MATRICES AND THEIR APPLICATIONS
oy

1.1 INTRODUCTION: DEFINITION INVOLVING MATRICES

Matrices: A rectangular array of mn numbers consisting of m rows and n columns bounded
by the commonly accepted notations [ ] or || is termed a matrix of order mby n (or m x n).
It is also denoted by a single capital letter.

a4, & ... &,
ThUS ‘A’: 321 322 aZn
A Az -+ g

A matrix is also briefly denoted as ‘A" = [ajj], (i=12...,m j=1,2, .., n
where a; are the entries of the matrix locating an individual element in the ith row and jth
column.

If the rows and columns of a matrix are equal (say m = n) then it is called a square matrix.

Significance of Matrices

Though as such the above arrangement of elements has no value of its own but it has a
unique utility of summarising or expressing the information in terse and succinct way.
Suppose a builder has bidding for construction of 2 ‘Cape Cod’ type of houses, ‘Ranch
Type’ (cattle farm) where 3, ‘Colonial Type’ of houses using raw materials as wood, iron,
glass, cement and paint.
The numbers in the matrix below, at a glance gives the amount of each raw material
required or used (as the case may be) in each type of house in their conventional units:

(Type of House) Wood Iron Glass  Cement  Paint
Cape code (x) 13 10 3 4 3
Ranch Type (y) 20 18 2 5 |
Colonial Type (2) 16 14 12 10 8
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Row Matrix: A matrix consisting of a single row of elements is termed as ‘row matrix’ or
row vector.

e.g. [1245] is a row matrix.

Column Matrix: A matrix composed of a single column is called a column matrix or column
vector.

e.g is a column matrix where we have a single column.

Ol = W DN

Considering the case of contractor given just, if we represent his orders by a row matrix
(2, 2, 3) and the prices of raw materials wood, iron, glass, cement and paint by (5, 4, 3, 2, 1)
rupees per unit respectively, we can find the cost of each type of house as follows:

5

[13 10 3 4 3]4
(x,y.z)=|20 18 2 5 1|3
16 14 12 10 8j2

) 1

[ 13x5+10x4+3x3+4x2+3x1 125
=| 20x5+18x4+2x3+5%x2+1x1 [=]189
_16><5+14><4+12><3+10><2+8><1 185

Hence, we have calculated the cost of each type of house at the same time we have explained
the multiplication of two matrices.

Square Matrix: A matrix having equal number of rows and columns is termed as ‘square
matrix’.

1 2 3
e.g. [2 4] is a square matrix of order 3 x 3.
3 5

=

The elements a; in a square matrix ‘A’ form the Principal Diagonal (or Mean Diagonal)
and their sum a;; + a,, + a3 is called the Trace or Spur of ‘A’

For eaxmple, a matrix ‘A’ for which A¥*1 = A where k is a positive integer, is called ‘periodic
matrix’. Whereas if k is the least positive integer for which A**1 = A, then A is said to be of
‘Period’ k. If k = 1, so that A2 = A, then A is called ‘Idempotent’. However, if Ak =0 (for
positive integer k) A is termed ‘Nilpotent’. Furthermore, if k is least, A is said to Nilpotent of
index ‘k'.

0 0

o -3 28 21 3

Whence ‘A’ is a nilpotent matrix.

e.g. The matrix 'A’ :[0 p], where pis any integer.
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Involuntary Matrix: A matrix A will be called an involuntary matrix, if A? = I (unit matrix).
Since I always is equal to I, therefore unit matrix is involuntary.

Singular Matrix: If the determinant of a matrix ‘A’ is zero, i.e. | A| = 0 then A is called
‘singular matrix’. Otherwise, ‘non-singular’.

2 1 -2
e.g. 30 5| is a singular matrix, since |A| =0
4 2 -4

Diagonal Matrix: A square matrix of whose all elements except those in the leading diagonal
are zero, i.e. a; = 0 when i # j is called a ‘diagonal matrix’.

y
1 0 0
e.g. 0 2 0
0 0 3

Scalar Matrix: A diagonal matrix whose diagonal elements are all equal is termed as ‘scalar
matrix’.

2 0 0
e.g. 0 2 0
0 0 2

Unit or Identity Matrix: A square matrix is called a unit matrix if all the diagonal elements
are unity and non-diagonal elements are zero.

1

. 10 0
.g. o 1l

0

Null Matrix (Echelon Form): A matrix whose elements are all zero is known as ‘Null Matrix’
or zero matrix’.

O = O
_ O O

Triangular Matrix: A square matrix whose elements either above or below the leading
diagonal are all zero is known as a ‘triangular matrix’.

1 0 0 1 23
e.g. 1 2 0 0 21
1 4 3 0 0 3

Lower Triangular Upper Triangular

Transpose: The matrix obtained from given matrix ‘A’ by interchange of its row and column
is termed as transpose of ‘A’ and more commonly denoted by A'.

Symmetric Matrix: A square matrix ‘A’ is said to be symmetric (about the principal diagonal)
if a; = a;. Hence it is clear that transpose of a symmetric matrix is the given matrix itself.
Whereas in case of skew-symmetric matrix, A’ = -A.
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1 2 3 12 3
eg. 2 4 5 2 4 -5
3 5 4 3 5 4

Symmetric Matrix ~ Skew-symmetric

Boolean Matrix: A rectangular array of zeros and ones is called ‘Boolean Matrix'.
The rows are labelled by successive integers starting with zero from top to bottom whereas
in column from left to right.

j 0 1 2 3 4
ilofo 1. 0 1 0
e.g. 111 0 1 1 0

210 1 0 1 1
Zeros and unities are called the elements of the matrix. These elements in general can be
denoted by a; indicating the position of an individual item in jth row and jth column. For
instance, ay = 1 and a,, = 1.
Sub-Matrix: A matrix obtained by striking out some rows and some columns of a given
matrix ‘A’ A is also a sub-matrix of itself.

eg A= [411 g 2] contains one, 2 x 3 sub-matrix, i.e. A itself along with three, 2 x 2

sub-matrices [411 g] , [g 2] , [411 2] two 1 x 3 sub-matrices, viz. [1 2 3] and [4 5 6] likewise,

six 1 x 2 sub-matrices and hence total 21 sub matrices of ‘A’.

Equal Matrix: Two matrices are said to be equal if and only if they are of the same order
and their respective elements are equal (exactly same).

a b 1 2
e.g. A:[C d]’B:[S 4]

Thus Aisequalto Bonlyifa=1, b=2,¢=3,d=4.
Trace of a Matrix: Sum of principal diagonal elements of a matrix (n x n) is called the trace of

n
the matrix, i.e. tr(A)=a, + a, +...+ a,, = 2. a; . Equivalently, the trace of a matrix is the sum
i=1
of its eigen values, making it an invariant with respect to a change of basis.
Adjoint Matrix: Adjoint of a square matrix ‘A’ is the transpose of the matrix formed by
cofactors of the respective elements of the given square matrix ‘A’, e.g.
4y Ay Ay
Let A=|a, &, &;| be asquare matrix with determinant | A|, then
A3 Ay A3

Adioi Ay Ay Ag Ay Ay
joint A'=1 Ay Ay Apl=|Ap Ay

Ay Ay Ay Ay Ay
whereas Ay, Ay Ay Ay, Apy, Aggs Agp, Agy, Agg are the cofactors of ayy, a,, a13; @y, 8y, a3 a3,
a5, as; respectively.

31
32
33

N

>
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Addition and Subtraction of Matrices

If ‘A" and ‘B’ are two matrices having equal number of rows and columns, then the sum of
‘A’ and ‘B’ is defined as the matrix, each element of which is the sum of the corresponding
elements of ‘A" and ‘B

—31 b ¢ o B o7
Thusfor "A'={a b | and B=|o, B, %
ERE o By v

_31"'0‘1 bh+B ¢+
A+B=|a+0, b+B, ¢+

ERNE

Multiplication of Matrix by a Scalar

If we multiply a matrix ‘A’ by a scalar k, then ‘kA’ is defined as the matrix, each element of
which is k times the corresponding elements of the matrix ‘A’, viz.

a & ka ka
kib b |=|kb kb,
q G kg ke

Note: As the addition and subtraction of matrices are based on addition of their elements, it follows that in
addition of matrices, the law of commutativity and associativity holds viz.,

A+B=B+Aand (A+ B + C=A+ (B+ (), and also holds good for the distributive law viz.,
kA+ B =kA+ kB

Multiplication of Two Matrices

Two matrices ‘A" and ‘B’ can be multiplied only if number of columns of ‘A" and the number
of rows of ‘B’ are equal.

e.g. If A is a matrix of order (4 x 3) and ‘B’ is a matrix of order (3 x 2), then the product AB
will be order (4 x 2), illustrated thus

a b g o B aoy +bo, +qoy P + b, +6ps
AxB=|% b, ¢ (xl Bl _| &0+ bop + 6oy P+ by, + G
a b g (xz BZ a0y + Do, + oy &Py + by, + Gy
a b ¢t a0y + by + o, Py + by, + ¢y

Remarks: Addition and multiplication of two matrices ‘A’ and ‘B’ have been defined under certain restrictions.
‘A’ and ‘B’ can be added only when ‘A’ has the same number of rows and columns as ‘B’ while the product AB
can be performed only when the number of columns in ‘A’ are equal to the number of rows in ‘B’ or in other
words ‘A" and ‘B’ are conformable for addition and, or conformable for the product AB. Further, the two
matrices 'A"and ‘B’ may not be conformable for both the products '"AB"and 'BA’, and even if they are then not
necessarily, AB = BA. Means, in general, multiplication of matrices is not commutative, i.e. AB = BA.

Illustration of Above Facts with Examples

Case I: AB is defined but BA is not defined. Take matrix ‘A’ of order 2 x 3 and ‘B’ of order
3 x 4, then AB is defined and it is a matrix of order 2 x 4 whereas BA is not defined.

Case II: AB and BA are both defined but their orders are different.
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Take matrix ‘A’ of order 2 x 3 and ‘B of order 3 x 2, then AB and BA are both defined but
their orders are different, viz. 2 x 2 and 3 x 3 respectively.

Case III: AB and BA are both defined and are matrices of the same order, still AB # BA.

12 13
e Ay ] ey

|1 2)f1 3f_[5 11 1 371 2] [10 14
AB_[S 4][2 4]_[11 25] and BA:[Z 4][3 4]:[14 20]
Clearly, AB # BA.

Inverse or Reciprocal Matrix

If A and B be the two square matrices of the same order such that AB = I = BA, then matrix ‘B’
is called the Inverse (or reciprocal) of matrix ‘A" and more often denoted by A, i.e. B= A™.
Hence it follows that inverse of the inverse is the matrix itself.

ie., AN 1=BT1=A
Further, multiplication of ‘A’ with its adjoint is the determinant value of the matrix ‘A’.

a b ¢l [A B ¢] [A 0 o 100

or AxAdjoint 'A'=[a b o|xX|A B G|=[0 A 0|=A|0 1 0|=AI
a b | [A B G| [0 0 A 0 01
In other words,
Adjiont ‘A’
-1 _
AT = A
Hence inverse is possible for a non-singular matrix only.

Note:

1. If ‘A’ and ‘B’ are two square matrices of same order with inverses, A~ and B respectively, then
(AB)'= B! A7l i.e. the inverse of the product of two matrices, having inverses, is the product in reverse
order of these inverses.

2. The inverse of a diagonal matrix is also diagonal.

3. Theinverse of an upper triangular matrix (lower triangular) matrix is an upper triangular (lower triangular).

Involutary matrix: If a square matrix ‘A’ is such that A? = [ then A is called an Involutary
Matrix, e.g. An identity matrix is involutary. Thus an involutary matrix is its own inverse.

Power Matrix: For a square matrix ‘A’, the product AA, AAA, A ... mtimes (i.e. Az A3 Am)
are called Power Matrices.
For non-singular ‘A’, we know that ATA= = AAl ie.  ATA = [= AlA
(since AmA"= Am* 1 mn are positive integers).
Therefore, with above contention, we can write A’ = Jand A ™= (A l)»
Also with the help of all above derived relations, we define
(Amn = (Amm = Amn \where m and n are any integers.

Few Examples on Multiplication, Adjoint and Inverse of Matrices
Example 1: By mathematical induction, prove that if

11 -25 . _[1+10n  -25n
A=[4 -9]the“A =[ 4n 1—10n]
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Solution: Mathematical Induction is very useful technique for providing results for all
positive integers, under which we verify the result for n = 1, and then assume it true for n= 1.
For proving it true for n= m, prove it is true for n=m + 1.

Therefore, when n=1,

1410 —257] [11 —25
AL _ .
A ‘A‘[ 4 1—10]‘[4 —9] g

Hence the result is true for n= 1.
Now assume that the result is true for n= m (any positive integer)

ie., Am :[”10’“ —25’“] ©

4m 1-10m

1+10m -25m ||11 =25
m+1_ Am _
So that A =A ~A—[ Am 1—10m][4 _9]
B (1+10m)11+(—25m)4 (1+10m)+(—25)+(—25m)(—9)
B (4m)11+(1—10m)4 (4m)(—25)+(1—10m)(—9)
_[11+10m -25-25m
| 4+4m 9-10m

ot _[1410(m+1)  —25(m+1
A _[ +4(m(+1+)) 1—10((m++3):|

Example 2: Show that the product of matrices

cos’d  cospsing cos’'y  cosysiny

. . and . .
cospsing  sin? cosysiny  sinfy

is a null matrix, where ¢ and y differ by an odd multiple of w/2.

cos’¢p  cososin q>] [ cos’y  cosysin \u:|

Solution: [cos ¢sing  sin’?¢ || cosysiny  sin’y

[ cos? dcos? y + cos ¢ sin¢ cosy siny cos? ¢ cosy siny + cosd sind sin? y
cos ¢ sin ¢ cos® y +sin’ ¢ cosy siny cos¢ sin¢ cosy siny + sin® ¢ sin? y

B —cosq) cosw(cosq) cosy +sing sinw) cosd sinw(cosq) cosy +sin¢ sinw)
sin¢ cosw(cosq) cosy +sin¢ sin \u) sin¢ sinw(cosq) cosy +sin¢ sin \u)

[ cos¢ cosys cos(¢p—) cosdsiny cos ()
| sing cosy cos(p—y) singsiny cos(¢-y)

:[8 8]: O, - [For (¢ - y) = an odd multiple of n/2, cos{$ - y) = 0]
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01
Example 3: If ‘A’ is the matrix [0 0
P q

-0

A% = pl + gA + rA2.

0
Solution: For A:[O

=
O -

01 0[]0 10
AP=A-A=|0 0 1[0 0 1
p q rjjp qr
Similarly,
01 0][o o 1
AS=AA’=(0 0 1 q r
p q rflrp p+trq q+r*]
p q r
=l 1p p+rq g+t |;
pq+1rip ¢ +pr+riq p+2qr+13_
1 00][poo
pIl=p|0 1 0|=[0 p O}
00 1] |00 p|
[0 1 0 0 q 0
gA=q|0 0 1|=(0 0 ¢
P 9 1] |pg ¢ 19
0 0 1
and rA2=r|p q r
|rp p+rq q+r?)
p 0 0] [0 ¢ 0]
Now pl+qA+rA2=[0 p 0|+|0 0 ¢
00 p] [pg ¢ rg
= A3
01T

Example 4: Show that [cose

-sin® | 1 -tany
sin@ cosO [~ ¢

0
anz 1

+| pr
r’p pr+rq rqg+r

0
q

0
=P
p p+rq q+r?

0

Engineering Mathematics through Applications

1
r

rzp pr+r2q rq+r’

0
qr

r

r

] and ‘T is the unit matrix of order 3, show that
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Solution: In this problem, we need to prove that the product of

1 —tan8/2 d 1 tan®/27]" 1t cos® —sin®
tan9/2 1 and | _tane/2 1 equaliol sine  coso

' ' ' 1 tan0/2
We first find the inverse of —tan©/2 1

Let [ 1 tan6/2:|:[a11 312:|y

—tan6/2 1 a &y
) 1 tan9/ 2
so that matrix of cofactors = _tan®/2 1
1 —tan®/2
1 tan®/27" B adjoint _[tan6/2 |
Thus | _tan9/2 1 - 1 tan®/2| — (1+tan26/2)
—tan®/2 1
Whence the product,
1 —tan8/2 1 tan9/2 -
tan®/ 2 1 —tan®/2 1
[ 1 —tan©/2 1 —tan©/2
B _tan6/2 1 tan®/ 2 1
B (1 +tan?9/ 2)
1-tan’0/2 —tan®/2 —tan®/2
_ |tan®/2 +tan®/2 —tan?0/2 +1
- (1+tan?0/2)

(1—tan2 9/2) _ 2tan@/2
_ (1+tan26/2) (1+tan26/2) _[cos6 —sin6
| 2tane/2 (1—tan26/2) _[sine cose]

(1 + tan? 6/2) " (1 + tan? 6/2)

ASSIGNMENT 1

1. Prove that the product of two upper (lower) triangular matrices is an upper (lower)
triangular matrix.
A A
2. If e is defined as I+ A+5r+37+...+. Show that ¢* :e"[

when A= [i §:|

coshx sinhx
sinhx cosh x|’



12 Engineering Mathematics through Applications

3. If A and B are square matrices of the same order and A is symmetrical, show that B'AB
is also symmetrical.
4. If A = diag. [d}, d,, ..., d )], d}, d,, ..., d, # 0, prove that Al = diag.[d]', d;', ..., d.'].

n

coshx sinhx

5. If A:[sinhx cosh x

sinhnx coshnx

] , then prove that A" = [COSh nx sinh HX].

1.2 ELEMENTARY TRANSFORMATIONS, RANK, NORMAL FORMS AND GAUSS-
JORDAN METHOD

The operations (referring to either rows or columns), viz.
(a) interchange of any two rows (columns)
(b) multiplication of any given row (columns) by a non-zero number
(¢) addition of a constant multiple of elements of any row (column) to the respective
elements of any other row (column)

are called elementary transformations on matrices.
Mathematically,
(i} R; denotes interchange of elements of jth and jth rows.
(iiy pR; denotes multiplication by p to the elements of ith row.
(ii) R+ PR; denotes addition of p times the elements of jth row to the respective elements
of ith row.

Likewise, Cy, pC;and C; + pC; respectively denote elementary column transformations.

1. Elementary Matrices: The matrices obtained by subjecting the unit matrix to the above
stated elementary transformation are called elementary matrices.

1 00 0 1 0
eg. If L=10 1 0f,then R,=[1 0 0|=C;,
0 0 1] 00 1
0 0
pR =0 1 0|=pC:
0 0 1]
1 00 1 00
Ry+pRs=|0 1 p|, G+pG=|0 1 0] etc.
001 0 p1

Matrices R,,, pR,, R, + pR, are elementary row matrices while C,;, pC; and C, + pC,
are the examples of elementary column matrices.

