

4 Linear Motion	Conceptual Physics
4.1 Motion Is Relative	
Even things that appear to be at rest move.	
When we describe the motion of one object with	
respect to another, we say that the object is moving	
relative to the other object.	
\quad- A book that is at rest, relative to the table it lies on, is moving at about 30 kilometers per second relative to the sun. - The book moves even faster relative to the center of our galaxy.	

4 Linear Motion	Conceptual Physics
4.1 Motion Is Relative	
When we discuss the motion of something, we	
describe its motion relative to something else.	
- The space shuttle moves at 8 kilometers per	
second relative to Earth below.	
- A racing car in the Indy 500 reaches a speed of	
	300 kilometers per hour relative to the track.
- Unless stated otherwise, the speeds of things in	
our environment are measured relative to the	
surface of Earth.	

4 Linear Motion	Conceptual Physics ${ }^{\text {a }}$
4.1 Motion Is Relative	
An object is moving if its position relative to a fixed point is changing.	

4 Linear Motion	Conceptual Physics
4.2 Speed Any combination of units for distance and time that are useful and convenient are legitimate for describing speed: - miles per hour (mi/h) - kilometers per hour (km/h) - centimeters per day - light-years per century	
maxa	

4 Linear Motion	Conceptual Physics
4.2 Speed We will primarily use the unit meters per second (m / s) for speed. If a cheetah covers 50 meters in a time of 2 seconds, its speed is $25 \mathrm{~m} / \mathrm{s}$.	

4 Linear Motion	Conceptual Physics
X	
4.2 Speed	
Instantaneous Speed	
A car does not always move at the same speed.	
You can tell the speed of the car at any instant by	
looking at the car's speedometer.	
The speed at any instant is called the	
instantaneous speed.	

| 4 Linear Motion |
| :--- | :--- |
| 4.2 Speed |
| Average Speed |
| In a trip by car, the car will certainly not travel at |
| the same speed all during the trip. |
| The driver cares about the average speed for the |
| trip as a whole. |
| The average speed is the total distance covered |
| divided by the time. |

4 Linear Motion	Conceptual Physics	X
4.2 Speed		
If we know average speed and travel time, the distance		
traveled is easy to find.		
total distance covered $=$ average speed \times travel time		
For example, if your average speed is 80 kilometers per		
hour on a 4-hour trip, then you cover a total distance of		
320 kilometers.		

| 4 Linear Motion | Concepptual Physics |
| :--- | :--- | :--- |
| 4.2 Speed | |
| think! | |
| If a cheetah can maintain a constant speed of $25 \mathrm{~m} / \mathrm{s}$, it will | |
| cover 25 meters every second. At this rate, how far will it | |
| travel in 10 seconds? In 1 minute? | |
| Answer: In 10 s the cheetah will cover 250 m , and in 1 min | |
| (or 60 s) it will cover 1500 m . | |

4 Linear Motion	Conceptual Physics
4.3 Velocity	
Speed is a description of how fast an object moves; velocity is how fast and in what direction it moves.	
Hana	

| 4 Linear Motion |
| :--- | :--- |
| 4.3 Velocity |
| In physics, velocity is speed in a given direction. |
| - When we say a car travels at $60 \mathrm{~km} / \mathrm{h}$, we are |
| specifying its speed. |
| - When we say a car moves at $60 \mathrm{~km} / \mathrm{h}$ to the |
| north, we are specifying its velocity. |
| Conceptual Physics |
| Xelocity is directed |
| speed. |

| 4. Linear Motion |
| :--- | :--- |
| 4.3 Velocity |
| The car on the circular track may have a constant |
| speed but not a constant velocity, because its |
| direction of motion is changing every instant. |

4 Linear Motion	Conceptual Physics
4.4 Acceleration	
You can calculate the acceleration of an object by dividing the change in its velocity by time.	
nnea	AD

4 Linear Motion	Conceptual Physics ${ }^{\text {- }}$
4.4 Acceleration	
A car is accelerating whenever there is a change in its state of motion.	
!	
max	ΔD

4 Linear Motion	Conceptual Physics
4.4 Acceleration	
In physics, the term acceleration applies to decreases as well as increases in speed.	
The brakes of a car can produce large retarding accelerations, that is, they can produce a large decrease per second in the speed. This is often called deceleration.	

