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Abstract. We present an overview of an ongoing project to build a
DDDAS for identifying and tracking chemicals in water. The project in-
volves a new class of intelligent sensor, building a library to optically
identify molecules, communication techniques for moving objects, and
a problem solving environment. We are developing an innovative envi-
ronment so that we can create a symbiotic relationship between com-
putational models for contaminant identification and tracking in water
bodies and a new instrument, the Solid-State Spectral Imager (SSSI), to
gather hydrological and geological data and to perform chemical analy-
ses. The SSSI is both small and light and can scan ranges of up to about
10 meters. It can easily be used with remote sensing applications.

1 Introduction

In this paper, we describe an intelligent sensor and how we are using it to create
a dynamic data-driven application system (DDDAS) to identify and track con-
taminants in water bodies. This DDDAS has applications to tracking polluters,
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finding sunken vehicles, and ensuring that drinking water supplies are safe. This
paper is a sequel to [1].

In Sec. 2, we discuss the SSSI. In Sec. 3, we discuss the problem solving
environment that we have created to handle data to and from SSSI’s in the field.
In Sec. 4, we discuss In Sec. 5, we state some conclusions.

2 The SSSI

Using a laser-diode array, photodetectors, and on board processing, the SSSI
combines innovative spectroscopic integrated sensing and processing with a hy-
perspace data analysis algorithm [2]. The array performs like a small network
of individual sensors. Each laser-diode is individually controlled by a program-
mable on board computational device that is an integral part of the SSSI and
the DDDAS.

Ultraviolet, visible, and near-infrared laser diodes illuminate target points us-
ing a precomputed sequence, and a photodetector records the amount of reflected
light. For each point illuminated, the resulting reflectance data is processed to
separate the contribution of each wavelength of light and classify the substances
present. An optional radioactivity monitor can enhance the SSSI’s identification
abilities.

The full scale SSSI implementation will have 25 lasers in discrete wavelengths
between 300 nm and 2400 nm with 5 rows of each wavelength, consume less
than 4 Watts, and weigh less than 600 grams. For water monitoring in the open
ocean, imaging capability is unnecessary. A single row of diodes with one diode
at each frequency is adequate. Hence, power consumption of the optical system
can be reduced to approximately one watt.

Several prototype implementations of SSSI have been developed and are being
tested at the University of Kentucky. These use an array of LEDs instead of
lasers.

The SSSI combines near-infrared, visible, and ultraviolet spectroscopy with a
statistical classification algorithm to detect and identify contaminants in water.
Nearly all organic compounds have a near-IR spectrum that can be measured.
Near-infrared spectra consist of overtones and combinations of fundamental mid-
infrared bands, which makes near-infrared spectra a powerful tool for identifying
organic compoundswhile still permitting somepenetration of light into samples [3].

The SSSI uses one of two techniques for encoding sequences of light pulses in
order to increase the signal to noise ratio: Walsh-Hadamard or Complementary
Randomized Integrated Sensing and Processing (CRISP).

In a Walsh-Hadamard sequence multiple laser diodes illuminate the target at
the same time, increasing the number of photons received at the photo detector.
The Walsh-Hadamard sequence can be demultiplexed to individual wavelength
responses with a matrix-vector multiply [4]. Two benefits of generating encoding
sequences by this method include equivalent numbers of on and off states for each
sequence and a constant number of diodes in the on state at each resolution point
of a data acquisition period.
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Fig. 1. SCIRun screen with telemetry module in forefront

CRISP encoding uses orthogonal pseudorandom codes with unequal numbers
of on and off states. The duty cycle of each code is different, and the codes are
selected to deliver the highest duty cycles at the wavelengths where the most
light is needed and lowest duty cycle where the least light is needed to make the
sum of all of the transmitted (or reflected) light from the samples proportional
to the analyte concentration of interest.

3 Problem Solving Environment SCIRun

SCIRun version 3.0 [5,6], a scientific problem solving enironment, was released in
late 2006. It includes a telemetry module based on [7], which provides a robust
and secure set of Java tools for data transmission that assumes that a known
broker exists to coordinate sensor data collection and use by applications. Each
tool has a command line driven form plus a graphical front end that makes it so
easy that even the authors can use the tools.

In addition there is a Grid based tool that can be used to play back al-
ready collected data. We used Apple’s XGrid environment [8] (any Grid envi-
ronment will work, however) since if someone sits down and uses one of the
computers in the Grid, the sensors handled by that computer disappear from
the network until the computer is idle again for a small period of time. This
gives us the opportunity to develop fault tolerant methods for unreliable sensor
networks.

