
4. Phonons

Until now, we’ve discussed lattices in which the atoms are fixed in place. This is, of

course, somewhat unrealistic. In materials, atoms can jiggle, oscillating back and forth

about their equilibrium position. The result of their collective e↵ort is what we call

sound waves or, at the quantum level, phonons. In this section we explore the physics

of this jiggling.

4.1 Lattices in One Dimension

Much of the interesting physics can be illustrated by sticking to one-dimensional ex-

amples.

4.1.1 A Monotonic Chain

We start with a simple one-dimensional lattice consisting of N equally spaced, identical

atoms, each of mass m. This is shown below.

a

We denote the position of each atom as xn, with n = 1, . . . , N . In equilibrium, the

atoms sit at

xn = na

with a the lattice spacing.

The potential that holds the atoms in place takes the form
P

n V (xn � xn�1). For

small deviations from equilibrium, a generic potential always looks like a harmonic

oscillator. The deviation from equilibrium for the nth atom is given by

un(t) = xn(t)� na

The Hamiltonian governing the dynamics is then a bunch of coupled harmonic oscilla-

tors

H =
X

n

p2n
2m

+
�

2

X

n

(un � un�1)
2 (4.1)
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where pn = mu̇n and � is the spring constant. (It is not to be confused with the

wavelength.) The resulting equations of motion are

mün = ��(2un � un�1 � un+1) (4.2)

To solve this equation, we need to stipulate some boundary conditions. It’s simplest to

impose periodic boundary conditions, extending n 2 Z and requiring un+N = un. For

N � 1, which is our interest, other boundary conditions do not qualitatively change

the physics. We can then write the solution to (4.2) as

un = Ae�i!t�ikna (4.3)

Because the equation is linear, we can always take real and imaginary parts of this

solution. Moreover, the linearity ensures that the overall amplitude A will remain

arbitrary.

The properties of the lattice put restrictions on the allowed values of k. First note

that the solution is invariant under k ! k + 2⇡/a. This means that we can restrict k

to lie in the first Brillouin zone,

k 2
h
�⇡
a
,
⇡

a

⌘

Next, the periodic boundary conditions uN+1 = u1 require that k takes values

k =
2⇡

Na
l with l = �N

2
, . . . ,

N

2
where, to make life somewhat easier, we will assume that N is even. We see that, as in

previous sections, the short distance structure of the lattice determines the range of k.

Meanwhile, the macroscopic size of the lattice determines the short distance structure

of k. This, of course, is the essence of the Fourier transform. Before we proceed,

it’s worth mentioning that the minimum wavenumber k = 2⇡/Na was something that

we required when discussing the Debye model of phonons in the Statistical Physics

lectures.

Our final task is to determine the frequency ! in terms of k. Substituting the ansatz

into the formula (4.2), we have

m!2 = �
�
2� eika � e�ika

�
= 4� sin2

✓
ka

2

◆

We find the dispersion relation

! = 2

r
�

m

���� sin
✓
ka

2

◆ ����

This dispersion relation is sketched Figure 56, with k ranging over the first Brillouin

zone.
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Figure 56: Phonon dispersion relation for a monatomic chain.

Many aspects of the above discussion are familiar from the discussion of electrons in

the tight-binding model. In both cases, we end up with a dispersion relation over the

Brillouin zone. But there are some important di↵erences. In particular, at small values

of k, the dispersion relation for phonons is linear

! ⇡
r
�

m
ak

This is in contrast to the electron propagation where we get the dispersion relation for

a non-relativistic, massive particle (2.6). Instead, the dispersion relation for phonons is

more reminiscent of the massless, relativistic dispersion relation for light. For phonons,

the ripples travel with speed

cs =

r
�

m
a (4.4)

This is the speed of sound in the material.