Observations: Pre-multiplications of a matrix (say A) by an elementary row matrix results in row
transfer matrix of the given matrix itself while post-multiplication to this by an elementary column
matrix results in the respective column transformation in the given matrix itself.

|:31 ) 33]
e.g. For A= b b,

G G G
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[0 1 0]la & a| [ b b

R,xA=|1 0 0|k b bhl|=|a a a

10 0 1|la @ ] |a o ¢
Fal & &0 1 0]
and Ax C12: bl bz b3 1 00
q ¢ )0 0 1]

O0+a+0 +0+0 0+0+a » 4 K
=[0+b5+0 B+0+0 0+0+b|=|h b b

0+C2+0 C1+0+0 0+0+C3 6 G G

Clearly the pre-multiplication of A with Ry, results in the interchange of Ist and 2nd row in ‘A’ while
the post-multiplication of A with Cy, results in the interchange of Ist and 2nd columns in ‘A’.

. Equivalent Matrix: Two matrices ‘A’ and ‘B’ are said to be ‘equivalent’ if one is obtained
from the other by a set of elementary transformations. Mathematically, it is denoted
as A~ B.

Minor of Matrix: Minor of a matrix is the determinant composed of elements of the
matrix left after striking out certain rows and columns.

4, &, a3 &y
e.g. Suppose we have a matrix | &1 & &3 &y
B Ly By By gy
IIIrd order minors of this matrix are obtained striking out one column and replacing
thesign [ ] by | |.These are 3 in number.
IInd order minors are obtained by striking out two columns and one row. These
are 18 in numbers.
Ist order minors obtained, likewise, are 12 in number.
However, in general, for m x n matrix (m > n), there will be
("Cy)? = 1 minor of order m;

(”C1)2 = n? minors of order (n - 1);

200 1Y
(ch )2 :M minors of order (n - 2) and so on.

(21

Minors with proper sign are called ‘co-factors’ of the respective a;'s.

‘Remarks’: For a matrix ‘A’, if the minors of order r are zero, then all the minors of higher order will
also be zero. Further if ‘A’ is a square matrix of order n, then the largest order minor of ‘A’ is the
determinant of the matrix itself.

. Rank of a Matrix: The rank of a matrix ‘A’ (say) is the order of the highest non-zero
minor of ‘A’ [PTU, 2005, 2006]

1 2 3
e.g. The rank of the matrix [3 6 9] is 1.

For a square matrix ‘A’ of order n, rank r satisfies the relation r < n.
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If r= n, the matrix is non-singular and if r < n the matrix is singular.

1 0 -1
For instance, the matrix |-1 0 1] is singular matrix, since r{(= 2} < n( = 3) with
01 0
AA = 0.
010
While the matrix |0 0 1| is non-singular, since AA=1 #0.
1 10

Hence r = n = 3 in this case.

Observation: Elementary transformations on a matrix do not change either its ‘order’ or ‘rank’ whereas
the value of minors may get changed by applying any elementary (Row or Column) transformations on
the same matrix (with no change in its zero or non-zero character).

4. Echelon Form of a Matrix: A matrix is said to possess echelon form subject to

(i) all its non-zero row, if any, proceeding the zero rows
(iiy the number of zero in all succeeding rows are higher than its proceeding one
(iii) the first non-zero entry in each of its rows is unity.

3 5

O W

1 2

01 2
e.g. 0 01

0 00

Clearly, in the above matrix, the non-zero row proceeds the zero row, the number
of zeros in IInd, lllrd, IVth rows are 1, 2, 4 in number, i.e. in an ascending order and
the first entry in each row is 1.

5. Normal Form of a Matrix: Every non-zero matrix ‘A’ (order m x n) of rank r > 0 can be
reduced by a sequence of elementary transformations to one of the form I,

(L. 0],[{;], [{)r 8] etc. are called normal form (Ist canonical form) of the matrix ‘A’.

Note: For a matrix ‘A’ (order m x n) of rank r > 0, there corresponds two non-singular matrices P and

Qsuch PAQ= I:% 8] . Further, normal form of a matrix indicates the rank of that matrix.

6. Gauss-Jordan Method for Inverse of a Matrix: If a set of certain elementary row
transformations reduces a given square matrix ‘A’ (say, order n) to the unit matrix (I )
when applied to the unit matrix give the inverse of ‘A’.

Working Rule: For finding A, write A and I, the two matrices side by side and apply
certain row operations to reduce ‘A’ to unit matrix I, so unit [ in turn reduces into A~ L
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15

Example 5: Find the rank of the following matrices:

[ 1 -2 3
() |-2 4-1]

1 2 7
2 3 -1
1 -1 -2
(iv) 3 1 3

6 3 0

1 -2 3

(ii) !-z 4 -1

-1 2 7

-1
-4
-2
-1

(v) (vi)

S W DN
[> <IN ST G U
=] = W W

6 7 8 9
12 13 14
17 18 19

(vii)

16

1 -2 3
Solution: (i) |-2 4 -1

-1 2 7

Operate (R, + 2R)), (R; + R); ~[

-2 3

0 5:—107&0

As ‘

-3

o O =
|
o o N
—_
(BN &) BEON]
S —

4 2 -1 31
() |1 4 -2 1
6 5 2 43

[PTU, 2007; NIT Kurukshetra, 2005; KUK, 2004]

[Kottayam, 2005]

crw N O

Clearly highest non-zero minor is of order 2 and, therefore, the rank of this matrix is 2.

1 -2 3 4
(if) !—2 4 -1 —3]

1 2 7 6
1 -2 3
Operate (R, + 2R)), (R + R),~ [0 0 5
0 0 10
1 2 3 4
0 05 5
Operate (R, - 2R,), ~
perate (Ry = 2R~ 1 ¢
1 -2 3 4
1 0 0 1 1
Operate =R,, ~
PEFE S 1o 0 0 0
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1 3
Clearly the highest non-zero minor is of order 2 with ‘1 0‘ =1#0

~. Rank of the given matrix is 2.

2 -1 3 1
5 2 4 3

[0 0 0 1
Operate (C, - 2C), (C, + C)) and (C; - 3C,) ~ -1 5 -5 1]

— e D
oo o
oo o
[ R —

Operate (C, + 5C,), (C; - 5C)) ~ [_

Clearly all the minors of order 3 are zero.

0 1
The highest non-zero minor of order 2, |_; /= 1#0
Hence the rank of the matrix is 2.
2 3 -1 4
1 -1 -2 4
(v) |3 1 3 -2
6 3 0 -7
1 -1 -2 -4
2 3 -1 -
Operate R ~ [3 1 3 _»
6 3 0 -7
1 0 0 O
2 5 3 7
Operate (C, + Cy), (C3+ 2C)) and (Cy+4C) ~ |3 4 9 10
6 9 12 17
1 00 O
2 5 3 7
Operate Ry - (Rj+ R, + R)), ~ |3 4 9 10
000 O
1 00
Clearly the highest non-zero minor is of order 3 with |2 5 3/=33%0
3 49

Hence the rank of given matrix is 3.

3 -1 -2
o 22
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3 -1 =2
Operate (R, + 2R,)), (R; + R)) ~ [0 0 0]
0

Clearly the rank of the matrix is 1 as minor of order 1, ie. |3]| =3 #0.

1 230
L |2 4 3 2
) |3 2 1 3
6 8 7 5
1 2 30
Operate Ry - (R, + R, + Ry) ~ g ;l ? g
0000
1 0 00
2 0 -3 2
Operate (G, - 2C), (G;-3GC), ~ |3 4 _g 3
0 0 00
1 0 00
0 0 -3 2
Further (C; - C). (G3-2C), ~ | _4 ¢ 3
0 0 00
1 0 0
As 0 0 -3=-12#%0
0 -4 0
The highest non-zero minor is of order 3. Hence the rank of the matrix is 3.
5 6 7 8
.16 7 8 9
Vi) 111 12 13 14
16 17 18 19
51 71
6 1 8 1
Operate (C, - Cy), (C, - C5), ~ 11 1 13 1
16 1 18 1
5100
6 1 0 0
Operate (C;- Cp). G- (G +2C) ~ 111 1 ¢ o
16 1 0 0

Clearly the rank of the matrix is 2.
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Example 6: Find the rank of the matrix,

2 -2 0 6
4 2 0 2
A= 1 -1 0 3 by reducing it to canonical form.
1 -2 1 2
1 -1 0 3
2 1 0 1
Solution: Applying %Rl and %Rz, A~ 1 -1 0 3
1 -2 1 2
1 10 3
' 0 30 -5
Applying (R, - 2Ry), (R - Ry), (R4 R}), A ~ 0 00 O
1 -1 1 -1
1 0 0 O
0 3 0 5
Applying (C, + C}), (C, - 3C)), A ~ 0 00 0
1 -1 1 41
1 00 0
0 -1 1 -1
RoR -1 90 o
0 3 0 5
1 00 O
, 0 -1 1 -1
Now applying (R, + 3R,), A ~ 0 00 0
0 0 3 -8
1 0 0 0
0 -1 0 O
On applying (C3+ G, (C4- C). A =1y o o o
0 0 3 -8
1 00 O
010 O
-R,, R, <R, ~ 00 3 -8
0 0 0 O
100 O
Next applying %Cg, A~ 8 é ? _g
0 00 O
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Finally, applying (C, + 8C;), we get
0 0
A~

I, 0
0 0

OO O
O O =
O = OO

0
0 or A -~
0

Hence the rank of ‘A’ is = 3.

Example 7: Using Gauss Jordan method find the inverse of the matrices:

1 3 3 [2 1 1

) |1 43 (i) |0 2 1 *[NIT Kurukshetra, 2008]
1 3 4 5 2 3 **[KUK. 2006]
8 4 -3 [2 1 2

Gi) |2 1 1 Gv) |2 2 1
12 1 12 2

Solution:
(i) On taking the given matrix side by side with a unit matrix and performing elementary

0
0
1

1 00
-1 0],
-1 0 1

—_ ==
W = w
=W W

1
0
0

O = O

row operations, we have [

[a—y

1
(R -R).(R-R) - 8

O = w
—_ O W

7 -3 -3
-1 1 0
-1 0 1

(R -3R,-3R,;) ~

OO =

0
1
0

—_ O O

7 -3 -3
Hence the inverse matrix = | -1 1 0
-1 0 1
21 -1 : 1 00
(i) Wehave ([0 2 1 : 0 1 0
5 2 -3 0 0 1

2 1 -1 1 0 0
Operate 2R;-5R) ~ |0 2 1 : 0 1 0
0 -5 0 2

2 1 -1 : 1 00
Operate (R,+ R) ~ |0 1 0 : =5 1 2
0 5 0 2
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0 0 : 16 -2 -6
-1 -1 : -5 0 2

2
Operate (R, - 2R, - Ry), ~ lO 1 0: -5 1 2
0

R 1 00 : 8 -1 -3
Operate 71,—R3, ~10 1 0 : -5 1 2
01 1: 5 0 -2
1 00 8§ -1 -3
Operate (R,-R), ~|0 1 0 : -5 1 2
0 01 10 -1 -4
8 4 -3 1 00
(i) Write |2 1 1 0 1 0
1 2 1 0 0 1
14 7 0 1 30
Operate (R1+3R2), ~12 11 010
1 2 1 0 0 1
2 1 13
R 77
Operate 71,(R2—R3),~ 1 -1 0 1 -1
2 1 0 0 1
1 10
3 00 a -1
Operate (R+R,), ~|1 -1 0 0 1 -1
1 2 1 0 0 1
1 10 1
. 100 57 5 -3
Operate %,—RZ, ~1-1 10 0 -1 1
2 1 0 0 1
1 10 -1
1 00 21 21 3
Operate R,—(3R+2R), ~|-1 1 0 : 0 -1 1
-1 4
0 0 1 - 7 0
1 10 1
1 00 21 91 3
1 11 2
Operate (R, +R), ~|0 1 0 5T ~91 3
. 1 4
0 0 1 : -7 7 0



Hence the desired inverse is %[
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21 2 1 00
(iv) 2 21 010
1 2 2 0 01
R -Ry), (R, -2R) =
1
R.—(R +R
Operate — (51 2) ~ |0
0
Operate (R, + 3R;)
1 -1 0 1
0 10 -3
=
0 1
5

= (R+R).(R-R)~|0 1

A=

01||—k

2

-3

2

Do

2
-3

1

Lo
o

2

o

2|

o o oo

[a—y

1
1
1

-1
-2
2

10
-11
4

|
—_

| W= | Do

oo Gl o Do

-7
-2

|

ol G o @ Do

oo GGl w

21

Example 8: Find the singular matrices P and Q such that PAQ is the normal form of the

matrix A and hence find the inverse of A.

A =
Solution: Write A =
1 -1 -1
1 1 1|=
3 1 1
Operate (R, —Ry)
P (R -3R)

1
1
3

0
0

-1
1
1

-1

1.

[JNTU, 2002]
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1 -1 0 1 00 1 0 0
Operate (G -G), [0 2 0O|]=[-1 1 0[A]|0 1 -1
[0 4 0] [-3 01 00 1
[1 -1 0] [1 o0 o0] [t 0 O
Operate (R3—2R2), 0 2 0|=]-1 1 0JA|O0 1 -1
[0 0 0] [-1 -2 1] 00
1 00 1 00| [11 o0
Operate (C,+C), |0 2 0f=]-1 1 0[A|0 1 -1
0 00 -1 -2 1 [0 0
e 100 11 ? 0 11
Operate =%, |0 1 0|=|-5 5 O|A|0 1 -
2 2 2
0 0 0 1 =2 1 0 0
I 0]
11 ? 0 1 1 1 0
where |P|=—§ 2 0 zé;tO, |Q=10 1 -1{=1=0
-1 =2 1 00 1

ie. both P and Q are non-singular matrices

Now PAQ=I = PIPAQQ'=P'L Q! or A= (QP!

ool o [
Taking inverses, A'=PQ=|-5 5 0[|0 1 -1| =|-5
-1 =2 1|00 -1 -3

-2

1 2 3
Example 9: Reduce A= lz -2 1 3] to its first canonical form (Normal form) N and
3 0 14

1
compute the matrix PAQ = N.

[NIT Kurukshetra, 2008]

Solution: Since the matrix A is 3 x 4 i.e. with 3 rows and 4 columns, therefore, we shall take
L ,AlL , ,in such a way that I, , ; is employed for elementary row operations and I, , , for

elementary column operations.

Write A=TAI
1 2 3 =2 1 00 (1) ? 8 8
ie, |2 -2 1 3|=|/0 1 0]A
3 0 4 1 0 0 1 0 010
0 0 01
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1 2 3 -2 1 00 é (1) 8 8
Operate (R,—2R).(R;-3R).~|0 -6 -5 7|=|-2 1 0[A 00 10
0 6 -5 7 -3 0 1 00 0 1
1 0 00 100 é _i _3 g
Operate (G, -2G),(C;-3G).(C,+2C),~|0 6 5 7|=[-2 1 0|A
0 6 -5 7 301 0 0 10
o B 0 0 01
1 0 00 1 0 0] é _21 _3 g
Operate (R;-R,),~|0 -6 -5 7|=|-2 1 0|A
0 0 00 1 -1 1 0 0 10
T 470 0 01
1§ 32
1 0 00 1 00 1
Operate _EQ’ ~ 1 5 7|=[-2 1 0[A|0 -5 00
0 00 -1 -1 1 0 0 1 0
K 0 01
p 14 1
10001 00 203 3
Operate (G +5G,),(C,-7G,), ~|0 1 0 0|=|-2 1 0[A|0 & -5 5
0 00O -1 -1 1 0 0 1 0
0 0 0 1
I 0
[0 O]ZPAQ:,Where
p L4 1
1 00 3 3 3
P=|-2 1 0| and Q=]|0 —% —% %
-1 -1 1 0 0 1 o | aretwo non-singular matrices.
0 0 0 1

Example 10: Prove that the row equivalent matrices have the same rank.
OR
Show that the elementary row operations do not alter the rank of a given matrix.

Solution: If the matrices A and B are row equivalent, then B can be obtained from A by
elementary row operations. It follows that each row vector of B must be a linear combination
of the row vectors of A. So the row space of B must be a sub-space of row space of A.
Similarly, the row space A must be a row sub-space of the row space of B.

Thus, the row space of A is identical to the row space of B, and hence the dimension of the
row space of A (i.e. rank, r(A}) must be equal to row space of B (i.e. rank, r(B)).
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1.3 PORTIONING OF MATRICES FOR ADDITION, MULTIPLICATION AND INVERSE

Definition: For convenience, matrices are divided into sub-matrices by drawing lines parallel
to the rows and columns of the given matrices. Thus, the process of dividing a matrix into
sub-matrices enclosed into rectangular boxes formed by the intersection of lines drawn parallel
to the rows and columns of the given matrix is called ‘partitioning’ of matrix.

Addition and Multiplication by Partioning Method

If A and B are the two matrices of the same order and are conformable for addition and
product, then their sum and product can also be obtained by partitioning method as explained
below

1 2] 3 10 11 | 12
Let A 4 5] 6 and B= 13 14 | 15
7819 16 17 | 18

| A | A B |B
or if A= and B=
A | A B | B

We can add two matrices A and B identically partitioned provided the corresponding
sub-matrices A; and B, A, and B,, etc. of A and B respectively having the same order.

Thus, A+B=[2 ﬁngi %]:[212 ﬁii%}]

1 2 10 11 11 13
whereas A1+B1:|:4 5]+[13 14]:[17 19]’

3] [12] [15
aces[3] |5 )-)
Ag+By=[7 8]+[16 17]=[23 25]
A+ B, = [9] + [18] = [27]

11 13 15
17 19 21
A+B= which is same as if A and B are directly added.
23 25 27
For multiplication
1 001 (1) ? 8
Let A=[0 1 1 2| and B=

0 01 3 001
31 2
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1 0 0]1 (1) ? 8 R
then AB=|0 1 0|2 =[A A]
0 0 1|3 001 B
31 2
[ 1
=([LL]+|2{3 1 2]
3
1 0 0] [3 1 2
=({0 1 Of+[6 2 4
0 0 1] [9 3 6
(4 1 2
=16 3 4
|9 3 7
which is same as if A and B were multiplied without partitioning.

Inverse of a Matrix by Partition Method

25

By partition method, the inverse of a matrix of order (n + 1) can be obtained if the inverse of
the matrix of order n is known simply by adding one more row and one more column to this

nth order matrix.

Let the matrix A = [ajj] of order n and its inverse B = [bjj] be partitioned into submatrices

of indicated orders:

where p+q=n

Since AB= I, = BA, we have

Then provided A, is non-singular,
B = Al + (A" Ant (AAD, By = -(A;A ! }
B,=-(A' Ayn'h; Bi=n!

where n= Bl = A, - A; (A]' A)

~..(2)

Practically, ‘A" is taken of order (n - 1) and if inverse of A, ie. A is made known then

the inverse of A, i.e. a matrix of order (n- 1) + 1 = n can be made known.
To obtain A, the following procedure is used.
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4 & | &
4 &
S (R P
b b AL

On computing D;!, partition D; so that A, = [C,] and use (2) to obtain Dj;!. Repeat the
process on D), after partitioning it so that A, = [d,] and so on.

