
499H Modal logic

Ian Hodkinson

Department of Computing
Imperial College London

499 home page:

www.doc.ic.ac.uk/

~

imh/teaching/499_mtl/499.html

www.doc.ic.ac.uk/~imh/teaching/499_mtl/499.html

Modal logic . . .

I is a common logical way of handling the notions of necessity,
possibility, knowledge, belief, change, time, etc (‘modalities’)

I gives an alternative to first-order logic for these ends: is
di↵erent in expressive power, arguably more natural to work
with, and has computational advantages: better-bounded
resources, complexity lower

I is usable with first-order logic anyway (it can subsume FO
logic!)

I has a long, distinguished history (from Aristotle), and is
interdisciplinary in application (philosophy, linguistics as well
as computer science)

Being one of the basic species (rather, phyla) of logic, it is used in
a gamut of applications: program specification & verification,
program semantics, concurrent programs, communication
protocols, specification of rational agents, reasoning about
knowledge and actions, natural language. . .

1

Course outline

This half-course is an introduction (⇠ 9 lectures) to working with
modal logics:

I syntax and semantics

I Sahlqvist correspondence: frame properties from modal
axioms

I p-morphisms and bisimulations

I modal µ-calculus (if time)

2

Assessment

1. One assessed coursework

2. Exam in December: 1-hour paper, do 2 questions out of 3.

There will be lots of unassessed exercises (with solutions later).
Some go beyond the course. But the more you do, the stronger
you’ll get.
I recommend you try a lot of them, in the tutorial and at home.

Modal logic is not a spectator sport.

3

Textbooks

I R. Goldblatt, Logics of time and computation, 2nd. edn., CSLI
Publications, 1992. Free pdf at
http://sul-derivatives.stanford.edu/derivative?CSNID=

00003782&mediaType=application/pdf

Terse but authoritative. Recommended. Library has copies.
I P. Blackburn, M. de Rijke, Y. Venema, Modal logic,

Cambridge University Press, 2002. Very good modern text —
� £45 in paperback. Library has about 9 copies.

I J. van Benthem, Modal logic for open minds. Recent book,
free pdf at http://fenrong.net/teaching/mljvb.pdf

I A. Chagrov, M. Zakharyaschev, Modal logic, Oxford
University Press, 1997. Very good thorough text.

I G.E. Hughes, M.J. Cresswell, A new introduction to modal
logic, Routledge, 1996. A more philosophically-oriented book.

I Survey: http://www.mcs.vuw.ac.nz/

~

rob/papers/modalhist.pdf

I Others in library — go and look.

4

http://sul-derivatives.stanford.edu/derivative?CSNID=00003782&mediaType=application/pdf
http://sul-derivatives.stanford.edu/derivative?CSNID=00003782&mediaType=application/pdf
http://fenrong.net/teaching/mljvb.pdf
http://www.mcs.vuw.ac.nz/~rob/papers/modalhist.pdf

Omissions, prerequisites

Omissions
We haven’t time to cover all important topics in modal logic.
(One is complexity.)
See the books for more information on omitted areas.

Prerequisites
This is not intended as a first course in logic. A good grasp of
propositional and first-order logic will help. Suggested reading:

I W. Hodges, Logic, Penguin, 1977

I E.J. Lemmon, Beginning Logic, Van Nostrand, 1965.

Or go to Comp Sci MSc course 518 Logic and AI Programming.

6

1. Syntax

Syntax concerns things we write down: here, formulas and their
formation rules.
It is not concerned with meaning — we’ll get to that later.

Fix, throughout, a (countably infinite) set L of propositional
atoms.
They stand for ‘basic facts’ (e.g., ‘It is raining’).
We typically write p, q, r, or p0, p1, p2, . . . , for atoms.

Modal formulas are built from atoms and > (‘truth’) using the
boolean connectives ^, ¬ (‘and’, ‘not’), and the modal connective
⇤ (the meaning of ⇤ will be discussed soon).
More formally:

7

Modal formulas

Definition 1.1 (basic modal formulas)

I Any propositional atom is an (L-)formula.

I > is also a formula.

I If A, B are formulas, then so are:
¬A (A ^ B) ⇤A

(pronounced ‘not A’, ‘A and B’, ‘box A’).

I Nothing else is a formula.

Example: ⇤(p ^ ⇤¬(q ^ >)) is a modal formula.
We write A, B, . . . for arbitrary L-formulas.
No quantifiers. It is propositional logic plus a new connective, ⇤.

8

Temporal formulas

Temporal logic is a type (class) of modal logic, for handling time.

Temporal formulas (in basic temporal logic) use G and H (future
and past) instead of ⇤. ‘⇤A’ above is replaced by:

GA HA

There are other ways of making modal/temporal logics. See later.

9

Abbreviations

I ? (pronounced ‘falsity’) abbreviates ¬>
I A _ B (‘A or B’) abbreviates ¬(¬A ^ ¬B)
I A ! B (‘A implies B’) abbreviates ¬(A ^ ¬B)
I A $ B (‘A if & only if B’) abbreviates (A ! B) ^ (B ! A)

and also, crucially,
I ⌃A (pronounced ‘diamond A’) abbreviates ¬⇤¬A
I FA abbreviates ¬G¬A
I PA abbreviates ¬H¬A

Occasionally we will treat ?, _, ⌃ as primitive symbols (not
abbreviations).

Binding conventions
In decreasing order of tightness, ¬, ⇤, ⌃, G, H, F, P (these are
unary, so their mutual order is immaterial), then ^, _, !, $.

So ⌃p ^ ⇤¬q ! r means ((⌃p) ^ (⇤¬q)) ! r.
But always use brackets if in any doubt!

10

Meaning

We know that ^, _, ¬, !, $ mean ‘and’, ‘or’, ‘not’, ‘if-then’, ‘if
and only if’.
What about ⇤ and ⌃, G and H, F and P?
There are many meanings, depending on the application.
(Most of the course concerns this variation!)

Some examples

Informal readings of ⇤A Informal readings of ⌃A
A is necessary A is possible

A is always true A is sometimes true
A is known A is thought possible?

A is believed A is conceivable??
A is obligatory A is permitted
A is provable A is consistent

A will be true whenever the The program can terminate
program terminates with A true.

11

Temporal examples

Informal reading of GA Informal reading of FA
A will always be true in future A is true at some future time

Informal reading of HA Informal reading of PA
A has always been true in the past A was true at some past time

F, P, G, H is Arthur Prior’s notation. Mnemonic:

I GA = ‘A is Going to be true’.

I HA = ‘A Has always been true’ (Historically true?)

Can use other connectives: eg, Tomorrow, Yesterday, Until, Since.

⇤, ⌃ have di↵erent flavours:

I ⇤, G, H are like 8 (‘for all’).

I ⌃, F, P are like 9 (‘there exists’).

12

Examples of formulas
Some of these are ‘inevitably true’. Which?

Formula Reading(s)
⇤⇤A A is known to be known.

It is necessary that A is necessary.

⇤⌃A It is necessary that A is possible.

⇤A ! A If A is necessarily true, then it is true.
If A is known, then A is true.
If A is believed, then A is true.

⇤⇤A ! ⇤A If it is known that A is known, then A is known.
HHA ! HA If A was always always true then it was always true.

⇤A ! ⇤⇤A If the agent knows A then it knows that it knows A.

A ! GPA if A is true, then always in future,
A will have been true at some past time.

⌃¬PA Possibly, A was never true.
⇤A ^ ⇤B
! ⇤(A ^ B) if A, B are believed, then so is A ^ B.

14

Other modal logics

‘. . . the view that modal logic amounts to rather simple-minded
uses of ⇤ and ⌃ . . . has been out of date for at least 30 years’

Propositional dynamic logic (PDL)
Fix a set P of non-deterministic, possibly non-terminating
programs. We require that:

I Various basic programs a, b, c, . . . are in P,

and if ⇡1, ⇡2 2 P then:

I ⇡1 [⇡2 2 P (non-deterministically choose to execute ⇡1 or ⇡2)

I ⇡1 ; ⇡2 2 P (do ⇡1 then ⇡2)

I ⇡⇤
1 2 P (execute ⇡1 a finite number (possibly zero) of times).

So P contains some arbitrary basic programs and is closed under
certain program-forming operations.

15

PDL-formulas

View atoms (in L) as basic statements about states of a machine
that runs programs in P.
For each ⇡ 2 P, introduce a box [⇡].

I Any atom p 2 L is a PDL-formula.

I If A, B are PDL-formulas and ⇡ 2 P then A ^ B, ¬A, and
[⇡]A are PDL-formulas.

Idea: [⇡]A means ‘A will hold after every halting run of ⇡’.

Adopt earlier abbreviations.
Now, h⇡iA abbreviates ¬[⇡]¬A.
It means ‘A will hold after some halting run of ⇡’.

16

‘Truths’ in PDL

We’d expect
h⇡⇤iA $ A _ h⇡ ; ⇡⇤iA

(for any formula A and any ⇡ 2 P) to be always true.
How about Segerberg’s axiom,

[⇡⇤](A ! [⇡]A) ! (A ! [⇡⇤]A) ?

More PDL-formulas
Can allow another program-formation rule:

I If A is a PDL-formula then A? 2 P.
A? is a program that tests to see if A is true in the current state.
If so, it halts. If not, it ‘hangs’ (doesn’t terminate). Now,

(A? ; ⇡1) [((¬A)? ; ⇡2) 2 P

is the (non-deterministic) program ‘if A then ⇡1 else ⇡2’.

17

Natural and contingent truth

I Truth (loosely speaking) of arbitrary formulas, like ⇤⌃A, will
depend on the fact expressed by A as well as the meaning
of ⇤.

