

Warm Up

Lesson Presentation

Lesson Quiz

Holt McDougal Geometry

Warm Up

1. Name all sides and angles of ΔFGH . $\overline{FG}, \overline{GH}, \overline{FH}, \angle F, \angle G, \angle H$

2. What is true about $\angle K$ and $\angle L$? Why?

 \cong ;Third ∠s Thm.

3. What does it mean for two segments to be congruent?

They have the same length.

М

Objectives

Use properties of congruent triangles.

Prove triangles congruent by using the definition of congruence.

Holt McDougal Geometry

Vocabulary

corresponding angles corresponding sides congruent polygons

Holt McDougal Geometry

Geometric figures are congruent if they are the same size and shape. <u>Corresponding</u> <u>angles</u> and <u>corresponding sides</u> are in the same position in polygons with an equal number of sides.

Two polygons are **<u>congruent polygons</u>** if and only if their corresponding sides are congruent. Thus triangles that are the same size and shape are congruent.

Properties of Congruent Polygons

DIAGRAM	CORRESPONDING ANGLES	CORRESPONDING SIDES
$A \xrightarrow{B} \xrightarrow{B} \xrightarrow{D} \xrightarrow{D} \xrightarrow{F} \xrightarrow{C} \xrightarrow{C} \xrightarrow{A} \xrightarrow{B} \xrightarrow{E} \xrightarrow{F} \xrightarrow{F} \xrightarrow{C} \xrightarrow{A} \xrightarrow{B} \xrightarrow{E} \xrightarrow{F} \xrightarrow{E} \xrightarrow{F} \xrightarrow{E} \xrightarrow{E} \xrightarrow{E} \xrightarrow{F} \xrightarrow{E} \xrightarrow{E} \xrightarrow{E} \xrightarrow{E} \xrightarrow{E} \xrightarrow{E} \xrightarrow{E} E$	$\angle A \cong \angle D$ $\angle B \cong \angle E$ $\angle C \cong \angle F$	$\overline{AB} \cong \overline{DE}$ $\overline{BC} \cong \overline{EF}$ $\overline{AC} \cong \overline{DF}$
$P \xrightarrow{Q} Z \xrightarrow{W} W$ $s \xrightarrow{Q} Z \xrightarrow{W} X$ $s \xrightarrow{Q} X$	$\angle P \cong \angle W$ $\angle Q \cong \angle X$ $\angle R \cong \angle Y$ $\angle S \cong \angle Z$	$\overline{PQ} \cong \overline{WX}$ $\overline{QR} \cong \overline{XY}$ $\overline{RS} \cong \overline{YZ}$ $\overline{PS} \cong \overline{WZ}$

Helpful Hint

Two vertices that are the endpoints of a side are called consecutive vertices.

For example, *P* and *Q* are consecutive vertices.

To name a polygon, write the vertices in consecutive order. For example, you can name polygon *PQRS* as *QRSP* or *SRQP*, but **not** as *PRQS*.

In a congruence statement, the order of the vertices indicates the corresponding parts.

Helpful Hint

When you write a statement such as $\triangle ABC \cong \triangle DEF$, you are also stating which parts are congruent.

Holt McDougal Geometry

Example 1: Naming Congruent Corresponding Parts

Given: $\Delta PQR \cong \Delta STW$

Identify all pairs of corresponding congruent parts.

Angles: $\angle P \cong \angle S$, $\angle Q \cong \angle T$, $\angle R \cong \angle W$

Sides: $PQ \cong ST$, $QR \cong TW$, $PR \cong SW$

Holt McDougal Geometry

Check It Out! Example 1

If polygon *LMNP* \cong polygon *EFGH*, identify all pairs of corresponding congruent parts.

Angles: $\angle L \cong \angle E$, $\angle M \cong \angle F$, $\angle N \cong \angle G$, $\angle P \cong \angle H$

Sides: $LM \cong EF$, $MN \cong FG$, $\overline{NP} \cong GH$, $LP \cong EH$

Holt McDougal Geometry

Example 2A: Using Corresponding Parts of Congruent Triangles

Given: $\triangle ABC \cong \triangle DBC$.