4 Linear Motion	Conceptual Physics
¢4.4 Acceleration	
Change in Direction	
Acceleratio - It is im and - Accel in velo - Accel becau	ction. speed change quantity
[max	

4 Linear Motion	Conceptual Physics
\%4.4 Acceleration	
Change in Speed	
When straight-line motion is considered, it is common to use speed and velocity interchangeably.	
When the direction is not changing, acceleration may be expressed as the rate at which speed changes.	
accelerati	change in speed time interval
nmos	\checkmark

| 4 Linear Motion |
| :--- | :--- |
| 4.4 Acceleration |
| The acceleration is $10 \mathrm{~km} / \mathrm{h} \bullet \mathrm{s}$, which is read as |
| "10 kilometers per hour-second." |
| Note that a unit for time appears twice: once for the unit of |
| speed and again for the interval of time in which the speed is |
| changing. |
| Chysics |

4 Linear Motion	Conceptual Physics
4.4 Acceleration	
think!	
In 5 seconds a car moving in a straight line increases its	
speed from $50 \mathrm{~km} / \mathrm{h}$ to $65 \mathrm{~km} / \mathrm{h}$, while a truck goes from rest	
to $15 \mathrm{~km} / \mathrm{h}$ a a straight line. Which undergoes greater	
acceleration? What is the acceleration of each vehicle?	

4 Linear Motion	Conceptual Physics
4.4 Acceleration think! Suppose a car moving in a straight line steadily increases its speed each second, first from 35 to $40 \mathrm{~km} / \mathrm{h}$, then from 40 to $45 \mathrm{~km} / \mathrm{h}$, then from 45 to $50 \mathrm{~km} / \mathrm{h}$. What is its acceleration? Answer: The speed increases by $5 \mathrm{~km} / \mathrm{h}$ during each $1-\mathrm{s}$ interval in a straight line. The acceleration is therefore $5 \mathrm{~km} / \mathrm{h} \cdot \mathrm{s}$ during each interval.	
mone	$\Delta>$

4 Linear Motion	Conceptual Physics
4.4 Acceleration	
think!	
In 5 seconds a car moving in a straight line increases its speed from $50 \mathrm{~km} / \mathrm{h}$ to $65 \mathrm{~km} / \mathrm{h}$, while a truck goes from rest to $15 \mathrm{~km} / \mathrm{h}$ in a straight line. Which undergoes greater acceleration? What is the acceleration of each vehicle?	
Answer: The car and truck both increase their speed by $15 \mathrm{~km} / \mathrm{h}$ during the same time interval, so their acceleration is the same.	
num	Δ

4 Linear Motion	Conceptual Physics ${ }^{\text {T }}$
4.5 Free Fall: How Fast	
The acceleration of an object in free fall is about 10 meters per second squared ($10 \mathrm{~m} / \mathrm{s}^{2}$).	
mued	1D

4 Linear Motion	Conceptual Physics
4.5 Free Fall: How Fast	
When the change in speed is in m / s and the time interval is in s , the acceleration is in $\mathrm{m} / \mathrm{s}^{2}$, which is read as "meters per second squared."	
The unit of time, the second, occurs twice-once for the unit of speed and again for the time interval during which the speed changes.	
	Since acceleration is a vector quantity, it's best to say the acceler- ation due to gravity is $10 \mathrm{~m} / \mathrm{s}^{2}$ down.
camox	

4 Linear Motion	Conceptual Physics
4.5 Free Fall: How Fast	
The letter v represents both speed and velocity. When the acceleration $g=10 \mathrm{~m} / \mathrm{s}^{2}$ is multiplied by the elapsed time in seconds, the result is the instantaneous speed in meters per second.	
[10x90	d

