
4

Graphical Presentation of Data

4.1 Introduction

Graphical displays of data can be very useful for showing the main

features of a data set. The appropriate form of graph depends on the

nature of the variables being displayed and what aspects are to be

shown. However it should always be borne in mind that the object is to

provide a clear and truthful representation of the data, not to distort

and not to impress with unnecessary “fancy” features.

4.2 Qualitative data: bar charts

The most useful way to display qualitative data is usually with a bar

chart. The length of each bar is proportional to the frequency of the

corresponding value of the variable in the sample of data. Note that the

widths of the bars should be equal to avoid giving a false impression,

as should the width between bars. 1 1 Type colours() into R to get a list

of colours.
Figure 4.1 shows the breakdown in MPAA ratings for the movie data

set. To create a bar chart in R we use the table command...

NC−17 PG PG−13 R

MPAA Rating

F
re

qu
en

cy

0

500

1000

1500

2000

2500

3000

Figure 4.1: Barchart of the mpaa rat-
ings for 4847 films.

> table(movies$mpaa)

NC-17 PG PG-13 R

16 526 989 3316

... inside the barplot function:

> barplot(table(movies$mpaa), xlab="MPAA Rating",

+ ylab="Frequency", border = "black",

+ col="mistyrose")

Remember to load the data first!

4.3 Histograms

To represent the distribution of a sample of values of a continuous

variable we can use a histogram. The range of values of the variable is

divided into intervals, known as classes, and the frequencies in classes

are represented by columns. As the variable is continuous, there are no

gaps between neighbouring columns, unlike a bar chart.2 Note also that, 2 Unless, of course, a particular class

has zero frequencystrictly speaking, it is the area of the column which is proportional to

26 dr lee fawcett

Rule Formula R command Comment

Sturges’ kST = dlog2 n + 1e Default Tends not to be very good for n > 30.

Scott’s hSC = 3.49× s× n−1/3 breaks = “Scott”

Freedman-Diaconis hFR = 2× IQR(x)× n−1/3 breaks = “FD” When the distribution is symmetric,

this is very similar to Scott’s rule.

Table 4.1: Standard bin width rules in
R.the frequency, not the height. The reason for this is that columns need

not be of the same width. Computer software tends to use columns of

the same width. However, this default can be overridden in R if you

really want to do this.

Mean film budget

D
en

si
ty

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0e+00

1e−08

2e−08

3e−08

4e−08

Figure 4.2: Histogram of movie bud-
gets.

Figure 4.2 shows histograms of the film budgets. When dealing with

densities (relative frequency), we can easily work out the height using

this formula:

Height =
frequency

n× Bin-width
.

When the y-axis is labelled with density or relative frequencies, the area

under the histogram is one. Bin widths should be chosen so that you

get a good idea of the distribution of the data, without being swamped

by random variation.

To generate Figure 4.2 in R we use the following commands:

> hist(movies$Budget, col="grey",

+ main="Mean film budget",

+ freq=FALSE, xlab="Budget ($)")

4.3.1 How many bins should we have?

First we will define the notation we will use:

� n: the sample size;

� k: the number of bins in the histogram;

� h: the bin-width.

Then the number of bins we will use to construct a histogram is:

k =

⌈
max(x)−min(x)

h

⌉
(4.1)

where d·e is the ceiling function.

Table 4.1 gives a summary of the different rules. Briefly, R uses Sturges’

rule by default, which isn’t always that good. Notice that Sturges’ rule

gives you k, but the other rules give you the bin width. Typically, it is

best to go with Scotts’ rule or the Freedman-Diaconis rule.

Scott's rule

Budget($)

D
en

si
ty

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0.0e+00

2.0e−08

4.0e−08

6.0e−08

8.0e−08

1.0e−07

1.2e−07

The FD rule

D
en

si
ty

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0e+00

1e−07

2e−07

3e−07

4e−07

5e−07

6e−07

Figure 4.3: Histogram of (a) movie

budgets using Scott’s rule and (b)

the Freedman-Diaconis rule. Compare
these histograms to Figure 4.2 which

uses Sturges’ rule (default).