[1 3|3
Example 11: Find the inverse of |1 4| 3|, using partition.
1 34

Solution: Take A, =[1 3:|, A, = 3:|, Ay =11 3], A =[4]

1 4 3

4 -3 4 =3113] |3
= A = —
Now A= [_1 1], AT'A = [_1 1] [3] = [0]

&Alqjgﬂj f}{1ﬂ,

n=A-A; (A'Ay) =[4]-[1 3] [8] [1]

and nt=11]
Then, B = Al + (ATTA)n T (AATY

{j f}ﬁ%{1ﬂ

s B E i S
&=—(&ﬁ%ﬁr¥{_ﬂ
By=-n1(AArY) = [-1 0]

By = nt=[1].
7 -3 -3
Thus Al:[g3 gz]: -1 1 ol

4 -1 0 1
1 2 31
Example 12: Find the inverse of A= 1332

ple 1& 12 4 3 3]

1111
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1 2 3
Solution: Step (i) Take D,=|1 3 3] and make partitions so that
2 4 3

ol 2} ) e
oo o2 a2 ABHY
aar=fz 43 32 o

n-A-a(a7A)-[31-[2 ][5 |1

1
and n'= [—g]

12

SR

Step (ii) Partition A so that

_ 1
Now Al §[

n=A-Ay (AT A) =[1]-[1 1 1]3 [0] [1]
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and nt=[3]

Then, B = A"+ (AT A)n A A
1"3 -6 3] [o] ,
=2[-3 3 0|+3| 3|8]5[2 -3 2]
3_2 o 1| 3|

0
B =-(AlA)n" | -3
1
B =—(AAT =—[2 -3 2]
By=m=[3]
1 -2 1 0
4 o |B B 1 -2 2 -3
and therefore A —B—[B3 B4] 0 1 -1 1
-2 3 -2 3
Example 13: Compute the inverse of the symmetric matrix
[ 2 1 -1 2
1 3 2 -3
A=l 2 1
2 -3 -1 4

Solution: Step (i) Consider the first symmetric matrix

2 1]-1
D, = 1 3| 2| partitioned, such that
-1 2|1

Alz—i é] AZ:[_zl], A =[-1 2], A =[1]
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n=A4A-4; (A1 A)

~[1]-[1 z][‘}]:[_z] and v =[5

. _}] [—% [1 1]

1
l

Then B =

r
|
= o= w
L

l
1
l

o Do G| =
+
|
Il
—_
o"—‘
|
W =
|
—_ W
| S—

1 3 -5
and Dit=1g| 3 -1 5
-5 5 -5
Step (ii): Now consider the matrix A partitioned, such that

2 1 -1 2
A=l 13 2, A=|3A=[2 3 -1]. A=[4]
12 1 1

1 2 5 -1 1 -1
then B=1g _? -1 5] B=qg|2

AlzB:[Bl BZ] 115 -1 5 2|
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= W w
W o= W

1
Example 14: Find the inverse of A=[1 ] by partitioning.
1

Solution: We can't take A, = } 2] since it is singular.

Take R,; A = B (say),
where R, is an elementary matrix obtained by elementary row transformation of unit matrix.
On applying B! on both sides,
B'R,A=B!'B=1 or B'Ry=A"1

7 -3 -3
On finding, B'=|-1 1 0], we get
-1 0 1]
[ 7 3 -3][1 0 0 7 -3 -3
Al=|-1 1 00 1|=[-1 0 1
-1 0 1ffo 1 0] [-1 1 0

Thus, if the (n - 1)th order square minor, A, of n-square non-singular matrix A is singular,
we first bring a non-singular (n - 1)-square matrix into the upper left corner to obtain B, find
the inverse of B, and by the proper transformation on B, obtain A™.

1.4 TRIANGULARIZATION OF MATRICES (FACTORIZATION OF MATRICES)

The process of factorization of a square matrix A (say) into the product of lower triangular
(with unit diagonal elements) and upper triangular matrices, provided all principal minors
of A are non-zero is called as Triangularization of matrices.

Eg. if A = [a;] is a square matrix of order 3 with

a. a &) & A
a, #0, all alz 20 and |a, a, a,|z0

b & &y Ay

1 0 0 W, U, U,

L L, 1 0 0 uy

Then A= LU,
Inverse By Doolittle Triangularization Method

As defined above, a square matrix A can be written as A= LU ..(1)

where L is the lower triangular matrix and U is the upper triangular matrix.
From relation (1), we can write

Al = (LU)’I = 11 ...(2)
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We also know that LIt = 1, ie. if we take L1 = B
(which is also a lower triangular matrix)

then LI1=IB=1
(1 0 o][p, 0O O 100
or 121101;21@20:010
[ by L, Ll|by by by 0 01
[ b, 0 100
| bibyy + Loy + by 321&2+b32 bss 0 01

On equating, we have
byy = by = by =1
Lybyy + by =0 = by =-Iy

Lybyy + Ly by + b3y =0 = Ly 1+ by (=) + by =0 = by = -k + Il

1 0 0
Hence L'!'=B= —b, 1 0/[is completely made known.
—ky+ bk, Ly 1

Again, if we take U = C (an upper triangular matrix) then
Uu'l=U0C=1

uy, u, us(|G; G, G 1 00
e, |0 Wy wy|| 0 G Gyf=(0 10
0 0 wu,flo 0 G, 0 0 1

—Uncu Gy + Gy 1y G+ 1, Gy + 153Gy 1 00
or 0 th, Gy Uy Gz + Uy, Gy =0 10
0 0 1, Cs 00 1

On equating, we get

1
u,G,=1= Cn:T
1
G =1 = Gy =—
UGy =1 = Gy =——
w,Cp + U,Cpy =0 = 1,Cp=——2 = C,=-—12_
11412 T Uplap 11412 Uy, 12 Uty
uQ+uC3:0:>uC2:_ﬂ = Cp=- s
ho oy T thsLag b2 Las s 3 U, Uy

31
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1 (u, u,u
UGy + UGy + 143Gy =0 = Gy = _@(ﬁ_ﬁ) ...(13)

Thus U = C is completely known and hence we can find A by putting the values of L1
and U™

Note: This technique of finding inverse is also called Crout’s Method, if we take

by 0 0 1wy s
L= 121 122 0 and U=| 0 1 s

Example 15: Use Crout’s triangularization (Factorization) method for finding the inverse

1 2 3
for the matrix |3 2 1.
2 1 3

Solution: Let the given matrix be denoted by A = [a;] so that

a, a, a, 1 2 3

A=|a, a, as=[3 2 1 (1)
ay Ay ay (2 1 3

Then by definition of triangularization, we can write

A=LU ~..(2)
(1 0 0] U U, g
where L=|L, 1 0| and U=|0 1wy u,
_131 by 1 0 0w

are lower triangular (with unit diagonal elements) and upper triangular matrices respectively.

1 2 3] [1 0 O]fw, u, u,
SR T N T R s -0
Ullzi’ d U =2, U3 =3
3= Ly, 2= Ly, + Uy, 1 = Lty + Uy .4
2 = Ly, 1= Lyuy, + Lyuy, 3= Iy upy + Iypiyy + Uy

Solve these equations for L), Ly, Ly, Uy, Uy, Usy

1 00 1 2 3
L=|3 1 0| and U=|0 -4 -8
3 0 0 3
2 7 1
b, 0 0] G Gz G3
Now if L'=B=|b, b, 0| and U'=C=[0 ¢, ¢,
by by, b33_ 0 0 g
1 0 0f[[n, O © 1 00
then LI'=I =3 1 0||b, b, O0(=[0 1 0
, 3 1 |lba By By] |0 0 1
4
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On comparing both sides and then solving for by’s,

b, 0 O 1 00
L'=B=1|b, b, 0 [=[-3 10
by by by| |1 3 -0
4 4
Similarly UU'=1=U'U
(¢, ¢, o;][1 2 3] [1 00
or 0 ¢, o||0 4 -8|=|0 1 0
[0 0 ¢;]|0 0 3] [0 01
[¢,, 2c,-4c, 3¢,-8q,+3c,] [1 0 0
[0 0 RToW 0 0 1
Comparing respective elements on both sides and then for solving ¢;’s, we get
1 1
b7 3
1 2
- C= =+ _£&
Ul=C=|0 1 3
1
0 0 3
Now Al=(@y'l=U'L'=C B
1 1 5 1 1
g g b % 12 43
1 2 7 1 2
1 1 el - £ i _£
Al=|0 i 73 3 1 0|= o 4 “3f
{1 3 1 1 1
00 3|7 ¢l |12 1 3
1.5 VECTORS [PTU, 2006]
Definition: Any physical entity having n components say x;, x,, ..., X, written in a certain

definite order is called a vector. Vector is briefly, in general, denoted by a single capital
letter X.

Thus, by an n-dimensional vector X over F''we meant an ordered set of n elements x; of F, as
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denoting row vector or column vector with x;, x,, ..., x,, as Ist, 2nd, ..., nth elements
respectively.
The vectors X;, X,, ..., X, are said to be Linearly Dependent if there exist numbers A, A,,
... A, not all zeros, such that
MX+ X+ L+ AX =0 (D

If no such number, other than zero, can be found, the vectors are said to be Linearly
Independent.

If &, # 0, we can write the above equation (1) as
Xi = WX, + U Xg + ..+ WX, ~..(2)

Clearly, the vector X is the linear combination of the vectors X, X;, ..., X,

Inner Product of Vectors: In general, all vectors are real and V,(R) denote the space of all
real n-vectors.
EX=[x,x,..x]andY = [y, yp ..., ¥I’
are two vectors of V,(R), their inner product is defined as a scalar
X -Y=xy,+ XY+ ... + X, .3
which in actual practice is carried out, thus,
X - Y=XY=YX
In vector analysis, the inner product is called the dot product.
Eg forvectors X;=1[1,1,1]", X,=1[2,1,2]", X;=1[1,-2 1],

X -X,=12+1-1+1-2=5
we have X -X;=11+1-(-2)+1-1=0 .4
X-X=11+1-1+1-1=3
Orthogonal Vectors: Vectors X and Y are said to be orthogonal if their inner product is zero.
Clearly, vectors X; and X; of the above example are orthogonal.

Normalization of a Vector: If we associate a non-zero vector X to a unique unit vector U
obtained by dividing the components of X by || X||. This operation is called normalization
of a vector.

Thus to normalize a vector X = [1, 2, 3], divide each component by ||X|| =J1+4+9=414

) . 1 2 3
and obtain the unit vector [_\/ﬁ T _\/ﬁ] where || X|| denotes modulus of vector X.

Example 16: Are the vectors x; = (1,2, 4), x,=(2,-1,3) x3,=0(0, 1, 2), x, = (-3, 7, 2) are
linearly dependent? If so, find the relation between them.

Solution: It the given vectors are linearly dependent then there exist scalars A, A,, A5, not all
zero, such that

Xy + ApXy + AaXa + AyX, = 0 (D
}\/1+27\/2—3}\/4:0 ...(j)
implying 2hy = Ay + Ag+ Thy=0 (i) ..(2)
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Thus we get three homogeneous equations in 4 unknowns.
For solving them, operate 2(ii) - (iii), we get

7‘2:%7‘4 . (iv)
Again take 4 (i) - (iii),
Shy— 2hg— 14y =0 or Ay-=24, ...(v)
Lastly, on substituting values of A, and A, from (iv) and (v) respectively in (i), we get

9 ;
7\11:_5}\14 ...(VI)
Thus on solving for non-trivial solution, we get proportional values of the scalars as
9, -12, 5, -5 respectively and get the desired relation as:

9x, - 12x, + 5x3 - 5x, =0 ...(3)

Alternately: Using x; to reduce the first component to zero, we get
(2x;-x)=1(2,4,8-02,-1,3=(0,5,5)

and (Bx; +x) =(3,6,12) + (-3, 7,2) = (0, 13, 14)
Now using x; to reduce the second component to zero, we get
(2x; - x,- 5x3) = (0, 5, 5) - (0, 5, 10) = (0, 0, -5) 4
and (B3x; + x, - 13x5) = (0, 13, 14) - (0, 13, 26) = (0, 0, -12) .5

Now multiplying (4) by 12 and (5) by 5 and take the difference of the two, we have
122x, — x, - 5x3) - 5(3x; + x, - 13x3) = (0, 0, 0)
= Ox, - 12x, + 5%, - 5x, =0
Hence the given vectors are Linearly dependent.

Observations: On applying elementary row operations to the vectors x,, X,, X;, X,; we see that the matrices

X X X
X X X
A=|"?2|:B=|"? and C=|"?
X3 X3 X3
Xy 2X1 —Xp)— 5X3 9X1 — 12X2 + 5X3 — 5X4

have the same rank, as we have been able to obtain a null vector (9x; - 12x, + 5x; — 5x,) only because x;, X,, X5, X;

are linearly dependent and x; can be expressed as a linear combination of x,, X3, x4 viz. %(1 2x) —5x3 + 5X4).

Similar results will hold for column operations and for any matrix.

Note: 1t should be noted that if we have n-component vectors, at the most i could be linearly independent, as

illustrated below:
1 2 3 1 2 31
2 3 44, [2 3 4 2
3 57 35 7 4
Ist IInd

The rows of the Ist matrix are linearly dependent while that of IInd are linearly independent.
Since the Ist matrix is formed from the Ist three columns of the IInd matrix, we shall apply the row
operations only to the [Ind matrix.
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®R-R) 1o 5 5
(R-2R) 1o o o0 1
We see that in the given matrices, Ist is of rank 2 and the IInd is of rank 3. Hence the rows of the Ist matrix
are linearly dependent, while those of [Ind are not.
It follows that if a given matrix has rlinearly independent rows and the remaining rows are linear combination
of these rows, then the rank of the matrix is r. Conversely, if a matrix ‘A’ is of rank r, it contains r linearly
independent rows. The remaining rows of ‘A’ (if any) can by expressed as linear combination of these rows.

Example 17: Are the following vectors linearly dependent? If so, find the relation between

them:
(1’ 1’ 1’ 3)’ (1’ 2’ 3’ 4)’ (2’ 3’ 4’ 9)‘

Solution: For linearly dependence of the vector Xx;, Xx,, x; we have the relation

MX + hoXy + Xy = 0

implying A+ 2hy + 3k =0 ...(i)

From (i), we have A; = -(A, + 24y ... (V)
Putting (v) into eqns. (iii) and (iv), we get
Ao+ =0 ...(V])
and Ay +3hy=0 ...(vi))
From (vi) and (vii), we see &, = 0 = Ay ...(Vii])
Further, on using (viii) in (v), we see A; = A, = A3 = 0.
Thus x;, x,, x; are not linearly dependent as there are no such non-zero ;s which put
AX) + AoXy + Aaxy = 0.

1.6 CONSISTENCY AND SOLUTIONS OF LINEAR EQUATIONS: ROUCHE’S
THEOREM

Definition: Consider a system of m linear equations in the n unknowns x;, x,, ..., x,, i.e.

X tayX%t...+ta,x, =0
X T ApXy t... T AX, =0y
Xy + 8ppXp t. Tt Fpp X, = O
in which the coefficients (ajj’s) and the constants (o;s) are in F.
By a solution of the system in F, meant any set of values of X, x,, ..., x,, in F'which satisfy
simultaneously these m equations.
When the system has a solution it is said to be ‘Consistent’, otherwise ‘Inconsistent’.
A consistant system has either just one i.e., unique solution or infinite many solutions. The
two systems of linear equations over F in the same number of unknowns are called
‘equivalent’ if every solution of either system is a solution of the other.
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In matrix notations, the system of linear equations (1) may be written as:

d Q.. a4, || X oy
&y &y || X | O

aml amZ amn Xn (X’H

or, more precisely, as AX = o ...{2)
where A = [ajj] is the coefficient matrix and o = [y, O, ..., O]
Now consider the augmented matrix ‘K’ (say)
&y ;.. 8,04
K=| % %2 %0 [A OL]
aml 3m2 amn' n

Rouche’s Theorem: The systems of equations (1) is said to be ‘consistent’ if and only if the

coefficient matrix ‘A’ and the augmented matrix ‘K’ are of the same rank, otherwise,

‘inconsistent’. This is known as “Rouche’ Theorem”. [NIT Kurukshetra, 2008]
We consider the following two possible cases:

Case (i) Rank of A =rank of K= r (r> mor n whichever is smaller) means set of equation (1)
can, by suitable row operations, be reduced to

bix +box +. .+ by, =By
0X1 +hyx +...+ bZHXn B,

0X1+0X2+ +b X B

and the remaining (m - 1) equations being all of the form.
0x; +0x, + ...+ 0x,=0

The equation (3) will have a solution, through (n - r) of the unknowns, may be chosen
arbitrarily.

The solution will be unique only when r= n (= m)

Hence the equations (1} are consistent.

Case (ii) Rank of A (i.e. n} < rank of K.

Let the rank of K be (r + 1). In this cases, the equations (1) will reduce by suitable

row operations to
by x; + byyxo + ...+ by x,= by, ]

0x; + byx, + ...+ by x, = by,

O0x; +0x, + ... + b, x,= b,

Ox, +0x, + ... +0x,=b,, |, |
and the remaining m - (r + 1) equations are of the form

0x; +0x, + ... + Ox, = 0.
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Clearly, the (r + 1) equation cannot be satisfied by any set of values for the unknowns.
Hence the equations (1) are inconsistent.

Working Rule for Testing the Consistency of System of Linear Equations
Find the ranks of the coefficient matrix ‘A’ and the augmented matrix ‘K’ by reducing A to

the triangular form by elementary row or column operations. Let the rank of A be r and that
of Kbe r’.
(i) If r # r’, the equations are inconsistent, i.e. there is no solution.

(iiy If r=r'< n, the equations are consistent and there are infinite many number of solutions.
[Giving arbitrary value to (n - r) of the unknowns, we may express the other r unknowns
in terms of these.]

(iiiy If r=r" = n (the number of unknowns), the system possesses a unique solution.

Consistency of System of Linear Homogeneous Equations
Ifm=nand B, =8,=...=B,=0

1% A%+ asX; ..+ a,X, =0
X T ApXy T A o+ X, =0
G X, + &g Xp + B X ot Xy =0
This system is always consistant and have either unique or infinite many set of solutions.
Since here is no K (augmented matrix) and, therefore, no question of inconsistency.
Thus if ‘A’ is non-singular, i.e.|A| # 0, the only solution will be trivial one (i.e. unique
solution), viz. X, X, ... = X, =0
But if ‘A’ is singular, i.e.|A|= 0, the system of equations given in (4) will have infinite
many solutions.

Ix+4y+5z=a,
Example 18: Show that the equations 4x+5y+6z=b, } do not have a solution unless
5x+6y+7z=c

a+c=2b [Raipur, UP Tech, 2004; NIT Jalandhar, 2005; KUK, 2006]
Solution: The above system of equations in matrix form can be represented as

3 4 5|[x| |a
4 5 6| y|=|b| or more precisely AX =D
5 6 T|lz| |c

For the above system to possess a solution, we must have the rank of ‘A" and that of ‘K’

equal.
Therefore, to test the rank of A and K, we write A and K collectively as:
345 : a 0 0 0 : (atc)-2b
K=[A:D]=|4 5 6 ~ 14 5 6 : b
5 6 7 ¢ 5 6 7 : ¢

by operation (R, + Ry - 2R,)
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Clearly, from above, the rank of the matrix ‘A’ is 2. So for the system to be consistent the
rank of ‘K’ should be 2, which is only possible if (a+ ¢) - 2b=0, i.e., if (a+ ¢) = 2b.

With above condition, the system of equations will have infinite many solutions, since
ra=rxy=2<n(=3).