I But formulas like ⇤A ! A may (or may not) be true
automatically for any A (whatever ‘true’ means), depending
on the meaning we give to ⇤.
(This is one source of the variety within modal logic.)
They are ‘contingent truths’ — like ‘laws of chemistry’.

I Others, like ⇤A ! ⇤A and ⇤(A ! B) ! (⇤A ! ⇤B),
seem to be true for any A, B, whatever reasonable (8-style)
meaning we give to ⇤. (Can you think of an exception?)
They are ‘natural truths’ — like ‘laws of physics’.

I And A ! GPA must be true if past and future are opposites.
I Similarly, h⇡⇤iA $ A _ h⇡; ⇡⇤iA must be true in PDL.

What’s going on?

18

2. Formal semantics

Semantics is meaning. Formal semantics gives a formal (=
mathematical) meaning to our modal formulas.
Why do we want formal semantics for modal logic? Why are the
intuitive notions of ‘possible’, ‘known’, etc., not good enough?

I We want to distinguish between natural truths, contingent
truths, and other formulas, in a bid to understand this area of
human reasoning. So we need to be very precise about the
meaning of ‘truth’.

I The notions of ‘possible’, etc., are not well understood. To
model and study them with modal logic, we should use a
totally independent definition of semantics.

I We want to abstract away from particular meanings of ⌃, ⇤,
and arrive at their essentials. Then we can use modal logic in
new applications.

I If we know exactly what modal logic is (and is not) talking
about, we (or others) can use powerful tools to study it.

19

What will the semantics be like?

A good semantics is intuitive and easily understood, yet powerful
enough to cover most of the variations in modal logics.
We will study only ‘Kripke’ semantics. But there are many other
semantics for modal logic. This is good, since:

I a particular semantics will probably force on us a particular
notion of natural/contingent truths.
Eg. in Kripke semantics, ‘normality’ holds: any formula
⇤(A ! B) ! (⇤A ! ⇤B) is a ‘natural truth’.
In other semantics, it can fail.

I di↵erent applications sometimes need di↵erent (eg.,
non-normal) semantics.

Further reading: S. Kripke, Naming and necessity, Harvard
University Press, 1980.

20

Kripke semantics
A revolution in modal logic

Dates from work of Saul Kripke (c. 1960) but has earlier
antecedents (e.g., in work of Jónsson & Tarski, 1951).
Is now universally used — the most popular modal semantics.

Idea (Leibniz): ‘possibly true’ = ‘true in some possible world’.
New addition: which worlds are possible may depend on the
‘current’ world. E.g., in temporal logic, which worlds are in the
future depends on ‘now’.

So take a set W of possible worlds (or states).
At each one, list which worlds are possible from it.
Can do this using a binary relation R on W :

R(t, u) means ‘u is a possible world at t’.

Definition 2.1 (Kripke frame)

This much — (W, R), where W is a non-empty set and R a binary
relation on it — is called a (Kripke) frame.
R is called the accessibility relation.

22

Commonly-used Kripke frames

I Simple examples, such as:
2

1

5 4

3

I (N, <), (Z, <), (Q, <), (R, <). Here,
N = {0, 1, 2, . . .} (natural numbers),
Z = {. . . , �1, 0, 1, . . .} (integers, ‘Zahlen’),
Q is the set of rational numbers (p/q, for p, q 2 Z, q 6= 0),
R is the set of real numbers (e.g., all numbers representable
by decimal-point notation).
The accessibility relation is <.
(N, <) is common in temporal logic.

I (N,), etc. (The accessibility relation is .)

23

I More generally, any dense/discrete linear order with/without
endpoints.

I Trees, like {0, 1}⇤, or finite versions. Can be finitely or
infinitely branching.

I Circular frames, like:

I Equivalence relations

I Cooked-up examples, such as Makinson’s ‘recession frame’
(N, R), where R(m, n) i↵ n � m � 1. Need considerable
creativity here.

Note (P. Halmos): ‘i↵’ abbreviates ‘if and only if’.

24

Kripke models

To give semantics to modal formulas in Kripke semantics, truth or
falsity of basic facts (atoms) at worlds of a frame needs to be
stated too.
So we add an assignment or valuation: a map

h : L ! }(W).

(}(W) is the set of all sets of worlds — the set of all subsets of
W . It is called the power set of W .)
An atom p is said to be true at a world w i↵ w 2 h(p), and false,
otherwise.
To model an application, choose h so that for each atom p, h(p) is
the set of worlds at which p is true/you want p to be true.

Definition 2.2 (Kripke model)

A triple (W, R, h) (W, R, h as above) is called a (Kripke) model.

Note: a single frame can be made into many di↵erent models
(di↵ering h).

25

Formal Kripke semantics

We can now define whether a formula is true or false at any given
world of a Kripke model.

Definition 2.3 (Kripke semantics)

Let M = (W, R, h) be a Kripke model. We define M, t |= A, for
a formula A and a world t 2 W , by induction on A:

I For an atom p, we define M, t |= p i↵ t 2 h(p).

I M, t |= > (always).

I M, t |= ¬A i↵ M, t 6|= A.

I M, t |= A ^ B i↵ M, t |= A and M, t |= B.

I M, t |= ⇤A i↵ M, u |= A for all u 2 W with R(t, u).

Read M, t |= A as: ‘A is true at world t in model M’.
Other common notations:
M, t ` A (horrible!), M |=

t

A, ||A||M
t

= 1, . . .

26

Abbreviations

Exercise 2.4
Check that our abbreviations ‘work’:

I M, t |= A _ B i↵ M, t |= A or M, t |= B (or both).

I M, t |= A ! B i↵ (if M, t |= A then M, t |= B).

I M, t |= A $ B i↵ (M, t |= A i↵ M, t |= B).

I M, t |= ⌃A i↵ M, u |= A for some u 2 W with R(t, u).

Also check the following (expected) equivalences:

I M, t |= ¬⇤A i↵ M, t |= ⌃¬A.

I M, t |= ¬⌃A i↵ M, t |= ⇤¬A.

27

Example model

Example 2.5
In the following model M (for atoms p, q only, true as shown):

2
1

5 4

3p, q

p

q

qp

I ⇤p is true at 1 and at 3, and false at 4.

I ⇤¬p is also true at 3! So is ⇤?!!

I ⌃q ^ ⌃¬q is true at 1. ⇤q is false at 1.

I ⌃q, ⇤q are both true at 2 (as only 3 is accessible from 2).

I ⌃> ! ⌃q is true at every world. We say it is valid in M.

28

Semantics of temporal logic

Here, the notions of frame and model are exactly the same as
before, but we use G and H instead of ⇤.
R(t, u) is taken to mean (is read as) ‘u is in the future of t’, or ‘t
is in the past of u’.
So R will usually be transitive: R(t, u) and R(u, v) imply R(t, v).
(Exception: circular time.)
The clause for ⇤A above is replaced by the two clauses:

I M, t |= GA i↵ M, u |= A for all u 2 W with R(t, u)
(G is just like ⇤)

I M, t |= HA i↵ M, u |= A for all u 2 W with R(u, t).

An example in linear time:

-snow
rain

Hrain
F snow

29

(Souped-up) Kripke semantics for PDL

Take W to be the set of all states (of a machine that executes
P-programs).

As each ⇡ 2 P has its own box [⇡], we need an accessibility
relation R

⇡

on W for each ⇡ 2 P.
So a frame has the form (W, (R

⇡

: ⇡ 2 P)) (sometimes called a
‘transition system’).

Idea: R
⇡

(x, y) holds if in state x, the machine can execute ⇡ and
terminate in state y.

So the di↵erent R
⇡

(⇡ 2 P) should be related according to the
way ⇡ is constructed.

30

Relations between the R⇡

We require that for all ⇡, ⇡1, ⇡2 2 P and all x, y 2 W :

I R
⇡1[⇡2(x, y) i↵ R

⇡1(x, y) or R
⇡2(x, y)

I R
⇡1;⇡2(x, y) i↵ for some z 2 W , we have R

⇡1(x, z) and
R

⇡2(z, y)

I R
⇡

⇤ is the reflexive transitive closure of R
⇡

I R
A?(x, y) i↵ x = y and M, x |= A

(model-dependent! Need an assignment first!)

31

3. Validity
Note: we do validity in Kripke semantics. Validity in other semantics is di↵erent.

Validity is an important idea in logic.
‘Valid’ is not the same as ‘true’.
Valid = true for all hsomethingi.
E.g., all worlds/models/assignments/. . .
(We must always say what.)

The most extreme possibility is ‘universal’ validity:

Definition 3.1 (valid formula)

A modal formula A is said to be valid if M, t |= A for every model
M and every world t of M.

Valid = true at all worlds of all models = always true = unfalsifiable.

A valid formula is like a law of physics of Kripke’s universe.
It’s always true in Kripke semantics.

32

Examples of valid formulas

Instances of propositional tautologies:
e.g., ⇤p _ ¬⇤p, or p ! (⇤q ! p).

Genuinely modal validities: e.g., ⇤>, and more coming up soon.

Which are valid?

I p (an atom)

I ⌃p

I ¬⌃p

I p _ ¬p

I ⌃p _ ¬⌃p

I ⌃p _ ⌃¬p

33

Related definitions: satisfiable, equivalent

Definition 3.2 (satisfiable formula)

A formula A is satisfiable if M, t |= A for some model M and
some world t of M.

Definition 3.3 (equivalent formulas)

Formulas A, B are equivalent if for every model M and every
world t of M, we have M, t |= A i↵ M, t |= B.

Simple facts (check them!)

I A is valid i↵ ¬A is not satisfiable, i↵ A is equivalent to >.

I A is satisfiable i↵ ¬A is not valid, i↵ A is not equivalent to ?.

I A and B are equivalent i↵ A $ B is valid.

34

Useful equivalences

For modal formulas A, B, write A ⌘ B if A, B are equivalent.

