variables can be developed. The procedure requires that you evaluate 

the Boolean expression for all possible combinations of values for the input 

variables. In the case of the circuit in Fig.(4-16), there are four input 

variables (A, B, C, and D) and therefore sixteen (24  = 16) combinations of 

values are possible. 

Putting the Results in Truth Table format

The first step is to list the sixteen input variable combinations of 1s 

and 0s in a binary sequence as shown in Table 4-5. Next, place a 1 in the 

output column for each combination of input variables that was determined 

in the evaluation. Finally, place a 0 in the output column for all other 

combinations of input variables. These results are shown in the truth table in 

Table 4-5.

              

               



Table 4-5

SIMPLIFICATION USING BOOLEAN ALGEBRA 

A simplified Boolean expression uses the fewest gates possible to 

implement a given expression.

Example

Using Boolean algebra techniques, simplify this expression: 

 AB + A(B + C) + B(B + C)

Solution

Step 1: Apply the distributive law to the second and third terms in the 

expression, as follows: 

 AB + AB + AC + BB + BC 

Step 2: Apply rule 7 (BB = B) to the fourth term. 

AB + AB + AC + B + BC 

Step 3: Apply rule 5 (AB + AB = AB) to the first two terms. 

AB + AC + B + BC 

Step 4: Apply rule 10 (B + BC = B) to the last two terms. 



 AB + AC + B 

Step 5: Apply rule 10 (AB + B = B) to the first and third terms. 

B+AC 

At this point the expression is simplified as much as possible. 

Fig.(4-17) Gate circuits for example above.

 

Example

Simplify the Boolean expressions:   

1- AB + A(B + C) + B(B + C).

2- [AB( C + BD) + A B]C 

3- ABC + ABC + A B C + ABC + ABC 



Canonical FormsandStandard

STANDARD FORMS OF BOOLEAN EXPRESSIONS 

All Boolean expressions, regardless of their form, can be converted into 

either of two standard forms: the sum-of-products form or the product-of-

sums form. Standardization makes the evaluation, simplification, and 

implementation of Boolean expressions much more systematic and easier. 

The Sum-of-Products (SOP) Form 

  When two or more product terms are summed by Boolean addition, 

the resulting expression is a sum-of-products (SOP). Some examples are:

 AB + ABC 

   ABC + CDE + BCD 

   AB + BCD + AC 

Also, an SOP expression can contain a single-variable term, as in 

A + ABC + BCD.

In an SOP expression a single overbar cannot extend over more than 

one variable.  

Example

Convert each of the following Boolean expressions to SOP form: 

 (a) AB + B(CD + EF) 

 (b) (A + B)(B + C + D) 

 (c) (A + B) + C 

 



 

Fig.(4-18) Implementation of the SOP expression AB + BCD + AC.

Fig.(4-19) This NAND/NAND implementation is equivalent 

to the AND/OR in figure above.

The Standard SOP Form 

 So far, you have seen SOP expressions in which some of the product 

terms do not contain all of the variables in the domain of the expression. For 

example, the expression ABC + ABD + ABCD has a domain made up of the 

variables A, B, C. and D. However, notice that the complete set of variables 

in the domain is not represented in the first two terms of the expression; that 

is, D or D is missing from the first term and C or C is missing from the 

second term. 

A standard SOP expression is one in which all the variables in the domain 

appear in each product term in the expression. For example, ABCD + ABCD 

+ ABCD is a standard SOP expression. 



Converting Product Terms to Standard SOP:

Each product term in an SOP expression that does not contain all the 

variables in the domain can be expanded to standard SOP to include all 

variables in the domain and their complements. As stated in the following 

steps, a nonstandard SOP expression is converted into standard form using 

Boolean algebra rule 6 (A + A = 1) from Table 4-1: A variable added to its 

complement equals 1. 

Step 1. Multiply each nonstandard product term by a term made up of the 

sum of a missing variable and its complement. This results in two product 

terms. As you know, you can multiply anything by 1 without changing its 

value. 

Step 2. Repeat Step 1 until all resulting product terms contain all variables in 

the domain in either complemented or uncomplemented form. In converting 

a product term to standard form, the number of product terms is doubled for 

each missing variable.

Example

Convert the following Boolean expression into standard SOP form: 

 ABC + AB + ABCD 

Solution

The domain of this SOP expression  A, B, C, D. Take one term at a time. 