	Linear Motion	Conceptual Physics
4.5 Free Fall: How Fast		
During each second of fall the instantaneous speed of the object increases by an additional 10 meters per second.		
This gain in speed per second is the acceleration.		
	$\text { acceleration }=\frac{\text { change in speed }}{\text { time interval }}$	$\frac{10 \mathrm{~m} / \mathrm{s}}{1 \mathrm{~s}}=10 \mathrm{~m} / \mathrm{s}^{2}$
Hamer		

4 Linear Motion	Conceptual Physics
4.5 Free Fall: How Fast	
For free fall, it is customary to use the letter g to represent the	
acceleration because the acceleration is due to gravity.	
Although g varies slightly in different parts of the world, its	
average value is nearly $10 \mathrm{~m} / \mathrm{s}^{2}$.	
Where accuracy is important, the value of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ should be	
used for the acceleration during free fall.	
	\vdots

4 Linear Motion	Coneeptual Physics
4.5 Free Fall: How Fast think! During the span of the second time interval in Table 4.2, the object begins at $10 \mathrm{~m} / \mathrm{s}$ and ends at $20 \mathrm{~m} / \mathrm{s}$. What is the average speed of the object during this 1 -second interval? What is its acceleration?	

4. Linear Motion
4.5 Free Fall: How Fast
think!
During the span of the second time interval in Table 4.2,
the object begins at $10 \mathrm{~m} / \mathrm{s}$ and ends at $20 \mathrm{~m} / \mathrm{s}$. What is
the average speed of the object during this 1 -second
interval? What is its acceleration?
Answer: The average speed is $15 \mathrm{~m} / \mathrm{s}$. The acceleration
is $10 \mathrm{~m} / \mathrm{s}^{2}$.

4 Linear Motion	Coneeptual Physics
4.5 Free Fall: How Fast think! What would the speedometer reading on the falling rock be 4.5 seconds after it drops from rest? How about 8 seconds after it is dropped? Answer: The speedometer readings would be $45 \mathrm{~m} / \mathrm{s}$ and $80 \mathrm{~m} / \mathrm{s}$, respectively.	
5mea	Δ

4 Linear Motion	Conceptual Physics
4.6 Free Fall: How Far How far does an object in free fall travel in the first second? - At the end of the first second, the falling object has an instantaneous speed of $10 \mathrm{~m} / \mathrm{s}$. - The initial speed is $0 \mathrm{~m} / \mathrm{s}$. - The average speed is $5 \mathrm{~m} / \mathrm{s}$. - During the first second, the object has an average speed of $5 \mathrm{~m} / \mathrm{s}$, so it falls a distance of 5 m .	
Faneer	Δ

4 Linear Motion	Conceptual Physics
4.6 Free Fall: How Far	
At the end of one second, the rock has fallen 5 meters.	
At the end of 2 seconds, it has dropped a total distance of 20 meters.	
At the end of 3 seconds, it has dropped 45 meters altogether.	

4 Linear Motion
\vdots 4.6 Free Fall: How Far
\vdots
Pretend that a falling rock
is somehow equipped with
\vdots
an odometer. The
readings of distance fallen
increase with time.
\vdots

4 Linear Motion	Conceptual Physics
4.6 Free Fall: How Far	
These distances form a mathematical pattern: at the	\vdots
\vdots	
end of time t, the object starting from rest falls a	
distance d.	\vdots
\vdots	
\vdots	

4.inear Motion	Conceptual Physics
4.6 Free Fall: How Far	
think!	
An apple drops from a tree and hits the ground in one	
second. What is its speed upon striking the ground? What	
is its average speed during the one second? How high	
above ground was the apple when it first dropped?	

4 Linear Motion	Conceptual Physics
4.7 Graphs of Motion Equations and tables are not the only way to describe relationships such as velocity and acceleration. Graphs can visually describe relationships.	

4. Linear Motion
4.6 Free Fall: How Far
think!
An apple drops from a tree and hits the ground in one
second. What is its speed upon striking the ground? What
is its average speed during the one second? How high
above ground was the apple when it first dropped?
Answer: The speed when it strikes the ground is $10 \mathrm{~m} / \mathrm{s}$.
The average speed was $5 \mathrm{~m} / \mathrm{s}$ and the apple dropped
from a height of 5 meters.