Example 19: Investigate for what values of A and p, the simultaneous equations
X+y+z=6
x+2y+3z=10
X+2y+Az=|

have (i) no solution, (ii) unique solution, (iii) infinite many number of solutions.
[UPTech, 2006; NIT Jalandhar, 2004; PTU, 2005, 2007, Sambalpur, 2002]

Solution: Express the above system of equations in matrix form, AX = D,
where A is the coefficient matrix.

The system admits a unique solution if and only if the matrix ‘A’ is non-singular, i.e. has
the same rank as the number of variables, viz. 3.

or =1(2xA-2x3)+1(3-A)=0, ie A1#3

—

1
2
2

> w =

Thus for unique solution, A # 3 and u may have any value.
If & = 3, the system will not possess any solution for the values of p other than 10 for which
the matrices ‘A’ and ‘K’ are not of the same rank.

11 1: 6
1 23 : 10
1 23 w=10
Clearly, for A = 3, u # 10 the systems does not possess any solution, since the rank of ‘A’ is
2 whereas that of ‘K is 3.
For A = 3 and u = 10, the rank ‘A’ and that of ‘K’ is the same, viz. 2. Hence in this case
system possesses an infinite many solutions.

Example 20: Show that if A # -5, the system of equations

Ix-y+4z=3
x+2y-3z=-2 ; has a unique solution
6x+5y+iz=-3

If A = -5, show that the equations are consistent. Determine the solution in each case.
[KUK, 2001; UPTech, 2004]

Solution: The system of equations is consistent if the rank of ‘A’, the coefficient matrix and
the augmented matrix ‘K are the same, and will have a unique solution if rank of ‘A" = rank
of ‘K’ = n = 3 (the number of variables).
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So in order to have the rank of ‘A’ =3, |A| #0

3 -1 4
N 12 310 = 1@r+10) 20 = A =-5
6 5 A

For infinite many solutions, we must have rank ‘A’ = rank ‘K’ (augmented matrix) < n = 3.

3 -1 4 : 3
Check therank of ‘A: K, |1 2 -3 : =2

(R—3R) 0 -7 13 : 9
Operate ' 12 3 =2
(R-6K). lo 7 13 : 9

0 -7 13 : 9
Operate (R;,-R), ~|1 2 -3 : -2
0 0 0. O

Clearly, rank ‘A’ =Rank ‘K'=2<3=n

Now from above, we have ~Ty+13z=9
X+2y-3y=-
4

Further, if z= 0 then x= nd y=

7
let z= k which = y:( )and X— (4-5k)

3 -1 4 :
Alternately é 2 -3 _2

5 A : 3
3 -1 4 : 3
Operate (R3 -R —3R2), ~|11 2 -3 : 22
0 0 A+5 : 0

For unique solution; (A + 5) should not be equal to zero, i.e. A #5.
Clearly if (A + 5) = 0, i.e. the rank of the coefficient matrix ‘A’ and ‘K’ is 2 which is less than
n = 3, the system will possess infinite many solutions.

Thus if (A + 5) = 0, then we have nearly two equations

3x—y+4z=3
x+2y-3z=-2
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From these two equations, three variables x, y, z are to be found

_ X==
Let z = 0, then 3x—y=3 } = 7
X+ 2

4 9
Thus, the desired solution is (7 ,—7,0)

But, if we take z = k (some arbitrary constant), we get infinite many sets of values satisfying
the given system of equations.

x+y+z=1

Example 21: For what values of k the equations 2x+y+4z=k ; have a solution? Solve
Ix+y+10z=K

them completely in each case. [KUK, 2005; PTU, 2005]

Solution: The system of given equations in matrix form is written as:

11 1][x] [1
2 1 4||yl|=|k
41 10||z| |

Precisely AX = B, where A is the coefficient matrix.
The above given system will possess a solution if it is consistent, i.e. if the rank of A and
B are same, and if equal to the number of variables involved, there will be a unique solution.
In order to check the rank of A and K, write

11 1: 1

21 4 : k

4 1 10 : K
11 1: 1
Operate (R,-3R,+3R) ~ (2 1 4 : k
111 k¥ —-3k+3

Hence clearly the rank of ‘A’ is 2 whereas that of ‘K’ = 3

But if k2 - 3k + 3 is taken equal to 1, then Ist and IIIrd row of ‘K’ becomes the same and thus
the rank of 'K’ reduces to 2.

In this case, the system possesses an infinite many solutions.

So, K-3k+3=1o0or B-2k-k+2=0, ie. k=21
Case I: when k = 1, then from above,

x+y+z=1

2x+ y+ 4z= 1} which on solving for x and y in terms of z gives x = -3z, y = (1 + 22)

Case II: when k = 2, then from above system of equations
x+y+z=1

2+ y+Az= 2} which on solving for x and y in terms of z gives x = (1 - 32); y = 2z
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2x+6y+11=0
Example 22: Examine the consistency of the system of equations 6x+20y-6z=-3
6y-18z=-1

Solution: Write the system of equations in the matrix form, i.e. AX = B where A is the
coefficient matrix.

2 6 0] x -11 2 6 0 : -11
6 20 b6 y|=| -3 ¢ 6 20 6 : -3
0 6 0 6

o]

-18 1| z -1 -18 : -1
(2 6 0 : -11
Operate (R,-3R), ~[0 2 -6 : 30
0 6 -18 : -1

[2 6 0 : -11
Operate (R,-3R,), ~ |0 2 -6 : 30
00 0 : 91

Clearly, the rank of A is 2 whereas that of ‘K’ (the augmented matrix) is 3.
Hence the given system does not possess any solution.

2x; — 2x, =0, 2x, - x,—x,=0
Example 23: Solve the system to equations s %N }

x+2x-x,=04x -x,+3x,—x, =0

1 02 2
2 -1 0 1
Solution: The coefficient matrix A is givenby |1 o o _
4 -1 3 -1
1 0 2 -2
' 0 -1 -4 3
Operating (R, - 2Ry), (B, - R)) and (R, -4R)), ~ 0 0 0 1
0 -1 -5 7
1 0 2 -2
' 0 1 4 -3
Operating (-1)R; and (R, <> R,), ~ 0 -1 -5 7
0 0 0 1
10 2 -2
) 01 4 -3
Operating (R+R,) ~ |y o 1 4
00 0 1

Clearly, r(A) = 4 = number of unknowns.
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Hence the equations have a unique solution which is trivial one,

Example 24: Solve the homogeneous equations
3x+4y-z-6w=0, 2x+3y+2z-3w=0
2x+ y-14z-9w=0, x+3y+13z+3w=0

34 -1 -6
\ - . 2 3 2 3
Solution: Let A be the coefficient matrix then A= 9 1 14 -9
1 3 13 3
1 3 13 3
, 23 2 -3
Operating (R <> R,) ~ 5 1 _14 -9
3 4 -1 -6
1 3
Operating (R, - 2Ry), (R; - 2R)) and (R, - 3R)), we get ~ 8 :2
0 -5
1 3 13 3
1 0 1 8 3
Operating (—g) Ryand (R - Rs), ~ 0 -5 —40 -15
0 0 0 0
1 3 13 3
. 01 8 3
Operating (R; + 5R,), we get A~ 00 0 0
00 0O

ie.

13
-24
—40
—40

43

[JNTU, 2002]

-15
-15

Clearly, r(A) = 2 < the number of unknowns which is 4. Thus, the system of the equations
will have infinite sets of solutions including the trivial solution x= y=z= w=10.

The reduced system of equations is

x+3y+13z+3w=0
y+38z+3w=0

By giving arbitrary value to any two variables, say z= ¢; and w = ¢, and solving the

equations for the remaining variables x and y, we have

x=11¢ +6¢,
}; - ;8C1 —3¢ , where ¢, and ¢, can take any value.
=G

wW=¢
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x+y—-2z+3w=0,
x-2y+z-w=0,

Example 25: Solve completely the system of equation 4x+y-—>5z+8w=0,
Sx—-Ty+2z—w=0

[NIT Kurukshetra 2005, 02]

Solution: Find out the rank of A (For non-trivial solutions)

[1 1 -2 3|[x 0
1 -2 1 -1||y]| o
4 1 -5 8f|lz| |0
5 7 2 -1f|w] |0
[1 1 -2 3 x 0
0 -3 3 -4 0
R-(R+R).R-Rly 7 5 Tgll%]=o
0 9 9 -12||w] |o
[1 1 -2 3][=x 0
0 -3 3 4 0
(R —3R,),(R;—4R)) 0 -3 3 4 i “lo
0 0 0 O0||lw 0

Clearly the rank of the ;natrix is ‘2" and it implies
X+y-2z+3w=0 ..}
3y+3z-4w=0 ...(i)

Let z= A and w= ; then from (ii), y=(§u—7»)

from (i}, X=(37» —1—33u)

giving infinite many sets of values of (x, y, z, w) for all possible values of A and p.

2x, - 2%, + X3 = \X
Example 26: Show that the system of equations 2 X, — 3x, +2X; = Ax, ; Can possess a non-
X + 2%, = \x;

trivial solution only if A = 1, A = -3, obtain the general solution.
[NIT KURUKSHETRA, 2005, 03, 02]

Solution: The given system of homogeneous equations can be written as:
2-Mx —2x +x=0
2x —(3+Mx,+2x,=0
—X; +2X, —AX; =0
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In order to have non-trivial solution, | A| should be zero.
2- -2 |
2 —(3+x) 2|=0
-1 2 —A
= C-NFB+MNEN -2x2]+ D2 (2) [2A+2] + ()3 x1[4-B+A)]=0
(-1)m*n je. sign of cofactor of an element in a matrix when m denotes number of rows
and n denotes the number of columns.
= MW+A2-5L+3=0
= A=1,1-3
Hence the system possesses a non-trivial solution only if A = 1, -3
Now for A =1, we have [A] [X] =0
X —2% +X =0
= 2x, —4x, + 2X; = 0} All the three equation are nearly same, viz. x; - 2x, + X3 =0
X +2x% —Xx,=0

X 2t—s
If ;=5 x,=tthenx; = Qt-s) .. [X|=| ¢

e s

Further, for A = -3, we have AX =10

5% - 2%, + X3 =0 (@
=  2x-0x,+2x=0 ... (i)
-X| + 2X, + 3x3=0 .. (i)
X % X3
By () and (ii), (Cg_3)=_8 = (-1-15)=-16 (10-2)=8
—t
= x=-t x,=-2t, x3=t .. X=|-2t|
t

1.7 SOLUTION OF LINEAR EQUATIONS BY CRAMER’S RULE AND ADJOINT
METHOD
I. Method of Determinants—Cramer’s Rule

Consider the system of non-homogeneous equations,

A X tap X%t +a, X, =0
4 X Tay X% t..+t&, X, =0,

or AX =
Ay X tap X t...tay, X, =0,
where A = [ajj] is the coefficient matrix and o = [0,] is matrix form of the scalars.
If the determinant of the coefficients be
& ap ---a
A= &2 - &

Ay g ... 8
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X &, dp -3y

then xA=% %2 &l here A=A

On operating (C; + x,C, + x,C; + ...), we get

XatX%a,t...+Xa, a,..4,
Xt X dyt...t X, &, &,...4

A= %% Xy &y ...y
Xdy t X dpt..+X,8, ap..4,
O ap...4a,
o, a a

xa=|% % bn
(X’H anZ' ann

or x| Al = [A]

where A; is the matrix obtained from A by replacing its Ist column with the column of
constants, i.e. by [o].

A
Similarly, X, :%, X3 :% SO on.
In general, x :w , where A (i =1, 2, ..., n) denotes the matrix obtained from A b
g i ‘A‘ 1 y

replacing its ith column with the column of constants [o].

2x, + X, +0x;,+Xx,=5
X +X-3x;-4x, =-1
3x, +6x, - 2x, +x, =8
2x; +2x, +2x, - 3x, =2

Example 27: Solve the system using Cramer’s Rule.

21 5 1
— ' |1 -3 4
Solution: We find |A|= 56 2 1~ 120,
2 2 2 3
where A is the coefficient matrix obtained form the above system of equations.
5 1 5 1
-1 1 -3 -4
Al=lg g =240
2 2 2 3

where A, is the matrix obtained from the matrix A by replacing its Ist column by column of
constants.
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2 5 5 1
1 -1 -3 4
and ‘AZ‘ = 3 8 -2 1 =-24,
2 2 2 -3
21 5 1
1 1 -1 4
‘A3‘23 6 8§ 1-0
2 2 2 -3
21 5 5
1 1 -3 -1
‘A4‘:3 6 2 g§= 9
2 2 2 2

where A,, A; and A, are the matrices obtained from the matrix A by replacing elements of

column 2, column 3 and column 4 by column of scalars (constants) respectively.
Thus,

X—|A3|— 0 =0 x_“&4‘__96_4

Example 28: In a given electrical network, the equations of the currents i, i,, i; are
i, +i,+i;=8
2i - 3i, — 2i, = -5 ; Calculate i; and iy by Cramer’s rule.
76, +2i, -5, =0

Solution: In matrix notations the above system of equations is written as below:

3 1 1][j 8
AX=Bor |2 -3 -2||i|=|-5
7 2 -5||j 0

with A as coefficient matrix and B as scalar matrix.
Then by Cramer’s rule, matrices A;, A,, A;, are

8 1 1 3 8 1 3 1 8
A=|-5 -3 2|, A=|2 =5 2|, A,=|2 -3 -5,
0 2 -5 7 0 -5 7 2 0

obtained from the matrix replacing its Ist, IInd and IlIrd columns respectively by column of
scalars.

3 1 1 8 1 1
|Al=2 -3 -2/=78, \|A|=|-5 -3 -2(=117
702 -5 0 2 -5

Now
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3 8 1 3 1 8
|A2|: 2 -5 -2|=178, \Ag\ =2 -3 -5/=195
-5 7 2 0
A A
Hence, i :%:%: 1.50 units and & 2%2%22.5 units.

II. Matrix Inversion Method or Method of Adjoint

If |A] #0, Al exists, then the solution of the system of equations given as
AX=qa, A= [ajj]

implying ~ ATAX= A'la.

or X:A*I(x:#(x.,with X=[x] and o = [0,]

For example, ‘A’ is a matrix of order 3 x 3, then

X 1 Ay Ay Ay ||y
X =A A, Ay Ay ol
X3 Ay Ay Aglog

where A, A;,, etc. are the co-factors of a;;, a,,, etc. and A is non-zero value of the determinant
of A.

Hence on equating the values of X, x,, x; to the corresponding elements in the product on
the right hand side of the above expression, we get the desired solution.
Note: The above method fails if ‘A’ is singular, i.e., if |A/= 0. It is also inapplicable when the number of

equations and the number of unknowns are unequal as in such situation A does not exist. Matrices can be
usefully employed to the theory of such system of equations.

Example 29: Solve the following simultaneous equations by matrix inversion method:

x+y+z=3
x+2y+3z=4 (1)
x+4y+9z=6

Solution: The above system of equations in matrix notations is expressed as

1 1 1|fx 3
L2 30y|=14] or AX=a ..(2)
1 4 9|z 6

From (2), we can have
X=Al ...(3)
where A exists if and only if |A| # 0

111
Now |A|=|1 2 3| on expanding by 1st row
1 49
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=1(18-12)-109-3)+1(4-2) =2 .4
Find adjoint A, which is the matrix obtained form the transpose of the matrix consisting of
cofactors of the matrix A.

Ay A Ay 6 6 2 6 -5 1
. A=|A, A, A,l=|-5 8 -3/ =|6 8 -2
Adjoint IS TR 6
joi Ay, Ay A |1 =2 1 |2 23 1 ©)
6 -5 1 |3 S
' - )
A*E&XA:%—G 8 —2/=l-3 1
| | 2 3 1 ! 31 ...(6)
)

w

x| [ 3 =5/2 1/2][3
Thus, X = A'Bimplies | y|=|-3 4 -1]|4

z 1 -3/2 1/2||6

=-3x3 +4x4  +(-1)6 =
1x3 +(=3/2)4 +(1/2)6

[ 3x3 +(-5/2)4 +(1/2)6 H
1
0

Hence x=2,y=1,z=0.

Example 30: By method of matrices, solve the following equations for x, y, zand w
x-3y+z=a
2x+y-w=h
3x-2y-z-2w=c
4x-y+3w=d

Solution: The given equations can be expressed in the matrix form, AX = B

1 -3 1 0flx a
2 1 0 -1|y]| [b
or 3 =2 -1 2|z |c
4 -1 0 3w d
1 -3 1 0
2 1 0 -1
Now [Al=l3 5, 3 =10
4 -1 0 3
2 17 2 71
AfledjointA_l -10 20 -10 O

Al T70| 38 43 -32 -7
6 16 -6 14



50

Engineering Mathematics through Applications

17 2

X 71 a
v| v a1n 1]-10 20 10 ofb
z =X=A"B 701 38 43 -32 -T||c
w -6 -16 6 14|ld
- _
75(2a+17b+2¢c+7d)
v Larap-o
vl —=(-a+2b-c
z| |1 ’
o %1(38a+43b—32c—7d)
I ﬁ(33+8b+3c—7d) |

Example 31: Using the loop current method on a circuit, the following equations are

obtained:

7i, - 4i, =12
44, +124, -6, =0
~ 6y + 14, = 0

By matrix method, solve for i, i, and ij.

Solution: Under this method the solution is possible only if the coefficient matrix is non-

singular, ie. |A| #0.

Find, A=

Now A=

Co-factors of a; in A" are found [

A—l

Hence X = A1B, where B is a scalar matrix [

—4
12
-6

—4
12
—6

_AdjointA 1
- |A 700

0
—6:7(168—36)+4(—56—0):7007&0
14

0 a a &
6(=|h b b
14 G 6 G

132 56 24
56 98 42
24 42 68
132 56 24

56 98 42
24 42 68

12
0
0
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i 132 56 247[12
s ||| 8 8]
- L 15362;( 1122++ 00++ (;) - L 15362;( 1122
700 24x12+0+0 700 24x12
C 132x12 396 . 56x12 168 . 24x12 T2

h="700 ~175' =700 ~175° B~ 700 " 75

x+y+z=3
Example 32: Solve the set of simultaneous equations x+2y+3z=4
2x+3y+4z=17

Solution: Here the coefficient matrix is singular in nature, hence the method of inversion is
inapplicable. Clearly, out of the above 3 equations, only two equations are independent, as
the equation at serial number Illrd is the sum of the first two.

Hence the given set of equations can be replaced by the set

X+y+z=3
x+2y+3z=4

The above two equations, which are in three variables cannot give a unique solution.
But, if we assume any one of the unknown arbitrarily, say z= k, then we write the equations
as

x+y=3-k
x+2y=4-3k

The coefficient matrix [1 o | of the above equations is non-singular, and its reciprocal is

2 -1
-1 1

x| [2 -1|[3-k] [2+k] B
Therefore, y|Tl-1 1)|4-3k]T|1-2k) (since X=A"'B)

So x=Q2+k, y=(1-2K), z=k
Hence by giving different values to k, get different sets of solutions.