The first term, ABC, is missing variable D or D, so multiply the first term by 

(D + D) as follows: 

 ABC = ABC(D + D) = ABCD + ABCD 

 In this case, two standard product terms are the result. 

The second term, AB, is missing variables C or C and D or D, so first 

multiply the second term by C + C as follows: 

AB = AB(C + C) = ABC + ABC 



The two resulting terms are missing variable D or D, so multiply both terms 

by (D + D) as follows: 

ABC(D + D) + ABC(D + D)

= A BCD + ABCD + ABCD + ABCD 

 In this case, four standard product terms are the result.

The third term, ABCD, is already in standard form. The complete standard 

SOP form of the original expression is as follows:

 ABC + AB + ABCD = ABCD + ABCD + A BCD + ABCD + ABCD +    

ABCD + ABCD 

 

The Product-of-Sums (POS) Form 

 A sum term was defined before as a term consisting of the sum 

(Boolean addition) of literals (variables or their complements). When two or 

more sum terms are multiplied, the resulting expression is a product-of-sums 

(POS). Some examples are 

 (A + B)(A + B + C) 

(A + B + C)( C + D + E)(B + C + D) 

(A + B)(A + B + C)(A + C) 

A POS expression can contain a single-variable term, as in 

A(A + B + C)(B + C + D). 

In a POS expression, a single overbar cannot extend over more than one 

variable; however, more than one variable in a term can have an overbar. For 

example, a POS expression can have the term A + B + C but not A + B + C. 

 

Implementation of a POS Expression simply requires ANDing the outputs of 

two or more OR gates. A sum term is produced by an OR operation and the 

product of two or more sum terms is produced by an AND operation. Fig.(4-



20) shows for the expression (A + B)(B + C + D)(A + C). The output X of 

the AND gate equals the POS expression. 

Fig.(4-20)

The Standard POS Form 

So far, you have seen POS expressions in which some of the sum terms do 

not contain all of the variables in the domain of the expression. For example,

the expression 

(A + B + C) (A + B + D) (A + B + C + D) 

has a domain made up of the variables A, B, C, and D. Notice that the 

complete set of variables in the domain is not represented in e first two terms 

of the expression; that is, D or D is missing from the first term and C or C is 

missing from the second term. 

A standard POS expression is one in which all the variables in the domain 

appear in each sum term in the expression. For example, 

(A + B + C + D)(A + B + C + D)(A + B + C + D) 

is a standard POS expression. Any nonstandard POS expression (referred to 

simply as POS) can be converted to the standard form using Boolean 

algebra. 

Converting a Sum Term to Standard POS

Each sum term in a POS expression that does not contain all the variables in 

the domain can be expanded to standard form to include all variables in the 

domain and their complements. As stated in the following steps, a 



nonstandard POS expression is converted into standard form using Boolean 

algebra rule 8 (A A = 0) from Table 4-1:

Step 1. Add to each nonstandard product term a term made up of the product 

of the missing variable and its complement. This results in two sum terms. 

As you know, you can add 0 to anything without changing its value. 

Step 2. Apply rule 12 from Table 4-1: A + BC = (A + B)(A + C) 

Step 3. Repeat Step 1 until all resulting sum terms contain all variables in the 

domain in either complemented or noncomplemented form. 

Example

Convert the following Boolean expression into standard POS form: 

 (A + B + C)(B + C + D)(A + B + C + D) 

Solution

The domain of this POS expression is A, B, C, D. Take one term at a time. 

The first term, A + B + C, is missing variable D or D, so add DD and apply 

rule 12 as follows: 

A + B + C = A + B + C + DD = (A + B + C + D)(A + B + C + D) 

The second term, B + C + D, is missing variable A or A, so add AA and 

apply rule 12 as follows: 

B + C + D = B + C + D + AA = (A + B + C + D)(A + B + C + D) 

The third term, A + B + C + D, is already in standard form. The standard 

POS form of the original expression is as follows: 

 (A + B + C)(B + C + D)(A + B + C + D) = (A + B + C + D)(A + B + C + 

D) (A + B + C + D)(A + B + C + D) (A + B + C + D) 



Examples:-

 

 

 

CANONICAL FORMS OF BOOLEAN EXPRESSIONS 

With one variable x   &   x.

With two variables x y, x y, x y and x y.

With three variables x y z, x y z, x y z, x y z, x y z, x y z, x y z &  x y z.