The clients (sensors or applications) can come and go on the Internet, change
IP addresses, collect historical data, or just new data (letting the missed data
fall on the floor). The tools were designed with disaster management [9] in mind
and stresses ease of use when the user is under duress and must get things right
immediately.
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A new Socket class was added to SCIRun, which encapsulates the socket
traffic and is used to connect and transfer data from the server. The client
handshakes with the server, which is informed of an ip:port where the client can
be reached, and then listens on that port. Periodically, or as the server has new
data available, the server sends data to the listening client.

The configuration for SCIRun was augmented to include libgeotiff [10].
SCIRun then links against this client and has its API available within the mod-
ules. This API can be used to extract the extra information embedded in the tiff
tags in various supported formats. For example, position and scale information
can be extracted so that the images can be placed correctly.

To allow controller interfaces to be built for the SSSI, a simulation of the
device has been written in Matlab. This simulation follows the structure of the
firmware code and provides the same basic interface as the firmware device. Data
files are used in place of the SSSI’s serial communication channel to simulate data
exchange in software. Matlab programs are also provided to generate sample data
files to aid in the development of Hadamard-Walsh and CRISP encodings for
various SSSI configurations. The simulation also provides insight into the SSSI’s
firmware by emulating the use of oversampling and averaging to increase data
precision and demonstrating how the data is internally collected and processed.
The simulation can be used for the development of interfaces to the SSSI while
optimization and refinement of the SSSI firmware continues.

SCIRun has a Matlab module so that we can pipe data to and from the SSSI
emulator. As a result, we can tie together the data transfer and SSSI components
easily into a system for training new users and to develop virtual sensor networks
before deployment of a real sensor network in the field.

4 Accurate Predictions

The initial deployment of the sensor network and model will focus on estuarine
regions where water quality monitoring is critical for human health and environ-
mental monitoring. The authors will capitalize on an existing configuration of
the model to the Hudson-Raritan Estuary to illustrate the model’s capabilities
(see [1] for details). We will consider passive tracer driven by external sources:

∂C(x, t)
∂t

− L(C(x, t)) = S(x, t), C(x, 0) = C0(x) x ∈ Ω,

where C is the concentration of contaminant, S is a source term and L is linear
operator for passive scalar (advection-diffusion-reaction). L involves the veloc-
ity field which is obtained via the forward model based on the two-dimensional
Spectral Element Ocean Model (SEOM-2D). This model solves the shallow wa-
ter equations and the details can be found in our previous paper [1]. We have
developed the spectral element discretization which relies on relatively high de-
gree (5-8th) polynomials to approximate the solution within flow equations. The
main features of the spectral element method are: geometric flexibility due to
its unstructured grids, its dual paths to convergence: exponential by increas-
ing polynomial degree or algebraic via increasing the number of elements, dense
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computational kernels with sparse inter-element synchronization, and excellent
scalability on parallel machines.

We now present our methodology for obtaining improved predictions based
on sensor data. For simplicity, our example is restricted to synthetic velocity
fields. Sensor data is used to improve the predictions by updating the solution
at previous time steps which is used for forecasting. This procedure consists
of updating the solution and source term history conditioned to observations
and reduces the computational errors associated with incorrect initial/boundary
data, source terms, etc., and improves the predictions [11,12,13]. We assume
that the source term can be decomposed into pulses at different time steps
(recording times) and various locations. We represent time pulses by δk(x, t)
which corresponds to contaminant source at the location x = xk.

We seek the initial condition as a linear combination of some basis functions

C0 (x) ≈ C̃0 (x) =
ND∑

i=1

λiϕ
0
i (x). We solve for each i,

∂ϕi

∂t
− L (ϕi) = 0, ϕi (x, 0) = ϕ0

i (x) .

Thus, an approximation to the solution of
∂C

∂t
− L (C) = 0, C (x, 0) = C0 (x) is

given by C̃ (x, t) =
ND∑

i=1

λiϕi (x, t) . To seek the source terms, we consider the

following basis problems

∂ψk

∂t
− L (ψk) = δk (x, t) , ψk (x, 0) = 0

for ψ and each k. Here, δk (x, t) represents unit source terms that can be used
to approximate the actual source term. In general, δk (x, t) have larger support
both in space and time in order to achieve accurate predictions. We denote the
solution to this equation as {ψk (x, t)}Nc

k=1 for each k. Then the solution to our
original problem with both the source term and initial condition is given by

C̃ (x, t) =
ND∑

i=1

λiϕi (x, t) +
Nc∑

k=1

αkψk (x, t) .

