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SUMMARY: Early detection of actual or potential schedule delay in field construction activities is vital to 

project management. This entails project managers to design, implement, and maintain a systematic approach 

for construction progress monitoring to promptly identify, process and communicate discrepancies between 

actual and as-planned performances. To achieve this goal, this research focuses on exploring application of 

unsorted daily progress photograph logs available on any construction site as a data collection technique. Our 

approach is based on computing- from the images themselves- the photographer’s locations and orientations, 

along with a sparse 3D geometric representation of the as-built site using daily progress photographs and 

superimposition of the reconstructed scene over as-planned 4D models. Within such an environment, progress 

photographs are registered in the virtual as-planned environment and this allows a large unstructured collection 

of daily construction images to be sorted, interactively browsed and explored. In addition, sparse reconstructed 

scenes superimposed over 4D models allow site images to be geo-registered with the as-planned components 

and consequently, location-based image processing technique to be implemented and progress data to be 

extracted automatically. The results of progress comparison between as-planned and as-built performances are 

visualized in the D
4
AR (4D Augmented Reality) environment using a traffic light metaphor. We present our 

preliminary results on three ongoing construction projects and discuss implementation, perceived benefits and 

future potential enhancement of this new technology in construction, in all fronts of automatic data collection, 

processing and communication. 
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1. INTRODUCTION 

Early detection of actual or potential schedule delay or cost overrun in field construction activities is vital to 

project management (Halpin 2006). It provides the opportunity to initiate remedial actions and increases the 

chance of controlling such overruns or minimizing their impacts. Since schedule delays and cost overruns 

diminish profits of a project, it is easy to see why both project managers and project executives are perceptive to 

any deviation. This entails project managers to design, implement, and maintain a systematic and comprehensive 

approach for progress monitoring to promptly identify, process and communicate discrepancies between actual 

(as-built) and as-planned performances as early as possible. In this paper, monitoring is defined as collecting, 

analyzing, recording, and reporting information concerning key aspects of project performance at the 
appropriate level of detail required by project managers and decision makers. 

 

Despite the importance of progress monitoring, systematic implementation of such framework can be 

challenging because: (1) Current progress monitoring is time-consuming as it needs extensive as-planned and as-

built data extraction (Navon and Sacks 2007). Every day, superintendents and field engineers study 2D as-

planned drawings, construction details as well as project specifications, review progress perceived by that date 

and study schedule and work breakdown structure to detect the work to be performed. Subsequently, they 

perform, monitor and supervise site activities and for the work performed, they collect site photographs and 

document daily construction reports; (2) The excessive amount of work required to be performed may cause 

human-errors and reduce the quality of manually collected data and since only an approximate visual inspection 

is usually performed, makes the collected data subjective; (3) Existing methods for monitoring such as weighted 

milestones and budget-based monitoring are also non-systematic and create a tendency to let project as-planned 
inputs serve as proxy measures for performance outputs which affects the quality of the results (Meredith and 

Mantel 2003). They may also create a time-lag between the time progress is reported and the time that progress 

is actually accomplished; (4) In addition, progress reports are visually complex, and they do not effectively 

represent multivariable progress information (i.e., schedule, cost, and performance) nor do they intuitively reflect 

information pertaining spatial aspects of the construction progress and their associated complexities (Kymell 

2008, Poku and Arditi 2006; Koo and Fischer 2000); and (5) Current reporting methods increase the time 

required to describe and explain the progress situation in coordination meetings and in turn could delay the 

decision making process (observed by authors and reported in Golparvar-Fard et al. 2006). In summary, with 

current methods, it may be not be easy to understand the progress situation clearly and quickly.  

Most of the current techniques for automating progress data collection (such as laser scanners, RFID and 

embedded sensors) are promising if one wishes to eliminate labor-intensive and non-value adding tasks 

associated with manual progress data collection. A drawback is the necessity to add new tasks that need to be 

performed before, during, or after utilization of such technologies at a construction site (El-Omari and Moselhi 

2008, Kiziltas et al. 2008, Akinci et al. 2006).  Barcodes and RFID sensors are excessively time consuming to set 

up and costly for many projects. Additionally they cannot be attached to many types of components or capture 

progress of partially installed components. Laser scanners are also expensive, require experienced people for 

operation, could document excessive noise within dynamic scenes, and require manual data processing and 

selection as well as a preparation time for warming up (Kiziltas et al. 2008). In addition, laser scanners only 

provide Cartesian coordinate information of the scanned scene.  Working with such featureless data and without 

any semantic information of the scene (Kiziltas et al. 2008), geometric reasoning is challenging and induces 

estimation errors� Also none of these techniques (other  than when site images are overlaid on laser scanners 

point clouds (El-Omari and Moselhi 2008)  provide any reliable visual information about work sequence or site 

logistics. To address all these issues, in our approach we have taken all the aspects of progress monitoring into 

account: collection, analysis, communication and reporting. We have looked into the existing simple yet robust 

progress data collection and communication techniques available on any job site to see how we can effectively 

and efficiently build upon existing information and data collection techniques to address mentioned problems. 

