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Abstract—Efforts to map the distribution of debris flows, to
assess the factors controlling their development, and to identify
the areas susceptible to their occurrences are often hampered
by the paucity of monitoring systems and historical databases
in many parts of the world. In this paper, we develop and
successfully apply methodologies that rely heavily on readily
available remote-sensing datasets over the Jazan province in
the Red Sea hills of Saudi Arabia. A fivefold exercise was
conducted: 1) a geographical information system (GIS) with
a Web interface was generated to host and analyze relevant
coregistered remote-sensing data and derived products; 2) an
inventory was compiled for debris flows identified from satellite
datasets (e.g., GeoEye, Orbview), a subset of which was field
verified; 3) spatial analyses were conducted in a GIS environment
and 10 predisposing factors were identified; 4) an artificial neural
network (ANN) model and a logistic regression (LR) model
were constructed, optimized, and validated; and 5) the generated
models were used to produce debris-flow susceptibility maps.
Findings include: 1) excellent prediction performance for both
models (ANN: 96.1%; LR: 96.3%); 2) the high correspondence
between model outputs (91.5% of the predictions were common)
reinforces the validity of the debris-flow susceptibility results;
3) the variables with the highest predictive power were topo-
graphic position index (TPI), slope, distance to drainage line
(DTDL), and normalized difference vegetation index (NDVI);
and 4) the adopted methodologies are reliable, cost-effective,
and could potentially be applied over many of the world’s
data-scarce mountainous lands, particularly along the Red Sea
Hills.

Index Terms—Artificial neural networks (ANN), data mining,
data-scarce field regions, debris flows, geographical information
system (GIS), logistic regression (LR), remote sensing.

I. INTRODUCTION

EBRIS FLOWS are sudden mass movements that are
usually initiated by intense precipitation on unconsoli-
dated steep mountain channels [1], [2]. They pose a substantial
threat to human life and property in mountainous areas,
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especially in populous regions that are witnessing unplanned
urbanization activities. These mass movements are often as-
sociated with losses of human lives and property [3]-[5].
Increasing awareness of the social, financial, and economic im-
pacts of these environmental hazards is stimulating worldwide
investigations aimed at understanding the factors controlling
their distribution and predicting the areas susceptible to their
development [6], [7].

In many vulnerable areas of the world, hazard suscep-
tibility analyses are hampered by the scarcity or unavail-
ability of historical mass movement archives and relevant
spatial datasets. Monitoring mass movement systems typi-
cally requires extensive networks of ground-based stations.
Although such systems are very useful and may save lives
and protect property in many populated areas [4], this level
of data collection and analysis is not available in most of
the vulnerable regions of developing countries. Moreover,
debris flows typically develop in rugged and inaccessible
terrains where field work is difficult, expensive, and time
consuming. Fortunately, recent advances in remote sensing
hold the promise to address these inadequacies. In this paper,
we develop cost-effective approaches that rely on observations
extracted from a range of remote-sensing datasets, procedures
that could be readily applicable to large vulnerable sectors of
the Earth’s mountainous regions.

We chose our study area within the Jazan province in the
Red Sea Hills. The Jazan study area is characterized by rugged
terrain, restricted accessibility, large areal extent (>2700 km?),
frequent debris-flow occurrences, and limited field data for the
study area. As is the case for many developing countries, Jazan
lacks ground-based systems to monitor and archive historical
mass movement occurrences.

We used inferred and validated remote-sensing debris-flow
events alongside the extracted spatial relevant datasets to
derive debris-flow susceptibility models for the area. Several
modeling approaches were advanced to assess the suscep-
tibility to mass movement in an area. These models could
be grouped into three main categories: 1) heuristic; 2) de-
terministic; and 3) statistical. Heuristic models rely on ex-
pert knowledge to assign weights to the various controlling
factors [8], [9]. Although some of these models prove to be
successful in specific locations, they are highly subjective and
site specific [10]. Deterministic models are largely based on
well-characterized mathematical relationships encompassing
the physical laws driving mass movements. The required
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data include geotechnical characteristics of the rocks and
soils, slope measurements, and hydrological conditions [11]-
[13]. The advantage of deterministic models is that they
permit rigorous quantification of stability variables; the main
problem is their need for exhaustive data from individual
slopes, which makes these methods effective for studying
only small areas [14], [15]. Statistical models are data driven;
they can be used to analyze the effect of each controlling
factor separately, as in bivariate statistical models [16]-[18]
or all factors jointly as in the case of multivariate sta-
tistical models [15], [19]. In recent years, soft computing
techniques have been used in mass movement susceptibility
analyses, such as neuro-fuzzy [20], [21], back-propagation
artificial neural network (ANN) [22], and fuzzy logic
models [23].

We adopted a statistical model approach to assess debris-
flow susceptibility in our study area. The statistical approach
was selected for a number of reasons. It is suitable for
regional-scale applications [24] and is thus more suited for
the use of remote-sensing datasets rather than extensive field
data, as in the case of deterministic models. In addition, the
approach is highly objective because it is built on actual cases
rather than expert knowledge [25]. Moreover, by definition,
statistical methods readily allow independent evaluation and
cross validation [26].