To use the different rules, we use the breaks argument. For example,

the following piece of code:

> hist(movies$Budget, col="wheat",

+ main="The FD rule",

+ freq=FALSE, xlab="Budget ($)", breaks="FD")

mas1343 computational probability and statistics (with r) 27

uses the Freedman-Diaconis rule - see Figure 4.3. When we compare

Figure 4.3a with 4.2, we have used many more bins, which results in a

better histogram; however, it is clear that Figure 4.3b uses too many

bins! In practical 2, you will get a chance to experiment with the

different rules yourself.

4.3.2 Example: movie data
Sturges’ rule

Suppose we want to calculate the number of bins for the

budget movie variable. For Sturges’ rule we have:

kST = dlog2(4847)e+ 1 = 14 .

For Scotts rule, we first calculate the bin width Scotts’ rule

hSC =
3.49× 23039711

48471/3 ' 4751289

then the number of bins is:

kSC =

⌈
2× 108

4751289

⌉
= 43 .

For the FD rule, the bin width is:
Freeman-Diaconise rule

hFD =
2× 2.3× 107

48471/3 ' 945429 .

Hence,

kSC =

⌈
2× 108

945429

⌉
= 212 .

Number of bins

Variable Range s IQR Sturges Scott’s Free-Dia

Budget 2× 108 23039711 8× 106 14 43 212

Length 249.0 17.3 17.0 14 70 124

Rating 8.1 1.5 2.0 14 28 35

Table 4.2: Bin sizes for the movie data.

In all cases n = 4847.

28 dr lee fawcett

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●
●
●●●●●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●
●
●

●

●
●

●

●

●
●

●
●
●

●●●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●●
●

●

NC−17.0 PG.0 PG−13.0 R.0 NC−17.1 PG.1 PG−13.1 R.1

0

50

100

150

200

250

F
ilm

 le
ng

th

Figure 4.4: Box and whisker plots
movie length split according to mpaa
rating and whether the film was a ro-

mance.

●●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●
●
●

●●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●●●

●

●

●

●

●

●●●

●

●
●●
●

●
●

●

●

●

●●●●

●

●

●

●
●●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●
●

●●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●
●

●●●●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●
●
●●●
●

●

●

●●
●

●

●●●
●

●

●

●

●

●

●

●

●
●●●
●
●

●

●

●
●
●

●

●●●
●
●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●●●

●

●

●●

●
●●

●

●

●

●

●

●

0

50

100

150

200

250
F

ilm
 le

ng
th

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●●●●●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●
●
●

●
●●

●

●●●

●

●
●●●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●
●●
●

●

●

●

●

●

●

●
●
●

●

●

●
●●
●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●
●●

●●

NC−17 PG PG−13 R

0

50

100

150

200

250

F
ilm

 le
ng

th

Figure 4.5: Box and whisker plots of
(a) film length (b) film length split ac-

cording to the mpaa rating.

4.4 Box and whisker plots

A box and whisker plot, often referred to simply as a boxplot, is another

way to represent continuous data. This kind of plot is particularly useful

for comparing two or more groups, by placing the boxplots side-by-side.

Figure 4.4 and figure 4.5 shows boxplots of film length for different

categories of film.

The central bar in the “box” is the sample median. The top and bottom

of the box represent the upper and lower sample quartiles, respectively.

Just as the median represents the 50% point of the data, the lower and

upper quartiles represent the 25% and 75% points respectively.

The lower whisker is drawn from the lower end of the box to the smallest

value that is no smaller than 1.5IQR below the lower quartile. Similarly,

the upper whisker is drawn from the middle of the upper end of the

box to the largest value that is no larger than 1.5IQR above the upper

quantile. Points outside the whiskers are classified as outliers.