Such information and techniques are categorized on two fronts: 

 (1) As-planned progress data:  We consider using three-dimensional/ four-dimensional models as as-planned 

data repositories to facilitate accessing geometrical information, visualizing planned schedule and 

communicating progress. Visualization of the as-planned progress in 4D environment enables project 

participants and clients, regardless of their level of construction knowledge and expertise, to identify spatial 

layouts and explore construction processes (Hartmann et al. 2008, Hartmann and Fischer 2007, Woksepp and 

Olofsson 2006). In addition, 3D/4D models can provide a consistent visual base-line platform of as-planned 

information (Golparvar-Fard et al. 2009, Song, Pollalis, and Peña-Mora 2005) and act as an underlying structure 

for monitoring progress where deviations between the as-planned and as-built progresses could be visualized.  
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(2) As-built progress data: Considering current technical inefficiencies of available data collection technologies 

i.e., laser scanners, bar codes and RFID tags we investigate the idea of processing daily progress photographs to 

enhance collection, analysis and communication of as-built data.  Digital photography together with internet has 

enabled construction management companies as well as sub contractors, project owners and architects to share 

progress photographs on a truly massive scale. Nowadays it is a common practice for jobsite images to be 

gathered periodically, stored in central databases, and utilized in communication and coordination of project 

tasks (Soibelman et al. 2008). Site photographs not only have the advantage of being understandable to those 

who are not well-versed in studying written material or numerical data analysis or even those who question 

verbal or written reports (Oglesby et al. 1989), but also allow a large amount of progress data to be understood 

and absorbed quickly. Just as the Chinese proverb says “A picture is worth a thousand words”, it could be 

imagined how daily site photograph logs, which consist of many site images, can help as comprehensive sources 

of as-built data. Furthermore photographs provide a visual value in understanding large amount of information, 

and could be automatically processed and converted into information regarding construction progress (Brilakis 

and Soibelman 2008, Golparvar-Fard and Peña-Mora 2007, Navon and Sacks 2007, Wu and Kim 2004, Abeid et 

al. 2003) and yet compared to other data collection techniques, do not burden efficiency of the project 

management processes by requiring significant data collection efforts. 

In this paper, we focus on the application of progress site imageries as well as 3D/4D models for progress 

monitoring. First we review current progress monitoring practice and its deficiencies in detail as well as the 

state-of-the art technologies for automatic progress monitoring data collection and associated visualization 

techniques. Then we present our work on combing daily progress images and 3D/4D models to create the 4 

Dimensional Augmented Reality (D4AR) models.  

The D4AR models consist of a new image-based modeling technique for visualizing progress monitoring 

wherein progress discrepancies between as-planned and as-built construction performances are visualized 

through superimposition of 4D as-planned models over site photographs using different visualization techniques 

such as a traffic light metaphor. Our approach is based on computing, from the images themselves, the 

photographer’s locations and orientations, along with a sparse 3D geometric representation of the as-built scene 

using daily progress photographs and superimposition of the reconstructed scene over the as-planned 4D model. 

Within such an environment, progress photographs are registered in the virtual as-planned environment, allowing 

a large unstructured collection of daily construction images to be sorted, interactively browsed and explored. In 

addition, sparse reconstructed scenes superimposed over 4D models allow site images to be geo-registered with 

the as-planned components and consequently, a location-based image processing technique to be implemented 

and progress data to be extracted automatically. The result of progress comparison study between as-planned and 

as-built performances can subsequently be visualized in the D4AR environment. In such an environment, a 

construction project manager would be able to: 1) use the 4D as-planned model as a baseline for progress 

monitoring, compare it to daily construction photographs and study workspace logistics; 2) interactively and 

remotely browse and explore registered construction photographs in a 3D environment; 3) automatically analyze 

registered images and quantify as-built progress; 4) automatically measure discrepancies between as-planned and 

as-built performances; and 5) visually represent progress discrepancies through superimposition of 4D as-

planned models over progress photographs, make control decisions and effectively communicate those with 

project participants.  