I Modal logic inherits propositional equivalences (tautologies).
Eg, A ! B ⌘ ¬A _ B, for any modal formulas A, B.

I Replacing a subformula by an equivalent formula preserves ⌘:
⇤(A ! B) ⌘ ⇤(¬A _ B), ⌃⇤¬¬A ⌘ ⌃⇤A, etc.

I ¬⇤A ⌘ ¬⇤¬¬A = ⌃¬A

I ¬⌃A = ¬¬⇤¬A ⌘ ⇤¬A
Take the ¬ through, and swap ⇤, ⌃.
Compare: ¬8xA ⌘ 9x¬A.

I ¬⌃¬A = ¬¬⇤¬¬A ⌘ ⇤A

I ¬⇤¬A = ⌃A.

These equivalences can be verified by calculations in Kripke
models.

35

Normality

So can validities. The ‘normality axiom’
⇤(A ! B) ! (⇤A ! ⇤B) is one of the most powerful validities.
When combined with propositional tautologies, it allows all
validities to be derived (details beyond scope of course).

Proposition 3.4
⇤(A ! B) ! (⇤A ! ⇤B) is valid, for any modal formulas A, B.

‘If in every possible world, A ! B holds, then if also in every
possible world A holds, then B must hold in every possible world.’
It doesn’t matter what the formulas A, B are.

For a formal proof of proposition 3.4 we must use the Kripke
semantics.

36

Proof of proposition 3.4

Proof.
Take any world t of any model M. We show that
M, t |= ⇤(A ! B) ! (⇤A ! ⇤B).

So suppose that M, t |= ⇤(A ! B); we have to show
M, t |= ⇤A ! ⇤B.

So suppose further that M, t |= ⇤A. We show that M, t |= ⇤B.

To do this, let u be an arbitrary world of M such that R(t, u).
We need to show that M, u |= B.

Well, M, t |= ⇤A, so because R(t, u), we have M, u |= A.
And M, t |= ⇤(A ! B), so as R(t, u), we have M, u |= A ! B.

So we must have M, u |= B, as required.

37

Contingent validity

To capture formulas that are ‘contingent truths’, we work relative
to a model, a frame, or a class (‘collection’) of frames.

Definition 3.5 (contingent validity)

A formula A is:

I valid in a model M if it’s true at every world of M.

I valid in a frame F if it’s valid in every model based on F .

I valid in a class C of frames if it’s valid in every frame in C.

Exercise: show that A is valid (as per definition 3.1) i↵ it’s valid in
the class of all frames (as per definition 3.5).

Can generalise ‘satisfiable’, ‘equivalent’ in the same way.

38

Example: reflexivity

The formula ⇤p ! p is an interesting example of a contingent
validity.

Proposition 3.6
For an atom p, ⇤p ! p is valid in a frame F = (W, R) i↵ R is
reflexive (that is, R(t, t) holds for every world t 2 W).

Conclude that reflexive frames are good for modeling knowledge,
and bad for belief.
⇤p ! p is a ‘law of chemistry’ of reflexive frames.

Proof. Suppose R is reflexive. We show that ⇤p ! p is valid in F .
So let M be any model with frame F , and let t be any world of F .
We show that M, t |= ⇤p ! p.
If M, t |= ⇤p, then M, u |= p for all worlds u 2 W with R(t, u).
But by reflexivity, R(t, t). So M, t |= p, as required.
As M, t were arbitrary, ⇤p ! p is valid in F .

39

Proof of converse: ⇤p ! p valid) R reflexive

Conversely, assume that ⇤p ! p is valid in F .
Let t 2 W be arbitrary. We show that R(t, t).
Let g be an assignment into F satisfying

g(p) = {u 2 W : R(t, u)}.
(So p is true at just the worlds that are possible at t. We don’t
care about g(q) for other atoms q.)
Let M = (F , g).
As ⇤p ! p is valid in F , it is true at t in the model (F , h) for
every assignment h into F .
Therefore, it is true at t in (F , g) = M. So M, t |= ⇤p ! p.
But by definition of g, we have M, t |= ⇤p.
We deduce that M, t |= p. So t 2 g(p). So by choice of g(p) we
have R(t, t).
(Our consideration of a particular assignment g does not damage
the conclusion R(t, t), which does not involve assignments.) ⇤
We’ll develop this trick later.

40

⇤p ! p valid) R reflexive: natural deduction proof

If you are not familiar with natural deduction, please ignore this
slide. It is not examinable.
If you are, this may help. In line 5, we choose an assignment h
satisfying h(p) = {z 2 W : R(t, z)}.

1 ⇤p ! p valid in F given
2 8x8h(8y(R(x, y) ! y 2 h(p)) ! x 2 h(p)) what 1 means
3 t 8I const
4 8h(8y(R(t, y) ! y 2 h(p)) ! t 2 h(p)) 8E(2)
5 8y(R(t, y) ! y 2 {z 2 W : R(t, z)}) ! t 2 {z 2 W : R(t, z)} 8E(4)
6 8y(R(t, y) ! R(t, y)) ! R(t, t) 5 in other notation
7 d 8I const
8 R(t, d) assume
9 R(t, d) X(8)
10 R(t, d) ! R(t, d) !I(8, 9)
11 8y(R(t, y) ! R(t, y)) 8I(7, 10)
12 R(t, t) !E(11, 6)
13 8xR(x, x) 8I(3, 12)

1

41

Conclusion

We asked why ⇤A ! A could always be true, depending on
meaning of ⇤ (‘contingently true’), while
⇤(A ! B) ! (⇤A ! ⇤B) is ‘naturally’ true.

Now we see: latter is valid (‘law of physics’), while former is only
valid over reflexive frames (‘law of chemistry of reflexivity’).
So, accepting the Kripke semantics, our answer is:

I ‘naturally true’ = valid

I ‘contingently true’ = valid in the class of all frames satisfying
certain frame conditions (arising from the application)

We will want to find a frame condition to make a given modal
formula valid (coming right up).
One can also determine which modal formulas are valid under
varying frame conditions from di↵erent applications (beyond scope
of course).

42

4. Frame conditions — Sahlqvist’s theorem

We already saw (proposition 3.6) that ⇤q ! q is valid in a frame
i↵ the frame’s accessibility relation is reflexive.
Many other formulas also have associated frame conditions.
Eg., for a frame F = (W, R),

I q ! ⇤⌃q is valid in F i↵ R is symmetric.

I ⇤q ! ⇤⇤q is valid in F i↵ R is transitive.
(Cf. ⌃⌃p ! ⌃p in tutorial 1.)

I ⇤q ! ⌃q is valid in F i↵ F is serial — it satisfies
8t9u R(t, u).

Is there a general way of finding a frame condition associated with
a given formula (if there is such a condition)?

43

More generally?

Probably the best way is by a technique of Henrik Sahlqvist.
Also involves work of van Benthem, Sambin & Vaccaro.
For this, we temporarily (until section 5) take >, ?, ^, _, ¬, ⇤, ⌃
all to be primitive (not abbreviations).
But A ! B still abbreviates ¬(A ^ ¬B).

Definition 4.1 (Sahlqvist formula)
I A boxed atom is a formula of the form ⇤⇤ · · · ⇤p, for an

atom p. Note: the chain of ⇤s can be empty. So p, q, etc. are
boxed atoms.

I A positive formula is one using no ¬.
I A negative formula is one of the form ¬A where A is positive.

I An untied formula is one made from negative formulas and
boxed atoms using only ^ and ⌃. (Don’t blame me for the
name.)

I A Sahlqvist formula is a negated untied one.

45

Examples

Can often find one or more Sahlqvist formulas equivalent to a
given formula. Recall (slide 10): A ! B abbreviates ¬(A ^ ¬B).

I ⇤p ! p is a Sahlqvist formula: ¬([⇤p] ^ [¬p]).

I ⇤p ! ⇤⇤p is the Sahlqvist formula ¬([⇤p] ^ [¬⇤⇤p]),
and is equivalent to the Sahlqvist formula ¬([⇤p] ^ ⌃⌃[¬p]).

I ⌃p ! ⇤⌃p is the Sahlqvist formula ¬(⌃[p] ^ [¬⇤⌃p]),
and is equivalent to the Sahlqvist formula ¬(⌃[p] ^ ⌃[¬⌃p]).

I ⌃⇤p ! ⇤⌃p is the Sahlqvist formula ¬(⌃[⇤p] ^ [¬⇤⌃p]) —
and is equivalent to what?

But Löb’s formula, ⇤(⇤p ! p) ! ⇤p, is not equivalent to any
Sahlqvist formula (see Goldblatt’s book, p51).
Nor is McKinsey’s formula, ⇤⌃p ! ⌃⇤p (see Goldblatt, p53).

46

Other definitions of Sahlqvist formula

There are many definitions of Sahlqvist formula in the literature.
Mostly, they are equivalent.
Sahlqvist himself defined his formulas di↵erently: see Goldblatt
p.51.
Our approach is a bit simpler, and e↵ectively just as good: any
‘real’ Sahlqvist formula is equivalent to a conjunction (^) of our
Sahlqvist formulas.

You are not getting a watered-down version of his work.

47

Sahlqvist’s theorem (1973, published 1975)

We will show that any Sahlqvist formula has an associated frame
condition, which we can find with an algorithm. (Full statement in
theorem 4.8.)

⌃ ‘A real jewel of modal logic.’ ⌃

To prove this, we need two preliminaries.

48

Preliminary 1: Positive) monotonic

First, we consider increasing (or decreasing) an assignment.

Definition 4.2 (ordering of assignments)

Let F = (W, R) be a frame and let h, h0 : L ! }(W) be
assignments. We write h h0 if h(p) ✓ h0(p) for all p 2 L.