To do this in R we use the following commands:

> par(mfrow=c(2, 1))

> boxplot(movies$Length, ylab="Film length",

+ col="bisque")

> boxplot(movies$Length ~ movies$mpaa, ylab="Film length",

+ col="bisque")

> boxplot(movies$Length ~ movies$mpaa + movies$Romance,

+ ylab="Film length")

mas1343 computational probability and statistics (with r) 29

4.4.1 Boxplot example 1

For the data set:

0.1 0.1 0.2 0.4 0.4 0.8 0.8 0.8

0.9 0.9 1.0 1.4 1.6 2.0 2.4 3.5

Table 4.3: An example data set.

construct a boxplot.

Solution

First we calculate the median and quartiles:

Median 1st quartile 3rd quartile IQR

0.85 0.4 1.55 1.15

Table 4.4: Summary statistics for the
first example data in Table 4.3.

To calculate the outliers and whiskers, we first calculate:

WL = lower quartile - 1.5IQR = −1.325

and

WU = upper quartile + 1.5IQR = 3.275

Since 3.5 > WU = 3.275, this means that 3.5 is an out-
lying point. Since we have no points less than WL, the
lower whisker is the smallest data point, i.e. 0.1. The upper
whisker is max(x∗) where x∗ does not include any outlying
points, i.e. 2.4.

●

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lower whisker: 0.1

Lower quartile: 0.4

Median: 0.85

Upper quartile: 1.55

Upper whisker: 2.4

Outlier: 3.5

Lower hinge

Box

Upper hinge

Figure 4.6: Boxplot for the first exam-
ple data set in table 4.3 and summary
statistics in table 4.4.

30 dr lee fawcett

4.4.2 Boxplot example 2

For the following data:

9.0 32.8 33.0 34.9 35.4 39.7 41.6 42.0

42.3 43.2 46.9 49.2 51.6 51.7 55.0 81.0

Table 4.5: An example data set.

construct a boxplot.

Solution

First we calculate the necessary summary statistics:

Median 1st quartile 3rd quartile IQR WL WU

42.1 35.02 51.00 15.98 11.05 74.97

Table 4.6: Summary statistics for the
second example data in table 4.5.

Command Comment Example

table Contingency table table(x)

barplot Generate a bar chart barplot(table(x))

hist Histogram hist

plot Scatter plot. See Practical 2. plot(x, y)

points Add points to a plot. See Practical 2. points(x,y)

lines Add lines to a plot. See Practical 2. lines(x,y)

boxplot Box and whiskers plot boxplot(x)

Table 4.7: Summary of R commands

in this chapter.

5

Control Statements and Functions

5.1 Functions

A very powerful aspect of R is that it is relatively easy to write your

own functions. Functions can take inputs (or arguments) and return a

single value. Let’s look at some simple functions.

5.1.1 Basic functions

This function takes in a single argument x and returns x2:

> Fun1 = function(x) {

+ return (x*x)

+ }

The key elements in the function call are:

� The word function;

� The brackets () which enclose the argument list.

� A sequence of statements in curly braces { }.

� A return statement.

We call Fun1 in the following manner:

> Fun1(5)

[1] 25

> y = Fun1(10)

> y

[1] 100

> z = c(1, 2, 3, 4)

> Fun1(z)

[1] 1 4 9 16

Of course, the old saying ‘Garbage in, Garbage out’ is true:

> Fun1()

Error in Fun1() : argument "x" is missing, with no default

> Fun1("5")

Error in x * x : non-numeric argument to binary operator

The error messages give you an idea of what went wrong. Other

variations to this simple function are:

32 dr lee fawcett

> Fun2 = function(x=1) {

+ return (x*x)

+ }

> Fun2()

[1] 1

> Fun2(4)

[1] 16

> Fun3 = function(x, y) {

+ return (x*y)

+ }

> Fun3(3, 4)

[1] 12

5.1.2 A more useful function

Here the function below takes in a vector, plots a histogram and returns

a vector containing the mean and standard deviation:

> Investigate = function(values) {

+ hist(values)

+ m_std = c(mean(values), sd(values))

+ return(m_std)

+ }

Once we have created our function, we can put it to good use1: 1 Obviously, a histogram would also be

created – it’s just not shown here. See
Section 4.3 for examples of histograms.> Investigate(movies$Rating)

[1] 5.522715 1.451864

5.1.3 Variable scope

When we call a function, R first looks for local variables, then global

variables. For example, Fun4 uses a global variable: R scoping rules are actually a bit more

complicated than described below. R

uses something called lexical scope, but
this doesn’t affect us.