Note: If we replace the 3rd equation, viz. 2x + 3y + 4z= 7 by 2x + 3y + 4z = 9, then we see that the coefficient
matrix is still singular, and the above set of values of x, y, z satisfies them, putting these values in the 3rd
equation viz.
2x+3y+4z=9, we get
22+ K +301-2k +4k=9,ie.7=9

which is impossible. Hence no set of values can be found satisfying all these equations. The reason is that while
the left-hand side of the 3rd equation is a combination of the first two (their sum), the right hand side does not
follow the same combination. Such equation is said to be inconsistent.
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1.8 EIGEN VALUES AND EIGEN VECTORS
Characteristic Equation: For every square matrix A of order n, we can form a matrix [A - Al]

with I as the unit matrix of order n. The determinant of this matrix equated to zero, namely
a-r & . &
B ko |

|A-AIl =0, or N (1)
G dp e G A
is called the ‘characteristic equation’ of A
On expanding the determinant, we may write this equation as
DA+ A Y A2+ k=0 ..(2)

where ki, k,, ..., k, may be expressed in terms of the elements a;.
The roots of the ‘characteristic equation’ are called Characteristic Roots or Latent-Roots
or Eigen values of the matrix A.

Note: A square matrix of order n will have n latent roots.

Characteristic Vector: Consider the linear transformation Y= AX ...{3)
which carries the transformation of a column vector X into another column vector Y by
means of a square matrix A.

In practice, several times, we need to find the particular vectors which transform into
themselves or to a scalar multiple of themselves.

Let X be such a vector which transforms to its multiple AX by the transformation (3).

Then AX=AX or AX-AX=0

ie. (A-ADX=0 4
The above matrix equation represents n homogeneous equations in n unknown say x;, x,,

cn X,

n

(@1 -M)x+a,%+...+a,x,=0
4%+ (2 —M)%+ B, %, =0
ie. ...(5)
Ay X+ dp %+ o+ (8, —A)%, =0
These equations will have a non-zero solution only if the coefficient matrix is singular, i.e.
if
|A-AIl =0 ...(6)
This is known as the characteristic equation of the transformation, and is the same as the
characteristic equation of the matrix A. This has n roots and corresponding to each root,
there exists non-zero solution,
X=1I[x,X, ... x)]
which is known as Characteristic Vector or Eigen Vector or Invariant Vector or Latent
Vector.

Note: For n distinct eigen values, there exist n independent eigen vectors. However, corresponding to two or
more repeated eigen values, it may or may not be possible to get linearly independent eigen vectors.

Further, if X, is the eigen vector corresponding to the eigen value, A, then it follows from (4) that cX, is also
a solution, where cis an arbitrary constant. Thus, the eigen vector corresponding to a root is not unique, but
may be one of the vectors cX,
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Properties of Characteristic Roots (Eigen Values)

(I) The sum of the n-characteristic values of an n-square matrix A is the sum of the elements

(ITT)

in the principal diagonal, i.e. if &, A, ..., A,, are the n-characteristic roots of an n-square
matrix A = [ay], (i=1,2,..,nj=1,2, ..., n then

M+ Ay + .o+ h)=(a +ay+ ...+ ay,).
We prove the result physically for a matrix of order 3.
4y Ay ay
Let A=|a, a, a,; | with characteristic roots A, &, A,
&y dyp  d

then the corresponding characteristic equation

a1, a3 s

&y Ay Ay,
Also if A, A,, Ay be the characteristic roots of A, then
A=A = 1P [ = M) - A) (A - Ag)]
= A+ A+ A+ Ay - .(2)
Thus, on equating the coefficients of equal powers of A on both sides of (1) and (2),
we have
(A + Ry + Ay) = (ay; + 2y, + a33)

1
If 1; be the characteristic roots of a matrix A, then 3, are the characteristic roots of the
1

matrix AL [PTU, 2005]
Let X; be the characteristic vector of A corresponding to characteristic value A; then
linear transformation,

AX, = &, X, .9
Operating A™! on both sides, ATAX, = A A X,
or =1 X)
_ 1
S @

which is alike equation (3).

1
Hence »- represents the characteristic roots of Al
1

1
If A; are the characteristic values of an orthogonal matrix A, then 7, are also the
1

characteristic values of A.

1
As we have just proved in the II case that if }; are the characteristic values of A, 3~

are the characteristic values of A™
Since the matrix A is orthogonal, i.e. Al= A"
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1
7, are the characteristic roots of A’
1

Again, the matrices A and A" have the same characteristic roots since the determinant
|A- Al and |A'- Al| are the same.

1
Hence 7 also represents the characteristic roots of A.

V) If Ajs (i = 11 2, ..., n) are the characteristic roots of a matrix A, then A™ are the
characteristic roots of A™.
Let X; be the characteristic vector of the matrix A corresponding to the characteristic
roots A, then by the linear transformation (3), we have
AX, = 1,X,
Multiplying both sides by A,
A2 X = AN X = A (AX) = A (A, X)), By above equation)

or AZX, = M2X, ..(5)
Again multiplying by A on both sides,
A3X, = AQZX) = 2 (AX) = 33 X, .(6)
and so on A"X, = ARX; (7
Hence AJ" are the characteristic roots of the matrix A™.
(V) If &, Ay ..., A, are the characteristic roots of an n-square matrix A and if k is a scalar
then A, - k, A, - k..., A, - k are the characteristic roots of the matrix (A - k).
If A, Ay, ..., &, are the n characteristic roots of n-square matrix A, then the
corresponding characteristic equation of A is given by
|A-AIl =0 ...{(8)
and the determinant value of the [A - Al] is
[A= M| = (D7 [ - A= Ag) o (b= 1) (9

Now on replacing A by (A + k), we have
[A- A+ B I = DA+ B - A+ B - X)) ... (A + B - &)
or [A-IH-AM| =CD"[A- R - B A-(y-B) ... A - (A, - B)] ...(10)
Clearly, equation (10) is identical to the equation (9), which represents the
determinant value in characteristic equation (8) of the matrix X correspondingly to its
eigen values A, A,, ....

Hence (A - ), (A - B, ..., (A, - k) would be representing the characteristic roots of
the matrix [A - Ik] with characteristic equation | (A - Ik - AI| =0

Theorem 1: Show that characteristic vectors corresponding to real and distinct characteristic
roots are linearly independent.

Solution: Let A;, A,, A, be three real and distinct characteristic (eigen) values and X;, X;, X,
be the corresponding characteristic (invariant) vectors of the matrix A.
Let us assume, contrary, that there exist scalars a, b, ¢ not all zero, such that
aX;+ bX, + cX3=0 (1)
Multiplying (1) by A, and recall that AX, = A, X, we have
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aAX; + bAX, + cAX; = aA X, + bA,X, + cAX; =0, as [A- Al]X =0 ..(2)
Multiply (2) by A, again, and obtain
aA2X, + DAZX, + eAZX, =0 ..(3)

Now writing (1), (2), (3) together as

01 1 10eX,O
O=
Q; )\g )\g %iz 0 0 ..(4)
1A A 3 [
Now we see that

1 1 1
IBI=A, A Agl=—(A =) (A, =A3)(As —A,) 20
AN N
Hence B! exists.
[aX, 0
Multiplying (4) by B results in, %xz E: 0.
X3

But this requires a = b = ¢ = 0 which is contrary to the hypothesis.
Thus X;, X,, X5 are linearly independent.

Theorem 2: If A be a non-zero characteristic root (eigen value) of the non-singular n-

1Al

square matrix A, then N is a charactristic polynomial of adjoint A.

Proof: For non-singular n-square matrix A, the ‘characteristic polynomial’

OA) = A=Al = A"+ s AL+ 5,A2 + L+ s AL+ (-1)" |A] ..(1)
where s, (r=1, 2, ..., n—1) is (-1)" times the sum of all the r-square principal minors of A.
Corresponding characteristic equation is given by
A+ S AL+ s A2+ L+ (1) JA] =0 ..(2)
and on the same lines
Il - Adj- Al= P+ 5"t + 5,002 + s p+ (1) Adj - Al ..(3)

where s, (r=1, 2, ..., n—1) is (-1)" times the sum of the r-square principal minors of Adj ‘A.
Thus by the property |adj A] = |A]"! and definition of s,
s =14 O
we have S :(‘1)n|A|5n—2,§
i 0 ~..(4)
i = (1) [Alss B
then [ul-adj- Al = ()" {1 " +s, ., - T+s, , "2 JA]

o+ S A2+ s A2+ A
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. Ou O opd™ oud, B
=(-1) §1+slg%g+---+sﬂg%g +(y B%EAEZI‘(H) 6
Now
Ao wO. (1 A an (LY A B
e Bes(f) e rsa3) (3] 148 -
and by equation (2), we have
Anf Df' %(—1)“%“ + N s A+ (-1 Al =0

Hence, @ is a characteristic root of adjoint A.

Theorem 3: Eigen values (characteristic roots) of orthogonal matrix A are of absolute value 1.

Proof: Let A;, X; be characteristic roots and associated (characteristic vectors) invariant vectors
of an orthogonal matrix A, then

X{ X = X{ (A" A) X; = (AX;)" (AX;), since for orthogonal A, A’A =1
0 Xi X = (NX)" (AX) = (A7 X)) X)) = AA; XX
or (1-AN) X X;=0 implies (1-AA;) =0, since x;x;#0
Thus Il =1

Theorem 4: Prove if A; # = 1 is a characteristic root and X; is the associated invariant vector
of an orthogonal matrix A, then X;” X; = 0.

Proof: For characteristic value A; and corresponding characteristic vector X; of the orthogonal
matrix A, we have

X X, =X (A" A) X; = (AX;) (AX;), (as A is given orthogonal)

O XX = (AX)” (ANX) = MK X, Using the transformation, AX; = AX;
O I-ANX X,=0
O Either 1 - AA) =0 or X X;=0 But Azl

Hence XX =0.

Theorem 5: For a symmetrical square matrix, show that the eigen vectors corresponding to
two unequal eigen values are orthogonal. [NIT Kurukshetra, 2004; KUK, 2004, 2006 ]

Proof: Let A be any symmetric matrix i.e., A" = A and A; and A, two unequal eigen values,
e, Ay ZA,

Let X; and X, be the two corresponding eigen vectors.

Now for A;, (A—-Al) X; =0
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or AX =X ()
Similarly AX, = AX, (i)
Taking the transpose of (ii), we get
(AX))" = (A Xy

XoA" = N X,) (as A, is an arbitrary constant)
XyA = NX) (Since A" = A)
Xy AX, = A X5 X,
Xy (AXq) = XX, (As AX; = M Xy)

A Xy Xy = AXo X
A =A)X; X, =0 But A;—A, %0

0 X;X, = 0
0, 0 .
X g( |:y1 0
If D and X, = gz a
3t
%, 0
0 XX =B Y. Vs Eg(z = Y1Xi +Y,2Y, +Y3Ys

E(s u

Clearly, (y;x; + Y,X; + YaXg) = _
This means, the two system of co-ordinates are orthogonal.

0 Hence the transformation is an orthogonal transformation.

&2 2 -30
Example 33: Determine the eigen values and eigen vectors of A= g 2 1 —6%
=1 -2 0

[NIT Kurukshetra, 2008]
Solution: The characteristic equation,

-2-A 2 -3
2 1-X -6/=0 or A +AN2-21A-45=0
-1 -2 =A

O  The roots of above equation are 5, -3, -3.

Putting A = 5, the equations to be solved for x;, X,, X; are [A - Al]x =0
i.e. —/X+2y-32=0, 2x-4y-6z2=0, —x-2y-5z=0.

Note that third equation is dependent on first two i.e. R, + 2R, =~ R,

Solving them, we get x =k, y = 2k, z = -k

Similarly for A = -3, the equations are

X+2y-32=0, 2x+4y-62=0, Xx-2y+3z=0

Second and third equations are derived from the first. Therefore, only one equation is

independent in this case.
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Taking z =0, y = 1, we get x = -2. Again taking y =0, z = 1, we get x = 3. Two linearly
independent eigen vectors are (-2, 1, 0) and (3, 0, 1). A linear combination of these viz.
(-2 + 3k, 1, k) is also an eigen vector.

o6 -2 20
Example 34: Find Eigen values and Eigen vectors for A= %2 3 —1%
02 -1 3

Solution: The characteristic equation,

6-A -2 2
[A-Al] =0 O -2 3-A -1|=0
2 -1 3-A
A3+ 12M\? = 36\ + 32 =0,
O A =2, 2,8 are the characteristic roots (latent roots).
Considering [A — 8I]X = 0, we may show that there exists only one linearly independent
solution

020
10
0,0
o-+d

so that every non-zero multiple of the same is a characteristic vector for the characteristic
root 8.
For the characteristic root 2, we have

04 -2 20x0

[A-211X=0 O E—; _1 —igggzo
or 4x -2y +22=0 (1)

2X+y-z=0 ... (i)

2Xx-y+2z=0 ... (i)

which are equivalent to a single equation.
Thus we obtain two linearly independent solutions, may take as

310 nin
EOE and E?B
020 %)D

The sub-space of V, possessed by these two vectors is the characteristic space for the root 2.

ASSIGNMENT 2

1. The characteristic roots of A and A" are the same.

2. The characteristic roots of A and A’ are the conjugates of the characteristic roots of A.
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3. If Ay, Ay ..., A, are the characteristic roots of an n-square matrix A and if k is a scalar,
then kA,, kA,, ..., kA, are the characteristic roots of KA.

4. If Ais a square matrix, show that the latent roots of ‘A’ are identical.

1.9 LINEAR TRANSFORMATIONS AND ORTHOGONAL TRANSFORMATIONS
I. Linear Transformations

Let P be a point with co-ordinates (x, y) to a set of rectangular axes in the plane-xy. If we take
another set of rectangular axes inclined to the former at an angle 8, then the new coordinates
(X', y") referred to the new system (see the geometry) are related with x and y by

X =ON'=ON +NN'=(xcos@+ysin8) J
Y =MP = MP - MM = (xsin@+ycos6)g (1)
A more general transformation than (1) will be obtained when the new axes are rotated

through different angles 6 and ¢, and then angle does not remain a right angle.
So, the most general linear transformation in two dimensions is

X=ax+hy[Q
y=ax byl @
Expressed in matrix notation, thus

XO_@& bOxO
HE B bHYH -()
More precisely, Y = AX, where X is transformed into Y.
More general, the relation Y = AX,

O (o by ...k O X O
Ly, ...k, U 5(25
0

Y’ AY
AN

Y=0'0 A= 0 X=0
0O e 0 ot
a7 By kG B0

gives a linear transformation in n dimensions.

This transformation is linear because the
relations A(X; + X,) = AX; + AX, and A(bX) =
bAX, hold for transformation.

If the determinant value of the transformation 0
matrix is zero, i.e. |A] = 0, the transformation <
is termed as ‘Singular-transformation’, _
otherwise, ‘non-singular’. Fig.1.1

Non-singular transformation is also called ‘regular-transformation’.

Corollary: If Y = AX denotes the transformation of (x;, X,, X3) to (y;, ¥,, ¥3) and Z = BY
denotes the transformation from (y,, y,, y3) to (z;, z,, z;), thus follows:

Z = BY = B(AX) = BAX.

02 1 00 0 1 10
If A=Uo0 1 —2%3:& 2 30
H1 2 1§ H 3 s{
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then the transformation of (x;, X,, X3) t0 (z;, Z,, Z3) is given by Z = (BA)X, where

01 1 1M2 1 00 O1 4 -10
BA=U1 2 3o 1 -20=0-1 g9 -10

H1 3 s 2 1 Br 12 f

Observations: It is seen that every square matrix defines a linear transformation. Further more, it is possible
to write the inverse transformation X = A™Y for only non-singular matrix A.

II. Orthogonal Transformations

A transformation from one set of rectangular coordinates to another set of rectangular

coordinates is called an ‘orthogonal transformation’ or in other words, the linear

transformation Y = AX is said to be orthogonal, if matrix A is orthogonal, i.e. AA" = | = A'A.
Thus, an important property of this transformation is carried out only if transformation

matrix is orthogonal or vice versa.

0O
N — B(ZD_ 2 2 2
We have XX =B X X HI 0= X +X5 +...+ X
oo
B0
WU
imi . %IZD 2 2 2
Similarly, YY=B1Y, ... Vo HOOF YD Y5 +...+ Y,
il

[l
Bn8

O If Y= AXis an orthogonal transformation, then
XX =YY = (AX)" AX = X'A'AX = X"(A'A)X
which is possible only if A'A=1=AA"and A= A"
Hence a square matrix ‘A’ is said to be orthogonal if AA" = A'A and A = A"
Observations:

(i) A linear transformation preserves length if and only if its matrix is orthogonal.
(if) The column vectors (row vectors) of an orthogonal matrix are mutually orthogonal unit vectors.
(iliy The product of two or more orthogonal matrices is orthogonal.
(iv) The determinant of an orthogonal matrix is £1.
(v) If the real n-square matrix A is orthogonal, its column vector (row-vectors) are an orthogonal basis of
V,, R (n-dimensional vector space in field of real) and conversely.

Example 35: If § = xcosa — ysina, n = xsina + ycosa, write the matrix A of transformation
and prove that A = A'. Hence write the inverse transformation.

Solution: Given (1)

g =xcosa-ysina
n=xsina +ycosa

We can write the above system of equations in matrix notation as:

[£[_[cosa -—sina[TxO

HH Bina cosa BYH ..(2)
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i [cosa -sinaQd .
or more precisely, Y = AX, where Y = H]H A= i and X = representing
ina  cosaf? @E

linear transformation with A as the matrix of transformation.

Now, Al = Jcosa sinaf]

H-sina cosaf --(3)
- ., _[osa -sinafdcosa sinaf_[1 0C_
F = =
ind, AA Fina  cosaHEsina cosaH H) 15
Also A'A = I. Hence A is an orthogonal matrix.

But if A is an orthogonal, then A" = A,
Thus, for the transformation Y = AX, we can write the inverse transformation

Ocosa sina]

— A1 -1 — — N
X =AY, where A _E-sina cosaE_A .
02 -3 10
Example 36: Is the matrix U 4 3 10 orthogonal? If not, can it be converted into an
T3 1 9q
orthogonal matrix? [KUK, 2005]

Solution: Let the given matrix be A. Then to check its orthogonality, find AA’
Thus

02 -3 1Mm2 4 -30
AA =04 3 10043 3 10
Hs 1 ofH1 1 o

O04+9+1 8-9+1 -6-3+90 14 0 00O
_Ug-9+1 16+9+1 -12+3+90=00 26 oUO
H6-3+9 -12+3+9 9+1+81] Ho 0 911

As AA" # |, hence A is not an orthogonal matrix.

However, it can be made an orthogonal by nromalization, i.e. on dividing every element
of a row by the square root of the sum of squares of each element of the respective row so
that product of resultant matrix (normalization) with its transpose would be a unit matrix.