Figure 1 shows a comparison between traditional representations of construction as-planned and as-built data 

and how D4AR associates these two sets of information to visualize progress discrepancies and workspace 

logistics in single imagery. To that extent, we present reconstruction of the as-built scene, superimposition over 

as-planned model and visualization of the discrepancies, and discuss guidelines for automatic measurement of 

progress. The resulting system is robust and reliable in practice. Finally we have included preliminary results of 

generating these models for three ongoing construction projects, ranging from $32M to $62M for a period of two 

to two and a half years, and conclude with a discussion of limitations and future works. 

2. PROGRESS MONITORING: CURRENT PRACTICE CHALLENGES AND 
CURRENT EMERGING TECHNOLOGIES  

Well-depicted baseline, systematic data collection, rigorous comparison of the as-planned and as-built progress, 

and effective presentation of measured deviations are key ingredients for effective project control. Unfortunately 

many challenges undermine the ability to implement these objectives in practice. Next we examine some of these 

challenges: 
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2.1 Challenges in current practices 
 

(1) Current progress monitoring is time-consuming and labor-intensive: Currently many construction projects are 

not systematically monitored, i.e., there is no monitoring plan for when and how to monitor progress, making it 

very difficult to take corrective actions on a timely basis. Current methods require manual data collection and 

extensive as-planned and as-built data extraction from construction drawings, schedules, budget information and 

field reports produced by superintendents, subcontractors, trades foremen and project managers (observed by 

authors and also reported by Navon and Sacks 2007).  Occasionally, field personnel collect progress data from a 

construction site at certain time intervals, analyze and deliver them to project manager in different formats (e.g., 

as-planned data such as construction drawings, spreadsheets, bar charts, CPM or as-built data such as 

daily/weekly progress reports, progress graphs, site photographs and videos). Such discrete reporting does not 

explicitly convey problems in a timely manner, since project managers need to devote a significant amount of 

time and effort to sort out, prioritize and interpret these data (Golparvar-Fard et al. 2009, Song, Pollalis, and 

Peña-Mora 2005). Figure 2 shows an example of existing mechanisms of reporting perceived progress in a 

coordination meeting at one of the projects under study. 

(2) Quality of manually collected and extracted progress data may be low: Progress data– usually manually 

acquired by field staff– is dependent upon what they are able to measure on the construction site. Usually, the 

information collected tends to be based on their interpretation of what needs to be measured, the way it needs to 

be measured and the way it needs to be presented, and therefore it may not reveal the actual impact of site 

circumstances on the construction project. More importantly their approach may affect quality of the collected 

data and make it more susceptible to data error since the ability of measuring progress is based on the expertise 

of the field staff and the tools that are available to them. Figure 3 represents a sample of a daily progress report 

from one of the projects under study. As seen in this case, there is only a percentage documented per activity 

without further details. 

(3) Existing methods of measuring progress are non-systematic and metrics are subjective: Accurate 

measurement of the progress performance usually poses the most difficult data gathering problem as there may 

be a tendency to let project inputs serve as proxy measures for output (Meredith and Mantel 2003). For example, 

a concrete subcontractor reports to the project manager that they have completed 60% of the roof work. Does it 

mean 60% of the planned area/volume of concrete pouring is finished? Is it 60% of the planned concrete that has 

been used? Or is it 60% of the planned labor-hours that have been spent? Is it 60% of the originally planned 

work or the actual requirement that is complete? If the item being referenced is a small work unit, it may not 

have a significant difference.  However, in the case where the references are to the whole task or project, 

assumption of input/output proportionality could be very misleading (Meredith and Mantel 2003). This issue is 

found in the most commonly used monitoring methods:  (a) Monitoring physical progress in percentile: used in 

most construction fields and heavily reliant upon experience and knowledge of the project management 

personnel. This metric is subjective and inefficient in presenting progress due to its abstract nature of 

FIG. 1: A comparison between traditional representations of construction as-planned and as-built data and how 

D
4
AR associates these two sets of information to visualize progress discrepancies and workspace logistics in 

single imageries. 
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representing physical progress since the actual progress is determined by evaluation of the field staff; (b) Budget-

based monitoring: based on the percentage of the budget paid to contractors according to the schedule-based 

inspections. This method of monitoring creates time-lag between progress estimations and schedule updates.  In 

addition, judgments are often subjective and misleading, especially if field staff makes any erroneous decisions 

on the volumes of material consumed or the actual physical progress made. This in turn affects the robustness of 

the method (Shih and Wang 2004). Without a comparative analysis in the construction plan, resources, and cost 

data, inaccurate assumptions and measurements on the progress could be made. Consequently, mistakes such as 

over paying and overlooking of an expected delay might occur.  

