Warm Up

Lesson Presentation

Lesson Quiz

4-4 Congruent Triangles

Warm Up

1. Name all sides and angles of $\Delta F G H$. $\overline{F G}, \overline{G H}, \overline{F H}, \angle F, \angle G, \angle H$
2. What is true about $\angle K$ and $\angle L$? Why?

$$
\cong ; \text { Third } \angle \mathrm{s} \text { Thm. }
$$

3. What does it mean for two segments to be congruent?
They have the same length.

4-4 Congruent Triangles

Objectives

Use properties of congruent triangles.

Prove triangles congruent by using the definition of congruence.

4-4 Congruent Triangles

Vocabulary

corresponding angles corresponding sides congruent polygons

Congruent Triangles

Geometric figures are congruent if they are the same size and shape. Corresponding angles and corresponding sides are in the same position in polygons with an equal number of sides.

Two polygons are congruent polygons if and only if their corresponding sides are congruent. Thus triangles that are the same size and shape are congruent.

4-4 Congruent Triangles

Properties of Congruent Polygons

DIAGRAM	CORRESPONDING ANGLES	CORRESPONDING SIDES
	$\begin{aligned} & \angle A \cong \angle D \\ & \angle B \cong \angle E \\ & \angle C \cong \angle F \end{aligned}$	$\begin{aligned} & \overline{A B} \cong \overline{D E} \\ & \overline{B C} \cong \overline{E F} \\ & \overline{A C} \cong \overline{D F} \end{aligned}$
polygon $P Q R S \cong$ polygon $W X Y Z$	$\begin{aligned} & \angle P \cong \angle W \\ & \angle Q \cong \angle X \\ & \angle R \cong \angle Y \\ & \angle S \cong \angle Z \end{aligned}$	$\begin{aligned} & \overline{P Q} \cong \overline{W X} \\ & \overline{Q R} \cong \overline{X Y} \\ & \overline{R S} \cong \overline{Y Z} \\ & \overline{P S} \cong \overline{W Z} \end{aligned}$

4-4 Congruent Triangles

Helpful Hint

Two vertices that are the endpoints of a side are called consecutive vertices.

For example, P and Q are consecutive vertices.

4-4 Congruent Triangles

To name a polygon, write the vertices in consecutive order. For example, you can name polygon PQRS as QRSP or $S R Q P$, but not as $P R Q S$.

In a congruence statement, the order of the vertices indicates the corresponding parts.

4-4 Congruent Triangles

Helpful Hint
 When you write a statement such as $\triangle A B C \cong \triangle D E F$, you are also stating which parts are congruent.

(4-4) Congruent Triangles

Example 1: Naming Congruent Corresponding Parts

Given: $\triangle P Q R \cong \Delta S T W$
Identify all pairs of corresponding congruent parts.
Angles: $\angle P \cong \angle S, \angle Q \cong \angle T, \angle R \cong \angle W$
Sides: $\overline{P Q} \cong \overline{S T}, \overline{Q R} \cong \overline{T W}, \overline{P R} \cong \overline{S W}$

4-4 Congruent Triangles

Check It Out! Example 1

If polygon $L M N P \cong$ polygon $E F G H$, identify all pairs of corresponding congruent parts.

Angles: $\angle L \cong \angle E, \angle M \cong \angle F, \angle N \cong \angle G, \angle P \cong \angle H$ Sides: $\overline{L M} \cong \overline{E F}, \overline{M N} \cong \overline{F G}, \overline{N P} \cong \overline{G H}, \overline{L P \cong} \cong \overline{E H}$

4-4 Congruent Triangles

Example 2A: Using Corresponding Parts of Congruent Triangles

Given: $\triangle A B C \cong \triangle D B C$.
Find the value of x.
$\angle B C A$ and $\angle B C D$ are rt. $\angle \mathrm{s}$. Def. of \perp lines.

$$
\begin{array}{rlrl}
\angle B C A & \cong \angle B C D & & \text { Rt. } \angle \cong \text { Thm } . \\
\mathrm{m} \angle B C A & =\mathrm{m} \angle B C D & & \text { Def. of } \because \mathrm{s} \\
(2 x-16)^{\circ} & =90^{\circ} & & \text { Substitute values for } m \angle B C A \text { and } \\
2 x & =106 & & m \angle B C D . \\
x & =53 & & \text { Add } 16 \text { to both sides. } \\
& & \text { Divide both sides by } 2 .
\end{array}
$$

4-4 Congruent Triangles

Example 2B: Using Corresponding Parts of Congruent Triangles

Given: $\triangle A B C \cong \triangle D B C$.

Find $\mathrm{m} \angle D B C$.