So h0 is ‘bigger’ than h. Or, h is got by ‘shrinking’ h0.

49

Positive formulas preserved when assignment increases

Lemma 4.3
Let A be a positive formula, let F = (W, R) be a frame and let
h, h0 : L ! }(W) be assignments with h h0. Then for all t 2 W ,

if (W, R, h), t |= A then (W, R, h0), t |= A.

This says ‘A is monotonic’. A stays true if you ‘increase’ h.

Proof.
By induction on A. For an atom, p,
(W, R, h), t |= p) t 2 h(p)) t 2 h0(p)) (W, R, h0), t |= p.
If A = > or ?, it is obvious. The cases A ^ B and A _ B are easy.
The case ¬A does not arise (A is positive!).
Now we do the case ⇤A (⌃A is similar — exercise).
Assume the result for A inductively.
Suppose (W, R, h), t |= ⇤A. We want (W, R, h0), t |= ⇤A, too.
Pick arbitrary u 2 W with R(t, u). Then (W, R, h), u |= A.
By inductive hypothesis, (W, R, h0), u |= A.
So (W, R, h0), t |= ⇤A, as required.

50

Preliminary 2: The standard translation

We can translate modal formulas into formulas of first-order
predicate logic. The translation reflects the Kripke semantics.

Definition 4.4 (standard translation)

For any first-order variable x, we’ll translate A to a first-order
formula Ax, with at most 1 free variable, x. (The translation
depends on the choice of x.) Ax is defined by induction on A:

I An atom p translates to P (x), where P is a unary relation
symbol associated with p. So px = P (x).

I > translates to itself: >x = >. And ?x = ?.

I (¬A)x is ¬(Ax).

I (A ^ B)x is Ax ^ Bx, and (A _ B)x is Ax _ Bx.

I (⇤A)x is 8y(R(x, y) ! Ay), where R is a binary relation
symbol for the accessibility relation, and y is a new variable.

I (⌃A)x is 9y(R(x, y) ^ Ay).

51

Examples of standard translation

Example 4.5 (doing standard translations)

I (¬⇤¬p)x = ¬(⇤¬p)x

= ¬8y(R(x, y) ! (¬p)y)
= ¬8y(R(x, y) ! ¬(py))
= ¬8y(R(x, y) ! ¬P (y))
⌘ 9y¬(R(x, y) ! ¬P (y))
⌘ 9y(R(x, y) ^ P (y)) — as expected.

I (⇤p ! p)x is (8y(R(x, y) ! P (y))) ! P (x)

I (⇤(p _ ⌃q))x is 8y(R(x, y) ! (P (y) _ 9z(R(y, z) ^ Q(z))))

Sometimes better to partially translate:
(⌃A ! B)x = 9y(R(x, y) ^ Ay) ! Bx.
We haven’t worked through the translations of A and B here.

52

Standard translation reflects the Kripke semantics.

Definition 4.6 (first-order structure (M†) from Kripke model)

Let M = (W, R, h) be a Kripke model. Define a first-order
structure M† for the signature {R} [{P : p 2 L}, with domain
W , by interpreting R as R, and P as h(p) for each atom p 2 L.

Lemma 4.7
Let M = (W, R, h) be any Kripke model. Then for any modal
formula A and any t 2 W ,

M, t |= A () M† |= Ax[t].

The second |= is standard first-order evaluation with x assigned
to t.

Proof.
Exercise — a simple induction on A.

53

Sahlqvist’s correspondence theorem (1975)

Theorem 4.8 (Sahlqvist correspondence)

For any Sahlqvist formula A, there is a corresponding first-order
sentence in the language of Kripke frames (a ‘frame property’) that
holds of a frame i↵ A is valid in the frame.
This sentence can be obtained from A by a simple algorithm.
It is called the Sahlqvist correspondent of A.

This theorem is a modal classic, and is extremely useful. Its proof
method is probably the sharpest known for this kind of result. It
generalises easily to multi-modal and temporal logics, and to some
extent to the µ-calculus (see later for this topic).
Generalised by van Benthem, Goranko, Kikot, Vakarelov, . . .

54

Proof of Sahlqvist’s correspondence theorem

We prove it by going through a (fairly general) example.
We will use approximately van Benthem’s method.
Suppose A is the following ‘generic’ untied formula:

A = ⌃
�
⌃[q] ^ ⌃([¬C] ^ ⌃[⇤⇤p])

�
^ ⌃⌃[⇤p],

where C is positive (e.g., C = ⌃p _ ⇤q). A is built from the boxed
atoms ⇤⇤p, ⇤p, q, and the negative ¬C using only ^, ⌃. So it’s
untied.
Let F = (W, R) be any frame.

Suppose the Sahlqvist formula ¬A is not valid in F . What does
this mean?
It means that there is a model M = (F , h) on frame F , and a
world t 2 W , with M, t |= A.
In the example, we get

M, t |= ⌃
�
⌃[q] ^ ⌃([¬C] ^ ⌃[⇤⇤p])

�
^ ⌃⌃[⇤p].

55

What does this say?

M, t |= ⌃
�
⌃[q] ^ ⌃([¬C] ^ ⌃[⇤⇤p])

�
^ ⌃⌃[⇤p]

means that there’s a ‘pattern’ of 6 worlds in F (for 6 ⌃s), related
to t by R in a certain way, and at each of them some specified
formula(s) holds:

I either a boxed atom (⇤p, ⇤⇤p, and q)

I or a negative one such as ¬C.

To understand the situation, use (i) a diagram, and (ii) the
standard translation At, to get names for the worlds in the pattern.
Use a di↵erent variable for each world in the pattern.
You only need translate the ‘untied’ part yet. Leave the boxed
atoms and negative subformulas alone.

56

In our example, the standard translation says that there exists the
following pattern of worlds t1, . . . , t6, not necessarily distinct, with

R(t, t1), R(t1, t2), M, t2 |= q,
R(t1, t3), M, t3 |= ¬C,

R(t3, t4), M, t4 |= ⇤⇤p,
R(t, t5), R(t5, t6), M, t6 |= ⇤p.

57

Critical step: shrinking the assignment

Now by lemma 4.3, if we ‘shrink’ h (make the atoms true at fewer
worlds) then the negative formulas (here, just ¬C) all stay true at
their own worlds in the pattern.
Eg, ¬(⌃p _ ⇤q) would stay true if p, q shrink.

So what’s the smallest assignment (with respect to) that we
could get away with, that still keeps all the formulas above true at
their worlds (and so keeps A true at t)?

Answer: it is the smallest assignment that keeps all the boxed
atoms (⇤⇤ · · · ⇤p etc) true at their worlds.
Boxed atoms have the property that there is indeed such a smallest
assignment — as we’ll now see.

58

What is this ‘smallest’ assignment?

⇤⇤p being true at world t4 says that ‘every world accessible from
t4 in two R-steps satisfies p.’
So ⇤⇤p will continue to hold at t4 even if p is shrunk right down
to just those worlds x accessible from t4 in 2 steps: those x
satisfying 9y(R(t4, y) ^ R(y, x)).

We have to keep ⇤p true at t6 too. So (same idea) make p true
additionally at all worlds x such that R(t6, x).
And we have to keep q true at t2.
So (same idea) make q true at all worlds x satisfying x = t2 (!)

59

Lazy assignment

So if we make p, q true at only the worlds where we have to in
order to keep the boxed atoms true at their worlds in the pattern,
then the original untied formula A remains true at t.
Call this ‘lazy’ assignment h�.

This new h� is definable from the pattern by first-order formulas:

I we made p true at world x i↵
9y(R(t4, y) ^ R(y, x)) _ R(t6, x) holds in the frame,

I we made q true at x i↵ x = t2 holds in the frame.

These are first-order conditions, with no atoms.

So for this lazy assignment h�, we can simplify the standard
translation At of A:
We find the (standard translations of the) atoms inside At, and
replace them by these ‘lazy’ first-order expressions for them.

60

Simplifying the translation At

I Compute standard translation At of A. Don’t bother to
translate boxed atoms (but you have to do the negative
formulas).

I Move all 9s for named worlds t1, . . . , t6 to the front. (Change
the names of variables if necessary to preserve equivalence.)

I Replace every P (x) by our lazy expression for it: here, it is
9y(R(t4, y) ^ R(y, x)) _ R(t6, x).

I Similarly, replace P (y) by 9z(R(t4, z) ^ R(z, y)) _ R(t6, y)
(I changed 9y to 9z to avoid clash of bound variables).

I Similarly for any subformulas P (z), P (t), P (t4), etc.
I Replace any Q(x) by x = t2, Q(t5) by t5 = t2, etc.
I May as well substitute > for (the translations of) the boxed

atoms ⇤⇤ · · · ⇤p (we chose h� precisely to make these all
true, so this step is legitimate, and it shortens the formula).

Call the result ↵(t).

61

Finishing o↵

Now, the following are equivalent:

I ¬A is not valid in F .

I (F , h), t |= A for some assignment h and some t 2 W .

I (F , h�), t |= A for some t 2 W and ‘pattern’ t1, . . . , t6
(of course, h� depends on these).

I F |= ↵[t] for some t 2 W (“|=” as in classical logic).

Therefore, ¬A is valid in F i↵ F |= 8t¬↵(t).

So the original Sahlqvist formula ¬A ‘corresponds’ to the
first-order frame condition 8t¬↵(t).

Note that the construction of ↵ is algorithmic.

62

Summary of Sahlqvist’s algorithm

It finds a frame condition equivalent to the validity of a Sahlqvist
formula. (Can often find a Sahlqvist equivalent of a given formula,
but you have to hack this bit.)
Eg: frame condition corresponding to validity of
⇤p ! p ⌘ ¬([⇤p] ^ [¬p]) is reflexivity, 8xR(x, x).
Given: a Sahlqvist formula ¬A, where A is untied.
To find frame condition corresponding to ¬A:

1. Identify negative formulas and boxed atoms of A.

2. Draw a diagram showing what it means for A to be true at a
world t. Include names for worlds (eg. t1, t2, etc), R-relations
between them, and which boxed atoms and negative formulas
are true at which worlds.