(4) Progress monitoring reports are visually complex: Control over the decision making for corrective actions 

and schedule revisions usually takes place in progress coordination meetings.  A wide range of individuals (e.g., 

from the owners and architects to subcontractors and trades foremen) with different areas of expertise and 

interests often attend these meetings. In these face-to-face interactions, progress information needs to be easily 

and quickly communicated among the participants. However, none of the existing reporting methods (e.g., 

progress S curves, schedule bar charts, photographs, and textual reports) easily and effectively present 

multivariable information (e.g., schedule, cost, and performance) in a holistic manner nor do they intuitively 

reflect information pertaining to the spatial aspects of construction progress and their associated complexities 

(Poku and Arditi 2006, Koo and Fischer 2000). Existing representations cause a significant amount of 

information to be inefficiently presented in the coordination meetings; as a result, extra time needs to be spent in 

describing existing problems and explaining the context in which problems occurred rather than understanding 

the causes of the problems, evaluating alternatives to solve the problems and discussing corrective actions (based 

on field observations and as observed in Golparvar Fard et al. 2006). Therefore with the current methods, it is 

not easy to understand progress of a project clearly and quickly.  

2.2 Emerging field data capture technologies 

For more than a decade, researchers have been pointing out deficiencies in current construction site data 

collection practices (e.g., manual data collection, need for systematic collection and processing of as-built data to 

produce useful and real-time progress information (Kiziltas et al. 2008, Bosche and Haas 2008, Navon and Sacks 

2007, Navon 2006, Akinci et al. 2006; Chen and Wong 2002, Echeverry and Beltran 1997). According to 

(Navon and Sacks 2007) these research efforts have been motivated by: (a) an increasing need for real-time 

feedback and monitoring information, (b) rapid and cost effective technological development in automated data 

FIG. 2: An example of existing progress reporting techniques. Construction drawings and work schedules are 

hung on a construction site trailer’s wall to communicate progress with contractors and subcontractors. 

Progress is visualized in two-dimensional drawings using annotations and color-coding. The date on which 

progress is made is also annotated on different sections. Different work plans are hung over each other.
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collection technologies for construction. The main technologies designed and implemented for automatic data 

collection are barcode and Radio Frequency Identification (RFID) tags, Global Positioning System (GPS), Laser 

scanners and embedded sensors: 

• Barcode and RFID tags have been used to capture and transmit data from a tag embedded or attached to 

construction products (Kiziltas et al. 2008, Navon and Sacks 2007, Ergen et al. 2007, Jaselskis and El-

Misalami 2003, Echeverry and Beltran 1997). Unlike barcodes, RFID tags do not require line-of-sight, 

close proximity, individual reading and direct contact (Kiziltas et al. 2008). Active RFIDs also have 

higher reading ranges and allow data to be stored on them; however their performances are reduced in 

proximity of metals and liquids in particular when RFID is used at higher frequencies (Kiziltas et al. 

2008). Although RFIDs and barcodes potentially eliminate non-value adding tasks associated with 

project management processes, they require frequent installation and maintenance. Additionally they 

cannot be attached to many types of components and they do not capture progress of partially installed 

components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Laser scanners have been used for construction quality control (Akinci et al. 2006, Jaselkis et al. 2006), 

condition assessment (Gordon et al. 2004), component tracking (Bosche and Haas 2008, Teizer et al. 

2005) and progress monitoring (El-Omari and Moselhi 2008, Bosche and Haas 2008, Su et al. 2006). 

Although laser scanners are promising to automate data collection, still they are expensive and there is a 

set of challenges in implementing such technology on construction sites. These limitations include 

discontinuity of the spatial information, mixed pixel phenomenon (Kiziltas et al. 2008) as well as 

scanning range and sensor calibration. For example, any moving object in line of sight of the scanner 

would not allow the point cloud of the under-study object to be captured. In addition, the moving object 

creates additional effort of the user to manually have the noisy point cloud fixed. Furthermore as the 

laser scanner gets away from the objects, level of details within the captured components are reduced. 