Model performance is becoming of increasing importance as
the numbers of statistical models addressing mass movements
continue to increase. Comparisons between models, quality
assessment, and evaluation of their performances have been
the focus of multiple studies. Given the multiple successes
reported of ANN and logistic regression (LR) models in a wide
range of geo-environments [24], [27]-[30] compared to other
models, ANN (an artificial intelligence statistical method) and
LR (a traditional statistical method) were used in this study
to investigate debris-flow susceptibility in the Jazan area. The
two methods have different theoretical backgrounds and if we
were to find agreement between the results generated from
the two data-mining methodologies, this would provide an
additional strong indication of the validity of the obtained
results.

The study area, Jazan, is typical of many of the landslide
locations worldwide. Such areas are found in steep moun-
tainous terrains that are inaccessible. Installing and maintain-
ing adequate monitoring systems in these locations are not
an easy task. The significance of this study emerges from
the implementation of methodologies that rely heavily on
remote-sensing datasets to account for the paucity or lack
of ground systems and historical databases. Moreover, Jazan
climate, landscape, and hydrologic settings resemble those of
surrounding areas along the Red Sea hills in Yemen, Saudi
Arabia, Sinai, and Sudan (2.7 million km2, 2% of the Earth’s
continental area); hence, results could potentially be applicable
to neighboring countries and are ideal for application in
developing countries that have limited resources and lack
adequate field observations.

We first report the characteristics (geologic, hydrogeo-
logic, climatic) of the study area (Section II), followed by a
description of the available data and the adopted methodology
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(Section III), and finally, we report our results and findings
(Section 1V).

II. STUDY AREA SETTINGS

The study area (2717 km?) covers most of the mountainous
areas within the Jazan province. It is located at the extreme
southwestern part of the Red Sea hills of Saudi Arabia
(approximately 42°45'00”E to 43°12’00”E and 17°11’30"N
to 17°41’00”N), bordering Yemen to the south and the Red
Sea to the west (Fig. 1).

The discovery of oil in the Kingdom of Saudi Arabia
signaled an important era in the construction of new urban
centers and networks of highways. The Jazan area is no
exception. However, the economic development of the area has
been hampered by intensified debris-flow occurrences that put
the population and property (buildings, roads, infrastructure,
etc.) at risk.

The Jazan area has all the ingredients to be at high risk
for debris-flow development. In fact, the area is characterized
by highly elevated mountains (up to 2.5 km amsl) [Fig. 4(a)]
with steep topographic reliefs (up to 84°) [Fig. 4(b)]. Rainfall
is the main triggering mechanism for debris flows in the
study area. Jazan receives around 550 mm/year of rainfall,
with a peak record of 1400 mm in 1979 [31]. The high
precipitation levels in Jazan are largely related to the presence
of tropical air masses that reach the extreme southwestern
part of Saudi Arabia and to the high elevations that induce
orographic precipitation [32]. In addition, the study area is
characterized by intense structural deformation (e.g., folds,
faults, fractures). The Red Sea hills of the Arabian Peninsula
are composed of volcanic, volcaniclastic, plutonic, and meta-
morphic rocks that were formed by the accretion of island
arcs and closure of interleaving oceanic arcs 700—1000 Ma
[33], [34]. These rocks were elevated with the opening of the
Red Sea some 30 million years ago, exposing this complex
along the length of the Red Sea on the African and Arabian
sides [35]. The basement complex is unconformably overlain
by Paleozoic, Mesozoic, and Tertiary sedimentary successions
[36], [37].

III. DATA AND METHODS

A fivefold methodology was adopted. First, we generated a
database that incorporates relevant coregistered remote-sensing
datasets and derived products. The generated datasets were
compiled and hosted in a geographical information system
(GIS) for archival and spatial data analysis and a Web-based
GIS [38] for data distribution (Step I). The compiled datasets
were essential for the implementation of the remaining steps.
Second, we compiled an inventory of known locations of
debris flows that were observed in the field or were clearly
identified from high-resolution satellite imagery (Step II).
Third, we investigated the factors that could potentially control
the occurrence of the identified debris flows (Step III). Fourth,
we constructed and validated debris-flow susceptibility models
for the Jazan area using LR and ANN pattern-recognition mod-
eling (Step IV). For each model, we tested model sensitivity
to input selection using a stepwise approach and receiver oper-
ating characteristics (ROC) test. The models were constructed
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Fig. 1. (a) Tropical Rainfall Measuring Mission (TRMM) average annual rainfall (from 1998 to 2012) showing that the highest amounts of precipitation are
in the extreme southwestern parts of the Arabian Peninsula, the study area. (b) Three-dimensional surface model of the study area overlain by Landsat 8 false
color composite (Band 7: red, Band 4: green, and Band 2: blue) showing the lithological, topographical, and morphological heterogeneity of the area.

using a randomly selected subset (80%) of the debris-flow
inventory, whereas the remaining 20% were used for cross
validation. The validated models were then used to predict
susceptibility to debris flows across the study area (Step V).

A. Generation of GIS Platforms (Step I)

The GIS platforms (desktop and Web-based) were
developed to organize and manage the datasets and to provide
a platform for users to access and visualize the accumulated
datasets for the study area. The GIS database incorporates

coregistered and orthorectified digital mosaics generated from
relevant datasets with a unified projection (UTM-Zone 38,
WGS84 datum). The image processing and GIS analyses
were conducted using commercial software (ENVI 4.8 and
ArcGIS 10.1). The Web-based GIS is a hybrid system that
takes advantage of the existing tools and datasets in Google
Maps, applies Python scripts to generate custom tools, and
uses the ArcGIS server to host the services. Fig. 2 shows
the various data sources, datasets, and their derived products
that compose the GIS database. The data used in this study
originate mainly from remote-sensing datasets along with
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Fig. 2. Schematic diagram of the various datasets, their derived products, and their usage. The generated data products constitute the GIS platform’s content.

geologic maps, topographical maps, and limited field surveys.
Details on these datasets (e.g., spatial resolution, date of
acquisition) are available in Appendix I.