These eight AND terms are called minterms.

n variables can be combined to form 2n minterms.

x y z     minterm designation       maxterm designation      

0 0 0 x y z m0 x+y+z M0

0 0 1 x y z m1 x+y+z M1

0 1 0 x y z m2 x+y+z M2

0 1 1 x y z m3 x+y+z M3

1 0 0 x y z m4 x+y+z M4

1 0 1 x y z m5 x+y+z M5

1 1 0 x y z m6 x+y+z M6

1 1 1 x y z m7 x+y+z M7

      (AND terms)      (OR terms)

Note that each maxterm is the complement of its corresponding 

minterm and vice versa.



For example the function F

x y z F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

F = x y z + x y z + x y z

F = m1     +  m4  +  m7

Any Boolean function can be expressed as a sum of minterms (sum of 

products SOP) or product of maxterms (product of sums POS).

F = x y z + x y z + x y z + x y z + x y z 

The complement of   F = F = F

F = (x + y + z) (x + y + z) (x + y + z) (x + y + z) (x + y + z)

F = M0 M2 M3 M5 M6

Example

Express the Boolean function F = A + BC  in a sum of minterms (SOP).

Solution

The term A is missing two variables because the domain of F is (A, B, C)

A = A(B + B) = AB + AB because B + B = 1



BC missing A, so

BC(A + A) = ABC + ABC 

AB(C + C) = ABC + ABC

AB(C + C) = ABC + ABC

F = ABC + ABC + ABC + ABC + ABC + ABC

Because  A + A = A

F = ABC + ABC + ABC + ABC +  ABC

F = m7 + m6 + m5 + m4 + m1

In short notation

F(A, B, C) = ∑(1, 4, 5, 6, 7)

F(A, B, C) = ∑(0, 2, 3)

The complement of a function expressed as the sum of minterms equal 

to the sum of minterms missing from the original function.  

Truth table for  F = A + BC

   A B C B BC F

0 0 0 0 1 0 0

1 0 0 1 1 1 1

2 0 1 0 0 0 0

3 0 1 1 0 0 0

4 1 0 0 1 0 1

5 1 0 1 1 1 1

6 1 1 0 0 0 1

7 1 1 1 0 0 1



Example

Express   F = xy + xz    in a product of maxterms form.

Solution

F = xy + xz = (xy + x)(xy + z) = (x + x)(y + x)(x + z)(y + z)

remember x + x = 1

F =  (y + x)(x + z)(y + z)

F = (x + y + zz)(x + yy + z )(xx  + y + z)

F = (x + y + z)(x + y + z)(x + y + z)(x + y + z)(x + y +z)(x + y + z)
            ==========                              ------------------                             ----------------    ==========

F = (x + y + z)(x + y + z)(x + y + z)(x + y + z)

F = M4 M5 M0 M2

F(x, y, z) = ∏(0, 2, 4, 5) 

F(x, y, z) = ∏(1, 3, 6, 7) 

The complement of a function expressed as the product of maxterms

equal to the product of maxterms missing from the original function.  

To convert from one canonical form to another, interchange the symbols ∑,

∏ and list those numbers missing from the original form.

F = M4 M5 M0 M2  = m1 + m3 + m6 + m7

F(x, y, z) = ∏(0, 2, 4, 5) = ∑(1, 3, 6, 7)



Example

Develop a truth table for the standard SOP expression  ABC + ABC + ABC. 

 

Converting POS Expressions to Truth Table Format 

Reca11 that a POS expression is equal to 0 only if at least one of the 

sum terms is equal to 0. To construct a truth table from a POS expression, 

list all the possible combinations of binary values of the variables just as was 

done for the SOP expression. Next, convert the POS expression to standard 

form if it is not already. Finally, place a 0 in the output column (X) for each 

binary value that makes the expression a 0 and place a 1 for all the remaining 

binary values. This procedure is illustrated in Example below:

Example

Determine the truth table for the following standard POS expression: 



Solution

 There are three variables in the domain and the eight possible binary 

values are listed in the left three columns of. The binary values that make the 

sum terms in the expression equal to 0 are A+ B + C: 000; A + B + C: 010: 

A + B + C: 011; A + B + C: 10l; and A + B + C: 110. For each of these 

binary values, place a 0 in the output column as shown in the table. For each 

of the remaining binary combinations, place a 1 in the output column.