4.1.2 A Diatomic Chain

Consider now a linear chain of atoms, consisting of alternating atoms of di↵erent types.

a mass m mass M

The atoms on even sites have massm; those on odd sites have massM . For simplicity,

we’ll take the restoring forces between these atoms to be the same. The equations of

motion are

mü2n = ��(2u2n � u2n�1 � u2n+1)

Mü2n+1 = ��(2u2n+1 � u2n � u2n+2)
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Figure 57: Phonon dispersion relation for a diatomic chain.

We make the ansatz

u2n = Ae�i!t�2ikna and u2n+1 = B e�i!t�2ikna

Note that these solutions are now invariant under k ! k + ⇡/a. This reflects the fact

that, if we take the identity of the atoms into account, the periodicity of the lattice is

doubled. Correspondingly, the Brillouin zone is halved and k now lies in the range

k 2
h
� ⇡

2a
,
⇡

2a

⌘
(4.5)

Plugging our ansatz into the two equations of motion, we find a relation between the

two amplitudes A and B,

!2

 
m 0

0 M

! 
A

B

!
= �

 
2 �(1 + e�2ika)

�(1 + e2ika) 2

! 
A

B

!
(4.6)

This is viewed as an eigenvalue equation. The frequency ! is determined in terms of

the wavenumber k by requiring that the appropriate determinant vanishes. This time

we find that there are two frequencies for each wavevector, given by

!2
±
=

�

mM

h
m+M ±

p
(m�M)2 + 4mM cos2(ka)

i

The resulting dispersion relation is sketched in Figure 57 in the first Brillouin zone

(4.5). Note that there is a gap in the spectrum on the boundary of the Brillouin zone,

k = ±⇡/2a, given by

�E = ~(!+ � !�) = ~
p
2�

����
1p
m

� 1p
M

����

For m = M , the gap closes, and we reproduce the previous dispersion relation, now

plotted on half the original Brillouin zone.
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The lower !� part of the dispersion relation is called the acoustic branch. The upper

!+ part is called the optical branch. To understand where these names come from, we

need to look a little more closely at the the physical origin of these two branches. This

comes from studying the eigenvectors of (4.6) which tells us the relative amplitudes of

the two types of atoms.

This is simplest to do in the limit k ! 0. In this limit the acoustic branch has !� = 0

and is associated to the eigenvector
 
A

B

!
=

 
1

1

!

The atoms move in phase in the acoustic branch. Meanwhile, in the optical branch we

have !2
+ = 2�(M�1 +m�1) with eigenvector

 
A

B

!
=

 
M

�m

!

In the optical branch, the atoms move out of phase.

Now we can explain the name. Often in a lattice, di↵erent sites contain ions of

alternating charges: say, + on even sites and � on odd sites. But alternating charges

oscillating out of phase create an electric dipole of frequency !+(k). This means that

these vibrations of the lattice can emit or absorb light. This is the reason they are

called “optical” phonons.

Although our discussion has been restricted to

Figure 58:

one-dimensional lattices, the same basic characteri-

sation of phonon branches occurs for higher dimen-

sional lattices. Acoustic branches have linear disper-

sion ! ⇠ k for low momenta, while optical branches

have non-vanishing frequency, typically higher than

the acoustic branch. The data for the phonon spec-

trum of NaCl is shown on the right6 and clearly ex-

hibits these features.

4.1.3 Peierls Transition

We now throw in two separate ingredients: we will consider the band structure of

electrons, but also allow the underlying atoms to move. There is something rather

special and surprising that happens for one-dimensional lattices.
6This was taken from “Phonon Dispersion Relations in NaCl”, by G. Raumo, L. Almqvist and R.

Stedman, Phys Rev. 178 (1969).
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We consider the simple situation described in Section 4.1.1 where we have a one-

dimensional lattice with spacing a. Suppose, further, that there is a single electron per

lattice site. Because of the spin degree of freedom, it results in a half-filled band, as

explained in Section 2.1. In other words, we have a conductor.

Consider a distortion of the lattice, in which successive pairs of atoms move closer

to each other, as shown below.