The assembled digital products assisted in addressing the

following:
1) Data analysis and distribution via our Web-based GIS
[38].
2) Compilation of the inventory for known debris-flow

locations (Section III-B) (the latter were used as inputs
for the debris-flow susceptibility models).
Identification of factors that control the occurrence of the
identified debris flows (Section III-C) (the factors served
as inputs for the debris-flow susceptibility models).
Risk analysis by assessing the effect of the delineated
debris flows on the roads and buildings in the study area
(Section IV-B).

3)

4)

B. Compilation of Inventory for a Suite of Debris Flows
(Step 11)

Debris flows are more likely to occur under the same
conditions that caused earlier instabilities [39]. Thus, the
development and acquisition of a well-documented debris-
flow inventory for the study area represent a fundamental
requirement for statistical debris-flow modeling [40]. Unfor-
tunately, efforts to construct such inventories are hampered

in many of the vulnerable parts of the world, including
Jazan area, by the absence or paucity of appropriate in situ
monitoring systems and historical databases, given the high
costs involved in developing and maintaining these systems
and the inaccessibility of large sectors of these mountainous
areas [5]. For those reasons, we applied methodologies that
rely heavily on observations extracted from remote-sensing
imagery to collect sample locations of areas that witness the
development of debris flows (Fig. 3). The various remote-
sensing datasets that were used to compile the debris-flow
inventory are illustrated in Fig. 2 and described in Appendix .
The following characteristics were used to visually identify
historical debris flows from these images.

1) Debris flows are composed largely of bare soils and
rocks that appear bright in the visible wavelength region
compared to their surrounding vegetated areas, which
are dark in these wavelength regions.

Debris flows have specific morphological features that
are identifiable from high-spatial-resolution imagery, to-
pographical three-dimensional models [41], and radar
images [42]. These morphological features include
the presence of a torrent/gully/stream where surficial
roughness is higher than in the surrounding area. The
roughness was inferred from European remote-sensing
satellite (ERS) and environmental satellite (Envisat)
radar backscatter coefficient images. Other identifiable

2)
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Fig. 3. (a) Satellite image (GeoEye) of debris flows in the study area. (b) Field
shot of typical debris flows (modified from reference [51]). (c), (d) Field shots
of debris flows from study area.

morphological features are the presence of deposition
fans, channelized paths at steep mountains that have
debris deposit downward, and bare breaks and scars [1].

3) The use of high-spatial-resolution imagery (i.e., 0.5 and
1 m spatial-resolution images) allowed us to distinguish
even very small events.

Using these criteria, a total of 5100 debris-flow pixels and
5234 debris-flow-absent pixels were mapped in the study
area. Out of the selected locations, a suite of 86 debris
flows (equivalent to ~430 pixels) were visited in the field
for verification purposes. All of the field-investigated sites
were successfully verified, giving us confidence in the applied
methodology. An additional 55 (equivalent to ~275 pixels)
debris flows were confirmed from field reports [43]-[48].

Unfortunately, difficulties are involved in applying these
methodologies to extract the distribution of debris flows across
the entire study area. These include:
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1) the time and effort needed to identify the large numbers
(tens to hundreds of thousands) of debris flows across
the study area [49];

2) the subjective element involved in visual identification
of debris flows; and

3) the difficulty in identifying small flows and those that
have been inactive for long time periods. With time, veg-
etation encroaches over the bare soils within the debris
flows and makes it difficult to discriminate the spectrally
bright flows from the surrounding dark vegetated areas.

C. Identification of Factors Controlling the Distribution of
Debris Flows (Step III)

The variables that determine the debris-flow hazard of
an area can be grouped into two general categories: 1) the
intrinsic or static variables that contribute to debris-flow sus-
ceptibility, such as geology, slope gradient, slope aspect, long-
term drainage patterns, elevation, and material cohesion; and
2) the dynamic or extrinsic variables that tend to trigger debris
flows in an area of given susceptibility, such as heavy rainfall
events and earthquakes [3], [5], [12], [50]. In this study, we
are carrying on a debris-flow susceptibility investigation that
is by definition the spatial analysis of the intrinsic factors;
it expresses the likelihood of debris-flow occurrences at each
spatial element [21].

As described earlier, intrinsic variables can be used as
controlling factors in predicting future occurrences of debris
flows in investigated areas [25]; however, there are no common
guiding principles for selecting these variables [15]. In this
study, the intrinsic factors were selected from among those
most commonly used in literature to evaluate debris-flow sus-
ceptibility. Initial spatial analyses were conducted to ascertain
whether each of these factors played a role in controlling
the distribution of debris flows in the Jazan study area. The
correspondence between the distribution of debris flows and
various indexes suggested a causal effect.

The 10 most relevant controlling variables that were selected
in the first stage are slope angle, slope aspect, topographic
position index (TPI), stream power index (SPI), elevation, flow
accumulation, topographic wetness index (TWI), normalized
difference vegetation index (NDVI), distance to drainage line
(DTDL), and soil weathering index (SWI). All 10 variables
were established as thematic maps with a 10-m spatial resolu-
tion grid. The study area grid is 4871 rows by 6496 columns
(i.e., total number is 31 642 016). Each thematic map and its
relevance to the modeling are described as follows.