D2 3 10
BTN TR

. . 4 3 1
Hence, the orthogonal form of the matrix A is E\/% 7% m%
L 3 1 9 0
BJvo1 o1 Jo1{
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Ol m n 00
0 -10

Example 37: Prove that 0 ? 0 O is orthogonal, when I:g, m:§, n:E.
o -m O 7 7 7
gm n -l Og

Solution: If we denote the given matrix by ‘A’ then it implies that (I, m, n) must have

2 3 6) . . i
(7,7,7) is their one of the values that makes A as an orthogonal matrix. In other words,

~| w
~| o

deduce that AA" = | is possible with I=% ==,n=

gl m n 0@ 0 n -mO
AA—D 0 0 0 -1Im o | nO
Now “Un 1 -m oEh 0 -m 4l
O J O
gm n -1 OgF0 -1 0 07
OP+m?+n? 0 nl+ml-mn -Im+mn-nlO
O o 1 0 0 0
AA =0 2. 9.1 O
O gnl+ml=nm 0 n*+m+I| —nm+In+Impg
Hml+nm-In 0 -mn+nl+ml m*+n?+I? g
For matrix A to be rothogonal, AA" = 1
i.e. nl+ml-nm=0 ..(1)
and P+m?+n’=1 ..(2)
I I
From (1), we have, EEB’LH =1
| _ | _
Let o=k, then —=(1-k) ..(3)
Again suppose k=§, then - 0 ~..(4)
=73 orn=3l H
O  Then using (4) in (2), we get
2 +m? +n2 gz |2+9|2|:|_49|2
. _2 _ 2
O Either I—7 or I= 7 ...(5)
Taking |_Z we get m—% and n=$

Hence with (|, m, n) :(E 3 g) A is orthogonal.

\l
\l
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Theorem 1: Prove that both ‘the inverse and transpose’ of an orthogonal matrix are also
orthogonal.

Solution: As we know that for an orthogonal matrix say A,
AA'=1=A'Aand A" = A
Let Al=B

Case I: Then for B to be an orthogonal, we are to prove that

BB'=B'B= I
O BB' = (A1) (A = ALA) L= AYA Y L= AtA =
Similarly, B'B = (A)) Al=(A)IAL = (Al IAl= AA L= |

Hence inverse of an orthogonal matrix is also an orthogonal.

Case Il: Let A" = B. For B to be orthogonal, we need to prove that

BB =1=BB
O BB = A'(A")' = A'A=|;
Also B'B=(A")'A" = AA' = |

Hence transpose of an orthogonal matrix is also orthogonal.
Theorem 2: A linear transformation preserves length if and only if its matrix is orthogonal.

Solution: Let Y,, Y, be the respective images of X;, X, under the linear transformation
Y = AX
Suppose A is orthogonal, then AA" =1 = A'A
Now,

Y Y, =YY, = (AX)'(AX) = X" (A'A)X, = X, - X, inner product.
Hence the transformation preserves length.
For vice versa, suppose lengths (i.e., inner products) are preserved.
Then, Y- Y,= YN Y, = (AX) (AX,) = X" (A'A) X,
But, Y, - Y, =X, X, (given) i.e,, X;" (A"A)X, must be equal to X, - X, which is only possible
when AA=I
Hence A is orthogonal.

1 2 20

8 3 30

For example, the linear transformation Y:AX:Eiz % -%%(

0

_2 1p

3 30

is orthogonal.

: Cfabclis y= .2, 2% 2a.b_2 2a_2 c[
The image of X = [a b c] ISY—@+3+3 3t3™3 3 3+3E

and both vectors are of length /a2 +h? +¢2 .
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G b cO
Example 38: Given that A= b ¢ al where a, b, c are roots of X3+ x2+ k=0 (k is a

 a by
constant). Prove that A is orthogonal.

Solution: a, b, ¢ are the roots of the cubic x® + x? + k = 0 implies
S, = Sum of the roots taken one at a time

co—eff. of x2
= (1)

aerJr(::(_l)co—eﬂ‘. of x3 =-1

S, = Sum of the roots taken two at a time

_(_q\2 Co—eff.of x _
ab+bc +ca=(-1) coeff ofx& = ..(2)
S; = Sum of the roots taken three at a time ...(3)
_(_q\3_ constantterm _
abe =(-1) co—efficient of X3 K

Now, to check whether A is orthogonal, find the product AA’
Here

(B2+hb2+c2 ab+bc+ca ca+ab+bcO
=hh+bc+ca b2+c2+a® bc+ca+abd @)
Fa+ab+bc bc+ca+tab c?+a?+b*[

On using the values of S; and S,,i.e. a+b+c=-1 and ab+bc+ca=0

we see that (a+ b+ c)2=(a% + b? + c?) + 2(ab + hc + ca) results in a2 + b2 + ¢2 = 1. ...(5)
1 0 0O
On using (1), (2), (3) and (5) AA'Z% 1 ngl
0 1

Hence with a, b, ¢ as the roots of the given cubic, the matrix A is an orthogonal.

o, m n0O
Example 39: If b, m, n,Udefines an orthogonal transformation, then show that
3 Mg M

il + mym; + iy = 0@ 2j); = 1(i=j)1,j=1,2 3
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Solution: We know that for an orthogonal matrix A, AA"= 1= A'A and A = A*l
0, ml n1EDI1 |2 kL D
0 AA=L

H; m, ns% nz nsEforglvenA

oo Eemian Lhemm,tnn, bk +mm, +nn,
= thh +mm, +nn, B+mg+nZ bl +mm, +nyn, O
Hh +mgmy + g0y Ll +mgm, +ngn, Z+mi +nH
For A to be an orthogonal, AA” = | which is possible only if,
Z+m2+nH)=(12+ms+nd)=(Z+mZ+nd)=1

and (I, + mm, + nyny) = (L,l; + mymg + n,ng) = (I;l; + mym, + nyny) =0

ASSIGNMENT 3
1. Prove that the product of two orthogonal matrix is orthogonal.

Ocos® 0 sin6O
2. Prove that the matrix g 0 1 0 g is an orthogonal matrix.
Tsin® 0 cosép

A b cO
3. Giventhat A=W ¢ a% where a, b, ¢ are the roots of X3+ x2+ k=0
a b|:|

(where k is a constant). Prove that ‘A’ is orthogonal.
4. Show that the modulus of an orthogonal transformation is either 1 or -1.

[Hint: Since AA" = |, then [A] A" = |1]]

1.10 DIAGONALISATION OF MATRICES, THEIR QUADRATIC AND CANONICAL FORMS

1. Diagonalization: If a square matrix A of order n has n linearly independent eigen

values, then a matrix P can be found such that PXAP, called a matrix of transformation.
We prove this theorem for a square matrix of order n = 3 as follows:

Let A;, Ay, A5 be the three eigen values of the square matrix A. Let Xl, Xy, X5 be the

corresponding eigen vectors, where X, = %El g g
2 []

Let a square matrix whose elements are three column matrices X,, X,, X5 be denoted
by P or more precisely,
X X, x3 0

P:%(l X, X3H:§1 Y2 Y3

Z ZsD
then AP = A[X, X, X3] = [AX; AXy AXs] = [AX; A,X, AsXq]
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X ApXy AgXeO X X, X[IA, 0 00
=0y A, )‘3)’38: §1 Yo Y;HO A, 0 g
12 Nz MO h L L 0 A

= PD, where D is the diagonal matrix such that P AP = D.

The resulting diagonal matrix D, contains the eigen values on its diagonal.

This transformation of a square matrix A by a non-singular matrix P to P*AP is
termed as Similarity Transformation. The matrix P which diagonalizes the
transformation matrix A is called the Modal Matrix and the matrix D, so obtained by
the process of diagonalization is termed as Spectral Matrix.

Observations: The diagonalizing matrix for matrix A, may contain complex elements because the
zeros of the characteristics equation of A,,, will be either real or in conjugate pairs. Further, diagonali-
zing matrix is not unique because its form depends on the order in which the eigen values of A, ,, are
taken.

2. Quadratic Forms: A homogeneous expression of second degree in several variables is
called a quadratic form.

(Byy &, a0 xd

eg. If A=L, a, aZSE[ ngm and X'=[x y 7]
O
%31 %, d3[] O

then  X'AX =ay)X? + ayy? + agz? + 2a,Xy + 28y3y7 + 287X, (1)
(for a;, = ay;, ay; = agy, 843 = ay) Is @ quadratic form in three variable X, y, z where the
given matrix A is symmetric.

%, O X, 0 X, O
3. Transformation to Cannoncial Form: Let X; = 1% X, = gzg X = gs gbe the three eigen
1] 2 3
vectors in their normalized form (i.e. each element is divided by the square root of the
sum of the squares of all the three elements in the respective eigen vector corresponding
to the eigen values A;, A,, A; of a square matrix A).
Then through the non-singular linear transformation, X = PY

m, 0 00 X X X0
We get PPAP=D=0L0 A, 0Uwhere P= gl Y, YU
[l [l
0 A 1 Z2 430
Hence the quadratic form (1) is reduced to a sum of squeres, i.e. cononical form:
F=AX2+ A2 + \Z2 ..(2)

P is the matrix of transformation which is an orthogonal matrix. That is why the above
method of reduction is called the orthogonal transformation.

Observations:
(i) Herein this case, D and A are congruent matrices and the transformation X = PY is known as congruent
transformation.

(ii) The number of positive terms in cononical form of the quadratic is the index (s) of the form.
(iii) Rank r of matrix D (or A) is called the rank of the form.
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(iv) The difference to the number of positive terms and negative terms to the quadratic form is the signature
of the quadratic form.

4. Nature of Quadratic Forms: Let Q = X'AX be a quadratic form in n variables x;, X,, ..., X,,.
Index of a quadratic form is the number of positive terms in its canonical form and
signalize of the quadratic form is the difference of positive and negative number of
terms in its canonical form.

A real quadratic form X'AX is said to be
(i) positive definite if all the eigen values of A are > 0 (in this case, the rank r and
index, s of the square matrix A are equal to the number of variables, i.e. r = s = n);
(if) negative definite if all the eigen values of A are <0 (here r=nand s = 0);
(iii) positive semi-definite if all the eigen values of A = 0, with atleast one eigen value
is zero (in this case, r = s < n);
(iv) negative semi-definite if all the eigen values of A are < 0 with at least one eigen
value is zero (it is the case, when r < n, s = 0);
(v) indefinite if the eigen values occur with mixed signs.

5. Determination of the Nature of quadratic Form without Reduction To Canonical
Form: Let the quadratic form

] [y, a, az0x0
XAX=F y 26 ay, azsggg
1 S SO0
(g, &, &0
0
Let Al:all’Azzgle leza A=y, a, azsg
%31 8  A3[]

Then the quadratic form X AX is said to be
(i) positive definite if A; >0 fori =1, 2, 3;
(if) negative definite if A, >0and A; <0, A; <0;
(iii) positive semi-definite if A; > 0 and atleast one A; = 0;
(iv) negative semi-definite if some of A, are zero in case (ii);
(v) indefinite in all other cases;

Example 40: Obtain eigen values, eigen vectors and diagonalize the matrix,

08 -6 20
A:ELG 7 —4% [NIT Jalandhar, 2005]
02 -4 30

Solution: The corresponding characteristic equation is
8-A -6 2

6 7-A 4150 g i1 -4mM=0
2 -4 3-A
Clearly, it is a qubic in A and has roots 0, 3, 15.
If X;, X,, X3 be the three components of an eigen vector say ‘X’ corresponding to the eigen
values A, then
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8-A -6 2 |0
We have [A-A]X=| -6 7-A -4 [G,0=0
2 -4 3-AHeH
For A =0, 8x; —6X, + 23 =0
—6X; + 7X; —4X3=0
2X; —4X, + 3X; =0
These equations determine a single linearly independent solution.
X X X
 71-16 "8 +18 - 24-14 = ()
O (Xq, Xy, X3) = (K, 2K, 2K)
O Let the linearly independent solution be (1, 2, 2), as every non-zero multiple of this vector
is an eigen vector corresponding to A = 0.
Likewise, the eigen vectors corresponding to A = 3 and A = 15 are the arbitrary non-zero
multiple of vectors (2, 1, -2) and (2, -2, 1).
Hence the three eigen vectors may be considered as (1, 2, 2), (2, 1, -2), (2, -2, 1).

On solving them

a 2 20
O The diagonalizing matrix ‘P’ =B, X, Xq ng 1 —2%
-2 15

Example 41: Find the Latent roots, Eigen vectors, the modal matrix (i.e., diagonalizing

o 0 00
matrix (‘P’), sepectral matrix of the given matrix [0 3 —1% and hence reduce the
-1 3

quadratic form x? + 3x3 + 3x3 — 2x,X; to canonical form.
Solution: The corresponding characteristic equation is

1-» 0 0
0 3-A -1| 0O MN-7A2+14A-8=0
0 -1 3-A

Clearly, it is a qubic in ‘A’ and has three values, viz. 1, 2, 4.

Hence the latent roots of ‘A’ are 1, 2 and 4.

If X, y, z be the three components of eigen vector corresponding to these eigen values,
A =1 2, 4, then

M 0 o0 X O
for A=1 L 2 —1E[x1]=o with X, = 5,0
1 2 U

O O

0
p0
tln

2y, -7 =0 i i
O Ly, +22,=0 having one of the possible set of values, say,
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Likewise,
-1 0 00,0 Xx,0 O
for A=2, Eo 1 —1%@25:0 0 ngzgiig
00 -1 1g%0 >0 Elm
B3 0 00
fora=4, H0 -1 -1[X;]=0 or y;+z =0
Ho -1 -1H
0 0
X0 000
-Q.0=010
0 =¥ glg
s0 010
1 o0 00
Hence, we have Modal Matrix, P =X, X, XSE:% 1 1%
1 -1

o, 0 00 0 00
and Spectral Matrix ‘D’=L0 A, 0L=L 2 oU

o NH B oo 4

Canonical form as: A x% + A\,y? + A\;z%, ie. X2+ 2y? + 422

31 2 -20

Example 42: Reduce the matrix 01 2 10 to the diagonal form and hence reduce it to
H1 -1 o

canonical form. [UP Tech, 2006; Raipur, 2004]

Solution: The characteristic equation is

-1-A 2 =2
1 2-A 1/=0 O A-A,-5A+5=0 O A=1+.5
-1 -1 A

Thus, the eigen values for matrix ‘A’ are 1,+./5

2, 0 00 0 00
= =
. D=C0 A, ol H V503
o 0 3d @ o -5q
xd O1-A 2 =200
Let X = /U be an eigen vector, sothat b 1 2-A 1 0LU=0
U |:|_1 -1 _)\IZI U
U U RN
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For A =1, /5, -5, we get vectors in the form

0 J5-1 5+10
‘P = 1 -1 E the diagonalizing matrix.
1 1 0

Its canonical form is A;x? + A\,y? + A\yz2 = x2 +/6y? —\/522.

Example 43: Show that the transformation matrix

_[Jcos® sinbQ
" H-sin® cosbH

2h

H (a-b

with 6= %tan‘1

~—r|

changes the matrix C :g EE to the diagonal form D = HCH’.

Solution: ._DO(@cos@+hsin®) (hcosB+bsin6) (0cosd -sin60
OTHHON: HCH H-asin©+h cosB) (~hsinB8+b cos B)H$in6 cos6 H

_O(acos@+hsinB) (hcosO+bsinB) [Ttos® -sin60
~H-asinB+hcosB) (-hsinB+bcosO)H$in® cos6 H

O cosB(acos@+hsin®)+sinB(hcosd + bsin6)
—sin@(acos8 + hsin@) + cos8(hcos6 + bsin @)
0s0(-asin@+hcos6) +sin6(-hsin 6 +bcosH)
—sin@8(-asin@+hcosB) + cosB(-hsin @ +bcosB)

D
0
0
0
H

Mgoo

_ O &cos?@+b?sin?@+2hsinBcos® —(a—b)sinBcos® +h(cos? 8 —sin? §)0
- Ba—b)sinecose—h(cosze—sin2 ) a?sin®@+b? cos? 8 - 2hsinBcosbRF

HCH,_mzcosze+bzsin29+2hsinecose 0 O @ 00
~H 0 asin20+b? cos26 - 2hsinBcosb HO o,H

Gzltan‘l zh ; 2 2
as 2 m, i.e. (a— b)sinB cosb — h(cos?0 —sin“B) = 0

Hence the result.

o6 -2 20
Example 44: Find the eigen vector of the matrix E—Z 3 —lg and hence reduce
02 -1 3

6x2 + 3y2 + 3x2 — 2yz + 4zx — 4xy to a sum of squares. [KUK, 2006, 04, 01]
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71
Solution: The characteristic equation is

6-A -2 2
-2 3-A -1|=0
2 -1 3-A

(1)
0

A3 —12A% + 36\ — 32 = 0 giving values A = 2, 2, 8
Corresponding to A = 2, the eigen vectors are given by

04 -2 200
o 1 —100 0O=
0 200 --(2)
02 -1 1030
Clearly, we have only one set of linearly independent values of x;, X,, Xs.

Since form above, we get only one independent equation viz.
2X; =X, + X3 =0

.-(3)
If we take x; = 0in (3), we get 2x; = X, i.e. X =

B_X_X -
O 1-2°-0 O X=11,20]
Now, choosing x, = 0 in (3), we get 2x, = —X5, giving eigen vector (1, 0, -2)

Any other Eigen vector corresponding to A = 2 will be a linear combination of these two.
Corresponding to A = 8, we have

42 -2 200
[A—)\I]X:%Z -5 —1EI3<ZEI:0
H2 -1 -5t
giving equations,  -2X; —2X, + 2X; =0 [
—2xl—5x2—x320§

- X
Solving them, we get % =X _X

-171
0 X=12,-1,1].
01 1 20
=0 —10
Hence P=52 0 -1o
00 -2 1

The ‘sum of squares’ viz. the canonical form of the given quadratic is
8X? + 2y + 222 = AX%> + y? + 7°

Example 45: Reduce the quadratic form 2xy + 2yz + 2zx to the canonical form by an
orthogonal reduction and state its nature.

[Kurukshetra, 2006; Bombay, 2003; Madras, 2002]
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M 1 10
Solution: The given quadratic form in matrix notations is A= 0 1D
1 0|:|

The eigen values for this matrix are 2, -1, -1 and the corresponding eigen vectors for

oo o
A=2, xl—EiDD

el

-0 D (Eigen vector corresponding to the repeated eigen value -1,
- 010 H

A=-1 x,= 1D O is obtained by assigning arbitrary values to the variable
00g E as usual.)
0od g

A=-1 x= ElD 0
315 B

Here we observe that x, and Xx; are not orthogonal vectors as the inner product,

X, - X3 = —1(0) + 1(1) + 0(=1) # 0.

10
Therefore, take X; = E‘-lg so that x;, X, and x; are mutually orthogonal.
020
01 1 _10
23 V2 Bh
. . 1 1 1
Now, the normalized modal matrix P=0E0- — -—/—0
/3 V2 60O
01 0 2 0
H3 J6 H
01 1 _10
a 55 T i
Consider the orthogonal transformation X =PY, ie. L= — = 0
9 d5Bs v o
Yot o, 2 g®d
/3 J6 B

Using this orthogonal transformation, the quadratic form reduces to canonical form,

Q = 2X? - y?- 72 The quadratic form is an indefinite in nature as the eigen values are with
mixed sign and rank r = 3; index s = 1.