 $\mathrm{m} \angle A B C+\mathrm{m} \angle B C A+\mathrm{m} \angle A=180^{\circ} \triangle$ Sum Thm.

$$
\begin{aligned}
& \mathrm{m} \angle A B C+90+49.3=180 \begin{array}{l}
\text { Substitute values for } m \angle B C A \text { and } \\
m \angle A .
\end{array}
\end{aligned}
$$

$$
\mathrm{m} \angle A B C+139.3=180 \text { Simplify }
$$

$$
\begin{array}{rll}
\mathrm{m} \angle A B C & =40.7 & \begin{array}{l}
\text { Subtract } 139.3 \text { from both } \\
\text { sides. }
\end{array} \\
\angle D B C \cong \angle A B C & \text { Corr. } \angle \mathrm{s} \text { of } \cong \Delta \mathrm{s} \text { are } \cong . \\
\mathrm{m} \angle D B C & =\mathrm{m} \angle A B C & \text { Def. of } \cong \angle \mathrm{s} . \\
\mathrm{m} \angle D B C & =40.7^{\circ} & \\
\text { Trans. Prop. of }=
\end{array}
$$

4-4 Congruent Triangles

Check It Out! Example 2a

Given: $\triangle A B C \cong \triangle D E F$
Find the value of x.

$$
\begin{aligned}
\overline{A B} & \cong \overline{D E} \\
A B & =D E \\
2 x-2 & =6 \\
2 x & =8 \\
x & =4
\end{aligned}
$$

Corr. sides of $\cong \Delta$ s are \cong.
Def. of \cong parts.
Substitute values for $A B$ and $D E$.
Add 2 to both sides.
Divide both sides by 2.

4-4 Congruent Triangles

Check It Out! Example 2b

Given: $\triangle A B C \cong \triangle D E F$

Find $\mathrm{m} \angle F$.

$\mathrm{m} \angle E F D+\mathrm{m} \angle D E F+\mathrm{m} \angle F D E$	$=180^{\circ}$		\triangle Sum Thm.
$\angle A B C$	$\cong \angle D E F$		Corr. \angle s of $\cong \triangle$ are \cong.
$\mathrm{m} \angle A B C$	$=\mathrm{m} \angle D E F$		Def. of $\cong \angle$.
$\mathrm{m} \angle D E F$	$=53^{\circ}$		Transitive Prop. of $=$.
$\mathrm{m} \angle E F D+53+90$	$=180$		Substitute values for $m \angle D E F$ and $m \angle F D E$.
$\mathrm{m} \angle F+143$	$=180$		Simplify.
$\mathrm{m} \angle F$	$=37^{\circ}$		Subtract 143 from both sides.

4-4 Congruent Triangles

Example 3: Proving Triangles Congruent

Given: $\angle Y W X$ and $\angle Y W Z$ are right angles. $\overline{Y W}$ bisects $\angle X Y Z . W$ is the midpoint of $\overline{X Z} . \overline{X Y} \cong \overline{Y Z}$. Prove: $\triangle X Y W \cong \triangle Z Y W$

4-4 Congruent Triangles

Statements

Reasons

1. $\angle Y W X$ and $\angle Y W Z$ are rt. $\angle \mathrm{s}$.
2. $\angle Y W X \cong \angle Y W Z$
3. $Y W$ bisects $\angle X Y Z$
4. $\angle X Y W \cong \angle Z Y W$
5. W is mdpt. of $\overline{X Z}$
6. $\overline{X W} \cong \overline{Z W}$
7. $\overline{Y W} \cong \overline{Y W}$
8. $\angle X \cong \angle Z$
9. $\overline{X Y} \cong \overline{Y Z}$
10. $\triangle X Y W \cong \triangle Z Y W$
11. Given
12. Rt. $\angle \cong$ Thm.
13. Given
14. Def. of bisector
15. Given
16. Def. of mdpt.
17. Reflex. Prop. of \cong
18. Third $\angle \mathrm{s}$ Thm.
19. Given
20. Def. of $\cong \Delta$

4-4 Congruent Triangles

Check It Out! Example 3

Given: $\overline{A D}$ bisects $\overline{B E}$. $\overline{B E}$ bisects $\overline{A D}$.
$\overline{A B} \cong \overline{D E}, \angle A \cong \angle D$
Prove: $\triangle A B C \cong \triangle D E C$