1) Slope Angle: Wide variations (0° — 84°) in slope angles
are observed in the Jazan province [Fig. 4(b)]. We expect
an increase of debris-flow occurrences with increase in slope
angle up to a point where the steepness of the slope prohibits
soil layer development and debris accumulation.

2) Slope Aspect: In the Jazan province, slope aspect gener-
ally trends in all directions [Fig. 4(c)]. It is commonly reported
that the aspect is an indicator of exposition to preferential
wind directions, precipitation regimes, sunlight impact, and
discontinuity orientations [29], [40].

3) Normalized Difference Vegetation Index: Vegetation im-
mobilizes a large amount of water and increases the shear
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Fig. 4. Controlling variables maps used in this study: (a) elevation map; (b) slope angle map; (c) slope aspect map; (d) normalized difference vegetation index
(NDVI) map; (e) topographic position index (TPI) map; (f) stream power index (SPI) map; (g) flow accumulation map; (h) distance to drainage line (DTDL)
map; (i) soil weathering index (SWI) map; and (j) topographic wetness index (TWI) map. The extent of each map is the study area (from 42°45’00”'E to

43°12'00”E and from 17°11’30”N to 17°41’30”N).

resistance and soil cohesion of the mass [39], [51]. The
spatial variations in plant density across the study area were
extracted from NDVI images, an image that is sensitive
to the concentration of chlorophyll present at the surface
[52]. NDVI images were calculated using the following
equation:

NDVI = (NIR — R) / (NIR + R) (1)

where NIR is the energy reflected in the near-infrared portion
of the electromagnetic spectrum and R is the energy reflected
in the red portion of the electromagnetic spectrum [53], [54].
A composite NDVI [Fig. 4(d)] was obtained by averaging the
NDVI images extracted from Landsat ETM and TM temporal
images (from December 06, 1994 to May 24, 2007). We
averaged multiple NDVIs to capture the vegetative density of
each pixel throughout the year instead of using a single NDVI
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TABLE I
CONTINGENCY TEST SUCCESS PERCENTAGE FOR THE DIFFERENT TPI SCALES

TPI20m | TPI30m | TPI40m | TPI 50 m

TPI 100 m (TPI 200 m|TPI 300 m|TPI 400 m|TPI 500 m

Contingency
test success
percentage

5473 % | 80.98 % | 6543 % | 87.75 %

88.71 % | 84.55 % | 76.31 % | 69.55 % | 64.25 %

image that may represent spatial vegetation variations relative
to a specific season of that year. The NDVI is dimensionless
and it varies in the study area from -1 (barren land) to 1 (forest
coverage).

4) Topographic Position Index: The TPI is an index that
reflects the morphology of the topography [55]. Debris flows
frequently occur in slope depressions, shallow ducts, and
gullies that are characterized by terrain concavities [51]. The
TPI image [Fig. 4(e)] was generated by applying the Jenness
algorithm [56], which considers the surrounding cells up
to a certain distance. We calculated the TPI using varying
neighboring radiuses (range: 20—500 m) and conducted a
contingency test to identify the most suitable radius, which
was found to be 100 m (Table I). The TPI is dimensionless;
it ranges in the study area from —145.5 in valley bottoms to
141.5 in mountain hilltops.

5) Stream Power Index: SPI measures the erosive power
of surface runoff [27]. An SPI thematic map [Fig. 4(f)] was
generated using the following equation:

SPI = In (A tan (S)) (2)
where A is the local upslope catchment area draining through a
certain pixel in square meters and S is the local slope gradient
in degrees [27], [57]. The SPI is dimensionless. In the study
area, SPI reaches its minimum (—6.3) in the southwestern
valley.

6) Elevation (Above Mean Sea Level): Elevation ranges
between 70 and 2480 m in the study area [Fig. 4(a)]. Slope in-
stability is believed to represent an environmental disturbance
in lower and intermediate altitudinal ranges [55].

7) Flow Accumulation: The flow accumulation is used as a
predisposing factor because it indicates the processes of water
flow, convergence, and infiltration. The flow accumulation for
the study area [Fig. 4(g)] was derived from the digital elevation
model (DEM) using the 8-flow direction algorithm of Jensen
and Domingue [58]. In the study area, the flow accumulation
reaches its maximum (9.7 x 10® contributing pixels) at the
outlet of the drainage basins (i.e., southwestern valley) and
reaches its minimum at the uppermost pixels of the drainage
basins (0 contributing pixel).

8) Distance to Drainage Line: Runoff plays an important
role in the initiation and propagation of debris flows [21], [40];
therefore, the distance to drainage channels was investigated
as being a potential indicator for the distribution of debris
flows. The drainage network was delineated using standard
stream delineation techniques (topographic parameterization
(TOPAZ) technique; [59]), and the DTDL was computed
as a continuous function quantifying the proximity of each
pixel across the study area; it ranges between O and 255 m
[Fig. 4(h)].

9) Soil Weathering Index: Lithological variations often
contribute to differences in strength, weight, and permeability
of rocks and soils [30]. A SWI map was generated using
lithologic and textural information portrayed in geologic maps
(e.g., [60]), topographic characteristics (e.g., slope image), and
inferences from remote sensing to classify each pixel in the
study area into one of four groups in accordance with the
inferred levels of weathering and soil thicknesses [Fig. 4(i)].
Examples of these inferences include the following.