 

 

  





5  KARNAUGH MAP MINIMIZATION

A Karnaugh map provides a systematic method for simplifying Boolean 

expressions and, if properly used, will produce the simplest SOP or POS 

expression possible, known as the minimum expression. As you have seen, 

the effectiveness of algebraic simplification depends on your familiarity with 

all the laws, rules, and theorems of Boolean algebra and on your ability to 

apply them. The Karnaugh map, on the other hand, provides a "cookbook" 

method for simplification.

A Karnaugh map is similar to a truth table because it presents all of the 

possible values of input variables and the resulting output for each value. 

Instead of being organized into columns and rows like a truth table, the 

Karnaugh map is an array of cells in which each cell represents a binary 

value of the input variables. The cells are arranged in a way so that 

simplification of a given expression is simply a matter of properly grouping 

the cells. Karnaugh maps can be used for expressions with two, three, four. 

and five variables. Another method,  called the Quine-McClusky method can 

be used for higher numbers of variables. 

The number of cells in a Karnaugh map is equal to the total number of 

possible input variable combinations as is the number of rows in a truth 

table. For three variables, the number of cells is 23 = 8. For four variables, 

the number of cells is 24 = 16. 

The 3-Variable Karnaugh Map 

The 3-variable Karnaugh map is an array of eight cells. as shown in Fig.(5-

1)(a). In this case, A, B, and C are used for the variables although other 

letters could be used. Binary values of A and B are along the left side (notice 



the sequence) and the values of C are across the top. The value of a given 

cell is the binary values of A and B at the left in the same row combined 

with the value of C at the top in the same column. For example, the cell in 

the upper left corner has a binary value of 000 and the cell in the lower right 

corner has a binary value of 101. Fig.(5-1)( b) shows the standard product 

terms that are represented by each cell in the Karnaugh map. 

(a) (b)

Fig.(5-1) A 3-variable Karnaugh map showing product terms.

The 4-Variable Karnaugh Map 

The 4-variable Karnaugh map is an array of sixteen cells, as shown in 

Fig.(5-2)(a). Binary values of A and B are along the left side and the values 

of C and D are across the top. The value of a given cell is the binary values 

of A and B at the left in the same row combined with the binary values of C 

and D at the top in the same column. For example, the cell in the upper right 

corner has a binary value of 0010 and the cell in the lower right corner has a 



binary value of 1010. Fig.(5-2)(b) shows the standard product terms that are 

represented by each cell in the 4-variable Karnaugh map. 

(a) (b)

Fig.(5-2) A 4-variable Karnaugh map. 

Cell Adjacency 

The cells in a Karnaugh map are arranged so that there is only a single-

variable change between adjacent cells. Adjacency is defined by a single-

variable change. In the 3-variable map the 010 cell is adjacent to the 000

cell, the 011 cell, and the 110 cell. The 010 cell is not adjacent to the 001

cell, the 111 cell, the 100 cell, or the 101 cell.



Fig.(5-3) Adjacent cells on a Karnaugh map are those that differ by only one 

variable. Arrows point between adjacent cells.

KARNAUGH MAP SOP MINIMIZATION 

For an SOP expression in standard form, a 1 is placed on the Karnaugh map 

for each product term in the expression. Each 1 is placed in a cell 

corresponding to the value of a product term. For example, for the product 

term ABC, a 1 goes in the 10l cell on a 3-variable map.

Example

Map the following standard SOP expression on a Karnaugh map: 

see Fig.(5-4).

Example

Map the following standard SOP expression on a Karnaugh map: 

 

See Fig.(5-5).



Fig.(5-4) 

Fig.(5-5)

Example

Map the following SOP expression on a Karnaugh map:

Solution 

The SOP expression is obviously not in standard form because each product 

term does not have three variables. The first term is missing two variables, 



the second term is missing one variable, and the third term is standard. First 

expand the terms numerically as follows:

Example

Map the following SOP expression on a Karnaugh map: 

 

Solution

The SOP expression is obviously not in standard form because each product 

term does not have four variables.

Map each of the resulting binary values by placing a 1 in the appropriate cell 

of the 4- variable Karnaugh map.



Karnaugh Map Simplification of SOP Expressions 

Grouping the 1s, you can group 1s on the Karnaugh map according to the 

following rules by enclosing those adjacent cells containing 1s. The goal is 

to maximize the size of the 

groups and to minimize the number of groups. 