Example 46: Reduce the quadratic form 3x? + 3x3 + 3x3 + 2x,X, + 2X;X3 — 2X,X5 into ‘a sum of
squares’ by an orthogonal transformation and give the matrix of transformation.
[KUK, 2008; NIT Kurukshetra, 2002]

Solution: On comparing the given quadratic with the general quadratic ax? + by? + ¢z + 2fyz
+ 2gzx + 2hxy, the matrix is given by
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 h gO0 3 1 10
A=Lth b fU=01 3 U
B f cH A -1 3f

IA-N|=| 1 3-A -1|=0,

which is a cubic in A and has three values viz., 1, 4, 4.
Hence the desired canonical form i.e., ‘a sum of squares’ is x? + 4y? + 4z2.
Solving [A — Al][X] = 0 for three values of A

2 1 1030

For A\=1,we have b 2 —1%%15:0
-1 2pmQ
2x, +y, +z, =0 . X Y% _ 4
or x +2y, -z =0[" " TI-2 " 1+2 4-1 =k
O GkO G-10
O- 0 «O= 0 10
a %D 0.0 030
o ofgd o-+d
10O
Similarly for A =4, D1 —1 —1D EI:0
H1 4 A

0 ElD
We have two linearly independent vectors X, = EiD Xy = %_D

As the transformation has to be an orthogonal one, therefore to obtain ‘P’, first divide
each elements of a corresponding eigen vector by the square root of sum of the squares of its
respective elements and then express as [X Y Z]

01 1 10
R

. . 1 1
Hence the matrix of transformation, P=3— — 0 [
V3 V2 O
ol o 10
V3 V28

Example 47: Discuss the nature of the quadratic 2xy + 2yz + 2zx without reduction to
canonical form.
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M 1 10
Solution: The given quadratic in matrix form is, A=4 0 10
1 0f
01 011
HereAlzo;AZ:‘ ‘:—1<O-A3:1 0 1/=2>0
10 '
110
O The quadratic is indefinite in nature.
1.11 CAYLEY-HAMILTON THEOREM [PTU, 2009; NIT Kurukshetra, 2002]

Statement: Every square matrix satisfies its own characteristic equation.

Proof: Let A be any n-square matrix such that its characteristic equation is given by
[A=NJ=(1)"\"+ kA"t + ...+ k, =0 ..(1)
We need to prove that |A - A= (-1)"A" + kA" 1 + ...+ k, =0
The elements of the n-square matrix [A — Al] are at the most first degree in A and, therefore,
the adjoint of the matrix [A — Al], say B, which consists of the co-factors of the elements in
A — Al must represent a polynomial of degree (n — 1) in A. Further the adjoint B can be
broken up into a number of matrices such that
B=BA"1+ B2 + ... + B, ..(2)
where all B;’s are the square matrices whose elements are the functions of the elements of
the given matrix A.
We also known that A-adj- A= |A] I

O [A=Al] adjoint [A-=Al] = JA = Al ...(3)
By (1), (2) and (3), we have
[A- A [BA™L + BA"™2 + ...+ B, ;A + B]

= [(-1)"A" + kAL + A2 4+ L+ K ...(4)
Equating the co-efficients of equal powers of A on both sides, we get
-B, = (-1)M
AB, - B, =kl [
AB,-B,=k,| LI ..(5)

ABn—l - Bn: I(n—ll |:|
AB, =k, 1 []
Pre-multiplying the equations by A", A"-1 ... A, I respectively and adding, we obtain
0= (-1)"A"+ kK, AL + L. + ko, A+kl
or (1)"A" + kAL + A2 +k, = ...(6)
Observation: In equation (6) on transferring k| to the left hand side and then multiplying throughout by Al we
can obtain the inverse of the matrix A
Ak, = [N AN+ k AN+ AN 4 AT

or Al= —% H-DMAT L+ g A2 + L+ kg4
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02 -1 10
Example 48: Verify Cayley-Hamilton theorem for the matrix A= E—l 2 —1% Hence
gl -1 2
compute AL [KUK, 2005, 2008; Madras, 2006; UP Tech, 2005]
Solution: The characteristic equation, is
2-A -1 1
IA=A=] =1 2=A  ~11=0 o }3_6a2+ 00 -4=0 (1)

1 -1 2-A
To prove that ‘Cayley-Hamilton’ theorem, we have to prove that
A3 —-6A%+9A -41=0

02 -1 102 -1 10 06 -5 50
A2=U71 2 -1l 2 —10=0s5 ¢ -50

2
H1 -1 2fH1 -1 2H Hs -5 6 )

Obtain
022 -21 210

Similarly, A3=A2xA=U21 22 -210 ...(3)
H21 -21 22H

022 -21 -210 0O6 -5 50
Now A3 -6A2 +9A -4l =121 22 -210-g05 6 —50

H21 -21 22 Hs -5 6

g2 -1 10 @ 0 00
+9l1 2 —1%—4@) 1 ogzo ..(4)
Hi -1 2H ® o 1f
To compute AL, multiply both side of by A1, we get

A2-BA+91-4A1=0

06 -5 50 02 -1 10 01 0 00
or 4pat=ts5 6 50-6L1 2 109l 1 oU
Hs - 64 Hi -1 2H B o 1
1D3 1 10
0 A‘lzzml 3 14
| U
Tl 1 3
@2 1 10
. . . . t .
Example 49: Find the characteristic equation of the matrix % 1 gD and hence, find the
U

matrix represented by A8 — 5A7 + 7A% — 3A5 + A* — 5A3 + BAZ - 2A + I.
[Rajasthan, 2005; UP Tech, 2003]
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Solution: The characteristic equation of the given matrix,

2-2 1 1
0 1-A 0 |=0 or A -5\2+7A-3=0 (1)
1 1 2-A

Further, as we know that every matrix satisfies its own characteristic equation

Hence A3-5A2 +7A-31=0 ..(2)
Rewrite, A®— 5A7 + 7AP — 3A5 + A% — 5A% + 8A2 — 2A + |
as (A8 — BAT + TAB — 3A5) + (A*—5A3 + TA2—3A) + A + |

or A5 (A®-5A2+ 7TA-3I) + A(A3-B5AZ+ 7TA-31) + (A?+ A+ )
On using (2), it nearly becomes (A’ + A + 1)
Hence, the given expression (A8 — 5A7 + 7A6 — 3A5 + A4 — 5A3 + 8A2 — 2A + |)

01 2 50
represents the matrix, A = 2 0 30
0 O
o 3 40

ASSIGNMENT 4

1. Find the eigen values, eigen vectors, modal matrix and the spectral matrix of the matrix

o 0 00O
[p 3 -10and hence reduce the quadratic form x,? + 3x,? + 3x5% — 2X,X, to a canonical
-1 3
form. [NIT Kurukshetra, 2004; Andhara, 2000]
2. Write down the quadratic form corresponding to the matrix
A 2 50
A= 0 3%
3 4

[HINT: Quadratic Form = X'AX]

3. Reduce the quadratic form 8x? + 7y? + 3z? — 12xy — 8yz + 4zx into a ‘sum of squares’ by an
orthogonal transformation. State the nature of the quadratic. Also find the set of values

of X, y, z which will make the form vanish. [NIT Kurukshetra, 2009]

02 -1 10

4.Verify Cayley Hamilton theorem for the matrix A and find ifs inverse if A= El—l 2 —1%
0l -1 2p

1.12 SOME SPECIAL MATRICES
Complex Matrices: If a matrix ‘A’ = [a.], whose elements are a = o+ i3 where o, B
being real is called a complex matrix. The matrix A =[g,] =[oy —iB,] is known as the conjugate

matrix. The transpose conjugate of A, i.e. A" is oftenly denoted by AP
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Oy +ib O
O
Further, if A= %2 * IbZD then

A A=AA=(a —ib)(a +ib)+ ...+ @, —ib,)(a,+ib,)
=(@’+b?+...+@2+b?

Orhtogonal Matrix (Rotational Matrix): If for a square matrix A = [a;] of order n, we have

AA' = | = A'A, then A is said to be an ‘orthogonal’ or ‘rotational matrix’.
02 1 20
g3 3 30
(i [cos® -sinBQ (i) Eg 2 1%
€9 () Bine cosd & 3 3 3
s 4 g1 _2 20
H3 "3 3H

Unitary Matrix: If a square matrix A in a complex field is such that A" = A, then A is called
a unitary matrix. The determinant of a unitary matrix is of unit modulus and thus is non-
singular.

_10+i —1+I - a-i -1-ig

e.g. Let A—§a+i -i sothat A= 2@-_' 1+i g
~,_ 9 101-1i 1-iQ
and A=AZ531-1 1+iF

A2_1D,+i 1+iml-i 1-iQ
O T4R+i 1-iEH-i 1+if

T b

4

Hermitian Matrix: A square matrix A is said to be Hermitian if A"'=A where A denotes the

matrix whose elements are the complex conjugates of the elements of A. [PTU, 2007, 2008]

In terms of general elements, the above assertion implies A' = A (&; =&; or a; =&; ) which
shows that all the diagonal elements are real.

A square matrix A is said to be skew-Hermitian if A'=-A. Whence, the leading diagonal
elements of a skew-Hermitian matrix are either all purely imaginary or zero.

Thus, Hermitian and skew-Hermitian matrices are the generalization in the complex field of symmetric
and skew-symmetric matrices respectively.

o1 5+4ID 01 1+ 2+3i0 D I 1+i 2+3i0

|:| .|:| . . .D
e.g. (i) (i) =1- 2 3+4i iii U-1+i 2i 3+4i
-4 2§ 5 acai s g Ho+3i -3+4i 3 [
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Clearly (i) and (ii) are the examples of two Hermitian matrices of which all the diagonal
elements are real numbers while (iii) is an example of skew-Hermitian as all of its diagonal
element are purely imaginary.

O i 7-4i -2+5i0

Example 50: Show that A=U7+4i -2 3+i Uis a Hermitian.
0. : 0
F2-51 3-i 4 O

Solution: Let the transpose A' of square matrix [A] is equal to its conjugate complex, i.e.
A=A, then A is said to be the Hermitian matrix.
O 7+4i -2-5i0
Clearly, A :57—4|_ -2 3-i E
T2+5 3+i 4 0
each a, = (0, + iB,) elements of A" is equal to the elements a, = (a,,— i) of A.
Hence the matrix A is Hermitian Matrix.

Normal Matrices: A square matrix A is called normal if AA'=AA; where A'or A, stands
for conjugate transpose of A. Normal matrices include Diagonal, Real, Symmetric, Real-
Skew symmetric, Orthogonal, Hermitian, Skew-Hermitian or Unitary matrices.

Note: If A is any normal matrix and U is a unitary matrix then U"AU is normal as:

Let U'AU =X then X = (U'Au)
=UAU s UY=U
=UAU, ~U=U
Here we need to prove XX = XX
XX :(G’Au) (0AU) (Taking UT"=1)
=U'AAU =UAA'U (Rewrite A'A=AA")
=U'AUU AU =XX (As 1 =UU")

Theorem 1. Any square matrix can be expressed uniquely as a sum of Hermitian and
Skew-Hermitian Matrix.

Proof: Let A be a square matrix (complex or real) such that

A=H+S, where H :%(A+A') is a symmetric matrix

S= %(A— A’) is a skew-symmetric matrix
Now, we need to prove that H is Hermitian and S is skew-Hermitian.
1 1

H =5 (A+ A)=5(A+(A))
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= 2(A+A)=H,

[ Transpose of the transpose of a matrix is the matrix itself]
Hence H is Hermitian,

e § = 5(A-AY = 3(A=(x))
= (A-A)==3(A-A)=-s

Hence S is a skew-Hermitian.

Uniqueness: Suppose A = (K + T), where K is Hermitian and T skew-Hermitian
then A=K +T o A=K-T [ K'=Kand T"=- T by supposition]

Adding the two, (A+ A) = 2K or K=1(A+A)

K = H from defintion of A above.

On substsacting (A-A)=2T or T :%(A—A')

T = S from definition of ‘A’ above.
Hence H and S are unique.

Theorem 2: Show that the inverse of a unitary matrix is unitary.

Proof: Let U is an unitary matrix i.e.,, U = U7 ..(1)
Thus, (UHUu?y = ULU)?
= (Ut ()t
= (Uu)?t |- BLAL=(AB)?|
=it By (@)
= ()= ...(2)
Similarly, (U™)"(U1) = (U) U1
= (UuU)? [ BYAL=(AB)Y]
= (Uu)yt
=)= ..(3)
Hence the result.
Theorem 3: Show that the product of two n-rowed unitary matrix is unitary.

Proof: A square matrix X will be unitary if XX" =1,

then suppose the U and V are two unitary n x n matrices

i.e., uu =1,=w
Thus, (UV)(UV) = UV VU = UWVWV)U = Ul U =UU = 1|,
Similary, (UV) (UV)=VUUV=VUUV=VIV=VV=I
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Hence (UV)(UV) = |, = (UV)'(UV) and thus the product is unitary.

Theorem 4: Modulus of each characteristic roots of a unitary matrix is unity.
OR
Show that the eigen values of a unitary matrix have absolute values.

Proof: Let ‘A’ is an unitary matrix and AX = AX ..(1)
Then taking conjugate transpose of each side
(W)’ = AX
or XOA® = AX©® ..(2)

with A® and X© as conjugate transpose of A and X respectively.
Multiplying (1) and (2),
(x®A®)(AX) = AX®AX
X®(A%A)X =\ XOX
XOX = A\ XOX
(1-M)x°x =0
Hence, either (1- A\) =0 or X®X =0
But XX #0. 0 (1-AA)=0 implying xx=1

So that modulus of A is unity.
(Cor: Modulus of each characteristic root of an orthogonal matrix is unity. In particular,
theorem also applies to orthogonal matrices).

Theorme 5. Eigen values or characteristic roots of a Skew-Hermitian (and thus of a
Skew-Symmetric) are purely imaginary or zero. [KUK, 2006]
Proof: Let A be a skew-Hermitian Matrix and AX = AX
then (IA)X = (INX

But ‘i A’ is Hermitian and as such ‘iA’, a characteristic root of ‘iA’ is real.
Thus for iA to be real either A =0 or A is a purely imaginary number.

Theorem 6: Characteristic roots of a Hermitian Matrix and thus of a Symmetric Matrix are
all real.

Proof: Let A be any characteristic root of a Hermitian Matrix ‘A’. Means there exists a vector
X # 0, such that
AX = AX (1)
Pre-multiplying with X®, we obtain
X% (AX) = XO AX

or = A XOX = AX®X .. (2)

Being the values of Hermitian forms, X®AX and X®X are both real.

Also XOX #0for X#0 ..(3)
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Thus from (2) and (3), we have

_X®(AX) .
)\_W is real.

Alternately: If A is a latent root of a Hermitian matrix H, and X the corresponding eigen
vector, then

HX = AX ..(1)
HX =AX
5 =(3%)
XA =AX
Hence XOH = AX® ..(2)

with X’ = x© as transpose of the conjugate complex of X and H® = H, since H is Hermitian.
Also From (1), X'HX = X’'AX
or XOHX = AX®X ...(3)
AXOX = AX®X using (2)
Since X®X # 0, it follows that A =\
Hence A is real (all A;’s are real).

Imaginary axis
Skew-Hermitian 0
(Skew-Symmetric)

i /— Unitary (Orthogonal)
/ Hermitian (Symmetric)

> Real axis

A

Fig. 1.2

Theorem 7: Show that for any square matrix A; (A + A®), APA are Hermitian and (A — A®)

is Skew-Hermitian, where A® stands for transpose conjugate of A.

Proof: By definition a square matrix A is said to be Hermitian, if A=A, ie, A° =A.
Here, (A+ A®)P= AP+ (AP)®=A®+ A

which shows that conjugate transpose of (A + A®) is equal to itself. Hence (A + A®) is Hermitian.
Likewise, (AA®)® = (A®)® A® = AA® Hence AA® is Hermitian.
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Again, (A-A®)P =— (A®)® + A®=—_ A + AP =— (A - A®). Hence (A - A®) is skew-Hermitian.

Theorem 8: Prove that any matrix A which is similar to a diagonal matrix, D has n linearly
independent invariant vectors.
Proof: Let P be a non-singular matrix such that
PLAP = D =dig. (A, Ay, ..., A,)
Per-multiplying by P on both sides, we get
AP =PD (. PP1=1)

Let P[X;, X, ..., X,], the above relation becomes
m, 0 .. 0
o A, ... od
AR X, oo Xy B=[ X0 X .. %] HO 0 od
@(11 YA IEER] na_[ 11 D2 aun n]D ...... D
B.. sre aaaaas OD
g0 0 ... |

or  [AXy, AXy, ... AX] = [AXy AKXy, oo AKX, ]

which clearly shows that X;, X,, ...X, are n eigen vectors of the matrix A corrseponding to
the eigen values A;, A,, ..., A,

Since these vectors constitutes the columns of a non-singular matrix, hence there exists a
linearly independent set of eigen values.

Theorem 9: If X is a characteristic vector corresponding to a characteristic root A of a
normal matrix A, then X is a characteristic vector of A" (conjugate transpose) corresponding
to the characteristic root A.

Proof. As matrix A is given normal i.e., AA=AA (1)
Then, (A-AI){(A-AIY =(A-A1)(A-AI)
= AA=AAl = AIA+AAI
=(AA-AX)+(-AAN)
=(A-A)A-M{A-A)

=(A-N)(A-N)

=(A=AIJ(A=AI) ..(2)
Thus (A — Al) is normal
Now, let (A — Al) = B and by hypothesis BX = 0 ..(3)
So that (BX)(BX)=0 ..(4)

Further (B’x’)’

X'B . (B) =B
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=X'B
=X'B - (B)=s8
(BXY(BX) = (xB)(B'X) =(BX)(E'X) ..(5)
By (3) and (5), we have
BX=0 or (A-AT)x=0 ...(6)
Thus, X is a characteristic vector of A’ corresponding to the characteristic value A.
n 1 1 D 1=
Example 51: If S= a’ where a = e?™ show that S* =§S .
a a
a1 10 |3511 ap a3l
- 2
Solution: Let S —% # ag %21 a22 azsg Q)
B a afg 1 30
Now a:eZ‘m:cos%nﬂsin%nza—%ﬂga; ..(2)
2 _ 43 — 4n Am _ 01_.4/30
a-=e =C0S—&- 3 +isin 3 H—Z I ) H' ..(3)
ad = 4" = (cos2m+ isin2m) = 1; ..(4)
_ 01 J—D 0 .ﬁm
and T2z g Er "2 ()
Thus from equations (2) to (5), we see that
a=a, @=aand a*=a%-a=a ...(6)
0 1 10 1 lD
S = 2 =
Now write, S—% a ED_Q : & D (Using 6) A7)
H a @& ¢

Find co-factors a;’ s:

Co-factor of  a;; = (a — a%) = Co-factors of a;,, ay, a3, a5,
Co-factor of  a,, = (a® — 1) = Co-factors of ag,

Co-factor of a,; = (-a + 1) = Co-factor fo a,,

Also IS] =1(a-a%) + 1(a-a%) + 1(a-a?) = 3(a-a?)