3. Work out the lazy assignment (that just makes the boxed
atoms true at their worlds). Get a first-order expression for it,
in terms of the named worlds.

63

4. Work out the standard translation At of A. Use the names of
the named worlds for variables. Don’t bother to translate
boxed atoms. Then manipulate it as follows:

5. Move all 9s for named worlds (those 9s from ⌃s outside the
negative formulas) to the front of At.
DO THIS NOW! Easily forgotten, but VITAL.

6. Find the bits that come from the boxed atoms. Replace them
with >.

7. Replace all remaining subformulas P (x), Q(y), etc. (they
come from atoms in negative formulas) by the corresponding
first-order expressions got from the lazy assignment.

8. Simplify, if possible.

What you get is a first-order formula ↵(t) expressing that A is true
in F at some world t under some assignment.
So ¬A is valid in F i↵ 8t¬↵(t) holds in F .
This 8t¬↵(t) is the frame condition you want.

64

Example 1: reflexivity: ⇤p ! p

The algorithm is messy to explain, but it’s easy to use it on
particular examples.
I suggest you use diagrams.

• Try ⇤p ! p.
This is the Sahlqvist formula ¬([⇤p] ^ [¬p]). It isn’t valid in a
frame F i↵ there are h, t with (F , h), t |= [⇤p] ^ [¬p].
The ‘pattern’ here is just t (as no ⌃s around).
For ⇤p to be true at t, the ‘lazy’ assignment makes p true at a
world x just when R(t, x).

65

Use this as a definition of p. Take the standard translation
(⇤p)t ^ ¬P (t) of ⇤p ^ ¬p. Then

I replace the ⇤p-part by > (the lazy assignment always makes
this true)

I in the negative part ¬P (t), replace P (t) by its lazy definition
R(t, x) (with x = t).

We get > ^ ¬R(t, t). Simplify this to the equivalent ¬R(t, t).
So ⇤p ^ ¬p holds at t under some assignment i↵ F |= ¬R(t, t).
So ⇤p ! p is valid in F i↵ F |= 8t¬¬R(t, t).
That is,

F |= 8t R(t, t).

Reflexivity! ⇤
We knew this. But Sahlqvist’s algorithm is far more general.

66

Example 2: transitivity: ⇤p ! ⇤⇤p

• Let’s try Sahlqvist’s algorithm on ⇤p ! ⇤⇤p.
If this is not valid in frame F , then there are h, t making
[⇤p] ^ [¬⇤⇤p] true at t.
The pattern here is again just t, as no diamonds around.

To make ⇤p true at t, we need only that p is true at any x with
R(t, x).
So the lazy assignment makes p true at x i↵ R(t, x) holds.
Use R(t, x) as the definition of p in the standard translation
([⇤p] ^ [¬⇤⇤p])t.

67

The standard translation ([⇤p] ^ [¬⇤⇤p])t is
(⇤p)t ^ ¬8u(R(t, u) ! 8v(R(u, v) ! P (v))).

I May as well replace the ⇤p part by > (the lazy assignment
forces it to be true)

I Replace P (v) by the lazy definition of P at v: namely, R(t, v).

We get > ^ ¬8u(R(t, u) ! 8v(R(u, v) ! R(t, v))).
It simplifies to ¬8u(R(t, u) ! 8v(R(u, v) ! R(t, v))).
Call this ↵(t).
So ⇤p ^ ¬⇤⇤p is true at t under some assignment i↵ F |= ↵(t).
So ⇤p ! ⇤⇤p is valid in F i↵ F |= 8t¬↵(t). That is,

F |= 8t¬¬8u(R(t, u) ! 8v(R(u, v) ! R(t, v))).
Using first-order equivalences, we can clean this up to:

F |= 8tuv(R(t, u) ^ R(u, v) ! R(t, v)).

This just says that F is transitive! ⇤

68

Alternative Sahlqvist formula for transitivity

We can write ⇤p ! ⇤⇤p as ¬([⇤p] ^ ⌃⌃[¬p]) too.
It’s a Sahlqvist formula — try the algorithm on it. You should get
the same answer as above.

69

Example 3: symmetry (variant): ⌃⇤p ! p

• Let’s try ⌃⇤p ! p.
It’s a Sahlqvist formula: it is ¬(⌃[⇤p] ^ [¬p]).
Let A = ⌃[⇤p] ^ [¬p] (untied).
A is true at t in a model whose frame is F i↵ the following pattern
of worlds t, u exists:

The lazy assignment makes p true at a world x i↵ R(u, x).

70

The standard translation At of A = ⌃[⇤p] ^ [¬p] is
9u(R(t, u) ^ (⇤p)u) ^ ¬P (t).

u is a named world in the diagram, so move 9u to the front
(preserving logical equivalence): 9u(R(t, u) ^ (⇤p)u ^ ¬P (t)).
Do this now — before the steps below.

Now replace P (t) by the lazy R(u, t), and (⇤p)u by >:
9u(R(t, u) ^ > ^ ¬R(u, t)).

A is true at t under some assignment i↵ this holds.

So ¬A is valid in F i↵
F |= 8t¬9u(R(t, u) ^ > ^ ¬R(u, t)) — that is,

F |= 8tu(R(t, u) ! R(u, t)).
This says R is symmetric! ⇤

What if we don’t move 9u to the front?
We’d get ¬9t(9u(R(t, u) ^ >) ^ ¬R(u, t)), which has u free!
This is not a sentence (because it has free variables).
So as a frame condition, it makes no sense whatever.

71

5. p-morphisms and bisimulations

These are two (related) kinds of similarity between Kripke
models/frames. Can generalise to multi-modal, temporal logic.

I p-morphisms are certain maps (or functions) that preserve
(validity of) modal formulas. We can use them to show that
certain frame properties are not modally expressible.

I Bisimulations are more general, using relations instead of
maps.
Bisimulations also preserve modal formulas — in a sense,
modal formulas are precisely the ones so preserved. This gives
us a measure of the strength of modal logic.
Bisimulations connect modal logic with concurrency.

Warning: from now on, _, ⌃, ? are abbreviations again.

72

5.1 Frame p-morphisms

Let F = (W, R), F 0 = (W 0, R0) be Kripke frames and
f : W ! W 0 a map.

Definition 5.1
We say f is a frame p-morphism from F to F 0 if:

1. forth: If t, u 2 W and R(t, u), then R0(f(t), f(u)).

2. back: If t 2 W , x 2 W 0, and R0(f(t), x), then there is some
u 2 W with R(t, u) and f(u) = x.

The name apparently comes from ‘pseudo-epimorphism’.
Some people write ‘bounded morphism’ instead.
Goldblatt is a good reference for p-morphisms.

73

Alternative definition of frame p-morphism

Here’s an equivalent and slightly simpler definition of frame
p-morphism.
Recall that for any sets X,Y , a map f : X ! Y is onto, or
surjective, if for every y 2 Y there is some x 2 X such that
f(x) = y.

Proposition 5.2
f : W ! W 0 is a frame p-morphism i↵:

(pM): for each world t of F , the map f maps the worlds
accessible from t in F onto the worlds accessible from f(t) in F 0.

That is, for all t 2 W ,
{f(u) : u 2 W, R(t, u)} = {v 2 W 0 : R0(f(t), v)}.

Proof.
Exercise.

74

Illustration of property (pM)
Pictures made by yed

75

Example of frame p-morphism

Let F = (N, <).
Let F 0 be a one-world reflexive frame (W 0 = {x}, say, with
R0(x, x)).
Here’s a frame p-morphism from F to F 0:

76

Exercise

Exercise 5.3
Are there any p-morphisms between these two frames?

77

p-morphic images

Definition 5.4
Let F , F 0 be Kripke frames.
We say that F 0 is a p-morphic image of F if there exists a frame
p-morphism from F onto F 0.

Example 5.5
The 1-world frame F 0 (slide 76) is a p-morphic image of (N, <).

Exercise 5.6
Find a frame with at most 3 worlds that’s a p-morphic image of:

78

Remark: taking p-morphic images preserves symmetry

Many frame properties are preserved by p-morphic images.
Eg: a frame is symmetric if it satisfies 8xy(R(x, y) ! R(y, x)).

Proposition 5.7
Any p-morphic image of a symmetric frame is also symmetric.

Proof.
Let F = (W, R) be symmetric. Let F 0 = (W 0, R0) be any frame.
Suppose that f : F ! F 0 is a surjective (onto) frame p-morphism.
To show F 0 is symmetric, let x0, y0 2 W 0 be arbitrary.
Suppose that R0(x0, y0) holds. We need to show that R0(y0, x0).
As f is onto, there is x 2 W with f(x) = x0.
By the back property of frame p-morphisms, there is y 2 W with
R(x, y) and f(y) = y0.
As F is symmetric, we deduce that R(y, x).
By the forth property of frame p-morphisms, we have
R0(f(y), f(x)) — that is, R0(y0, x0). As required.

79

5.2 Model p-morphisms

These are souped-up frame p-morphisms, defined on Kripke
models.
Let F , F 0 be Kripke frames.
Let M = (F , h) and M0 = (F 0, h0) be Kripke models.

Definition 5.8
We say that f is a (model) p-morphism from M to M0 if:

1. f is a frame p-morphism : F ! F 0.