Thus, our goal is to minimize

F (α, λ) =
Ns∑

j=1

⎡

⎣
(

Nc∑

k=1

αkψk (xj , t) +
ND∑

k=1

λkϕk (xj , t) − γj (t)

)2⎤

⎦+

Nc∑

k=1

κ̃k

(
αk − β̃k

)2
+

ND∑

k=1

κ̂k

(
λk − β̂k

)2
,

(1)

where Ns denotes the number of sensors. If we denote N = Nc + Nd, μ =
[α1, · · · , αNc , λ1, · · · , λND ], η (x, t) = [ψ1, · · · , ψNc , ϕ1, · · · , ϕND ],
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β =
[
β̃1, · · · , β̃Nc , β̂1, · · · , β̂ND

]
, and κ = [κ̃1, · · · , κ̃Nc , κ̂1, · · · , κ̂ND ] then we

want to minimize

F ( μ) =
Ns∑

j=1

⎡

⎣
(

N∑

k=1

μkηk (xj , t) − γj (t)

)2⎤

⎦ +
N∑

k=1

κk (μk − βk)2 .

This leads to solving the least squares problem Aμ = R where

Amn =
N∑

j=1

ηm (xj , t) ηn (xj , t) + δmnκm,

and

Rm =
N∑

j=1

ηm (xj , t) γj (t) + κmβm.

We can only record sensor values at some discrete time steps t = {tj}Nt

j=1. We
want to use the sensor values at t = t1 to establish an estimate for μ, then use
each successive set of sensor values to refine this estimate. After each step, we
update and then solve using the next sensor value.

Next, we present a representative numerical result. We consider contaminant
transport on a flat surface, a unit dimensionless square, with convective velocity
in the direction (1, 1). The source term is taken to be 0.25 in [0.1, 0.3]× [0.1, 0.3]
for the time interval from t = 0 to t = 0.05. Initial condition is assumed to have
the support over the entire domain. We derive the initial condition (solution at
previous time step) by solving the original contaminant transport problem with
some source terms assuming some prior contaminant history.

To get our observation data for simulations, we run the forward problem
and sample sensor data at every 0.05 seconds for 1.0 seconds. We sample at
the following five locations: (0.5, 0.5) , (0.25, 0.25) , (0.25, 0.75) , (0.75, 0.25) , and
(0.75, 0.75).

When reconstructing, we assume that there is a subdomain Ωc ⊂ Ω where
our initial condition and source terms are contained. We assume that the source
term and initial condition can be represented as a linear combinations of basis
functions defined on Ωc. For this particular model, we assume the subdomain
is [0, 0.4]× [0, 0.4] and we have piecewise constant basis functions. Furthermore,
we assume that the source term in our reconstruction is nonzero for the same
time interval as S(x, t). Thus we assume the source basis functions are nonzero
for only t ∈ [0, 0.05].

To reconstruct, we run the forward simulation for a 4 × 4 grid of piecewise
constant basis functions on [0, 0.4] × [0, 0.4] for both the initial condition and
the source term. We then reconstruct the coefficients for the initial condition
and source term using the approach proposed earlier. The following plot shows a
comparison between the original surface (in green) and the reconstructed surface
(in red). The plots are for t = 0.1, 0.2, 0.4 and 0.6. We observe that the recovery
at initial times is not very accurate. This is due to the fact that we have not
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Fig. 2. Comparison between reconstructed (red) solution and exact solution at t = 0.1
(upper left), t = 0.2 (upper right), t = 0.4 (lower left), and t = 0.6 (lower right)

collected sufficient sensor data. As the time progresses, the prediction results
improve. We observe that at t = 0.6, we have nearly exact prediction of the
contaminant transport.

To account for the uncertainties associated with sensor measurements, we
consider an update of initial condition and source terms, within a Bayesian
framework. The posterior distribution is set up based on measurement errors
and prior information. This posterior distribution is complicated and involves
the solutions of partial differential equations. We developed an approach that
combines least squares with a Bayesian approach, such as Metropolis-Hasting
Markov chain Monte Carlo (MCMC) [14], that gives a high acceptance rate. In
particular, we can prove that rigorous sampling can be achieved by sampling
the sensor data from the known distribution, thus obtaining various realizations
of the initial data. Our approach has similarities with the Ensemble Kalman
Filter approach, which can also be adapted in our problem. We have performed
numerical studies and these results will be reported elsewhere.

5 Conclusions

In the last year, we have made strides in creating our DDDAS. We have devel-
oped software that makes sending data from locations that go on and off the
Internet and possibly change IP addresses rather easy to work with. This is a
stand alone package that runs on any devices that support Java. It has also



Dynamically Identifying and Tracking Contaminants in Water Bodies 1009

been integrated into newly released version 3.0 of SCIRun and is in use by other
groups, including surgeons while operating on patients. We have also developed
software that simulates the behavior of the SSSI and are porting the relevant
parts so that it can be loaded into the SSSI to get real sensor data. We have
developed algorithms that allow us to achieve accurate predictions in the pres-
ence of errors/uncertainties in dynamic source terms as well as other external
conditions. We have tested our methodology in both deterministic and stochastic
environments and have presented some simplistic examples in this paper.
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