Laser scanners also require regular calibrations as well as warm up time. They are not easily portable 

FIG. 3: A sample of a real project progress/inspection report (some information is removed for 

confidentiality). As shown from the “Work Performed” section, it is very difficult to figure out how 

much real progress has been perceived or to figure out if schedule-based or monetary progress has been 

made. 
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and cannot efficiently be used for scanning indoors. These limitations are a part of time consuming 

process of data collection; nevertheless since the type of data they provide only contains Cartesian 

coordinate information of the scanned scene, processing such data is time consuming and also they do 

not carry any semantic information, such as which point belongs to what structural components. 

Working with this type of featureless data makes geometric reasoning based on this data tedious and 

error prone (Kiziltas et al. 2008). Also none of these techniques provide any visual reliable information 

about work sequence, site logistics or construction crews. Recently El-Omari and Moselhi (2008) 

presented a new approach for progress data collection by using 3D laser scanners and photogrammetry. 

The method was shown to be less time-consuming and has higher cost savings compared to single 

application of laser scanners. Their suggested approach minimizes access limitations of scanner 

placement but still the processing time required for each scan may considerably be high and the 

registration of images and 3D point cloud needs further adjustments. Also laser scanners may not give 

the possibility of aligning site images - taken from arbitrary viewpoints- with the 3D point cloud; yet in 

El-Omari and Moselhi (2008) the common points between laser scanner’s 3D point clouds with images 

have been selected manually. Manual selection of common points between each image and point cloud 

(as experienced by the authors) makes such an approach difficult to use.  
�

• GPS, Geographical Positioning Systems as a location tracking tool also need line-of-sight between the 

receiver and the satellite; therefore it cannot normally operate indoors, limiting the project context that 

could be monitored. Behzadan et al. (2008) suggests using WLAN technique as a tracking technique for 

indoor locations but they also report difficulties in using WLAN set ups on actual construction sites, 

and they relate these inefficiencies to ongoing works (i.e., changes in soil, structure, plant and 

equipment, site layout). These inefficiencies necessitate WLAN system to be calibrated after regular 

intervals to maintain a high level of accuracy. Such regular calibration requirements may make such a 

system difficult to manage.�
�

• Other techniques such as wearable computers (PDAs) along with speech recognition and touch screens 

have also helped in capturing construction site data electronically (Reinhardt et al. 2000), but current 
systems still need full time observer(s) to input and process the information (Navon and Sacks 2007) 

and have not minimized the time required to process the data.  

 

Also, none of these techniques besides (El-Omari and Moselhi 2008) - in which photographs are used to provide 

more information about the context of the scene- provide visual and reliable information about work sequence 

logistics, site layout or construction crew. Our approach addresses all the aspects of progress monitoring: 

collection, analysis, communication and reporting. We have looked into the existing simple yet robust progress 

data collection and communication techniques available on construction sites to see how we can effectively and 

efficiently use such information to address mentioned problems. Such information is categorized on two fronts: 

as-planned visualization as a baseline of progress monitoring, and as-built data collection and visualization 

techniques. In the section that follows some of the previous works which have led to this research are briefly 
introduced. 

2.3 As-planned visualization as baseline for progress monitoring 

Visualization technologies have been widely adopted in construction, from visualizing control data (e.g., Korde 

et al. 2005, Songer and Heys 2003) to visualizing building products, to facilitate constructability reasoning or 

workability of the operation methods selected for construction (e.g., Hartmann et al, 2008, Kamat and Martinez 

2008). The three main categories of these technologies that have been implemented to contribute to visualization 

of progress information are:  

4D models as a progress monitoring baseline for simulating as-planned progress 

These models are mainly developed for detecting spatial and temporal conflicts, understanding construction 

logistics, coordinating construction with subcontractors and trades and visualizing planned progress to owners 

(Hartmann et al. 2008, Kamat and Martinez 2008, Hartmann and Fischer 2007, and Staub-French and Khanzode 

2007). These kind of pre-construction time-based models enable project participants and clients, regardless of 

their construction knowledge, to understand spatial constraints and explore construction alternatives before 

construction starts. While these models may not take into account every incident that might occur to the building 

under construction, they could be used as proper baselines for as-planned information of a project in our 

proposed research. These 4D models not only provide a realistic visual platform of the as-planned database, but 

also will serve as an underlying structure for monitoring progress where deviations between the as-planned and 

as-built progress status could be visualized.  
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Color/tone variations and motions for visualization of progress discrepancies 

In this context, Song, Pollalis, and Peña-Mora (2005) introduced a project dashboard wherein a 3D-model visual 

representation was used to represent progress. Multiple project data sets were applied to geometric attributes 

(e.g., shape, faces and edges) of a building model by means of color- tone variations and motion. The results of 

this study suggests that consistent application of colors allows progress metrics to be represented easily and also 

eliminates visual complexities which are caused by complexities associated with large-scale and sophisticated 

building product models. The preliminary results of using color-tone variations form a suitable baseline for 

visualizing progress metrics and we expand our proposed research methodology and system upon this concept. 