 A group must contain either 1, 2, 4, 8, or 16 cells, which are all 

powers of two. In the case of a 3-variable map, 23 = 8 cells is the 

maximum group. 

 Each cell in a group must be adjacent to one or more cells in that same 

group.

  Always include the largest possible number of 1s in a group in 

accordance with rule 1.

 Each 1 on the map must be included in at least one group. The 1s 

already in a group can be included in another group as long as the 

overlapping groups include noncommon 1s. 

 



Example:

Group the 1s in each of the Karnaugh maps in Fig.(5-6). 

 

Fig.(5-6) 

Solution:

The groupings are shown in Fig.(5-7). In some cases, there may be more 

than one way to group the 1s to form maximum groupings.

Fig.(5-7)

Determine the minimum product term for each group. 

a. For a 3-variable map: 

(1) A l-cell group yields a 3-variable product term 

(2) A 2-cell group yields a 2-variable product term 

(3) A 4-cell group yields a 1-variable term 

(4) An 8-cell group yields a value of 1 for the expression 



b. For a 4-variable map: 

(1) A 1-cell group yields a 4-variable product term 

(2) A 2-cell group yields a 3-variable product term 

(3) A 4-cell group yields a 2-variable product term 

(4) An 8-cell group yields a 1-variable term 

(5) A 16-cell group yields a value of 1 for the expression

 

Example:

Determine the product terms for each of the Karnaugh maps in Fig.(5-7) and 

write the resulting minimum SOP expression. 

Fig.(5-8) 

Solution:

The resulting minimum product term for each group is shown in Fig.(5-8). 

The minimum SOP expressions for each of the Karnaugh maps in the figure 

are:

(a)AB+BC+ABC (C) AB + AC + ABD 

(b) B + A C + AC (d) D + ABC + BC 

 



Example: Use a Karnaugh map to minimize the following standard SOP 

expression: 

 ABC + ABC + ABC + ABC + ABC

Example: Use a Karnaugh map to minimize the following SOP expression: 

       

 

 "Don't Care" Conditions 

Sometimes a situation arises in which some input variable combinations are 

not allowed. For example, recall that in the BCD code there are six invalid 

combinations: 1010, 1011, 1100, 1101, 1110, and 1111. Since these 

unallowed states will never occur in an application involving the BCD code, 

they can be treated as "don't care" terms with respect to their effect on the 

output. That is, for these "don't care" terms either a 1 or a 0 may be assigned 

to the output: it really does not matter since they will never occur. 

The "don't care" terms can be used to advantage on the Karnaugh map. 

Fig.(5-9) shows that for each "don't care" term, an X is placed in the cell. 

When grouping the 1 s, the Xs can be treated as 1s to make a larger grouping 

or as 0s if they cannot be used to advantage. The larger a group, the simpler 

the resulting term will be. 

The truth table in Fig.(5-9)(a) describes a logic function that has a 1 output 

only when the BCD code for 7,8, or 9 is present on the inputs. If the "don't 

cares" are used as 1s, the resulting expression for the function is A + BCD, 

as indicated in part (b). If the "don't cares" are not used as 1s, the resulting 



expression is ABC + ABCD: so you can see the advantage of using "don't 

care" terms to get the simplest expression. 

Fig.(5-9)

 

 

 

 

 



KARNAUGH MAP POS MINIMIZATION 

In this section, we will focus on POS expressions. The approaches are much 

the same except that with POS expressions, 0s representing the standard sum 

terms are placed on the Karnaugh map instead of 1s.

For a POS expression in standard form, a 0 is placed on the Karnaugh map 

for each sum term in the expression. Each 0 is placed in a cell corresponding 

to the value of a sum term. For example, for the sum term A + B + C, a 0

goes in the 0 1 0 cell on a 3-variable map. 

When a POS expression is completely mapped, there will be a number of 0s 

on the Karnaugh map equal to the number of sum terms in the standard POS 

expression. The cells that do not have a 0 are the cells for which the 

expression is 1. Usually, when working with POS expressions, the 1s are left 

off. The following steps and the illustration in Fig.(5-10) show the mapping 

process. 

Step 1. Determine the binary value of each sum term in the standard POS 

expression. This is the binary value that makes the term equal to 0.

Step 2. As each sum term is evaluated, place a 0 on the Karnaugh map in the 

corresponding cell. 



Fig.(5-10)
Example of mapping a standard POS expression.