1) Highly vegetated areas (bright on NDVI images) were
considered to have highly weathered thick soils [61],
[62].

Foliated mafic rock units (e.g., amphibolite schist) on
gentle slopes or flat areas are more likely to give rise
to highly weathered thick soils than massive granitoids
exposed on steep slopes.

Areas displaying spectral characteristics indicative of the
presence of clay minerals were assumed to be highly
weathered soils. Clay minerals have distinctive strong
absorption features within the TM band 7 wavelength re-
gion (2.08—2.35 um) and have higher reflectance values
within TM band 5 wavelength region (1.55—1.75 um)
[63], [64]. Thus, soils rich in hydroxyl-bearing clay
minerals can be readily mapped as bright areas on the
Landsat TM band 5/7 ratio image [63].

10) Topographic Wetness Index: TWI is commonly used to
quantify topographic control on hydrological processes [27],
[55] and as an indicator for soil conditions and sediment and
matter accumulation [55]. A TWI thematic map was generated
[Fig. 4(j)] using the following equation:

A
tan(.9)
where A is the local upslope catchment area draining through a
certain pixel in square meters and S is the local slope gradient
in degrees [65]. The TWI is dimensionless. It reaches its
maximum at the southwestern valley (31.6), where most of
the sediments accumulate in the study area.

2)

3)

TWI — m( 3)

D. Debris-Flow Susceptibility Model Development and

Evaluation (Step 1V)

Two independent data mining methods, ANNs and LR, were
applied. Our rationale for adopting these two methods is that
they are based on two different algorithms; an agreement
between obtained results from the two methodologies will
provide strong support for the obtained results. This additional
validation technique is particularly important in statistic-based
approaches, because they are developed using available trends
in the data and not explicitly based on physical processes
[66]. The modeling process is summarized and illustrated in
Fig. 5.
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Fig. 5. Flowchart illustrating the modeling process.
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1) Input Preprocessing for ANN and LR Models: Each
controlling variable is traditionally segmented into classes
based on the vision of the expert before inputting it into
the model [25], [27], [67], [68]. These divisions, if applied,
could introduce bias in the generated susceptibility/hazard
maps, reduce data amount, and increase dependence on user
knowledge [17]. None of the input variables were assigned
classes, with one exception (i.e., SWI) that is a categorical
variable.

Each of the input variables was normalized to the —1, 1
range using the following equation:

XaxXin
Xi_( M ;— M)

X, = 4
’ (XMM - XMm) “®

2

where X; ,, denotes the normalized value for X;, X; represents
each data point, X,,;, is the minima among the dataset, and
Xmae 1S the maxima among the dataset. The normalization
was performed because the inputs come in varying units
and display large variations in range and magnitude; if such
variations were not accounted for, they could potentially
affect the model outputs [7], [30], [69]. Normalization reduces
cluster proliferation and allows successful implementation of
ANN pattern recognition modeling in varying background
levels [70].

For each inventoried location, we extracted the values of
the normalized input variables (Fig. 5).

The available samples were portioned randomly into two
subsets: training and testing. The former comprised 80% of the
available samples (8267 samples) and the latter the remaining
20% (2067 samples). We used the training data subset to
determine the models topology and the testing subset to
compute the model performance and to find the optimum input
combinations. For optimum results, all patterns (statistical
properties) that are contained in the available data need to be
represented in both the training and testing subsets [71]. Fig. 6
demonstrates similarities between the sample populations of
each of the training and testing subgroups and the entire
dataset.

2) Overview and Construction of ANN Model: ANN makes
use of nonlinear and complex learning and prediction algo-
rithms to extract the complex relationships among the various
factors controlling debris-flow occurrences [67], [72]. In this
study, a pattern-recognition neural-network module of MAT-
LAB R2013a was utilized to uncover debris-flow patterns in
the study area and conduct susceptibility analyses.

The adopted pattern-recognition neural-network architec-
ture is based on a structure known as the multilayer
perceptron (MLP). Fig. 7 provides a simplistic flowchart of our
constructed ANN using the selected 10 controlling factors. The
constructed model architecture and parameters are discussed
in the following paragraphs.

We applied the widely used back-propagation learning al-
gorithm in pattern-recognition modeling [73]-[75]. We used
a set of examples for which both the input variables (10
controlling factor values) and the correct output values (pres-
ence or absence of debris flows) are known, weights (w) and
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biases () were assigned to the connections in a random
manner, and comparisons were made between a random
portion of the training samples calculated and expected
outputs.

We adopted the S-shaped sigmoid transfer function that is
widely used for the assessment of complex and nonlinear
phenomena such as many natural hazards [27], [68], [76]-
[78]. The sigmoid function constrains the outputs of a network
between 0 and 1, which suits our case study of debris-flow
susceptibility analyses where the desired output is represented
by the presence or absence (1 or 0) of a debris flow.

The number of neurons in the hidden layer was calculated
using the equation proposed by reference [79] and used by
many scholars to assess natural hazards susceptibility (e.g.,
[11], [25]):

Np=2xN;+1 4)

where N, is the number of hidden neurons and N; is the
number of input neurons that is equal to the number of input
controlling factors. We constructed multiple ANN models cor-
responding to various input combinations following a forward
stepwise approach (refer to Section III-D4). Equation (5) was
applied to each input combination. The hidden neuron numbers
ranged from 3 (in the case of 1 input) to 21 (in the case of
10 inputs). The model with the best performance was selected
(refer to Section IV-A).