84 Engineering Mathematics through Applications

. 1= 3 a1—a2 a-a) (&-1) (-a+1)g
Ha-a?) (-a+1) (22-1)H
U U
a 1 1 O
U U
10 () (o)l
— 2 _ a2
3% (a-a) (a-#) E (On replacing 1 by a3)
(o) (#-d)]
RGN
1 1 10 1
4 N-1lz
or St =3 a a D_§S
@ af
Hence the result.
oo 1+2iQ
Example 52: If N = Hi+2i 0 B obtain the matrix (1 - N)(1 + N)™%, and show that it is
unitary. [KUK, 2008]
— oo 1+2ig _a 0o
Solution: Let N “H1+2 0 { and |2_@) 19 ..(1)
Ol -1-2iQ
Then ("N):@_zi 1 g --(2)

o1 1+2i 0
and (+N)=Baeo 1 BB @)
Find co-factors of aj’s:
Co-factors of a;; =1
Co-factors of a;, =— (-1 + 2i) = (1 - 2i)
Co-factors of a,; = - (1 + 2i) = (-1 - 2i)

Co-factors of a,, =1 ~..(4)
Also [1+N]=1-Q2i+1)Qi-1)=1-(4-1)=6 ...(5)

4 101 -1-2iQ
whence (I+N)1:€@—2i 1 g ...(6)

Take product of (I — N)(I + N)* with the help of equations (2) and (6)

“6R-2i 1 HR-2i 1 H

O
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_10 4it —2-4i0_10-4 -2-4iQ
T6R-4i 42 HER-4 -4 { (1)
Let (I-N)1+N)*=uU,
then for U to be unitary, we must have U’y =|

10-4 -2+4iQ

6R+4i -4 H

Thus, from equation (7) obtain U =

10 4 2+4i0]

which implies  U=gg5,40 4 g

1 O0-4 2+4ig00-4 -2-4iQ
6x6F2+4 -4 BR-4i -4 F
_ 1 O04x4+(2+4i)(2-4i) -4(-2-4i)+(2+4i)(-40
T 36 H-2+4i)(-4)-4(2-4i) (-2+4i)(-2-4i)+16 H
_ 1016+4-161> 8+16i-8-16i0
T36[B-16i-8+16i 4-16i2+16 H

_ 1086 0(_
~36H0 36H

Hence U = (1 - N) (1 + N) is unitary.

Now Uy

Brief about special types of matrices
To any matrix [g;], we call

(1) Symmetric if [a;] = [a;]’ (i)  Skew-symmetric if [a;] = - [a;]’
(iii) Involutary if [a;] = [aij]—1 (iv)  Orthogonal if [a;]" = [aij]‘1
(v) Real if @ij E:%_JE (vi) Hermitian if @ij 52 %,—

(vii) Skew-Hermitian if [yF=-@iiE  (viii) Unitary if @ij%(@_ijg)_l

(ix) Pure Imaginary if FH=-FH

1.13 DIFFERENTIATION AND INTEGRATION OF MATRICES

Suppose we have a matrix [a;; (t)], where enteries a; (t) of the matrix are functions of a certain
argument t:

D el il

%ij (t) = |:| ........................... |:| (1)
[ T, O
i (1) @z (1) - 3 (1) H
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We can write this more precisely
[AO] =[] (i=1,2...mj=12 .. n) ..(2)

L)

d
Let the elements of the matrix have derivatives —311( ) a

dt

Definition 1: The derivative of a matrix [A(t)] is a matrix denoted by %@(t)@, whose

enteries are the elements of the matrix [A(t)]; i.e.

0d, d, d. 0O
Ogt ™ g™ gt O
d Biaz ia LI
()E_ Hdt gt %2 g
D covereerneenieeeneens, 0 ..(3)
0d, d. d. O

Remarks: This definition of the derivatives of a matrix comes quite naturally if to the operations of substraction
of matrices and multiplication by a scalar, we adjoin the operation of passage to limit:

lim Ait{ga(t + 0t A

At-0
. -3:(t)0
At-0[ At 8
0 - -3 0
_Gim 3;(t+At) 3
@t-0 At 8

We can write equation (3) more precisely in the symbolic form as below:

SER0E= A (OF o SEnDE B ALE @
More commonly ‘D’ is used in place of %
Hence  D[A(t)] = [D(A(t))] ...(5)

Definition 2: The integral of the matrix [A(t)] is a matrix to which we denote as [[A(t)]dt
whose elements are equal to the integrals of the elements of the given matrix:

Ora,(dt  fa,(t)dt jaln(t)dtD

................................... ...(6)
Hjam(t)dt Jan(Ddt . jamn(t)dtg

More precisely,

JA(®dt = [Ja;(t)dt] = [JA(t)dt] ..(7)
The symbol [()dt is sometimes denoted by a single letter, say S, and then we can write
equation (7), like, we did in (5)
S[A] = [SA]
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A. Solutions of System of Differential Equations with Constant coefficients
We consider a system of linear differential equations with n unknowns x,(t), X,(t), ... X,(t):

dx
d_tl =Xt apX Tt X,
dx
d—t2=a21X1+a22X2 T T X, ..(1)
dx
dtn =Xt apXy Tt agnX,
The coefficients g; are constants. We introduce the notations:
54 (1)0
[x] = He (t)5 (2)
B ()5

This is solution matrix or the vector solution of the system (1). Writing the matrix of
derivatives of the solutions:

dx, O

O

Cdx O_ %D

- gdt g
Hae B O: O ...(3)

Cix, O

Hat H

Let us write down the matrix of coefficients of the system of differential equations:

aan a12---&11ng

_ _ oy dyy...dy

[a]—%i,H—g ............... E (4)
NIRRT

Using the rule for matrix multiplication, we can write the system of differential equations
(1) in matrix form:
[, O
Ogt O -
d):: 0 |a?'lzl Y, aalnD D(l (t)D
gﬂ 20 1828y (t)D
d - O DEE<2 0O
E :t E D ................ D |:| D (5)
D ................ D @3 (t)a

Hat H

or, more precisely on the basis of the rule for differentiation,

S B(OE= [l -(6)



88 Engineering Mathematics through Applications

The equation can also be written as:

dx
— =ax
at . (7)
where X is also called the vector solution; a is short notation for the matrix [a;].
0, 0
O
If we have  [a]=a= %{ZD ...(8)
o g
@0

where q; are certain scalars, then the set of solutions of a system of differential equations
will be sought in the form
[X]=¢€M[a] or x=eéMa ...(9)

The solution of a Leibnitz linear differential equation %—kx =0 will be x = e*C, where C

is an arbitrary constant. Again if x is a vector quantity then for different scalars k; and
constants C;, we can write

C, 0

U

x = Cekt with C:%:;ZD
2.8

B

Substituting (9) into (7), viz. the rule for multiplication of matrix by a scalar and the rule for
differentiating matrices, we get both sides as

...(10)

d
a(e“a) =aeMa ..(12)
Whnce we have Aa = aA
or ao—Aa =0 ...(12)
The matrix equation (12) can also be written as:
(a-Alha =0, ...(13)

where 1 is an identity matrix of order n.
In expanded form, equation (13) is thus:

gll—)\ &y ... By Eml OJ

Qp_p .- By L, 0
|:|21 22-\ 2n DD:ZD:O 1
Doverereeeereesenenns ool o ..(14)

Hau @&y - @& W0

Equation (12) shows that the vector ‘a’, can be transformed by the matrix ‘a’ into a parallel
vector ‘Aa’. Hence, the vector ‘a’ is an ‘eigen vector’ of the matrix ‘a’ corresponding to the
‘eigen value’ A. In scalar form, equation (12) as a system of algebraic equations is thus:

(a; - Aoy +a,0, + ...a,0,=00
2,0, + (a22 - )\2)0(2 + o &, A, = 0%
............................................... 0 ...(15)
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The scalar A must be determined from (15).
If A is such that the determinant value A of the coefficient matrix, [a — Al] is different from

zero, then the system (15) has only trivial solutions, a; = a, = ... = a, = 0 and, hence formulates
only trivial solutions
X () = X,(t) = ... =x,(t) =0 ...(16)

If A is such that the determinant A of the coefficient matrix [a — Al] vanishes, we arrive at
resulting an equation of order n for determining A:

A1\ Gp---Bp
B1 %o-p--fn|
............... ..(17)

This equation is called the auxiliary equation or characteristic equation and its roots are
called the roots of the auxiliary characteristic equation.

Case I: The roots of the auxiliary equation are real and distinct.

Let A;, Ay, ..., A, be the roots of the auxiliary equation. For each root A;, write the system
of equations (15) and determine the coefficients a{, o, ..., a,(. It may be shown that one
of them is arbitrary and be considered equal to unity. Thus, we obtain:

For the root A, the solution of the system (10)

Xgl) - 0(% Mt Xgl) - 0(12 ht Xgl) — O((nl)exlt

For the root A,, solution of the system (10)
X =o@eret, ¥ =@ ekt .., x@ =@t
For the root A, the solution of the system (10)

() — (M aAnt () — (M gAnt = Ant
X0 =ai’eMt x3V =aj’e , X = ale

Thus on substitution of values of x{™, the system of functions becomes

% =C, MMt +C,0Pert + ... +CoMeMt O
X, = C, oMt +C, a,PeMt + ..+ C, az(”)ekn‘%
...................................................... 0 ...(18)
X, =C o, 0eM +C, a,Pert + .. +C,a,MeMt g
where C;, C,, ..., C, are arbitrary constants. This is the general solution of system (1). A
particular solution can be obtained by giving particular values to the arbitrary constants.
In matrix form, the solution (18) of the system can be written as:

X 0 Etx() () (x(n) e)\1t|:|

[j( D %}2(1) 2) D%: e)\ztD

B0 Fo, @ a, H@:é“ﬁ

where C; are arbitrary constants.

...(19)
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Precisely, [X] = [a] [CeM] ...(20)

Case 11: The roots of the auxiliary equations are distinct, but imaginary.
Among the roots of the auxiliary equation, let there be two complex conjugate roots:

A= a+iB A, = a—ip

..(21)
To these roots will correspond the solutions:
X = o) et (j=1,2,...,n)8
_ +iRlt [ — U ..(22
x@ =@ de), (j=1,2,...,n) (22)
The coefficients a.(!) and a;® are determined from the system of equation (14).
. I . . .
Since the real and imaginary parts of the complex solution are also solutions.
We, thus, obtain two particular solutions:
x; (1) = gat ()\-(1) cospt +A@sin Bt) H
t
x; ) = gat ()\ sinpt+ A coth)E -+-(23)

where AP, A%, A® A7 are real numbers determined in terms of af? and ol
Appropriate combinations of functions (23) will enter into general solution of the system.

Example 53: Write down in the matrix form of the system and the solution of the system
of linear differential equations:

—= = 2%, +2X,, %:x1+3x2.

Solution: In the matrix form, the system of equations is written as

dx, O
Ogt 0_ 2 20x0

SLD H 38%H (D)

Odt O
Now the corresponding characteristic equation is

2-A 20,
g1 3_)\5—0 ie, AM-BA+4=0

whence AMN=1LA=4 ..(2)
. . _ . . _ o ad
Now, formulate matrix equation [A — Al] [a] = 0 with column matrix o = For, B
2

) (a11_)\)0‘1+a120‘2 =O%
ie., 2,0, +(a22 —7\)0(2 = 0§ ...(3)
For A=1 (2-2)af +a 0 —OD

o+ (3-2)af? =0
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i.e. simply one equation, a,® + 20, =0 ..(4)
Setting o,® =1, we get a,) = % ...(5)

In the same fashion, corresponding to the root A = 4.
Now we can write the solution of the system in matrix form:

D(1|:| |]}1 2 %AJD
BB %,21 2 th

1 1
) D(]_ D: E 1 e)\ﬂ O
i.e. ﬁ(za EFE 1 Ze)\th
- 4
Therefore, we have X Eclet +Ce'H
X, = ‘EQet + Cze‘“é

Example 54: Write in matrix form the system and the solution of the system of differential
equations dx g
O -y, Ee=x +2x, f=x1+x2+3x3,

dt % dt
Solution: In matrix form, the system of equations is written as:
(dx, O
Ot U

o 0 00x0
%D 4 2 oLk, S
E[jx H 1 3%3|:|
Hdt E
Let us form the characteristic equation and find its roots,
1-A 0 0
1 2-A 0 [=0,ie.(1-N2-NMNB-AN)=0
1 1 3-A

whence A=1 23
Corresponding to A = 1, finding oY, a9, a{t) from the system of equations as below:
M 0 0o O
ER oEQx O=0

1 Z%SD

gl(l) + (12(1) =00

ie., o + o, + 20,0 = 07

From above, we have oY =0 with a,® =1, a,®, = -1
Similarly, corresponding to A = 2, determine a,®, a,®, a .
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-0,d =00
o =0
01(2) + 02(2) + GS(Z) = OH
From above, we find a,® =0, o, =1, 0@ =-1
Likewise, corresponding to A = 3, we determine o,®), o, a,®.
-2a,8) = 00
a1(3) - a2(3) =00
(xl(3) + a2(3) = OH
or a0, =0, 0,=0,0,8=1
Consequently, in the matrix form, the solution of the given system of equations can be
written as:

i.e.,

We obtain

xO 01 0 00dCe O
3,0=01 1 0 zeZtE
fed 00 -1 1eep

X = Cpet E

X, = —Ce' +Ce® [

X; = —Cpe” + Cye™'

or

ASSIGNMENT 5
Solve the following system of linear differential equations by the matrix method:

dx, dx,
“L4x, =0, —2+4x, =0
dt = 2 dt !

B. Matrix Notation for a Linear Equations of Order n
Suppose we have an nth order linear differential equation with constant coefficients:

d"'x _ _ d"ix dn2x
g gL O g2
Later we will observe that this way of numbering the coefficients is convenient.

Take X=X

+...+aX ..(1)

..(2)

and

= aX taX, ttaX,

OoooOooOoOoOooood
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Let us write down coefficient matrix of the system:

m 1 0 0 .. 0O
D 0 10 .. of
[ad=C. . . . . .
0 0
M 0 0 0 .. 1f --(3)

B & 3 & ... g
Note: Here we do not discuss the question of passage to a limit for operations performed on matrices. Then,
the system (91) can be written as follows:

Odx O
Odx, B 0 1 0 0mx O
i 2 0o o 1 0x, O
0dt 0 g M2 0
g: 0=g- ‘M’ 0O
EUXn—lB 0 0 0 .. 1M%-D ..(4)
odt o Be & & .. &% B
0% o
Bdt O
d
or, briefly a[x] = BHx] ...(5)
i . dx __dx
Example 55: Write the equation ae pa +0X in matrix-form.

- dX1 dX2 -
Solution: Put x = x,, then ot =X, and T PX; + 0%

The system of equation in matrix form looks like this:

(ox, O
gt O_ 00 10%0
&D M pExH

Odt O

C. Solving System of Linear Differential Equations with Variable Coefficients by the
Method of Successive Approximations

Let it required to find the solution of the system of linear differential equations with
variable coefficients.

d
%:an(t)xl a, (t)x, + +a1n(t)xng
d [l
f=a21(t)xl+azz(t)xz+ +a2n(t)xng

................................................ 0 ()
Do = (65 + 8 (05 + .+ (%,

dt 1 1 2 n |:|

that satisfy the initial conditions.
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Xy = Xgg0 Xo = Xogy +oey Xy = X fOr t =1, ..(2)
If, besides the matrix of coefficient of the system and the matrix of solution, we introduce
the matrix of initial conditions

[%]=0%0 @

then the system of equations (1) with initial conditions (2), can be written as:

%[X] = B (t)Efx] .(8)
Here, [a(t)] is again coefficients matrix of the system. We will solve the problem by the
method of successive approximations.
To get a better grasp of the material that follows, let us apply to the method of successive
approximations first to a single linear equation of the first order.
It is required to find the solution of the single equation

d
d—)t(:a(t)x ...(5)

for the initial conditions, x = x, for t = t,
On assumption that a(t) is a continuous function, the solution of the differential equation
(5) with initial conditions, reduces to the integral equation

:x0+j;a(z)x(z)dz ...(6)
We will solve this equation by the method of successive approximations:
x=%+fa2)xd U
= O
X, = x0+ja() ¥ (2)dz H

(7
o = %0+ 1 8(2) 40 (2) "
................................. g
We introduce the operator S, (the integration operator)
s( ):Iut)( )dz ...(8)
Using the operator S, we can write the equations (101) as follows:
=X + S(axo) 0
O
X, =X +S(ax) = % +S( (XO +S(ax0))) 0
=5 +sfal+s(afo +s(ox)]))
...(9)
...................................................... 0
X = %o +S(a(x0 +S(xO +S(xO +S(ax0)))))5
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Expanding, we get
Xm = X +Sax, + SaSax, + SaSaSax, +... +SaSaSa...Sax,

m times
Taking X, outside the brackets (x, constatn), we obtain

Xn ={1+Sa+SaSa+...+SaSa...Sa}X, ...(10)

m times

It has been proved that if a(t) is a continuous function, then the sequence [x,] converges.
The limit of this sequence is a convergent series:

X =[1+Sa+ SaSa + ...]X, ..(11)
Note: If a(t) = const., then formula (11) assumes a simple form. Indeed, by (8) we can write

Sa=aSl = a(t —to)
2
SaSa=a’S(t-ty) = azgﬁl

m
t_
SaSa...Sa= amﬁ—tOL
2aoa...o3

m times

.(12)

OOoOooOoOomOoOoOo

In this case, (11) takes the form

2 m
X:E1+a(t_t°)+a2(t_t°) + .+amuLEko
g ]

2! v m!

X = Xoea(t_to) (13)

The method of solving the single equation (5) that we have just reviewed is carried over
in its entirety to the solution of system (1) for the initial conditions (2).
In matrix form, system (1) with initial conditions (2) can be written as:

=Rl (1)

For the final conditions, [x] = [x,] for t = t, if we use the rule of matrix multiplication and
matrix integration, the solution of system (14), under the given conditions, can be reduced
to the solution of the matrix integral equation.

(8= %] + J, B(2)EHK(2)E:z ..(15)
We find the successive approximations
Bn (V8= [%0] + f;, B(2) B 1 (2)EI2 ...(16)

By successive substitution of the successive approximations under the integral, the solution
of the system comes out like this in matrix form:

B (t)E= %] + J;aa(zl)d[xo]+ ;;aa(zz)g([xo] * ;2@(23)5...)d23)d22}d21+...
or ()= %] + J; Bl(z)E]x] dz + [, B(z) B Bz ) BlxoJdz dz +.. ..(17)
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Using the integration operator S, we can write (17) as
[x(©)] = {[E] + S[a] S[a] S[a] + ...} [X] ..-(18)
The operator in brackets { } can be denoted by a single letter. We denote it by n®9[a(t)].
Then equation (18) is precisely written as
[x(®)] = n®" [a®)][xo] -.-(19)
It is interesting to note that if the coefficients of system (1) are constants, then using the
rule for taking a common factor all entries of the matrix outside the matrix symbol, * we can
write

sla] = =9

sfajsfe] = 2L af

3
S[a] S[a] S[a] :(t_gf'ﬂ[a]3 and so on.
In the case of constant coefficient, formula (18) assumes the form
dey,t- t-t) t=4)" o, O
e 1 (AR (O I
This equation can be symbolized in compact form as
[x(©)] = e~ [a] [x] --(21)

({ ANSWERS D

Assignment 4

1 0 00
1124 (1,0,0), (0,1,1), (0 1, -1) @ 1 105 5 +2x¢ +4x]
M1

_15

2 2
2. X7+ AX57 + AX Xy + 10X, X5 + 6X,Xg

Assignment 5

= -2t 2t - -2t 2t
X; = CE + G, X, = 2C,67° — 2C,8