Example:
Map the following standard POS expression on a Karnaugh map: 

Solution:

 



Karnaugh Map Simplification of POS Expressions 
 

The process for minimizing a POS expression is basically the same as for an 

SOP expression except that you group 0s to produce minimum sum terms 

instead of grouping 1s to produce minimum product terms. The rules for 

grouping the 0s are the same as those for grouping the 1s that you learned 

before. 

Example:

Use a Karnaugh map to minimize the following standard POS expression: 

Also, derive the equivalent SOP expression. 

  

Solution:

Example: Use a Karnaugh map to minimize the following POS expression: 

Example: Using a Karnaugh map, convert the following standard POS 

expression into a minimum POS expression, a standard SOP expression, and 



a minimum SOP expression.

 



FIVE-VARIABLE KARNAUGH MAPS 

Boolean functions with five variables can be simplified using a 32-cell 

Karnaugh map. Actually, two 4-variable maps (16 cells each) are used to 

construct a 5-variable map. You already know the cell adjacencies within 

each of the 4- variable maps and how to form groups of cells containing 1s 

to simplify an SOP expression. All you need to learn for five variables is the 

cell adjacencies between the two 4-variable maps and how to group those 

adjacent 1s.

A Karnaugh map for five variables (ABCDE) can be constructed using two 

4-variable maps with which you are already familiar. Each map contains 16

cells with all combinations of variables B, C, D, and E. One map is for A = 0

and the other is for A = 1, as shown in Fig.(5-11).

Cell Adjacencies 

You already know how to determine adjacent cells within the 4-variable 

map. The best way to visualize cell adjacencies between the two 16-cel1

maps is to imagine that the A = 0 map is placed on top of the A = 1 map.

Each cell in the A = 0 map is adjacent to the cell directly below it in the A = 

1 map, see Fig.(5-12).



  

Fig.(5-11)

Fig.(5-12)

The simplified SOP expression yields 

 x = DE + BCE + ABD + BC DE 



Example:

Use a Karnaugh map to minimize the following standard SOP 5-variable 

expression: 

 

 

  



6 COMBINATIONAL LOGIC 

ANALISIS

1- AND-OR Logic 

  Fig.(6-1)(a) shows an AND-OR circuit consisting of two 2-input AND gates 
and one 2-input OR gate; Fig.(6-1)(b) is the ANSI standard rectangular outline 
symbol. The Boolean expressions for the AND gate outputs and the resulting 
SOP expression for the output X are shown in the diagram. In general, all 
AND-OR circuit can have any number of AND gates each with any number of 
inputs. 

The truth table for a 4-input AND-OR logic circuit is shown in Table 6-1. The 
intermediate AND gate outputs ( AB and CD columns) are also shown in the 
table. 

(a) Logic diagram        (b) ANSI standard rectangular outline symbol.

Fig.(6-1)

For a 4-input AND-OR logic circuit, the output X is HIGH (1) if both input 
A and input B are HIGH (1) or both input C and input D are HIGH (1). 



2-AND-OR-Invert Logic 

When the output of an AND-OR circuit is complemented (inverted), it results in 
an AND-OR-Invert circuit. Recall that AND-OR logic directly implements SOP 
expressions. POS expressions can be implemented with AND-OR-Invert logic. 
This is illustrated as follows, starting with a POS expression and developing the 
corresponding AND-OR-Invert expression. 

Table 6-1

Fig.(6-2)



For a 4-input AND-OR-Invert logic circuit, the output X is LOW (0) if 
both input A and input B are HIGH (1) or both input C and input D are 
HIGH (1). 

3-Exclusive-OR logic 

The exclusive-OR gate was introduced before. Although, because of its 
importance, this circuit is considered a type of logic gate with its own unique 
symbol it is actually a combination of two AND gates, one OR gate, and two 
inverters, as shown in Fig.(6-3)(a). The two standard logic symbols are shown 
in parts (b) and (c). 

Fig.(6-3)

The output expression for the circuit in Fig.(6-3) is

            

Can be written as    

Table 6-2 Truth table for an exclusive-OR. 



4- Exclusive-NOR Logic 

As you know, the complement of the exclusive-OR function is the 
exclusive-NOR, whichis derived as follows:

X = AB + AB = (AB) (AB) = (A + B)(A + B) = AB + AB 

Notice that the output X is HIGH only when the two inputs, A and B, are at the 
same level. 