Augmented reality for visualization of progress 

Within this category, Lee and Peña-Mora (2006) suggested overlaying as-planned models on photographs and 

conceptually formed a method for visualization of construction progress where deviations between planned and 

as-built performance models were conceptually represented in an AR (Augmented Reality) environment (such as 

ones developed by Behzadan et al. 2008; Wang and Dunston 2005). Using traffic light and weather metaphors, 

progress was manually visualized in comprehensive single imageries. The findings from all these studies on as-

built data collection, as-planned modeling and visualization of progress monitoring form a stepping stone 

(Golparvar-Fard et al. 2007, Golparvar-Fard and Peña-Mora 2007) upon which the proposed framework for 

interactive visualization of construction progress monitoring with the D4AR model is developed. 

2.4 Progress Photography for As-built visual model 

Site photographs are becoming valuable sources of accurate project information (Soibelman et al. 2008). 

Nowadays, it is a common practice among all parties involved in projects (from construction managers to 

subcontractors and from clients to architects) to take digital photographs from construction sites to create a 

complete progress photo-log and utilize the log for coordination, communication as well as supplementary 

documents to potential claims. Cameras, especially if equipped with zoom lenses, can cover extensive areas of a 

construction site. They also have the capability of providing real-time positioning information about multiple 

entities concurrently and are capable of self-calibrating and minimizing positioning errors when multiple 

cameras are installed (Brilakis and Soibelman 2008). All of these facts indicate that cameras and project 

photographs have evolved into a significant and irreplaceable part of project documentation and thus provide 

solid participations for their usage as visual, real-time as well as easy-to-obtain and low-price data capturing 

technology which does not need any expertise.  The availability of such rich imagery of large parts seen under 

different viewing conditions presents enormous opportunities for progress monitoring, study of workspace 

logistics, quality assurance/ control, safety, as well as construction productivity. From the stand point of progress 

monitoring, these site photographs present the ultimate data set, which should give the ability to model a 

significant portion of as-built geometry at high resolution respective to conditions where enough photographs are 

being taken. This will also enable 3D visualization of as-built scene, progress data collection, localization, 

communication and recognition that can impact a construction project at large. Previous research efforts in using 

photographs for the purpose of progress monitoring goes back to Oglesby et al. (1989) wherein it was suggested 

that the application of site photographs allows analysts to focus on the details of the work face while being away 

from site tensions and confusions and perform time-studies on time-lapsed photographs for productivity 

improvement. However, lack of advanced technologies for automation, had made the process time-consuming 

and unattractive to some extent. More recently Abeid et al. (2003) presented Photo-Net II wherein time-lapse 

digital movies of construction activities were linked with critical path activities. In Photo-Net II, time-lapse 

photography has been used as a source of spatial as-built information; however, as-planned spatial information 

has not been integrated into the system.  In addition, Golparvar-Fard et al. (2009) also recently presented an 

Augmented Reality (AR) system wherein 3D models are superimposed over time-lapsed photographs. In that 

environment, 3D models were semi-automatically superimposed over one image using control points and same 

camera configuration was applied to all subsequent images, allowing progress deviations to be visualized over 

time-lapsed images. Fig 4 shows an example of such augmented photographs where the 3D model is 

superimposed over the photograph and different schedule deviations are visualized using a traffic light color 

spectrum.  
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Such images are fairly easy to obtain, are inexpensive and easily understandable; however, time-lapse 

photography has a series of limitations for progress monitoring. Time-lapsed photos only show what is not 

obstructed by objects such as construction machinery or scaffolding. Once the building envelope is placed, the 

application of time-lapsed images is limited, since it will be impossible to track progress inside the building. In 

addition they only show what is within range and field-of-view of the camera. Various illumination, shadows, 

weather and site conditions also make it difficult to use time-lapse photography for performing consistent image 

analysis on such imagery. Figure 5 shows some of these effects within a limited time-lapsed dataset. As shown 

in Figure 5-a, the slab has casted a shadow over interior structural components and have made it difficult to see 

inside. Also in Figure 5-b, the shadow casted by the adjacent building or the fog in Figure 5-c have almost made 

it impossible to understand the scene, and in turn make it very difficult to use a consistent image processing 

technique for all images or different parts within a single image. Even in normal conditions only a limited area of 

a time-lapsed photo will be associated with each construction component (may be even less than 50 square 

pixels). Developing image processing techniques that can operate on such limited-size patches is a major 

challenge. 