Find the value of x.

 $\angle BCA$ and $\angle BCD$ are rt. $\angle s$.

 $\angle BCA \cong \angle BCD$

 $m \angle BCA = m \angle BCD$

 $(2x - 16)^{\circ} = 90^{\circ}$

2x = 106

x = 53

Def. of \perp lines.

Rt. $\angle \cong$ *Thm.*

Def. of $\cong \angle s$

Substitute values for $m \angle BCA$ and $m \angle BCD$.

Add 16 to both sides.

Divide both sides by 2.

Example 2B: Using Corresponding Parts of Congruent Triangles

Given: $\triangle ABC \cong \triangle DBC$.

Find m∠*DBC*.

 $m \angle ABC + m \angle BCA + m \angle A = 180^{\circ} \Delta$ Sum Thm.

 $m \angle ABC + 90 + 49.3 = 180$ Substitute values for $m \angle BCA$ and $m \angle A$.

m∠*ABC* + 139.3 = 180 *Simplify*.

- $m \angle ABC = 40.7$ Subtract 139.3 from both sides.
 - $\angle DBC \cong \angle ABC$ Corr. $\angle s$ of $\cong \Delta s$ are \cong .
- $m \angle DBC = m \angle ABC$ Def. of $\cong \angle s$.

 $m \angle DBC = 40.7^{\circ}$ Trans. Prop. of =

Holt McDougal Geometry

Check It Out! Example 2a

Given: $\triangle ABC \cong \triangle DEF$

Find the value of x.

 $\Delta s \ are \cong$.

$AB \cong DE$	Corr. sides of $\cong \Delta s$ are \cong .
AB = DE	Def. of \cong parts.
2x - 2 = 6	Substitute values for AB and DE.
2 <i>x</i> = 8	Add 2 to both sides.
<i>x</i> = 4	Divide both sides by 2.

Holt McDougal Geometry

Check It Out! Example 2b

Given: $\triangle ABC \cong \triangle DEF$ Find m $\angle F$.

 $\begin{array}{ll} m \angle EFD + m \angle DEF + m \angle FDE = 180^{\circ} & \Delta \ Sum \ Thm. \\ & \angle ABC \cong \angle DEF & Corr. \ \angle s \ of \cong \Delta \ are \cong. \\ & m \angle ABC = m \angle DEF & Def. \ of \cong \angle s. \\ & m \angle DEF = 53^{\circ} & Transitive \ Prop. \ of =. \\ & m \angle EFD + 53 + 90 = 180 & Substitute \ values \ for \ m \angle DEF \\ & m \angle F + 143 = 180 & Simplify. \\ & m \angle F = 37^{\circ} & Subtract \ 143 \ from \ both \ sides. \end{array}$

Example 3: Proving Triangles Congruent

Given: $\angle YWX$ and $\angle YWZ$ are right angles. \overline{YW} bisects $\angle XYZ$. *W* is the midpoint of \overline{XZ} . $\overline{XY} \cong \overline{YZ}$. **Prove:** $\Delta XYW \cong \Delta ZYW$

Statements	Reasons	
1. $\angle YWX$ and $\angle YWZ$ are rt. \angle s.	1. Given	
2. $\angle YWX \cong \angle YWZ$	2. Rt. ∠ ≅ Thm.	
3. <i>YW</i> bisects $\angle XYZ$	3. Given	
4. ∠ <i>XYW</i> ≅ ∠ <i>ZYW</i>	4. Def. of bisector	
5. W is mdpt. of \overline{XZ}	5. Given	
6. $\overline{XW} \cong \overline{ZW}$	6. Def. of mdpt.	
7. $\overline{YW} \cong \overline{YW}$	7. Reflex. Prop. of \cong	
8. $\angle X \cong \angle Z$	8. Third ∠s Thm.	
9. $\overline{XY} \cong \overline{YZ}$	9. Given	
10. $\Delta XYW \cong \Delta ZYW$	10. Def. of $\cong \Delta$	

Holt McDougal Geometry

Check It Out! Example 3

Given: \overline{AD} bisects \overline{BE} . \overline{BE} bisects \overline{AD} . $\overline{AB} \cong \overline{DE}, \angle A \cong \angle D$ **Prove:** $\triangle ABC \cong \triangle DEC$