2. If t 2 W , then for each atom p we have
M, t |= p i↵ M0, f(t) |= p.

‘Atoms are preserved’

80

Example of model p-morphism

Let M0 be any model over the one-world reflexive frame F 0 on
slide 76.
Let M be the model (N, <, h) defined by: for each atom p 2 L,

h(p) =

(
N, if M0, x |= p (where x is the sole world of F 0),

;, otherwise.

Then the map f of slide 76 is a model p-morphism : M ! M0.

Example when M0, x |= p and M0, x 6|= q:

81

Model p-morphisms preserve truth of modal formulas

Theorem 5.9
Let M = (W, R, h) and M0 = (W 0, R0, h0) be models, and let f
be a model p-morphism from M to M0. [f does not have to be
onto.] Then for any world t of M and any modal formula A,

M, t |= A i↵ M0, f(t) |= A.
Proof.
By induction on A. The theorem holds for atomic A because
p-morphisms preserve atoms (definition 5.8(2)).
The boolean cases (>, ^, ¬) are easy.
The main case is ⇤A. Assume (inductively) the result for A.
Then M, t |= ⇤A
i↵ M, u |= A for all u 2 W with R(t, u) (by semantics of ⇤),
i↵ M0, f(u) |= A for all u 2 W with R(t, u) (by ind. hyp.),
i↵ M0, x |= A for all x 2 W 0 with R0(f(t), x) (because by property
(pM), {f(u) : u 2 W, R(t, u)} = {x 2 W 0 : R0(f(t), x)}),
i↵ M0, f(t) |= ⇤A (by semantics of ⇤).

82

p-morphic images ‘preserve’ validity
— important consequence of theorem 5.9

Theorem 5.10
Let F = (W, R) and F 0 = (W 0, R0) be Kripke frames.
Suppose that F 0 is a p-morphic image of F .
Then any modal formula that’s valid in F is valid in F 0.

Proof.
Let A be a formula valid in F . We show it’s valid in F 0.
So let h0 : L ! }(W 0) be an arbitrary assignment, and take any
t0 2 W 0. We show (F 0, h0), t0 |= A.
Let f : W ! W 0 be a surjective frame p-morphism from F to F 0.
Define h : L ! }(W) by

h(p) = {w 2 W : f(w) 2 h0(p)} for each p 2 L.
Then f is a model p-morphism from (F , h) to (F 0, h0).
Pick t 2 W such that f(t) = t0 (use ‘f onto’).
We assumed that A is valid in F . So (F , h), t |= A.
By theorem 5.9, (F 0, h0), t0 |= A.

83

Consequences

Theorem 5.10 says that

Taking p-morphic images preserves modal validity (forwards).

It is very important. It has many consequences.
We can use it to show that

1. various frame properties are preserved by taking p-morphic
images,

2. various frame properties, such as irreflexivity, are not definable
by the validity of any modal formula,

3. any modal formula valid in all irreflexive frames is valid (in all
frames).

84

Modally definable frame properties and p-morphic images

Definition 5.11
Let P be a property of frames (e.g, reflexivity, 8xR(x, x)). We say
that P is modally definable if there is a modal formula A such that
for any frame F , F has property P i↵ A is valid in F .

Example: reflexivity is modally definable (by ⇤p ! p).

Proposition 5.12
Any modally definable frame property P is preserved (forwards) by
taking p-morphic images.
That is, if F is a frame with property P, and F 0 is a p-morphic
image of F , then F 0 has property P as well.

Proof. As P is modally definable, there is a modal formula A that
is valid in precisely the frames having property P. Then

F has P i↵ A is valid in F)
thm. 5.10A is valid in F 0 i↵ F 0 has P. ⇤

85

p-morphic images preserve Sahlqvist correspondents

Corollary 5.13
The correspondent of any Sahlqvist formula is preserved (forwards)
by taking p-morphic images.

Proof.
By proposition 5.12, because the correspondent of a Sahlqvist
formula A is modally definable (by A).

Example 5.14
8xy(R(x, y) ! R(y, x)) (symmetry) is preserved by p-morphic
images, as it is the correspondent of ⌃⇤p ! p (slide 70).
This gives an easier proof of proposition 5.7.

But for non-modally-definable frame properties, this method fails
and you need the direct approach of proposition 5.7 to show
preservation by p-morphic images.

86

No modal formula characterises irreflexivity

Recall ⇤p ! p is valid in precisely the reflexive frames. But. . .

Proposition 5.15
There’s no modal formula that’s valid in precisely the irreflexive
frames (satisfying (8x¬R(x, x))).
That is, irreflexivity is not modally definable.

Proof.
By proposition 5.12, it is enough to show that irreflexivity is not
always preserved when we move to a p-morphic image.
To show this, let F be the irreflexive frame (N, <) on slide 76.
As we saw, the one-point reflexive frame F 0 is a p-morphic image
of F .
But F 0 is not irreflexive.

Exercise 5.16
Show that the frame property ‘for every world w of F , at least two
worlds are accessible from w’ is not modally definable.

87

5.3 Bulldozing

We can strengthen proposition 5.15 to show that any modal
formula that’s valid in all irreflexive frames is valid (in all frames).
So ‘irreflexive frames have no special laws of chemistry’.

We will use bulldozing (a trick of Segerberg).
We bulldoze a frame by replacing groups of mutually related worlds
by larger groups of worlds strung out in a line.
E.g., we can bulldoze the 1-point reflexive frame (above) to get
(N, <).

It’s a rather flexible method. It can be used in many ways: ‘frame
surgery’.
But in simple cases, we can get the same e↵ects by taking the
product of the frame with another frame, such as (N, <).

88

Products of frames; irreflexivity

Recall: if X, Y are sets, then X ⇥ Y = {(x, y) : x 2 X, y 2 Y }.
Definition 5.17
Let F1 = (W1, R1) and F2 = (W2, R2) be frames.
The product F1 ⇥ F2 is the frame (W1 ⇥ W2, R⇥), where, for any
(x1, x2), (y1, y2) 2 W1 ⇥ W2, we define

R⇥((x1, x2), (y1, y2)) i↵ R1(x1, y1) and R2(x2, y2).

Lemma 5.18
Let F1 = (W1, R1) and F2 = (W2, R2) be frames. Suppose that
at least one of them is irreflexive. Then F1 ⇥ F2 is irreflexive.

Proof.
Assume that F1 is irreflexive. Pick any (w1, w2) 2 W1 ⇥ W2. Then
¬R1(w1, w1). So by definition 5.17, ¬R⇥((w1, w2), (w1, w2)).
Hence F1 ⇥ F2 is irreflexive.
The other case (when F2 is irreflexive) is left as an exercise.

90

Products and p-morphisms

Lemma 5.19
Let F1 = (W1, R1) be any frame, and let F2 = (W2, R2) be any
serial frame (slide 43). The ‘projection’ map ⇡ : F1 ⇥ F2 ! F1

given by ⇡(x1, x2) = x1 is a surjective p-morphism.

Proof.
1. Forth: Take any (x1, x2), (y1, y2) 2 W1 ⇥ W2. Assume that

R⇥((x1, x2), (y1, y2)). Then R1(x1, y1) (and R2(x2, y2)).
But ⇡(x1, x2) = x1, and ⇡(y1, y2) = y1.
So R1(⇡(x1, x2), ⇡(y1, y2)) holds.

2. Back: Take any (x1, x2) 2 W1 ⇥ W2 and y1 2 W1, and
assume that R1(⇡(x1, x2), y1). That is, R1(x1, y1).
As F2 is serial, we can choose y2 2 W2 with R2(x2, y2).
Then (y1, y2) 2 W1 ⇥ W2, R⇥((x1, x2), (y1, y2)), and
⇡(y1, y2) = y1.

3. ⇡ is surjective, since taking any x2 2 W2, we have
⇡(x1, x2) = x1 for every x1 2 W1.

So ⇡ : F1 ⇥ F2 ! F1 is a surjective p-morphism, as required. ⇤
91

Bulldozing (products) and irreflexivity

Theorem 5.20
Let A be any modal formula. Then A is valid in all irreflexive
frames i↵ A is valid (in all frames).

Proof.
(is trivial. We prove).
Let F be any frame. We show A is valid in F .
By lemma 5.18, F ⇥ (N, <) is irreflexive. So A is valid in it.
But (N, <) is serial. So by lemma 5.19, F is a p-morphic image of
F ⇥ (N, <).
By theorem 5.10, p-morphic images preserve modal validity.
So A is valid in F .

So any satisfiable formula can be satisfied in (made true at a world
of a model on) an irreflexive frame.
We conclude that the ‘modal logic of irreflexive frames’ is the
same as the ‘modal logic of all frames’ (same validities, same ‘laws
of chemistry’).

92

5.4 Bisimulations — generalised p-morphisms

Definition 5.21
Let M = (W, R, h) and M0 = (W 0, R0, h0) be Kripke models. Let
t 2 W , t0 2 W 0. A bisimulation between (M, t) and (M0, t0) is a
relation B ✓ W ⇥ W 0 satisfying:

1. B(t, t0),

and for every u 2 W and u0 2 W 0 such that B(u, u0):

2. For all atoms p: M, u |= p i↵ M0, u0 |= p.

3. forth: If v 2 W and R(u, v), then there is v0 2 W 0 with
R0(u0, v0) and B(v, v0).

4. back: If v0 2 W 0 and R0(u0, v0), then there is v 2 W with
R(u, v) and B(v, v0).

Definition 5.22
We say (M, t) and (M0, t0) are bisimilar if there exists a
bisimulation between M, t and M0, t0.

93

Bisimulation invariance of modal formulas

Theorem 5.23
Let (M, t) and (M0, t0) be bisimilar and let A be any modal
formula. Then M, t |= A i↵ M0, t0 |= A.

Proof.
Induction on A (like theorem 5.9).

So modal formulas are invariant under bisimulation.

It turns out that (slogan):

Modal logic ‘is’ the bisimulation-invariant
fragment of first-order logic!