4 Linear Motion	Conceptual Physics
4.7 Graphs of Motion	
On a speed-versus-time graph the slope represents speed per time, or acceleration.	
nmod	,

4 Linear Motion		mancepriss		
4.7 Graphs of Motion Speed-Versus-Time On a speed-versus-time graph, the speed v of a freely falling object can be plotted on the vertical axis and time t on the horizontal axis. Speed vs. Time for a Freely Falling Object				
pangex				

4 Linear Motion	Conceptual Physics	X
4.7 Graphs of Motion		
The curve is a straight line, so its slope is constant.		
Slope is the vertical change divided by the horizontal		
change for any part of the line.		
\vdots		
\vdots		

4 Linear Motion	Concepuail Physics ${ }^{\text {x }}$
4.7 Graphs of Motion Distance-Versus-Time When the distance d traveled by a freely falling object is plotted on the vertical axis and time t on the horizontal axis, the result is a curved line.	
m	-

4 Linear Motion	Conceptual Physics
4.7 Graphs of Motion	
For $10 \mathrm{~m} / \mathrm{s}$ of vertical change there is a horizontal	
change of 1 s .	\vdots
The slope is $10 \mathrm{~m} / \mathrm{s}$ divided by 1 s , or $10 \mathrm{~m} / \mathrm{s}^{2}$.	\vdots
The straight line shows the acceleration is constant.	\vdots
If the acceleration were greater, the slope of the graph	\vdots
would be steeper.	\vdots
\vdots	\vdots
\vdots	

4 Linear Motion	
4.7 Graphs of Motion	
The relationship between distance and time is nonlinear.	

4 Linear Motion	Conceptual Physics
Z.	
4.8 Air Resistance and Falling Objects	
Drop a feather and a coin and the coin reaches the floor far	
ahead of the feather.	
Air resistance is responsible for these different accelerations.	
In a vacuum, the feather and coin fall side by side with the	
same acceleration, g.	

4. Linear Motion	Concepptual Physics
4.7 Graphs of Motion	
A curved line also has a slope-different at different points.	
The slope of a curve changes from one point to the next.	
The slope of the curve on a distance-versus-time graph is	
speed, the rate at which distance is covered per unit of time.	
The slope steepens (becomes greater) as time passes, which	
shows that speed increases as time passes.	
S	

4 Linear Motion	Conceptual Physics
4.8 Air Resistance and Falling Objects	
Air resistance noticeably slows the motion of things with large surface areas like falling feathers or pieces of paper. But air resistance less noticeably affects the motion of more compact objects like stones and baseballs.	
Hane	$4>$

4. Linear Motion
4.8 Air Resistance and Falling Objects
A feather and a coin accelerate equally
when there is no air around them.

4 Linear Motion	Conceptual Physics
4.9 How Fast, How Far, How Quickly How Fast Changes	
Acceleration is the rate at which velocity itself changes.	
\cdots mas	

4 Linear Motion	Conceptual Physics
4.9 How Fast, How Far, How Quickly How	
Fast Changes	
One of the most confusing concepts encountered in this book	
is acceleration, or "how quickly does speed or velocity	
change."	
What makes acceleration so complex is that it is a rate of a	
rate. It is often confused with velocity, which is itself a rate	
(the rate at which distance is covered).	
Acceleration is not velocity, nor is it even a change in velocity.	

4 Linear Motion		Conceptual Physics	
Assessment Questions 5. If a falling object gains $10 \mathrm{~m} / \mathrm{s}$ each second it falls, its acceleration can be expressed as a. $10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. b. $10 \mathrm{~m} / \mathrm{s}^{2}$. c. $v=g t$. d. both A and B .			

pane

4 Linear Motion	Conceptual Physics
Assessment Questions 8. In a vacuum tube, a feather is seen to fall as fast as a coin. This is because a. gravity doesn't act in a vacuum. b. air resistance doesn't act in a vacuum. c. greater air resistance acts on the coin. d. gravity is greater in a vacuum.	
Answer: B	
Faneo	,