Holt McDougal Geometry

Statements	Reasons
1. $\angle A \cong \angle D$	1. Given
2. ∠ <i>BCA</i> ≅ ∠ <i>DCE</i>	2. Vertical \angle s are \cong .
3. ∠ <i>ABC</i> ≅ ∠ <i>DEC</i>	3. Third ∠s Thm.
4. $\overline{AB} \cong \overline{DE}$	4. Given
5. \overline{AD} bisects \overline{BE} , \overline{BE} bisects \overline{AD}	5. Given
6. $\overline{BC} \cong \overline{EC}, \ \overline{AC} \cong \overline{DC}$	6. Def. of bisector
7. $\triangle ABC \cong \triangle DEC$	7. Def. of $\cong \Delta s$

Example 4: Engineering Application

The diagonal bars across a gate give it support. Since the angle measures and the lengths of the corresponding sides are the same, the triangles are congruent.

Example 4 Continued

Statements	Reasons	
1. $\overline{QP} \cong \overline{RT}$	1. Given	
2. $\angle PQS \cong \angle RTS$	2. Given	
3. \overline{PR} and \overline{QT} bisect each other.	3. Given	
4. $\overline{QS} \cong \overline{TS}, \ \overline{PS} \cong \overline{RS}$	4. Def. of bisector	
5. $\angle QSP \cong \angle TSR$	5. Vert. ∠s Thm.	
6. $\angle QSP \cong \angle TRS$	6. Third ∠s Thm.	
7. $\Delta QPS \cong \Delta TRS$	7. Def. of $\cong \Delta s$	

Check It Out! Example 4

Use the diagram to prove the following.

Given: \overline{MK} bisects \overline{JL} . \overline{JL} bisects \overline{MK} . $\overline{JK} \cong \overline{ML}$. $\overline{JK} \mid |\overline{ML}$.

Prove: $\Delta JKN \cong \Delta LMN$

Holt McDougal Geometry

Check It Out! Example 4 Continued

Statements		Reasons
1. $\overline{JK} \cong \overline{ML}$	1.	Given
2. JK ML	2.	Given
3. $\angle JKN \cong \angle NML$	3.	Alt int. $\angle s$ are \cong .
4. \overline{JL} and \overline{MK} bisect each other.	4.	Given
5. $\overline{JN} \cong \overline{LN}, \ \overline{MN} \cong \overline{KN}$	5.	Def. of bisector
6. $\angle KNJ \cong \angle MNL$	6.	Vert. ∠s Thm.
7. $\angle KJN \cong \angle MLN$	7.	Third ∠s Thm.
8. $\Delta JKN \cong \Delta LMN$	8.	Def. of $\cong \Delta s$

Holt McDougal Geometry

Lesson Quiz

1. $\triangle ABC \cong \triangle JKL$ and AB = 2x + 12. JK = 4x - 50. Find x and AB. **31**, **74**

Given that polygon $MNOP \cong$ polygon QRST, identify the congruent corresponding part.

2. $\overline{NO} \cong \underline{RS}$ **3.** $\angle T \cong \underline{\angle P}$

4. Given: *C* is the midpoint of \overline{BD} and \overline{AE} .

 $\angle A \cong \angle E, \overline{AB} \cong \overline{ED}$ **Prove:** $\triangle ABC \cong \triangle EDC$

Lesson Quiz

4.

Statements	Reasons
1. $\angle A \cong \angle E$	1. Given
2. <i>C</i> is mdpt. of <i>BD</i> and <i>AE</i>	2. Given
3. $\overline{AC} \cong \overline{EC}; \ \overline{BC} \cong \overline{DC}$	3. Def. of mdpt.
4. $\overline{AB} \cong \overline{ED}$	4. Given
5. $\angle ACB \cong \angle ECD$	5. Vert. ∠s Thm.
6. $\angle B \cong \angle D$	6. Third ∠s Thm.
7. $\triangle ABC \cong \triangle EDC$	7. Def. of $\cong \Delta s$