We’ll end with a quick look at this.

94

Bisimulation invariance of first-order formulas?

Definition 5.24
Let ↵(x, P1, . . . , Pn

) be a first-order formula written with the
relation symbol R, equality, and unary relation symbols P1, . . . , Pn

corresponding to atoms p1, . . . , pn 2 L.
We say that ↵ is bisimulation-invariant if whenever (M, t) and
(M0, t0) are bisimilar then M† |= ↵(t) i↵ M0† |= ↵(t0).

See definition 4.6 for M†. (Each Pk (k = 1, . . . , n) is interpreted in M†
in the same way as pk in M.)

Recall that every modal formula A has a standard translation Ax

into first-order logic. Ax has the same ‘meaning’ as A (lemma 4.7).
So by theorem 5.23, Ax is always bisimulation-invariant. Therefore:

Lemma 5.25
Any first-order formula ↵(x, P1, . . . , Pn

) that is equivalent to (the
standard translation of) a modal formula is bisimulation-invariant.

Is there a converse to this? It would be very surprising/interesting.

95

Characterisation of the strength of modal logic

Theorem 5.26 (van Benthem, 1976)

A first-order formula ↵(x, P1, . . . , Pn

) is logically equivalent to the
standard translation of a modal formula i↵ ↵ is
bisimulation-invariant.

Proof. ‘)’ is lemma 5.25.
Idea of ([not examinable]: if ↵(x, P1, . . . , Pn

) is not equivalent
to Ax for any modal formula A, van Benthem used mathematical
logic to find models M = (W, R, h), M0 = (W 0, R0, h0) and worlds
w 2 W , w0 2 W 0, such that

I {(x, x0) 2 W ⇥ W 0 : M, x |= A () M0, x0 |= A, for every
modal fmla A} is a bisimulation between (M, w) & (M0, w0)

I M† |= ↵[w] but M0† |= ¬↵[w0].
So ↵ is not bisimulation-invariant. ⇤
So modal logic ‘is’ the bisimulation-invariant fragment of
first-order logic. But whether a first-order formula is
bisimulation-invariant is undecidable!

97

Bisimulations and concurrency

Bisimulations have been used elsewhere in computer science.
They were introduced in concurrency by Park (1981).
In concurrency theory, two processes are defined to be bisimilar in
a similar way to definition 5.21. It ‘means’ they can’t reasonably
be distinguished.
Hennessy and Milner gave a modal logic (H–M logic) like PDL, to
describe processes.
Any two bisimilar processes satisfy the same Hennessy–Milner
formulas.

98

6. Modal µ-calculus
Thanks to Clemens Kupke for much of this material

Recall
Modal logic: decidable fragment of first-order logic.

Question
Is this fragment large (expressive) enough?

We will see

I there are properties we want to express that are not
expressible in modal logic

I we can increase the expressivity of modal logic greatly and
still obtain a decidable logic

I we do this by adding fixed point operators to the language

I we get a system called the modal µ-calculus

Forefathers of the modal µ-calculus include de Bakker and Scott.
The father of the µ-calculus in its present form is Dexter Kozen.

99

The limited expressivity of basic modal logic

Let A be a formula. Suppose we want to express the following
property that we call “AtSomePoint(A)”:

“from the current world we can reach a world at which A
is true, in a finite number of steps”

I This is obviously not expressible in the basic modal language
(prove this as an exercise!).

I It is expressible in temporal logic interpreted in (N, <), but
not in an arbitrary Kripke model.

I The property can be nicely expressed as a fixed point.

102

Fixed points

Definition 6.1
Let S be a set, and f : S ! S be a function.
We call an element x 2 S a fixed point of f if f(x) = x.

Intuitively, we can see the property AtSomePoint(A) as a kind
of fixed point of the ‘function’ X 7! A _ ⌃X:

AtSomePoint(A) ⌘ A _ ⌃AtSomePoint(A)

We will

I see and understand that the property AtSomePoint(A) can
be defined as a least fixed point

I enrich the modal language with so-called least and greatest
fixed point operators, denoted by µ (‘mu’) and ⌫ (‘nu’)

I introduce the fixed point semantics

103

Monotonic functions

The language of the modal µ-calculus will contain formulas of the
form µpA and ⌫pA. These formulas will be interpreted as least
and greatest fixed points of certain monotonic functions.

Definition 6.2
Let S be a set and let f : }(S) ! }(S) be a function (recall
}(S) = {U : U ✓ S}).
1. We say that f is monotonic if for all sets U, V ✓ S,

if U ✓ V then f(U) ✓ f(V).

2. Suppose that U is a fixed point of f : that is, f(U) = U . We
say that U is the least fixed point of f if for all fixed points V
of f we have U ✓ V . We call U the greatest fixed point of f
if for all fixed points V of f we have V ✓ U .

3. If they exist, we write LFP(f) and GFP(f) for the least and
greatest fixed point of f , respectively.
(Obviously, they are unique.)

104

Fixed points on finite sets

We first give a concrete representation of fixed points on finite sets.

Proposition 6.3
Let S be a finite set, and let f : }(S) ! }(S) be a monotonic
function. Define, for all U ✓ S and all n 2 N,

I f0(U) = U

I fn+1(U) = f(fn(U))

Then the least fixed point LFP(f) and the greatest fixed point
GFP(f) of f exist, and can be computed as follows:

LFP(f) =
S

n2N fn(;) GFP(f) =
T

n2N fn(S)

Proof. We will now prove that this characterisation of the least
fixed point of f is correct.
The details for the greatest fixed point are left as an exercise.

105

Approximation of the least fixed point

,nrfo

br..ù X

CtS\RJ.d.hå

tL"".rr

+t v)

⌅⌅⌅
⌅ S

106

S
n2N f

n(;) is a fixed point of f

We have f0(;) = ; ✓ f1(;), as ; ✓ U for all U .

Since f0(;) ✓ f1(;), by monotonicity of f we have
f(f0(;)) ✓ f(f1(;)) — that is, f1(;) ✓ f2(;).
Since f1(;) ✓ f2(;), by monotonicity of f we get f2(;) ✓ f3(;).

And so on. We get a sequence

; ✓ f1(;) ✓ f2(;) ✓ · · · ✓ fn(;) ✓ fn+1(;) ✓ · · · ✓ S

As S is finite, this sequence has to stabilise at some point: there
must be some m 2 N such that fm(;) = f(fm(;)).

So fm(;) is a fixed point of f , and
S

n2N fn(;) = fm(;).

107

S
n2N f

n(;) is the least fixed point of f

To show that fm(;) is the least fixed point of f , let U be any
fixed point of f . We show that fm(;) ✓ U .

Claim. fn(;) ✓ U for all n 2 N.

Proof of claim. The proof is by induction on n.
We have f0(;) = ; ✓ U obviously.

Assume inductively that fn(;) ✓ U .
Monotonicity of f gives f(fn(;)) ✓ f(U).
But f(U) = U . So this boils down to fn+1(;) ✓ U .
This completes the induction. Claim X

In particular, fm(;) ✓ U .

As U was an arbitrary fixed point of f , this shows that fm(;) is
the least fixed point of f . ⇤

108

Example

Exercise 6.4

I Let S = {1, 2, 3, . . . , 10}.
I Let f : }(S) ! }(S) be the function given by

f(U) = U [{2} [{n + 2 : n 2 U, n 8},

for U ✓ S.

1. Show that the function f is monotonic.

2. What is the least fixed point of f?

3. What is the greatest fixed point of f?

109

What about infinite sets?

We saw that the least and greatest fixed point of a monotonic
function f : }(S) ! }(S) always exist if S is finite.

In fact, these fixed points always exist — even if S is infinite.
(Follows from ‘Knaster–Tarski theorem’.)

For infinite sets S, proposition 6.3 can fail, but we do have the
following. (Proof is an exercise.)

Lemma 6.5
For any monotonic function f : }(S) ! }(S) we have

[

n2N
fn(;) ✓ LFP(f), GFP(f) ✓

\

n2N
fn(S).

In particular, if
S

n2N fn(;) and
T

n2N fn(S) are fixed points of f ,
then they are the least and greatest fixed points of f , respectively.

110

Modal µ-calculus: syntax

We will define µ-calculus formulas in “negation normal form”:
negations only occur directly before atoms.
To get decent expressivity, we treat _, ⌃, and ? as primitive
connectives, not abbreviations.
Recall that L is our fixed set of atoms.

Definition 6.6 (the set L
µ

of modal µ-calculus formulas)

I any propositional atom p 2 L is an L
µ

-formula

I > and ? are L
µ

-formulas

I if p is a propositional atom, then ¬p is an L
µ

-formula

I if A, B are L
µ

-formulas, then so are
(A ^ B) (A _ B) ⇤A ⌃A

I if A is a L
µ

-formula and ¬p does not occur in A, then
µpA and ⌫pA

are L
µ

-formulas.