> blob = 5

> Fun4 = function() {

+ return(blob)

+ }

> Fun4()

[1] 5

However, in Fun5, we use a local variable:

> Fun5 = function() {

+ blob = 6

+ return(blob)

+ }

> Fun5()

[1] 6

> blob

[1] 5

As a general rule, functions should only use local variables. This makes

your code more portable and less likely to have bugs.

mas1343 computational probability and statistics (with r) 33

5.2 The cat command

A useful function to help debugging is the cat function. This function

is used to print messages to the screen. For example,

> x = 5

> cat(x, "\n")

5

> (y = cat(x, "\n"))

5

NULL

We will use the cat function in the next section.

5.3 Conditionals

Conditional statements are features of a programming language which

perform different computations or actions depending on whether a

condition evaluates to TRUE or FALSE. They are used in almost all

computer programs.

5.3.1 If statements

The basic structure of an if statement is:

> if(expr) {

+ ##do something

+ }

where expr is evaluated to be either TRUE or FALSE. The following

example illustrates if statements in R:

> x = 5

> y = 5

> if(x<5) {

+ y = 0

+ }

> y

[1] 5

In this code chunk, x < 5 evaluates to be FALSE so the following

brackets are not evaluated. We test for greater than in a similar

manner:

> x = 5

> y = 5

> if(x > 0) {

+ y = 0

+ }

> y

[1] 0

Here x > 0 evaluates to be TRUE so, y is set equal to 0. If we wanted

to test for equality with zero, then we would use ==.

34 dr lee fawcett

5.3.2 If else statements

We can link together a number of if statements

> x = 0

> if(x > 0) {

+ cat("x is greater than zero")

+ } else if(x < 0) {

+ cat("x is less than zero")

+ } else {

+ cat("x must be zero!")

+ cat("\n")

+ }

x must be zero!

The final else is optional. We can also use if statements in functions,

for example to check that our data is negative we can construct the

following function:

> IsNegative = function(value) {

+ I = FALSE

+ if(value < 0) {

+ I = TRUE

+ }

+ return(I)

+ }

> IsNegative(1)

[1] FALSE

> IsNegative(-5.6)

[1] TRUE

A more sophisticated function could be:

> IsGreaterThan = function(value1, value2) {

+ is_greater_than = FALSE

+ if(value1 > value2) {

+ is_greater_than = TRUE

+ }

+ return(is_greater_than)

+ }

Which we can then call:

> IsGreaterThan(-5, -6)

[1] TRUE

> IsGreaterThan(10, 10)

[1] FALSE

5.4 Control statements

At times we would like to perform some operation on a vector or a

data frame. Often R has built-in functions that will do this for you,

e.g. mean, sd,... Other times we have to write our own functions. For

example, suppose we want to calculate ∑10
i=1 i2 .

mas1343 computational probability and statistics (with r) 35

In R we can use a for loop:

> x = 0

> for(i in 1:10) {

+ x = x + i^2

+ }

> x

[1] 385

Or perhaps ∑−1
j=−5 ej/j2 , then:

> total = 0

> for(j in -5:-1) {

+ total = total + exp(j)/j^2

+ }

> total

[1] 0.4086594

A more tricky example: Calculate ∑ ek/k2, for k = 3, 6, 9, . . . , 21:

> total = 0

> for(i in 1:7) {

+ k = i*3

+ total = total + exp(k)/k^2

+ }

> total

[1] 3208939

Exercise: Using the inbuilt R function sum, calculate the above sum-

mations without using for loops.