4-4) Congruent Triangles

Statements	Reasons
1. $\angle A \cong \angle D$	1. Given
2. $\angle B C A \cong \angle D C E$	2. Vertical $\angle \mathrm{s}$ are \cong.
3. $\angle A B C \cong \angle D E C$	3. Third $\angle \mathrm{s}$ Thm.
4. $\overline{A B} \cong \overline{D E}$	4. Given
5. $\overline{A D}$ bisects $\overline{B E}$,	5. Given
$\overline{B E}$ bisects $\overline{A D}$	
6. $\overline{B C} \cong \overline{E C}, \overline{A C} \cong \overline{D C}$	6. Def. of bisector
7. $\triangle A B C \cong \Delta D E C$	7. Def. of $\cong \Delta \mathrm{s}$

Congruent Triangles

Example 4: Engineering Application

The diagonal bars across a gate give it support. Since the angle measures and the lengths of the corresponding sides are the same, the triangles are congruent.

Given: $\overline{P R}$ and $\overline{Q T}$ bisect each other.
$\angle P Q S \cong \angle R T S, \overline{Q P} \cong \overline{R T}$
Prove: $\triangle Q P S \cong \triangle T R S$
$Q \quad R$

P
T

4-4 Congruent Triangles

Example 4 Continued

Statements

$$
\begin{aligned}
& \text { 1. } \overline{Q P} \cong \overline{R T} \\
& \text { 2. } \angle P Q S \cong \angle R T S
\end{aligned}
$$

3. $\overline{P R}$ and $\overline{Q T}$ bisect each other.

$$
\text { 4. } \overline{Q S} \cong \overline{T S}, \overline{P S} \cong \overline{R S}
$$

$$
\text { 5. } \angle Q S P \cong \angle T S R
$$

$$
\text { 6. } \angle Q S P \cong \angle T R S
$$

$$
\text { 7. } \triangle Q P S \cong \triangle T R S
$$

Reasons

\author{

1. Given
}
2. Given
3. Given
4. Def. of bisector
5. Vert. $\angle \mathrm{s}$ Thm.
6. Third $\angle \mathrm{s}$ Thm.
7. Def. of $\cong \Delta s$

4-4 Congruent Triangles

Check It Out! Example 4

Use the diagram to prove the following.
Given: $\overline{M K}$ bisects $\overline{J L} . \overline{J L}$ bisects $\overline{M K} . \overline{J K} \cong \overline{M L}$. $\overline{J K} \| \overline{M L}$.

Prove: $\triangle J K N \cong \triangle L M N$

4-4 Congruent Triangles

Check It Out! Example 4 Continued

Statements	Reasons	
1. $\overline{J K} \cong \overline{M L}$	1. Given	
2. $\overline{J K} \\| \overline{M L}$	2. Given	
3. $\angle J K N \cong \angle N M L$	3. Alt int. $\angle \mathrm{s}$ are \cong.	
4. $\overline{J L}$ and $\overline{M K}$ bisect each other.	4. Given	
5. $\overline{J N} \cong \overline{L N}, \overline{M N} \cong \overline{K N}$	5. Def. of bisector	
6. $\angle K N J \cong \angle M N L$	6. Vert. $\angle \mathrm{s}$ Thm.	
7. $\angle K J N \cong \angle M L N$	7. Third $\angle \mathrm{s}$ Thm.	
8. $\triangle J K N \cong \triangle L M N$	8. Def. of $\cong \Delta \mathrm{s}$	

4-4 Congruent Triangles

Lesson Quiz

1. $\triangle A B C \cong \triangle J K L$ and $A B=2 x+12$. $J K=4 x-50$. Find x and $A B$. 31, 74

Given that polygon MNOP \cong polygon $Q R S T$, identify the congruent corresponding part.
2. $\overline{N O} \cong \overline{R S} \quad$ 3. $\angle T \cong \angle \boldsymbol{P}$
4. Given: C is the midpoint of $\overline{B D}$ and $\overline{A E}$.

$$
\angle A \cong \angle E, \overline{A B} \cong \overline{E D}
$$

Prove: $\triangle A B C \cong \triangle E D C$

4-4 Congruent Triangles

Lesson Quiz

4.

Statements	Reasons
1. $\angle A \cong \angle E$	1. Given
2. C is mdpt. of $B D$ and $A E$	2. Given
3. $\overline{A C} \cong \overline{E C} ; \overline{B C} \cong \overline{D C}$	3. Def. of mdpt.
4. $\overline{A B} \cong \overline{E D}$	4. Given
5. $\angle A C B \cong \angle E C D$	5. Vert. $\angle \mathrm{s} \mathrm{Thm}$.
6. $\angle B \cong \angle D$	6. Third $\angle \mathrm{s}$ Thm.
7. $\triangle A B C \cong \triangle E D C$	7. Def. of $\cong \Delta \mathrm{s}$