3) Overview and Construction of LR Model: The LR
model is a logarithmic model that describes a multivariate
relationship between one or more predictor variables and a
response variable. In the case of debris-flows research, the
goal of LR is to find the best-fitting model to describe the
relationship between debris-flow occurrences and a set of
controlling variables [40], [80]. In our study, the response
variable is binary. A binary logistic regression (BLR) can be
expressed as follows:

Ln(lpip) =c+ai1x1 + asxs + -+ anxy, (6)

ec+a1931 ‘azxo+-tanTn

p= 1+ ectaixritazxat+antn (7)

where p is the probability of a debris-flow event occurring; ¢
denotes the intercept of the equation; x1, xo, ..., x,, denote the
controlling variables; and a1, as, . .., a,, denote the coefficients
that need to be estimated for the controlling variables using a
maximum-likelihood optimization procedure [2], [81].

4) Model Optimization and Evaluation: The input selection
task is generally not given enough attention in environmental
modeling, and the model inputs are often selected on an ad
hoc basis or using a priori knowledge of the targeted system.
This can result in the inclusion of too few or too many model
inputs, either of which is undesirable and may affect the model
robustness [30], [71], [82]. We adopted a stepwise approach
where inputs are systematically added, and every combination
of inputs is then built into a model to be evaluated through
ROC testing using the area under the ROC curve (AUC).
The AUC is a widely used measure of the performance of
a predictive rule [25], [27], [67], [83]-[85] (Fig. 5). The ROC
is a curve connecting the sensitivity and the 1-specificity.
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Fig. 6. Histograms for the entire dataset for the controlling factors and for the

Sensitivity is the fraction of positive occurrences of debris
flows that are correctly predicted, whereas 1-specificity is
the fraction of incorrectly predicted cases that did not occur.
The AUC characterizes the quality of a forecast system by
describing the system’s ability to anticipate the occurrence
or nonoccurrence of predefined events correctly. A perfect
model would have an AUC of 1.0 (100%); an AUC of
0.5 (50%) means the prediction is no better than a random
guess [55].
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training and testing data subsets.

We adopted a forward stepwise approach [71], [86], [87], in
order to: 1) understand the most significant factors controlling
the occurrence of debris flows and determine their order of
importance for this environmental phenomenon; and 2) find the
optimal combination of inputs that lead to the best predictive
model. We added variables to the model (LR or ANN) one
at a time, ran the model, and examined model outputs in
comparison to test data. Initially, we ran the model 10 times
using one of the 10 variables at a time, compared model
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Fig. 7. Schematic diagram for the constructed pattern-recognition ANN. W;; and 3;; refer to the weight and bias terms, respectively assigned between input
neuron 4 and hidden neuron j during the learning procedure; f is the transfer function, x; is the input from input neuron 4, and y; is the output corresponding

to the hidden neuron j.

predictions to test data, and selected the variable that correctly
predicted the largest number of test data. Using TPI alone, the
LR and ANN prediction performances were 71.4% and 76.2%,
respectively. Next, we constructed and ran nine models, this
time using two variables: the TPI that was selected earlier, and
one of the remaining nine variables at a time. We then selected
the variable whose addition produced the largest increment in
the model prediction performance. This variable was slope;
its addition increased the obtained AUC values from 76.2%
to 91.1% for the ANN and from 71.4% to 90.3% for the LR.
The process of adding controlling variables was repeated until
we found that the addition of remaining variables no longer
improved or decreased the overall model performance (Fig. 5).

E. Generation of Susceptibility Maps (Step V)

The optimum and validated LR and ANN models were used
to derive a susceptibility measure for each pixel in the study
area.

1) The obtained coefficients corresponding to the LR model
with the highest performance were plugged into (7) and
applied to generate a final LR susceptibility map for
the entire study area using the Spatial Analyst—Raster
Calculator toolset of ArcGIS 10.1 software.

2) The trained ANN model with the highest performance
(from Section III-D4) was used to generate the ANN
final susceptibility map for the entire study area. Since
the back-propagation ANN training algorithm presents
difficulties when trying to retrieve the internal processes
and coefficients of the procedure [78], the trained model
was used to estimate a susceptibility measure for each
pixel in the study area using the MATLAB R2013a soft-
ware. The final susceptibility-derived matrix was plotted
in ArcGIS 10.1 software for visualization and analyses.

The resulting susceptibility measures from both methods are

in the form of debris-flow occurrence probabilities ranging
from O to 1. The final maps delineate debris flows with
a confidence level of 95%, corresponding to an occurrence
probability equal to or higher than 0.95.