The exclusive-NOR can be implemented by simply inverting the output of an
exclusive- OR, as shown in Fig(6-4)(a), or by directly implementing the 
expression AB + AB, as shown in part (b).

Fig.(6-4)

Example

Develop a logic circuit with four input variables that will only produce a 1
output when exactly three input variables are 1s. Fig.(6-5) shows the circuit.

Fig.(6-5)



Example

Reduce the combinational logic circuit in Fig.(6-6) to a minimum form. 

Fig.(6-6)

Solution

The expression for the output of the circuit is 

X = (A B C) C + ABC + D 

Applying DeMorgan's theorem and Boolean  algebra, 

The simplified circuit is a 4-input OR gate as shown in Fig.(6-7).

Fig.(6-7) 



THE UNIVERSAL PROPERTY OF NAND AND NOR GATES

1- The NAND Gate as a Universal Logic Element 

The NAND gate is a universal gate because it can be used to produce the NOT, 
the AND, the OR, and the NOR functions. An inverter can be made from a 
NAND gate by connecting all of the inputs together and creating, in effect, a 
single input, as shown in Fig.(6-8)(a) for a 2-input gate. An AND function can 
be generated by the use of NAND gates alone, as shown in Fig.(6-8)(b). An OR 
function can be produced with only NAND gates, as illustrated in part (c). 
Finally. a NOR function is produced as shown in part (d).

       

Fig.(6-9)



2- The NOR Gate as a Universal  Logic Element 

Like the NAND gate, the NOR gate can be used to produce the NOT, AND. OR 
and NAND functions. A NOT circuit, or inverter, can be made from a NOR 
gate by connecting all of the inputs together to effectively create a single input, 
as shown in Fig.(6-10)(a) with a 2-input example. Also, an OR gate can be 
produced from NOR gates, as illustrated in Fig.(6-10)(b). An AND gate can be 
constructed by the use of NOR gates, as shown in Fig.(6-10)(c). In this case the 
NOR gates G 1 and G 2 are used as inverters, and the final output is derived by 
the use of DeMorgan's theorem as follows: 

X=A+B=AB 

Fig.(6-10)(d) shows how NOR gates are used t0 form a NAND function. 

Fig.(6-10)



Example

Example

1- Write the output expression for each circuit as it appears in Fig.(6-
11) and then change each circuit to an equivalent AND-OR 
configuration. 

2-  Develop the truth table for  circuit in Fig.(6-11)(a-b). 

3- Show that an exclusive-NOR circuit produces a POS output.



7   FUNCTIONS 

OF COMBINATIONAL LOGIC

7-1 BASIC ADDERS 

A half-adder adds two bits and produces a sum and a carry output.  Adders are 
important in computers and also in other types of digital systems in which 
numerical data are processed. 

The Half-Adder

Recall the basic rules for binary. 

0+ 0= 0

0+ 1= 1

1+ 0= 1

1 + 1 = 10

The operations are performed by a logic circuit called a half-adder. 

The half-adder accepts two binary digits on its inputs and produces two binary

digits on its outputs, a sum bit and a carry bit. 

A half-adder is represented by the logic symbol in Fig.(7-1).  

Half-Adder Logic: From the operation of the half-adder as stated in Table 7-1, 
expressions can be derived for the sum and the output carry as functions of the 
inputs. Notice that the output Carry (Cout) is a 1 only when both A and B are 1s: 
therefore. Cout can be expressed 

Cout = AB 

Now observe that the sum output ( ∑ ) is a 1 only if the input variables A and B, 
are not equal. The sum can therefore be expressed as the exclusive-OR of the input 
variables. 

∑ = A  B



Fig.(7-1) Logic symbol for a half-adder. 

Fig.(7-2) Half-adder logic diagram. 

Table 7-1

The Full-Adder 

The second category of adder is the full-adder. The full-adder accepts two input 
bits and an input carry and generates a sum output and an output carry. 

The basic difference between a full-adder and a half-adder is that the full-adder 
accepts an input carry. A logic symbol for a full-adder is shown in Fig.(7-3), and 
the truth table in Table 7-2 shows the operation of a full-adder.



Table 7-2

Fig.(7-3) Logic symbol for a full-adder.
       

Fig.(7-4) Complete logic circuit for a full-adder.



∑ = A  B  Cin

Cout = AB + (AB)Cin

Notice in Fig.(7-4) there are two half-adders, connected as shown in the block 
diagram of  Fig.(7-5), with their output carries ORed. 

