
4 Data Flow Diagram

Abstract Data Flow Diagram (DFD) is widely used for structured software
analysis and design. It is also widespread in the field of business administra-
tion. The syntax and semantics of DFD are introduced in this chapter. A
structured approach for DFD model development is also discussed.

4.1 Introduction to DFD

The Data Flow Diagram (DFD) is a structured analysis and design method.
It is a visual tool to depict logic models and expresses data transformation
in a system. DFD includes a mechanism to model the data flow. It supports
decomposition to illustrate details of the data flows and functions. DFD
cannot present information on operation sequence. Therefore, it is not a
process or procedure modeling method.

DFD includes following characteristics: (1) supporting the analysis and
requirement stage of system design; (2) a diagramming technique with anno-
tation; (3) describing a network of activities/processes of the target system;
(4) allowing for behaviors of parallel and asynchronous ; (5) stepwise refine-
ment through hierarchical decomposition of processes.

4.2 Syntax and Semantics of DFD

The complete data flow analysis includes: Data Flow Diagram, Data Dictio-
nary and Process Specifications [3].

DFD presents a symbol system to describe data flows and a decomposition
mechanism to describe a system at various detail levels.

4.2.1 Notations of DFD

The construction elements of DFD are Activity/Process, Data Flow, Data
Store and External Entity (Source/Sink).



86 4 Data Flow Diagram

(1) Activity/process
The notation of activity/process is shown in Fig. 4.1. These two sym-

bols belong to Gane & Sarson notation system and Ward & Mellor notation
system, respectively.
• An activity /process is the transformation of data. It accepts data flows

as inputs and produces data flows as outputs.
• An activity can be further decomposed to form more detailed sub-process.
• The label of an activity/process should be a verb.
• Activities are linked to process specifications.

The rules for activity/process are listed as follows.
• An activity/process is always internal to a system. How the external

entity or system treats data will not be modeled.
• Data stays at rest unless moved by a process.
• Processes cannot consume or create data. That means the process must

have at least 1 input data flow (to avoid miracles), at least 1 output data
flow (to avoid black holes) and should have sufficient inputs to create
outputs (to avoid gray holes).

Fig. 4.1. Symbols of activity/process

Logical process models omit any processes that do nothing more than
move or route data, thus leaving the data unchanged. Valid processes include
those that:
• Perform computations (e.g., calculate grade point average).
• Make decisions (determine availability of ordered products).
• Sort, filter or otherwise summarize data (identify overdue invoices).
• Organize data into useful information (e.g., generate a report or answer

a question).
• Trigger other processes (e.g., turn on the furnace or instruct a robot).
• Use stored data (create, read, update or delete a record).

(2) Data flow
A Data flow shows the flow of information. Its symbols are shown in

Fig. 4.2.
• A Data flow is a connector element whose two ends link to activities/

processes, a Data store, an external entity and so forth.
• It reflects a data transfer but control flows.
• The arrow of data flow shows its direction.
• Data flows can be split / joined.
• The label of a data flow is noun.
• It is specified in the data-dictionary.

The rules for data flow are listed as follows.



4.2 Syntax and Semantics of DFD 87

Fig. 4.2. Symbols of data flow

• A data flow means data in motion, moving from one place to another in
the system.

• It flows from an external entity (source) to the system.
• It flows from the system to an external entity (sink).
• It flows from an internal symbol to another internal symbol, but always

either start or end at a process.
(3) Data store
A data store is the storage for permanent data and presents a placeholder

for database/file. The symbols of data store are shown in Fig. 4.3.

Fig. 4.3. Symbols of data store

• Data store is passive.
• It is serviced by a process.
• No activity can be beyond basic retrieval capacity.
• Its label should be a noun.
• It is specified in the data-dictionary and/or with an ERD.

The rules for data store are listed as follows.
• It is internal to the system.
• Data in it keep at rest. That means the data store does not change the

status of data by itself.
• It should be included in the system if the system processes transform

(store, add, delete, update) the data.
• Every data store on DFD should correspond to an entity on an ERD.
• Data stores can come in many forms such as hanging file folders,

computer-based files, note books, and so forth.
(4) External entity (source/sink)
An External Entity provides connection to the system’s context. Its sym-

bols are shown in Fig. 4.4.
• It is the origin/destination of external data flows.
• It provides connection to the system’s context.
• It is passive and only sends/receives data.
• Its label should be a noun.