 

 

 

  

 

 

 

 

In Golparvar Fard et al. (2009), Leung et al. (2008) and Abeid et al. (2003), installation of multiple cameras on a 

construction site is suggested; however again each camera will have the mentioned limitations and such a limited 

number of views cannot overcome limitations of occlusion, obstruction and weather conditions. Given the 

benefits and limitations of time-lapse photography even where multiple cameras are installed, comprehensive 

visualization of progress will not be possible. This motivated the authors to look into a larger visual dataset, i.e., 

the unordered set of progress imagery that is casually being taken on construction sites. These images are usually 

taken by construction managers, owner representatives, contractors and subcontractors and have the capacity to 

enable complete visualization of a construction site. Furthermore they have minimal redundant occlusions since 

photographers usually have the tendency of taking photos from particular components on the site as opposed to 

their potentially occluding peripheries. This makes site photo-logs even more attractive especially because such 

FIG. 5: Time-lapsed progress Photographs taken during construction of Institute of Genomics Biology, UIUC; 

Photographs courtesy of Information, Tech & Communication Services, College of ACES; used by permission. 

(c) 01/04/05 1:00PM (d) 08/04/04 1:00PM (a) 04/04/05 1:00PM (b) 01/16/05 4:30PM 

FIG. 4: The as-planned 3D model of UIUC College of Business Instructional Facility project is superimposed 

over the site image, visualizing progress as of 01/03/2007using traffic light metaphor color spectrum. Photo 

courtesy of College of Business, UIUC; used by permission. (Image best seen in color). 
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datasets can enable a more comprehensive 3D visualization of as-built scene, localization, communication and 

recognition that can ultimately impact a construction project at large.  

 

To date, the application of this site imagery for a complete as-built reconstruction and progress recognition is 

almost unexploited. Site photographs are usually not organized according to the locations they are taken from, 

are uncalibrated and are also widely variable and under various illumination, resolution, and image quality. 

Developing computer vision and image processing techniques that can effectively operate on such imagery is a 

major challenge. One key challenge is image registration, i.e., figuring out correspondences between images, and 

how they relate to one another in a common 3D coordinate system. This procedure is commonly called Structure 

from Motion (SfM). While substantial research has been done in these areas over the last decade (Snavely et al. 

2008, Akbarzadeh et al. 2006, Brown and Lowe, 2005, Hartley and Zisserman 2004, Triggs et al. 1999) many 

challenging aspects are still unsolved. For instance, there is a necessity to work with images that are capturing 

sites whose appearance is constantly changing due to progress or excessive movement of objects (e.g., 

construction crew and machinery). Furthermore, progress photographs taken at a project are either from specific 

activities under progress and/or are taken in a panoramic manner and therefore they may not carry enough 

information about perspective (since panoramic images form a plane) for a more global reconstruction of the as-

built construction scene. In the sections that follow, we first present some of the state-of-the-art steps towards 

solving this problem. Then we present our preliminary results in reconstructing and localizing the as-built scene 

and registration of progress images. 

3. OVERVIEW OF RESEARCH WORKS LEADING TO D
4
AR MODEL 

Within the last decade, there have been significant increases in capabilities of computer vision and image 

processing techniques in feature detection, localization and registration of images. One of the key issues has 

been to discover the presence of corresponding features across multiple views in the same scene. Once a set of 

feature correspondences are known between these images, camera positions and orientations could be calculated. 