IV. DISCUSSION AND FINDINGS

Our findings could be grouped in a number of categories:
those related to the identification of the most significant
controlling factors for debris-flow development in the study
area (Section IV-A), and others related to the observa-
tions and information extracted from the susceptibility maps
(Section IV-B). Our findings also have general applications
(Section IV-C).
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TABLE 11
RESULTS OF THE VALIDATION TESTS FOR THE 45 ANN MODELS,
REPRESENTED BY RESPECTIVE AUC VALUES

1-variable |2-variable(3-variable/4-variable|S-variable|6-variable
models models | models | models | models | models
TPI 0.762 - - - - -
NDVI 0.500 0.730 0.930 0.967 - -
Flow 0.500 0.746 0913 0.940 0.961 -
Elevation| 0.500 0.776 0.927 0.955 0.940 0.954
Aspect 0.500 0.789 0.930 0.953 0.941 0914
SWI 0.500 0.772 0.870 0.954 0.952 0.941
TWI 0.500 0.814 0.926 0.934 0.945 0.946
Slope 0.502 0.911 - - - -
DTDL 0.500 0.770 0.946 - - -
SPI 0.609 0.817 0.940 0.926 0.933 0.956
TABLE 111

RESULTS OF THE VALIDATION TESTS FOR THE 40 LR MODELS,
REPRESENTED BY RESPECTIVE AUC VALUES

1-variable [2-variable|3-variable(4-variable|S-variable
models models | models | models | models
TPI 0.714 - - - -
NDVI 0.500 0.714 0.909 0.963 -
Flow 0.500 0.738 0.903 0.954 0.955
Elevation| 0.500 0.743 0.904 0.959 0.958
Aspect 0.500 0.719 0.909 0.955 0.957
SWI 0.500 0.721 0.904 0.954 0.957
TWI 0.500 0.770 0.926 0.954 0.954
Slope 0.528 0.903 - - -
DTDL 0.500 0.708 0.954 - -
SPI 0.567 0.664 0.909 0.954 0.955

A. Identification of Significant Controlling Factors and Model
Validation Results

As described above, the forward stepwise models were ap-
plied up to a point where the inclusion of additional variables
no longer produced significant improvements or decreased
model accuracy. Forty-five ANN models and 40 LR models
were constructed to reach that point. The validation test results
(represented by AUC values) for the 45 ANN models are
summarized in Table II and those for the 40 LR models are
given in Table III. For illustration, Fig. 8(a) compares the ROC
curves for the 1- and 5-variable (optimum) ANN-based models
and Fig. 8(b) compares 1- and 4-variable (optimum) LR-based
models.

Inspection of Tables II and III and Fig. 8 shows that for the
ANN method, an accuracy of 96.1% in model prediction was
achieved using five variables (TPI, slope, DTDL, NDVI, and
flow accumulation), which correspond to 11 hidden neurons.
An accuracy of 96.3% was achieved for the LR method using
four variables (TPI, slope, DTDL, and NDVI). In both cases,
inclusion of additional variables decreased model accuracy.
Not only were the most significant four factors (TPI, slope,
DTDL, and NDVI) identified by both approaches, but also
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they were ranked in the same order. The two models both
have an AUC higher than 0.96, which is considered by
references [27] and [88] to indicate excellent discrimination.
The correspondence between the findings (type and rank of
controlling variables) from both methods gives us confidence
in the obtained results and suggests that the constructed ANN
and LR models could be used to delineate areas prone to debris
flows in the entire study area (Section IV-B). We found that the
flow accumulation was important for optimum result in ANN
but not important for LR, possibly because ANN picks all
types of data distributions and patterns, even the smallest and
less obvious fluctuations [89], [90]. However, it is noteworthy
that the flow-accumulation contribution to the overall accuracy
is only 1.1%.

B. Delineation of Areas Prone to Debris Flows

The generated LR prediction model is expressed by (7),
where Xy = TPI, X5 = slope, X5 = DTDL, X, = NDVI, ¢ =
—15.2183, a; = —67.9145, ay = 14.1240, a3 = —23.2804,
and a4 = —4.84220. The two most commonly used measures
of the goodness of fit in LR, namely the Pearson’s chi-squared
and Homster—Lemshow tests [91], showed perfect results
(Pearson: 1; Homster—-Lemshow: 1).

Inspection of the outputs of the LR model indicated that the
TPI, the DTDL, and the NDVI variables are inversely corre-
lated with the debris-flow occurrence probability, whereas the
slope is positively correlated. These patterns are in agreement
with our conceptual model; debris flows are more prone to
develop in sparsely vegetated areas that have low root pressure
and low cohesion; in gullies and concavities; in mid-slope
ranges; and close to drainage lines.

We compared the ANN and LR susceptibility maps
[Fig. 9(a) and (d)] in ArcGIS by generating a difference
image. We observed good correspondence (91.5%) between
the two susceptibility images. The remaining 8.5% are all
pixels located at the peripheries of the identified debris flows.
The two methods picked the same individual debris-flows,
but we found minor mismatches at their borders. This high
correspondence between the outcomes of the two methods re-
inforces the validity of the extracted debris-flow susceptibility
results in the region and highlights the potential for using such
maps for urbanization planning and civil protection services.
In this respect, we cite a few applications for the study area.

The susceptibility maps indicate that over 13% of the total
pixels were identified as being prone to debris flows. Spatial
correlations of the distribution of these picture elements with
that of the roads and buildings (from remote-sensing-based
land use maps) reveal that the delineated debris flows intersect
with the roads at 1492 locations. In addition, 278 buildings
(3% of the total buildings in the study area) are built within
the debris-flow prone areas. Those intersections and buildings
will be the first to experience damages in the case of a
triggering event (i.e., extreme precipitation or earthquake).
The susceptibility maps could potentially be used to identify:
1) hazardous zones where building permits should be denied;
and 2) locations for the construction of mitigation designs
such as retaining and catchment structures that can be built
at the edge of the roads to minimize the damage at those
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Fig. 8. (a) Comparative ROC curves in the case of 1-variable ANN-based models and 5-variable (optimum) ANN-based models. (b) Comparative ROC curves
in the case of 1-variable LR-based models and 4-variable (optimum) LR-based models.

locations. Inspection of the susceptibility maps reveals several
locations that are susceptible to debris-flow development, yet
our inspection of high-resolution satellite images did not show
evidence for the existence of active debris-flows in these areas.
Such areas could potentially be the location of future debris
flows.