2a

Clearly this costs some energy since the atoms move away from their equilibrium

positions. If each atom moves by an amount �x, we expect that the total energy cost

is of order

Ulattice ⇠ N�(�x)2 (4.7)

What e↵ect does this have on the electrons? The distortion has changed the lattice

periodicity from a to 2a. This, in turn, will halve the Brillouin zone so the electron

states are now labeled by

k 2
h
� ⇡

2a
,
⇡

2a

⌘

More importantly, from the analysis of Section 2.1, we expect that a gap will open up in

the electron spectrum at the edges of the Brillouin zone, k = ±⇡/2a. In particular, the

energies of the filled electron states will be pushed down; those of the empty electron

states will be pushed up, as shown in the Figure 59. The question that we want to ask

is: what is the energy reduction due to the electrons? In particular, is this more or less

than the energy Ulattice that it cost to make the distortion in the first place?

Let’s denote the dispersion relation before the distortion as E0(k), and the dispersion

relation after the distortion as E�(k) for |k| 2 [0, ⇡/2a) and E+(k) for |k| 2 [⇡/2a, ⇡/a).

The energy cost of the distortion due to the electrons is

Uelectron = �2
Na

2⇡

Z ⇡/2a

�⇡/2a

dk
⇣
E0(k)� E�(k)

⌘
(4.8)

Here the overall minus sign is because the electrons gain energy, the factor of 2 is to

account for the spin degree of freedom, while the factor of Na/2⇡ is the density of

states of the electrons.
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Figure 59: The distortion of the lattice reduces the energy of the Fermi sea of electrons.

To proceed, we need to get a better handle on E0(k) and E�(k). Neither are particu-

larly nice functions. However, for a small distortion, we expect that the band structure

is changed only in the immediate vicinity of k = ⇡/2a. Whatever the form of E0(k),

we can always approximate it by a linear function in this region,

E0(k) ⇡ µ+ ⌫q with q = k � ⇡

2a
(4.9)

where µ = E0(⇡/2a) and ⌫ = @E0/@k, again evaluated at k = ⇡/2a. Note that q < 0

for the filled states, and q > 0 for the unfilled states.

We can compute E�(k) in this region by the same kind of analysis that we did in

Section 2.1. Suppose that the distortion opens up a gap � at k = ⇡/2a. Since there is

no gap unless there is a distortion of the lattice, we expect that

� ⇠ �x (4.10)

(or perhaps �x to some power). To compute E�(k) in the vicinity of the gap, we can

use our earlier result (2.16). Adapted to the present context, the energy E close to

k = ⇡/2a is given by

⇣
E0(⇡/2a+ q)� E

⌘⇣
E0(⇡/2a� q)� E

⌘
� �2

4
= 0

Using our linearisation (4.9) of E0, we can solve this quadratic to find the dispersion

relation

E±(q) = µ±
r
⌫2q2 +

�2

4

Note that when evaluated at q = 0, we find the gap E+ � E� = �, as expected. The

filled states sit in the lower branch E�. The energy gained by the electrons (4.8) is
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dominated by the regions k = ±⇡/2a. By symmetry, it is the same in both and given

by

Uelectron ⇡ �Na

⇡

Z 0

�⇤

dq

 
⌫q +

r
⌫2q2 +

�2

4

!

Here we have introduced a lower cut-o↵ �⇤ on the integral; it will not ultimately be

important where we take this cut-o↵, although we will require ⌫⇤ � �. The integral

is straightforward to evaluate exactly. However, our interest lies in what happens when

� is small. In this limit, we have

Uelectron ⇡ �Na

⇡


�2

16⌫2⇤
� �2

8µ
log

✓
�

2⌫⇤

◆�

Both terms contribute to the gain in energy of the electrons. The first term is of order

�2 and hence, through (4.10), of order �x2. This competes with the energy cost from

the lattice distortion (4.7), but there is no guarantee that it is either bigger or smaller.

The second term with the log is more interesting. For small �, this always beats the

quadratic cost of the lattice distortion (4.7).