88 4 Data Flow Diagram

• It is specified in the data-dictionary.

Fig. 4.4. Symbols of External Entity

The rules for External Entity are listed as follows.
• External Entities are external people, systems and data stores.
• They stand outside the system, but interact with the system.
• They (1) receive information from the system, (2) trigger the system into

motion, or (3) provide new information to the system.

Fig. 4.5. Gane & Sarson DFD notations

Fig. 4.6. DFD example of flight ticket booking

Gane & Sarson DFD notations are shown in Fig. 4.5 and an example on a
flight ticket booking system based on the notation is shown in Fig. 4.6. The



4.2 Syntax and Semantics of DFD 89

extended notations by Ward and Mellor are shown in Fig. 4.7 and an office
environment control system model is shown in Fig. 4.8 and Fig. 4.9.

Fig. 4.7. DFD notations extended by Ward and Mellor

Fig. 4.8. DFD example of an office environment control system

4.2.2 DFD Models Organization

Activities/Processes in DFD can be decomposed. That means certain activi-
ties in the parent diagram can be illustrated by more detailed child diagrams.
A set of DFDs includes a context diagram, a level-0 diagram and relative child
diagrams.

(1) Context diagram
The context diagram is the DFD of the scope of an organizational system

that shows the system boundaries, external entities that interact with the
system and the major information flows between the external entities and



90 4 Data Flow Diagram



4.2 Syntax and Semantics of DFD 91

the system. Fig. 4.10 shows the context diagram of a food ordering system.
Fig. 4.11 shows the context diagram of a salary management system.

Fig. 4.10. Context diagram of a food ordering system

Fig. 4.11. Context diagram of a salary management system

(2) Level-0 diagram
The level-0 diagram is a DFD that represents a system’s major processes,

data flows and data stores at a high level of detail. Fig. 4.12 shows the level-0
diagram of a food ordering system. Fig. 4.13 shows the level-0 diagram of a
salary management system.

Fig. 4.12. Level-0 diagram of the food ordering system

(3) Decomposed DFD child diagrams
Going on decomposition step by step, level-1 diagrams, level-2 diagrams

and so forth are developed. Fig. 4.14 shows the level-1 diagram of the salary



92 4 Data Flow Diagram

Fig. 4.13. Level-0 diagram of the salary management system

management system. It is the decomposition of Activity 3.0.

Fig. 4.14. Level-1 diagram of the salary management system

Through decomposition, a tree style models framework is formed. The
framework and relative coding rules are shown in Fig. 4.15.

Fig. 4.15. DFD decomposition framework and relative codes



4.3 Structured Approach of DFD 93

4.2.3 Data Dictionary

The finished DFD should be accompanied with a data dictionary.
A data dictionary includes:
(1) Name: the title of data item, control item, data store or external

entity.
(2) Alias: alternative name.
(3) Usage: where and how to use.
(4) Content depiction: symbols system for content depiction.
(5) Additional information: data type, default value, constraint, etc.

4.3 Structured Approach of DFD

DFD is the core technique of Structured Design and Analysis Method and
widely used in industries. It includes a formalized procedure and rules to
models development.

4.3.1 Modeling Process of DFD

Creating a DFD is a highly iterative process of gradual refinement. The
general steps are:

(1) Create a preliminary Context Diagram.
(2) Identify Use Cases, i.e., the ways in which users most commonly use

the system.
(3) Create DFD fragments for each use case.
(4) Create a level-0 diagram from fragments.
(5) Decompose to level 1, 2, . . .
(6) Go to step (1) and revise as necessary.
(7) Validate the DFDs with users.

4.3.2 Data Flow Diagramming Rules

While developing DFDs, some rules should be obeyed. These rules include
general rules and specific rules for DFD symbols, context diagram and
decomposition.

(1) General rules
• Inputs to a process are always different than outputs.
• Objects always have a unique name.
• In order to keep the diagram uncluttered, you can repeat data stores and

sources/sinks on a diagram.