5.5 Putting it all together

Rather than have to constantly write R code to solve the summations

in §5.4 we can create a function to solve the general form: Can you see what’s wrong with the

function Summation1? There’s a prize

for anyone who can spot this – and
write a function which works all the

time!

ie

∑
i=is

ei

i2
for i = is, is + j, is + 2j, . . . , ie .

So in R we have:

> Summation1 = function(i_s, i_e, j) {

+ total = 0

+ for(i in 1:(i_e/j)) {

+ k = i*j

+ total = total + exp(k)/k^2

+ }

+ return(total)

+ }

> Summation1(3, 21, 3)

[1] 3208939

36 dr lee fawcett

5.6 The apply family

R has been designed with manipulating data in mind. Due to this,

there are two important functions that are unique to R. Probably not unique, but not common

in other programming languages.

5.6.1 The apply function

We use the apply function when we want to apply the same function

to every row or column of a data frame. For example, suppose we have

a data frame with three columns:

> (df4 = data.frame(c1 = 1:4, c2 = 4:7, c3 = 2:5))

c1 c2 c3

1 1 4 2

2 2 5 3

3 3 6 4

4 4 7 5

The apply function takes (at least) three arguments. The first argument

is the data frame, the second the number 1 or 2 indicating row or column

and the third a function to apply to each row or column. So

> apply(df4, 1, mean)

[1] 2.333333 3.333333 4.333333 5.333333

calculates the mean value of every row, while

> apply(df4, 2, sd)

c1 c2 c3

1.290994 1.290994 1.290994

calculates the standard deviation of every column.

Suppose one of the columns was non-numeric

> (df5 = data.frame(c1 = 1:3, c2 = 4:6,

+ c3 = LETTERS[1:3]))

c1 c2 c3

1 1 4 A

2 2 5 B

3 3 6 C

then taking the mean doesn’t really make sense:

> apply(df5, 1, mean)

[1] NA NA NA

Instead, we remove the column, then calculate the mean:

> apply(df5[,1:2], 1, mean)

[1] 2.5 3.5 4.5

5.6.2 The tapply function

The function tapply is very useful, but at first glance can be tricky to

understand. It’s best described using an example:

mas1343 computational probability and statistics (with r) 37

> tapply(movies$Length, movies$mpaa, mean)

NC-17 PG PG-13 R

110.18750 97.23384 104.97877 100.18818

In the above code, we have calculated the average movie length condi-

tional on its MPAA rating. So the average length of a PG movie is 97

minutes and the average NC-17 movie length is 110mins. With tapply

we can do we very interesting things. For example, in the next piece of

code, we plot the average movie length conditional on it’s rating:

> tapply(movies$Length, movies$Rating, mean)[1:6]

1 1.2 1.3 1.4 1.5 1.6

85.5 93.0 87.5 85.0 67.0 86.0

> rating_by_len = tapply(movies$Length, movies$Rating,

+ mean)

> plot(names(rating_by_len), rating_by_len)

Imagine trying to produce Figure 5.1 in Excel!

●

●

●
●

●

●
●
●

●●●

●

●

●
●
●
●

●
●
●●

●●●●
●●●●

●●
●●

●●
●
●
●●●●

●●
●●

●●

●●●
●●

●●
●

●
●
●●●

●
●●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

80

100

120

140

160

Rating

M
ov

ie
 le

ng
th

Figure 5.1: Plot of mean movie length
conditional on it’s rating.

5.7 Help

R has a very good help system. If you need information about a

particular function – say plot – then typing ?plot in a R terminal will

bring up the associated help page.

The internet is another very good source of R help. Unfortunately,

using Google isn’t particularly useful since the letter “R” appears on

most web pages! However, you can use

http://www.rseek.org/

Using this search engine limits searches to R web-pages.

Summary of R commands

Command Comment

for A for loop. See §5.4

if or else A conditional statement. See §5.3.

function An R function constructor. See §5.1

cat Print command. See §5.2

apply or tapply See §5.6

Table 5.1: Summary of R commands

in this chapter.

http://www.rseek.org/

38 dr lee fawcett

Lee