We reach a surprising conclusion: a half-filled

Figure 60:

band in one-dimension is unstable. The lattice rear-

ranges itself to turn the metal into an insulator. This

is known as the Peierls transition; it is an example of

a metal-insulator transition. This striking behaviour

can be seen in one-dimensional polymer chains, such

as the catchily named TTF-TCNQ shown in the fig-

ure7. The resistivity – plotted on the vertical axis

– rises sharply when the temperature drops to the

scale �. (The figure also reveals another feature:

as the pressure is increased, the resistivity no longer

rises quite as sharply, and by the time you get to

8 GPa there is no rise at all. This is because of the

interactions between electrons become important.)

4.1.4 Quantum Vibrations

Our discussion so far has treated the phonons purely classically. Now we turn to

their quantisation. At heart this is not di�cult – after all, we just have a bunch of

harmonic oscillators. However, they are coupled in an interesting way and the trick

is to disentangle them. It turns out that we’ve already achieved this disentangling by

writing down the classical solutions.
7This data is taken from “Recent progress in high-pressure studies on organic conductors”, by S.

Yasuzuka and K. Murata (2009)
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We have a classical solution (4.3) for each kl = 2⇡l/Na with l = �N/2, . . . , N/2.

We will call the corresponding frequency !l = 2
p
�/m| sin(kla/2)|. We can introduce a

di↵erent amplitude for each l. The most general classical solution then takes the form

un(t) = X0(t) +
X

l 6=0

h
↵l e

�i(!lt�klna) + ↵†

l e
i(!lt�klna)

i
(4.11)

This requires some explanation. First, we sum over all modes l = �N/2, . . . ,+N/2

with the exception of l = 0. This has been singled out and it written as X0(t). It

is the centre of mass, reflecting the fact that the entire lattice can move as one. The

amplitudes for each l 6= 0 mode are denoted ↵l. Finally, we have taken the real part of

the solution because, ultimately, un(t) should be real.

The momentum pn(t) = mu̇n is given by

pn(t) = P0(t) +
X

l 6=0

h
�im!l↵l e

�i(!lt�klna) + im!l↵
†

l e
i(!lt�klna)

i

Now we turn to the quantum theory. We promote un and pn to operators acting on a

Hilbert space. We should think of un(t) and pn(t) as operators in the Heisenberg rep-

resentation; we can get the corresponding operators in the Schrödinger representation

simply by setting t = 0.

Since un and pn are operators, the amplitudes ↵l and ↵†

l must also be operators if

we want these equations to continue to make sense. We can invert the equations above

by setting t = 0 and looking at

NX

n=1

un e
�iklna =

X

n

X

l0

h
↵l e

�i(kl�kl0 )na + ↵†

l e
�i(kl+kl0 )na

i
= N(↵l + ↵†

�l)

Similarly,

NX

n=1

pn e
iklna =

X

n

X

l0

h
�im!l↵l e

�i(kl�kl0 )na + im!l↵
†

l e
�i(kl+kl0 )na

i
= �iNm!l(↵l � ↵†

�l)

where we’ve used the fact that !l = !�l. We can invert these equations to find

↵l =
1

2m!lN

X

n

e�iklna
�
m!lun + ipn

�

↵†

l =
1

2m!lN

X

n

eiklna
�
m!lun � ipn

�
(4.12)
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Similarly, we can write the centre of mass coordinates — which are also now operators

— as

X0 =
1

N

X

n

un and P0 =
1

N

X

n

pn (4.13)