94 4 Data Flow Diagram

(2) Rules for activity/process
• No process can have only outputs (a miracle).
• No process can have only inputs (black hole).
• A process has a verb phrase label.

(3) Rules for data store
• Data cannot be moved directly from one store to another.
• Data cannot move directly from an outside source to a data store.
• Data cannot move directly from a data store to a data sink.
• Data store has a noun phrase label.

(4) Rules for external entity
• Data cannot move directly from a source to a sink.
• A source/sink has a noun phrase label.

(5) Rules for data flow
• A data flow has only one direction of flow between symbols.
• A fork means that exactly the same data goes from a common location

to two or more processes, data stores or sources/sinks.
• A join means that exactly the same data comes from any two or more

different processes, data stores or sources/sinks to a common location.
• A data flow cannot go directly back to the same process it leaves.
• A data flow to a data store means update.
• A data flow from a data store means retrieve or use.
• A data flow has a noun phrase label.

(6) Rules for context diagram
• One process, numbered 0.
• Sources and sinks (external entities) as squares.
• Main data flows depicted.
• No internal data stores are shown. They are inside the system.
• External data stores are shown as external entities.

(7) Rules for process decomposition
• Processes can be decomposed / refined. That means one process can be

decomposed into a complete DFD.
• Interface flows must remain consistent. When decomposing a DFD, it is

necessary to conserve inputs to and outputs from a process at the next
level of decomposition. This is called balancing. As shown in Fig. 4.10,
there are one input “Customer order” and three outputs “Receipt”, “Food
order”, “Management reports”. In its child diagram as shown in Fig. 4.12,
there are the same input and outputs without any modification. Then it
can be said that the context diagram in Fig. 4.10 and the level-0 diagram
in Fig. 4.12 are balancing (consistent). The decomposition relationship
between Fig. 4.16 and Fig. 4.17 is unbalancing. There are one input and
one output in Fig. 4.16 while there adds an input “C” in Fig. 4.17.

• Lower level processes, data flows and data stores can be added on.
• Sources and sinks remain on level-1.
• The level-0 can be used as “abstract”.
• A data flow can be split into separate data flows on a lower level diagram,

as shown in Fig. 4.18.



4.4 DFD Modeling Case 95

Fig. 4.16. An example of context diagram

Fig. 4.17. An example of level-0 diagram

Fig. 4.18. Data flow split

4.4 DFD Modeling Case

A simplified examination management system is selected to illustrate the
modeling and analysis process with DFD.

The functionality of the examination management system is declared as
follows.

(1) Check applicants’ information sheets.
(2) Prepare examinee identification number and send examinee identifi-

cations to eligible applicants; transfer the examinees name list to the exami-
nation paper appraising office.

(3) Check the examination result report from the examination paper
appraising office and determine examinees that pass the examination under
certain criterion.

(4) Inform examinees of their examination results.
(5) Analyze examination results and prepare an analysis report.
The context diagram is developed firstly to isolate the system from it

environment and illustrate interactions between the system and its users, as
shown in Fig. 4.19.



96 4 Data Flow Diagram

Fig. 4.19. Context diagram of an examination management system

The examination management system has two main functions: “Register
Application Sheet” and “Analyze Result”. The level-0 diagram is shown in
Fig. 4.20.

Fig. 4.20. Level-0 diagram of the system

Two activities in the level-0 diagram are decomposed to form two level-1
diagrams, as shown in Fig. 4.21 and Fig. 4.22.

DFD is widely used in industries. For instance, the international standard
“ISO/IEC 62264-1 Enterprise – Control System Integration[1].



References 97

Fig. 4.21. Level-1 diagram: Decomposition of “Register Application Sheet”

Fig. 4.22. Level-1 diagram: Decomposition of “Analyze Result”

References

[1] ISO TC184 SC5. ISO/IEC 62264-1: Enterprise-Control System Integration
Part 1: Models and Terminology. ISO�2003.

[2] Popkin Software: System Architect 2001 Tutorial. Popkin Software Co.,
2001.

[3] Yourdon E. Just Enough Structured Analysis. http://www.yourdon.com/,
2006.




