Compilers

- 40-414: Compiler Design

http://sharif.edu/~sani/courses/compiler/

+ Computer Engineering Dept., Sharif University

- Instructor: GholamReza GHASSEM SANI

http://sharif.edu/~sani

Compilers

Lectures:
- Time: Sundays and Tuesdays, 16:30-18:00

- Location: https://vc.sharif.edu/ch/sani, or

https://vclass.ecourse.sharif.edu/ch/sani

Evaluation:
4 Written Assignments, and 20%
4 Programming Assighments 40%

2 Exams 40%

https://vc.sharif.edu/ch/sani
https://vclass.ecourse.sharif.edu/ch/sani

Acknowledgement

- Most Lecture Notes are from a similar course
(i.e., €CS5-143) taught by Professor Alex Aiken in

Stanford University

Text

* The Purple Dragon Book
Compilers

Principles, Techniques, & Tools

* Aho, Lam, Sethi &
Ullman

Q
@)
=
=
)
~
»

* Not required

- But a useful reference T

Monica S. Lam

Jeffrey D. Ullman

Prof. Aiken 4

The Course Project

* A big project
* .. in 4 rather easy parts

- Start early!

Prof. Aiken

Academic Honesty

- Don’ T use work from uncited sources
- Including old code

» We use plagiarism detection software
- many cases in past offerings

Prof. Aiken

How are Languages Implemented?

- Two major strategies:
- Interpreters (older)
- Compilers (newer)

* Interpreters run programs “as is”
- Little or no preprocessing

+ Compilers do extensive preprocessing

Prof. Aiken

Compilers

Source

~ Target
Program]

Program

Errors

Interpreters

sSource .
Program

> Qutput

Input >
Translates line by line
Executes each translated line immediately

Execution is slower because translation is repeated
9

A Hybrid Compiler

Source
Program

Input

Intermediate
Program

> Errors

Output

10

Different Types of Compilers

~ Single Pass
Construction <

- Multiple Pass

11

History of Compilers

- 1954 TIBM develops the
704
- Successor to the 701

- Problem

- Software costs exceeded
hardware costsl!

» All programming done in
assembly

Prof. Aiken 12

The Solution

+ "Speedcoding”

 an early example of an interpreter
* developed in 1953 by John Backus

* much faster way of developing programs

« programs were 10-20 times slower than
hand-written assembly

John Backus

* needed 300 bytes = 30% machine memory

Prof. Aiken 13

FORTRAN I

« FORmula TRANslation Project
« FORTRAN ran from 1954 To 1957

« By 1958, over 50 percent of all of
programs were in FORTRAN

John Backus

Prof. Aiken 14

FORTRAN I

* The first compiler
- Huge impact on computer science

» Led to an enormous body of theoretical work

* Modern compilers preserve the outlines of
FORTRAN I

Prof. Aiken 15

The Structure of Fortran Compiler

Lexical Analysis
Parsing

Semantic Analysis
Optimization
Code Generation

ok wh =

The first 3, at least, can be understood by
analogy to how humans comprehend English.

Prof. Aiken 16

Lexical Analysis

- First step: recognize words.
- Smallest unit above letters

This Is a sentence.

Prof. Aiken

17

More Lexical Analysis

» Lexical analysis is not trivial. Consider:

Ist his ase nte nce

Prof. Aiken

18

And More Lexical Analysis

+ Lexical analyzer divides program text into
“words” or “tokens”
If x==ythenz=1;elsez=2;
- Units:
- Keywords { if, then, else }
- Identifiers{ x,y, z }
- Numbers{1, 2}
- Operators { ==, =
- Separators { blanks, ; }

Prof. Aiken

Parsing

* Once words are understood, the next step is
to understand sentence structure

- Parsing = Diagramming Sentences
- The diagram is a tree

Prof. Aiken 20

Diagramming a Sentence

This line IS a longer sentence

|

article noun verb article adjective noun

AV T~

subject object

sentence

Prof. Aiken 21

Parsing Programs

» Parsing program expressions is the same
- Consider:

fx==ythenz=1,; else z=2;
- Diagrammed:

X ==Yy Z] Z 2
relation assign assign
| | \
predicate then-stmt else-stmt

it
If-then-else

Prof. Aiken

22

Semantic Analysis

* Once sentence structure is understood, we
can try to understand “meaning”
- But meaning is too hard for compilers

+ Compilers perform limited semantic analysis to
catch inconsistencies

Prof. Aiken 23

Semantic Analysis in English

* Example:
Jack said Jerry left his assignment at home.

What does “his” refer to? Jack or Jerry?

- Even worse:
Jack said Jack left his assignment at home?
How many Jacks are there? (1, 2 , or 3)
Which one left the assignment?

Prof. Aiken 24

Semantic Analysis in Programming

+ Programming {
languages define int Jack = 3;
strict rules to avoid {

such ambiguities
uch ambiguitie nt Jack = 4

T << K;
» This C++ code prints cOY Jac

“4”: the inner j
definition is used]

Prof. Aiken 25

More Semantic Analysis

» Compilers perform many semantic checks
besides variable bindings

+ Example:
Jack left her homework at home.