At this point, we’re ready to turn to the commutation relations. The position and

momentum of each atom satisfy

[un, pn0 ] = i~�n,n0

A short calculation using the expressions above reveals that X0 and P0 obey the ex-

pected relations

[X0, P0] = i~

Meanwhile, the amplitudes obey the commutation relations

[↵l,↵
†

l0 ] =
~

2m!lN
�l,l0 and [↵l,↵l0 ] = [↵†

l ,↵
†

l0 ] = 0

This is something that we’ve seen before: they are simply the creation and annihilation

operators of a simple harmonic oscillator. We rescale

↵l =

r
~

2m!lN
al (4.14)

then our new operators al obey

[al, a
†

l0 ] = �l,l0 and [al, al0 ] = [a†l , a
†

l0 ] = 0

Phonons

We now turn to the Hamiltonian (4.1). Substituting in our expressions (4.12) and

(4.13), and after a bit of tedious algebra, we find the Hamiltonian

H =
P 2
0

2M
+
X

l 6=0

✓
a†lal +

1

2

◆
~!l

Here M = Nm is the mass of the entire lattice. Since this is a macroscopically large

object, we set P0 = 0 and focus on the Hilbert space arising from the creation operators

a†l . After our manipulations, these are simply N , decoupled harmonic oscillators.
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The ground state of the system is a state |0i obeying

al|0i = 0 8 l

Each harmonic oscillator gives a contribution of ~!l/2 to the zero-point energy E0 of

the ground state. However, this is of no interest. All we care about is the energy

di↵erence between excited states and the ground state. For this reason, it’s common

practice to redefine the Hamiltonian to be simply

H =
X

l 6=0

~!la
†

lal

so that H|0i = 0.

The excited states of the lattice are identical to the excited states of the harmonic

oscillators. For each l, the first excited state is given by a†l |0i and has energy E = ~!l.

However, although the mathematics is identical to that of the harmonic oscillator, the

physical interpretation of this state is rather di↵erent. That’s because it has a further

quantum number associated to it: this state carries crystal momentum ~kl. But an

object which carries both energy and momentum is what we call a particle! In this

case, it’s a particle which, like all momentum eigenstates, is not localised in space. This

particle is a quantum of the lattice vibration. It is called the phonon.

Note that the coupling between the atoms has lead to a quantitative change in the

physics. If there was no coupling between atoms, each would oscillate with frequency

m� and the minimum energy required to excite the system would be ⇠ ~m�. However,
when the atoms are coupled together, the normal modes now vibrate with frequencies

!l. For small k, these are !l ⇡
q

�⇡2

m
l
N . The key thing to notice here is the factor

of 1/N . In the limit of an infinite lattice, N ! 1, there are excited states with

infinitesimally small energies. We say that the system is gapless, meaning that there

is no gap betwen the ground state and first excited state. In general, the question of

whether a bunch interacting particles is gapped or gapless is one of the most basic (and,

sometimes, most subtle) questions that you can ask about a system.

Any state in the Hilbert space can be written in the form

| i =
Y

l

(a†l )
nl

p
nl!

|0i

and has energy

H| i =
X

l

~nl!l
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This state should be thought of as described
P

l nl phonons and decomposes into nl

phonons with momentum ~kl for each l. The full Hilbert space constructed in this way

contains states consisting of an arbitrary number of particles. It is referred to as a Fock

space.

Because the creation operators a†l commute with each other, there is no di↵erence

between the state | i ⇠ a†la
†

l0 |0i and | i ⇠ a†l0a
†

l |0i. This is the statement that phonons

are bosons.

The idea that harmonic oscillator creation operators actually create particles some-

times goes by the terrible name of second quantisation. It is misleading — nothing has

been quantised twice.

Quantisation of Acoustic and Optical Phonons

It is not di�cult to adapt the discussion above to vibrations of a diatomic lattice that

we met in Section 4.1.2. We introduce two polarization vectors, e±(k). These are

eigenvectors obeying the matrix equation (4.6),

 
2 �(1 + e�2ika)

�(1 + e2ika) 2

!
e±(k) =

!2
±

�

 
m 0

0 M

!
e±(k)

We then write the general solution as

 
u2n(t)

u2n+1(t)

!
=
X

k2BZ

X

s=±

s
~

2N!s(k)

"
as(k)es(k)e

i(!st+2kna) + a†s(k)e
?
s(k)e

�i(!st+2kna)

#

where the creation operators obey

[as(k), as0(k
0)†] = �s,s0�k,k0 and [as(k), as0(k

0)] = [a†s(k), as0(k
0)†] = 0

Now the operators a†�(k) create acoustic phonons while a†+(k) create optical phonons,

each with momentum ~k.