Inspection of the susceptibility maps reveals dense debris
flows in areas that coincide with the distribution of the highly
elevated Baish group ridge [Fig. 9(a) and (d); area I]. This
is likely related to the fact that the lithological group is
largely composed of weathered metabasalt that is suscepti-
ble to erosion and mobilization by fluvial processes [60].
These fluvial processes are enhanced at higher elevations
where precipitation is generally more pronounced [92]. The
susceptibility maps also showed that debris flows develop
preferentially (36% of the total delineated debris flows) on the
west- and southwest-facing slopes. These slope directions are
more exposed (compared to all eight remaining aspect direc-
tions) to the Indian monsoons, the main source of precipitation
in the study area. We suggest that the regional predisposing
factors (i.e., elevation, geology, and aspect) exert more control

on the distribution of debris flows on a regional scale, whereas
the local factors (TPI, slope, NDVI, and DTDL) are better
parameters for a detailed delineation of debris flows.

C. Regional and Global Implications

We presented susceptibility analyses that were conducted
through the integration of readily available remote-sensing
data, GIS techniques, and data mining with ANN and LR
modeling approaches. Application of the developed method-
ologies in the Red Sea hills and elsewhere worldwide will lead
to significant improvements in assessing and understanding
the nature and scope of ground failure problems and will
contribute to building safe and sustainable communities around
the world. These methods are not a substitute for traditional
approaches that rely on extensive field data, but they are partic-
ularly useful in inaccessible areas and those lacking adequate
monitoring systems. Remote-sensing datasets are nearly the
only source of consistent and high-resolution observations over
remote and rugged mountainous regions where debris flows
typically occur.
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Fig. 9. (a) Generated debris-flow susceptibility map using ANN. (b) Enlargement of the boxed area in Fig. 9a. (c) Same as Fig. 9b, but with the modeled
debris flows omitted. Note the correspondence between the modeled (Fig. 9b: blue areas) and observed (Fig. 9c: bright areas) debris flows. (d) Generated
debris-flow susceptibility map using LR. (e) Enlargement of the boxed area in Fig. 9d. (f) Same as Fig. 9e, but with the modeled debris flows omitted. Note the
correspondence between the modeled (Fig. 9e: orange areas) and observed (Fig. 9f: bright areas) debris flows. Area I displays dense debris-flow distribution.
This area coincides with the highly elevated and erodible Baish lithological group.
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Satellite pour I’observation de la terre (SPOT) 5
false-color composite (spatial resolution: 2.5 and 5 m).
Temporal normalized difference vegetation index
(NDVI) maps computed from nine Landsat ETM and
TM (spatial resolution: 15 m and/or 30 m; acquisition
period: 1994-2007).

Advanced spaceborne thermal emission and reflection
radiometer (ASTER) false-color composites (spatial res-
olution: 15 m).

Eighteen European remote-sensing satellite (ERS) and
environmental satellite (Envisat) radar images and de-
rived backscatter coefficient images (spatial resolution:
25 m; acquisition period: 1996-2009).

Distribution of faults/fractures extracted from geologic
maps, radar, Landsat ETM/TM, and ASTER images.
Geologic maps (scale: 1/100000, 1/250000, and
1/4000 000) provided by the Saudi Geological Survey
(SGS).

Lithologic maps derived from geological maps and ob-
servations extracted from remote-sensing data.

Soil weathering index (SWI) map derived mainly from
the lithological maps (spatial resolution: 10 m).

Digital elevation model (DEM) from Shuttle radar
topography mission (SRTM) (spatial resolution: 90 m).
DEM from ASTER imagery (spatial resolution: 30 m).
Topographic maps (contour interval: 100, 50, 30, 15, 10,
and 5 m) and global positioning system (GPS) points
provided by SGS.

DEM derived from SGS topographic contours and GPS
points using triangulated irregular network data struc-
tures and calibrated using SRTM and ASTER DEMs
(spatial resolution: 10 m).

Three-dimensional surface model based on the 10 m
spatial resolution DEM.

Slope angle map derived from DEM (spatial resolution:
10 m).

Slope aspect map derived from DEM (spatial resolution:
10 m).

DEM nhillshade map derived from DEM (spatial resolu-
tion: 10 m).

Topographic position index (TPI) map derived using
the Jenness algorithm (neighboring radius: 20, 30, 40,
50, 100, 200, 300, 400, and 500 m; spatial resolution:
10 m).

Flow accumulation map derived from DEM (spatial
resolution: 10 m).

Stream distribution map derived from DEM (spatial
resolution: 10 m).

Climatic stations distribution map.

Distance to drainage line (DTDL) map derived from the
generated stream network (spatial resolution: 10 m).
Stream power index (SPI) map (spatial resolution:
10 m).

Topographic wetness index (TWI) map (spatial resolu-
tion: 10 m).

Road distribution map digitized from high-spatial-
resolution imagery (GeoEye).

28) Building distribution map digitized from high-spatial-
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