+ A “type mismatch” between her and Jack; we
know they are different people

- Presumably Jack is male

Prof. Aiken 26

Optimization

* No strong counterpart in English,

- but a little bit like editing

e
- but akin to editing

+ Automatically modify programs so that they
- Run faster
- Use less memory

* Your project has no optimization component :D

Prof. Aiken 27

Optimization Example

X=Y*0 Isthesame as X=0

NOT ALWAYS CORRECT
NaN
NaN * 0 = NaN

Prof. Aiken

28

Code Generation

* Produces assembly code (usually)

* A translation into another language
- Analogous to human translation

Prof. Aiken

29

Compilers Today

* The overall structure of almost every compiler
adheres to our outline

» The proportions have changed since FORTRAN
- Early: lexing, parsing most complex, expensive

L P S @) C

- Today: optimization dominates all other phases,
lexing and parsing are cheap

LI |P S @) C

Prof. Aiken 30

Compiler Front-end and Back-end

Source Program l

1 Lexical analyzer N

A 4

2 Syntax Analyzer
]

3 Semantic Analyzer

Symbol-table
Manager

Intermediate

AN
N

Analyses

4 Code Generator

1,2,3,4,5: Front-End

6, 7 : Back-End

~
/

5 Code Optimizer

6 Code Generator

Error Handler

>‘ yntheses

7 Peephole Optimization|/_/

l Target Program

31

Front-End

Machine
code

Source IR
code

errors

Front end maps source code into an IR representation
Back end maps IR onto machine code
Simplifies retargeting

32

Front-End (Cont.)

Source tokens
code :

errors

Parse Tree

Scanner:
- Maps characters into tokens - the basic unit of syntax

o X = X +Yy becomes <id, x> <=, > <id, x> <+, > <id, y>

- Eliminate white space (tabs, blanks, comments)

33

Front-End (Cont.)

Parse Tree

Source tokens
code :

Errors

Parser:

- Recognize context-free syntax
- Guide context-sensitive analysis

- Produce meaningful error messages

34

Back-End

Machin‘e code

N

errors

Back-End:
+ Translate IR into machine code
- Choose instructions for each IR operation

- Decide what to keep in registers at each point 2

Two Main Components of Back-End

Machin‘e code

N

Errors

Code Generator:
- Produce compact fast code

- Use available addressing modes

36

Back-End (Cont.)

N

errors
Peephole Optimization:
- Limited resources

- Optimal allocation is difficult

Machine code

37

Phase 1. Lexical Analysis

Easiest Analysis - Identify tokens which
are the basic building blocks

For

Example: Position := initial + rate *60;

W4

All are tokens

Blanks, Line breaks, etc. are scanned out

38

Phase 2. Syntax Analysis or Parsing

assignment

/ staz‘fmem‘\
/d91‘7tiﬁer " /Equessia\
- - +
pOSlthn exp,"ession /pf@SS\

Parse Tree:

10’8/7 tifier expressmn expr‘essmn
initial /de/Tt/ﬁer /7w|77ber
rate 60

Nodes of tree are constructed using a

Grammar for the source language 39

Finds Semantic Errors

= /::\

LN position .
position
initial * |n|t|/a|+>*\
/ ™ rate inttoreal

rate 60 ‘
S

Syntax Tree Conversion Action

One of the Most Important Activities in This Phase:
Type Checking - Legality of Operands "

Supporting Phases

Symbol table creation / maintenance

- Contains info (address, type, scope, args) on certain Tokens,
typically identifiers

- Data structure created/initialized during lexical analysis; and
updated during later analysis & synthesis

Error handling

- Detection of different errors which correspond to all phases;
and deciding what happens when an error is found

41

An example of the Entire Process

position = initial + rate * 60

lexical analyzer (Scanner)
<id, 1> <=> <id, 2> <+ > <id, 3> <* > <num,

60 >

syntax analyzer (Parser)

S~

<id, 1> ot~
i *
<id, 2> AR

<id, 3> <num, 60>

| 7 semantic analyzer ~
o,
Symbol Table <id, 1> i s T
) . / \.

1 position real ... <id, 3> Inttolreal
2 initial real ... [<num, 60>
intermediate code generator -l

3 rate real ...

Error

Handler

42

An example of the Entire Process

position = initial + rate * 60
Symbol Table !
1 position real ... Error
2 initial real ... Handler
I intermediate code generator |~ Handle
3 rate real ...

tl := inttoreal(60)

b p T i,

t3:=id2 + t2

idl = t3 /' 5

code optimizer
tl :=1d3 * 60.0
idl :=id2 +tl
final code generator

LD R1,id3

MUL R1, R1, #60.0

LD R2,id2

ADD R1, R1, R2

STidl, R1