4.2 From Atoms to Fields

If we look at a solid at suitably macroscopic distances, we don’t notice the underlying

atomic structure. Nonetheless, it’s still straightforward to detect sound waves. This

suggests that we should be able to formulate a continuum description of the solid that

is ignorant of the underlying atomic make-up.
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With this in mind, we define the displacement field for a one-dimensional lattice.

This is a function u(x, t). It is initially defined only at the lattice points

u(x = na) = un

However, we then extend this field to all x 2 R, with the proviso that our theory will

cease to make sense if u(x) varies appreciably on scales smaller than a.

The equation governing the atomic displacements is (4.2)

mün = ��(2un � un�1 � un+1)

In the continuum limit, this di↵erence equation becomes the wave equation

⇢
@2u

@t2
= ��0 @

2u

@x2
(4.15)

where ⇢ = m/a is the density of our one-dimensional solid, and �0 = �a. These are

the macroscopic parameters. Note, in particular, that the speed of sound (4.4) can be

written purely in terms of these macroscopic parameters, c2s = �0/⇢.

The equation of motion (4.15) can be derived from the action

S =

Z
dtdx

"
⇢

2

✓
@u

@t

◆2

� �0

2

✓
@u

@x

◆2
#

This is the field theory for the phonons of a one-dimensional solid.

4.2.1 Phonons in Three Dimensions

For three-dimensional solids, there are three displacement fields, ui(x), one for each

direction in which the lattice can deform. In general, the resulting action can depend

on various quantities @ui/@xj. However, if the underlying lattice is such that the long-

wavelength dynamics is rotationally invariant, then the action can only be a function

of the symmetric combination

uij =
1

2

✓
@ui

@xj
+
@uj

@xi

◆

If we want an equation of motion linear in the displacement, then the most general

action is a function of uijuij or u2
kk. (The term ukk is a total derivative and does not

a↵ect the equation of motion). We have

S =

Z
dtd3x

1

2

"
⇢

✓
@ui

@t

◆2

� 2µuijuij � � uiiujj

#
(4.16)

The coe�cients µ and � are called Lamé coe↵cients; they characterise the underlying

solid.
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This action gives rise to the equations of motion

⇢
@2ui

@t2
= (µ+ �)

@2uj

@xi@xj
+ µ

@2ui

@xj@xj
(4.17)

We can look for solutions of the form

ui(x, t) = ✏i e
i(k·x+!t)

where ✏i determines the polarisation of the wave. Plugging this ansatz into the equation

of motion gives us the relation

⇢!2✏i = µk2✏i + (µ+ �)(✏ · k)ki

The frequency of the wave depends on the polarisation. There are two di↵erent options.

Longitudinal waves have k ⇠ ✏. These have dispersion

!2 =
2µ+ �

⇢
k2 (4.18)

Meanwhile, transverse waves have ✏ · k = 0 and dispersion

!2 =
µ

⇢
k2 (4.19)

Note that both of these dispersion relations are linear. The continuum approximation

only captures the low-k limit of the full lattice system and does not see the bending

of the dispersion relation close to the edge of the Brillouin zone. This is because it is

valid only at long wavelengths, ka ⌧ 1.

The general solution to (4.17) is then

ui(x, t) =
X

s

Z
d3k

(2⇡)3
1

2⇢!s(k)
✏si

⇣
as(k) e

i(k·x�!st) + a†s(k) e
�i(k·x�!st)

⌘
(4.20)

where the s sum is over the three polarisation vectors, two transverse and one longi-

tudinal. The frequencies !s(k) correspond to either (4.18) or (4.19) depending on the

choice of s.