Fig.(7-5) Arrangement of two half-adders to form a full-adder.

Example: For each of the three full-adders in Fig.(7-6), determine the outputs for 
the inputs shown. 

Fig.(7-6)



7-2 PARALLEL BINARY ADDERS 

As you saw in Section 7-1, a single full-adder is capable of adding two 1-bit 
numbers and an input carry. To add binary numbers with more than one bit, you 
must use additional full-adders. When one binary number is added to another, each 
column generates a sum bit and a 1 or 0 carry bit to the next column to the left, as 
illustrated here with 2-bit numbers. 

To add two binary numbers, a full-adder is required for each bit in the numbers. So 
for 2-bit numbers, two adders are needed; for 4-bit numbers, four adders are used; 
and so on. The carry output of each adder is connected to the carry input of the 
next higher-order adder, as shown in Fig.(7-7) for a 2-bit adder. Notice that either a 
half-adder can be used for the least significant position or the carry input of a full-
adder can be made 0 (grounded) because there is no carry input to the least 
significant bit position. 

Fig.(7-7)Block diagram of a basic 2-bit parallel adder using two full-adders.



Example: Determine the sum generated by the 3-bit parallel adder in Fig.(7-8) and 
show the intermediate carries when the binary numbers 101 and 011 are being 
added.

Fig.(7-8)

Four-Bit Parallel Adders 

A group of four bits is called a nibble. A basic 4-bit parallel adder is implemented 
with four full-adder stages as shown in Fig.(7-9). Again, the LSBs (A1 and B1) in 
each number being added go into the right-most full-adder: the higher-order bits 
are applied as shown to the successively higher-order added, with the MSBs (A
and B) in each number being applied to the left-most full-adder. The Carry output 
of each adder is connected to the carry input of the next higher-order adder as 
indicated. These are called internal carries.

        

Fig.(7-9)(a)



Fig.(7-9) A 4-bit parallel adder.

Carry Save Adder (CSA)

Amethod for adding three or more numbers at a time is called carry-save addition. 
This process is illustrated in Example below:

Example: 00011 A

00001 B

       + 01001 C

01011 sum, excluding carries

     +   0001 carries shifted left one place 

01101 final sum



7-3 COMPARATORS 

The basic function of a comparator is to compare the magnitudes of two binary 

quantities to determine the relationship of those quantities. In its simplest form, a 

comparator circuit determines whether two numbers are equal.

Equality 

The exclusive-OR gate can be used as a basic comparator because its output is a 1
if the two input bits are not equal and a 0 if the input bits are equal. Fig.(7-11)
shows the exclusive-OR gate as a 2-bit comparator. 

                  Ao  Bo    Co          Ao  Bo    Co    Ao  Bo    Co                 Ao  

Bo    Co
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A   B   C

Co      S  

A   B   C

Co      S  

A   B   C

Co      S  

A   B   C

Co      S  

A   B   C

Co      S  

A   B   C

Co      S  

A   B   C

Co      S  



Fig.(7-11) Basic comparator operation. 

In order to compare binary numbers containing two bits each, an additional 
exclusive- OR gate is necessary. The two least significant bits (LSBs) of the 
two numbers are compared by gate G1. and the two most significant bits 
(MSBs) are compared by gate G2, as shown in Fig.(7-12). If the two 
numbers are equal, their corresponding bits are the same, and the output of 
each exclusive-OR gate is a 0. If the corresponding sets of bits are not equal, 
a 1 occurs on that exclusive-OR gate output. 

Fig.(7-12) Logic diagram for equality comparison of two 2-bit numbers.

Inequality 

In addition to the equality output, many IC comparators provide additional outputs 
that indicate which of the two binary numbers being compared is the larger. That 
is, there is an output that indicates when number A is greater than number B (A > 
B) and an output that indicates when number A is less than number B (A < B), as 
shown in the logic symbol for a 4-bit comparator in Fig.(7-13). 



Fig.(7-13)  Logic symbol for a 4-bit comparator  with inequality indication.

To determine an inequality of binary numbers A and B, you first examine the 
highest-order bit in each number. The following conditions are possible: 

1. If A3 = 1 and B3 = 0, number A is greater than number B. 

2. If A3 = 0 and B3 = 1 number A is less than number B. 

3. If A3 = B3, then you must examine the next lower bit position for an inequality. 
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