111

Semantics of Lµ-formulas — modal cases

Let (W, R) be a Kripke frame. For a set U ✓ W , write

⇤U = {w 2 W : 8w0(R(w, w0)) w0 2 U)}
⌃U = {w 2 W : 9w0(R(w, w0) and w0 2 U)}

For each assignment h into W , we define the semantics

[[A]]
h

= {w 2 W : (W, R, h), w |= A}
of an L

µ

-formula A by induction on the structure of A:

[[p]]
h

= h(p), for an atom p

[[>]]
h

= W and [[?]]
h

= ;
[[¬p]]

h

= W \ h(p) = {w 2 W : w 62 h(p)}
[[A ^ B]]

h

= [[A]]
h

\ [[B]]
h

[[A _ B]]
h

= [[A]]
h

[[[B]]
h

[[⇤A]]
h

= ⇤[[A]]
h

[[⌃A]]
h

= ⌃[[A]]
h

112

Semantics of Lµ-formulas — µ- and ⌫-formulas

Assume [[A]]
h

has been defined for all h, and ¬p doesn’t occur in A.
For each h, define a function Ah

p

: }(W) ! }(W) by

Ah

p

(U) = [[A]]
h[p 7!U] for each U ✓ W,

where the assignment h[p 7! U] : L ! }(W) is defined by

h[p 7! U](q) =

⇢
U if q = p
h(q) otherwise

As ¬p doesn’t occur in A, this function turns out to be monotonic.
(Cf. lemma 4.3.)
We interpret µpA and ⌫pA as its least and greatest fixed points:

[[µpA]]
h

= LFP(Ah

p

)

[[⌫pA]]
h

= GFP(Ah

p

)

By the Knaster–Tarski theorem, this is well defined in all Kripke
models.

113

Summary: fixed points are just repeated evaluation
So you should be able to do it. . .

Let p be an atom, A a L
µ

-formula with no ¬p, and M = (W, R, h)
a finite model. By definition of [[µpA]]

h

and proposition 6.3,

[[µpA]]
h

= LFP(Ah

p

) =
[

n2N
(Ah

p

)n(;).

To compute this,

1. calculate [[A]]
h

with p set to ; — say the result is U1 ✓ W

2. calculate [[A]]
h

with p set to U1 — say the result is U2 ✓ W

3. calculate [[A]]
h

with p set to U2 — say the result is U3 ✓ W

and so on, until the U
n

stabilise. The stable value is [[µpA]]
h

.
In infinite models, if

S
n2N U

n

is a fixed point of Ah

p

, it is [[µpA]]
h

.

For ⌫pA:

I use
T

instead of
S

I start with p set to W instead of ;

114

Examples: formulas as operators

Example 6.7
Let M = (W, R, h) be a Kripke model. For a set U ✓ W , recall

⇤U = {w 2 W : 8w0(R(w, w0)) w0 2 U)}
⌃U = {w 2 W : 9w0(R(w, w0) and w0 2 U)}

1. Let A = p _ ⌃q. Then

Ah

q

(U) = h(p) [⌃U.

2. Let B = ⇤⌃(p _ q). Then

Bh

q

(U) = ⇤⌃(h(p) [U).

3. Let C = p _ (r ^ ⇤q). Then

Ch

q

(U) = h(p) [(h(r) \ ⇤U).

115

Example: Semantics of a formula

Example 6.8

4

1

2

3

5
p

Let B = ⇤⌃(p _ q) and let’s compute [[µqB]]
h

and [[⌫qB]]
h

.
By definition, [[µqB]]

h

= LFP(f) with f = Bh

q

. We have:

f(;) = ⇤⌃(h(p) [;) = ⇤⌃({5}) = {3, 5}
f2(;) = ⇤⌃(h(p) [f(;)) = ⇤⌃({3, 5}) = {1, 3, 5}
f3(;) = ⇤⌃(h(p) [f2(;)) = ⇤⌃({1, 3, 5}) = {1, 3, 5}

This implies that
S

n2N fn(;) = f2(;).
By proposition 6.3 (slide 105), [[µqB]]

h

= LFP(f) = {1, 3, 5}.
Exercise: Compute [[⌫qB]]

h

in example 6.8!

116

Semantics of µq(A _ ⌃q) — reachability

Example 6.9
Let A be any formula, and q an atom not occurring in A.
Let M = (W, R, h) be a finite Kripke model.
Let f = (A _ ⌃q)h

q

. For any U ✓ W we have

f(U) = [[A]]
h

[⌃U.

So [[µq(A _ ⌃q)]]
h

= LFP(f) =
S

n2N fn(;) (by proposition 6.3).
Let’s compute it:

f(;) = [[A]]
h

f2(;) = [[A]]
h

[⌃[[A]]
h

f3(;) = [[A]]
h

[⌃([[A]]
h

[⌃[[A]]
h

) = ‘⌃2[[A]]
h

’
...

fn(;) = {w : ‘[[A]]
h

is R-reachable from w
in fewer than n steps’},

where the last line can be proved by induction on n.

117

µq(A _ ⌃q) expresses AtSomePoint(A)

So

[[µq(A _ ⌃q)]]
h

= LFP(f) =
S

n2N fn(;)

= {w 2 W : ‘[[A]]
h

is R-reachable from w
in a finite number of steps’.}

One can check that this is also true on an arbitrary (possibly
infinite) model M! (exercise!)

So we have expressed AtSomePoint(A) in the µ-calculus using
the least fixed point operator, by µq(A _ ⌃q), where q does not
occur in A.

118

What about ⌫q(A _ ⌃q)?

Example 6.10
Let M = (W, R, h) be a model. We claim that

[[⌫q(A _ ⌃q)]]
h

= X := {w 2 W : “either from w we can reach
a world in [[A]]

h

in a finite number of steps,
or there is an infinite path starting at w” }

To see this, let f = (A _ ⌃q)h
q

again, and compute fn(W):

f(W) = [[A]]
h

[⌃W

f2(W) = [[A]]
h

[⌃([[A]]
h

[⌃W) = [[A]]
h

[⌃[[A]]
h

[⌃2W

fn(W) = {w 2 W : “either [[A]]
h

is R-reachable from w in
< n steps, or a path of length n starts at w”}

Our claim follows, for finite models M (take n > |W |).
The claim also holds for infinite models: show X is a fixed point of
f , and (tricky) any fixed point Y is contained in X.

119

Another example: ⌫q
�
p _ (r ^ ⇤q))

Example 6.11
Let M = (W, R, h) be a model. We claim that

[[⌫q
�
p _ (r ^ ⇤q)

�
]]
h

= {w 2 W : “on all paths starting from w,
while ¬p is true, r has to be true.”}

Let f = (p _ (r ^ ⇤q))h
q

. We calculate

f(W) = h(p) [(h(r) \ ⇤W) = h(p) [h(r)

f2(W) = h(p) [(h(r) \ ⇤f(W))

= h(p) [
�
h(r) \ ⇤(h(p) [h(r))

�

f3(W) = h(p) [(h(r) \ ⇤f2(W))
...

fn(W) = {w 2 W : “on all paths of length < n starting at w,

while ¬p is true, r is true.”}

120

In order to compute [[⌫q(p _ (r ^ ⇤q))]]
h

on a finite model we now
compute the intersection

[[⌫q(p _ (r ^ ⇤q))]]
h

=
\

n2N
fn(W)

= {w 2 W : ‘on all paths starting at w,

while ¬p is true, r is true.’}

Can check that the above equality holds on infinite models as well.
So ⌫q(p _ (r ^ ⇤q)) is like While, or weak Until.

121

Some more examples for you to try

Exercise 6.12
Show that

1. ⌫q(r ^ ⇤q) is true at w in a model M i↵ “ r holds at all
worlds reachable from w (including w itself)”

2. µp
�
(⌫q(r ^ ⇤q)) _ ⌃p

�
is true at w in a model M i↵ “from w

we can reach a world v in a finite number of steps such that r
is true at all worlds reachable from v”

122

Important properties of the modal µ-calculus

Theorem 6.13 (Kozen, 1982)

The modal µ-calculus has the finite model property: that is, a
formula A 2 L

µ

is satisfiable i↵ A is satisfiable in a finite model.

Proofs use ‘better-quasi-orderings’, automata, or tableaux.

Theorem 6.14 (Kozen & Parikh, 1984, Emerson & Jutla, 1988)

The modal µ-calculus is decidable (and ExpTime-complete).

K–P: reduction to decidable logic ‘SnS’. E–J: automata.

Theorem 6.15 (Janin & Walukiewicz, 1996)

Over Kripke frames, the modal µ-calculus corresponds to the
bisimulation-invariant fragment of monadic second-order logic.

Compare van Benthem’s theorem 5.26. Proof uses automata.

123

Modal µ-calculus: conclusion

I Very powerful but still decidable extension of basic modal
logic: ‘essentially the “ultimate” program logic’ (Vardi 1998).

I Can express many lesser logics (such as PDL, ‘CTL⇤’).
Increasingly used for theoretical purposes.
But few people can read or write complex µ-formulas!

I We didn’t show the semantics is always well defined (no time).

I Big omission: didn’t look at the game-theoretic semantics of
the modal µ-calculus. This is particularly useful for more
complicated formulas with ‘nesting’ of fixed point operators:

µp ⌫q((s ^ ⇤p) _ (¬s ^ ⇤q))

I Sahlqvist theory for µ-calculus is still being developed.

125

Summary of the course

We introduced basic modal logic with ⇤. (We mentioned other
modal logics: eg. PDL.)

We saw how certain modal formulas correspond to frame properties
(reflexivity, transitivity, etc). General form: Sahlqvist’s theorem.
So we can begin to tailor modal logic to applications.

We saw how p-morphisms preserve modal formulas, and
bisimulations exactly capture their strength. So we see their
limited expressivity.

We looked at the mu-calculus, a powerful extension of basic modal
logic of increasing popularity in applications.

126

Limitations of the course

Through lack of time, we did not cover:

I Canonical model & canonicity, filtration.
I Model checking (done in 3rd year verification course).
I Decidability. Complexity (you need course 438 for this).
I Many-dimensional modal logics. Formulas are evaluated at

sequences of possible worlds. Eg intervals of time,
multi-agent/distributed systems. The going gets tough.

I Related topic: first-order modal and temporal logic.
I Hybrid logic. Spatial logic. Coalgebras. Description logic.
I Algebraic logic. By regarding models as algebras, and using

di↵erent techniques, this allows a finer analysis.
I A lot more.

See the books (eg. Blackburn–de Rijke–Venema) for more
information on these areas.

Enjoy your holidays!

127