4.2.2 From Fields to Phonons

Although we have discarded the underlying atoms, this does not mean that we have

lost the discrete nature of phonons. To recover them, we must quantise the field theory

defined by the action (4.16). This is the subject of Quantum Field Theory. You will

learn much (much) more about this in next year’s lectures. What follows is merely a

brief taster for things to come.
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To quantise the field, we need only follow the same path that we took in Section

4.1.4. At every step, we simply replace the discrete index n with the continuous index

x. Note, in particular, that x is not a dynamical variable in field theory; it is simply a

label.

First, we turn the field u(x) into an operator. This means that the amplitudes

as(k) and a†s(k) in (4.20) also become operators. To proceed, we need the momentum

conjugate to ui(x, t). This too is now a field, and is determined by the usual rules of

classical dynamics,

⇡i(x) =
@L

@u̇i
= ⇢u̇i

Written in terms of the solution (4.20), we have

⇡i(x, t) = ⇢
X

s

Z
d3k

(2⇡)3
1

2⇢!s(k)
✏si

⇣
� i!sas(k) e

i(k·x�!st) + i!sa
†

s(k) e
�i(k·x�!st)

⌘

The canonical commutation relations are the field-theoretical analog of the usual position-

momentum commutation relations,

[ui(x),⇡j(x
0)] = i~ �ij �3(x� x0)

At this point we have some straightforward but tedious calculations ahead of us. We

will skip these on the grounds that you will see them in glorious detail in later courses.

The first is an inverse Fourier transform, which expresses as(k) and a†s(k) in terms of

ui(x) and ⇡i(x). The result is analogous to (4.12). We then use this to determine the

commutation relations,

[as(k), a
†

s0(k
0)] = �s,s0 �

3(k� k0) and [as(k), as0(k
0)] = [a†s(k), a

†

s0(k
0)] = 0

This is the statement that these are creation and annihilation operators for harmonic

oscillators, now labelled by both a discrete polarisation index s = 1, 2, 3 as well as the

continuous momentum index k.

The next fairly tedious calculation is the Hamiltonian. This too follows from standard

rules of classical dynamics, together with a bunch of Fourier transforms. When the dust

settles, we find that, up to an irrelevant overall constant,

H =
X

s

Z
d3k

(2⇡)3
~!s(k)a

†

s(k)as(k)

This is simply the Hamiltonian for an infinite number of harmonic oscillators.
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The interpretation is the same as we saw in Section 4.1.4. We define the ground

state of the field theory to obey as(k)|0i = 0 for all s and for all k. The Fourier modes

of the field a†s(k) are then to be viewed as creating and destroying phonons which

carry momentum ~k, polarisation ✏s and energy ~!s(k). In this way, we see particles

emerging from an underlying field.

Lessons for the Future

This has been a very quick pass through some basic quantum field theory, applied to

the vibrations of the lattice. Buried within the mathematics of this section are two,

key physical ideas. The first is that a coarse grained description of atomic vibrations

can be described in terms of a continuous field. The second is that quantisation of the

field results in particles that, in the present context, we call phonons.

There is a very important lesson to take from the second of these ideas, a lesson

which extends well beyond the study of solids. All of the fundamental particles that

we know of in Nature – whether electrons, quarks, photons, or anything else — arise

from the quantisation of an underlying field. This is entirely analogous to the way that

phonons arose in the discussion above.

Is there also a lesson to take away from the first idea above? Could it be that the

fundamental fields of Nature themselves arise from coarse-graining something smaller?

The honest answer is that we don’t know. However, perhaps surprisingly, all signs point

towards this not being the case. First, and most importantly, there is no experimental

evidence that the fundamental fields in our Universe have a discrete underpinning. But

at the theoretical level, there are some deep mathematical reasons — to do with chiral

fermions and topology — which suggest that it is not possible to find a discrete system

from which the known laws of physics emerge. It would appear that our Universe

does not have something akin to the atomic lattice which underlies the phonon field.

Understanding these issues remains a vibrant topic of research, both in condensed

matter physics and in high energy physics.
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