These techniques are still under consistent developments in computer vision, computer graphics and multimedia 

applications domains. In the following, some of the works that have further inspired development of the D4AR 

model are introduced: 

Feature Detection and Correspondence 

Image matching is a fundamental aspect for reconstructing a 3D (either sparse or complete) structure from 

multiple images in computer vision domain. First step for this task is extracting distinctive invariant features 

from images to be used to perform reliable matching between different views of an object or scene. These 

features should be invariant to image scale and rotation changes, and as shown by Moreels and Perona (2008), 

Tuytelaars and Mikolajczyk (2008),  Mikolajczyk et al. (2005), Tuytelaars and Van Gool (2004) and Lowe 

(2004), allowing robust matching across a substantial range of distortion, change in 3D viewpoint, addition of 

noise, and change in illumination. The features need to be highly distinctive, in the sense that a single image can 

be correctly matched with high probability against a large database of images. Mikolajczyk et al. (2005) review 

some of these techniques and evaluated their performances. In our research, we have used Lowe’s SIFT features 

- Scale Invariant Feature Transforms (Lowe 2004)- which is widely used in the computer vision community and 

achieves good performances over an acceptable range of viewpoint changes. Recent methods have taken 

advantage of these properties (Savarese and Fei-Fei 2007, Snavely et al. 2007, Rothganger et al. 2006, Niebles et 
al. 2006, Brown and Lowe 2005). Figure 6 shows some of these features that are identified in a construction 

image. 

Structure from Motion 

Structure from Motion (SfM), aims to reconstruct the unknown 3D scene structure and estimate unknown camera 

positions and orientations from a set of feature correspondences among an image set (Ma et al. 2006, 

Akbarzadeh et al. 2006, Hartley and Zisserman 2004, Faugeras et al. 2004, Pollefeys 2004, Triggs et al. 1999, 

Tucco and Verri 1998, Tomasi and Kanade 1992). Bundle adjustment has been shown to be a critical tool for 

obtaining a robust 3D reconstruction from a large number of sparse images. Experiments conducted by Snavely 

et al. (2007) and Bown and Lowe (2005) show bundle adjustment is robust with respect to changes in image 

resolution, time, focal length variability, and illumination changes. While these techniques have been applied for 

image-based walkthroughs and virtual touring, our paper marks the first successful demonstration of SfM 
technique being applied to geospatially photographs that are capturing a dynamic construction scene over the 

time span of its construction. 
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Image based modeling and rendering 

Image based modeling is the process of generating 3D models from a set of input photographs. In the computer 

graphics domain, SfM and model-based reconstruction are named under image-based modeling techniques. 

Notable examples of such works are the semi-automated Façade system of Debevec et al. (1996) which was used 

to create fly-through of University of California Berkeley campus and the Phototour of (Snavely et al. 2006) 

which was used to create virtual tours among thousands of online images. Image based rendering techniques can 

be used for synthesizing new views of a scene from a set of photographs (e.g., Avidan and Shashua 1997, 

Szeliski 1996, Seitz and Dyer 1996 and Chen and Williams 1993). Perhaps among the many works done in these 

areas, our approach needs to be closer to Phototour (Snavely et al. 2006) and Sea of Images (Aliaga et al. 2003) 

where a large collection of images are taken throughout architectural spaces. In our work, images are casually 

acquired on the site (as in Snavely et al. 2006), rather than being taken from fixed locations or on a guided robot 

(as in Aliaga et al. 2003). In our approach we do not need to render the complete scene structure (as in Debevec 

et al. 1996), rather we only need to render images on camera frusta. In this manner, we bypass the more 

challenging tasks of full photorealistic or non-photorealistic rendering of the as-built site. 

As-planned Model 

The application of 4D technology in construction site simulation, for the purposes of process evaluation and 

communication, has been under development for some time. Forerunners to this field were the works of 

Williams (1996) and Collier and Fischer (1996). In a 4D system, combined description of schedules and 

geometries of a particular scheduled event in a chronological manner helps to visualize construction process 

(McKinney et al. 1998). Techniques such as (Kamat and Martinez 2008, and Behzadan and Kamat 2007) also 

exist where construction operations are simulated and visualized in 4D virtual or Augmented Reality (AR) 

environments. The latter techniques focus on visualization of construction operations and require location 

tracking techniques which is obtained either by GPS or WLAN (Behzadan et al. 2008). Because our approach 

does not require GPS or any other instrument for location tracking, it has the advantage of being applicable to 

the existing image databases that are already being collected on a daily basis on almost every construction site. 

Our proposed feature correspondence estimation and sparse reconstruction of the as-built scene goes beyond 

what is possible in mentioned location-based systems since it does not need any additional work (no setup or 

calibration time) from field superintendents as they usually take photos from ongoing construction on a daily 

basis.  

 

4. OVERVIEW OF THE D
4
AR MODEL 

Our system like other Augmented Reality (AR) applications requires accurate information about camera 

extrinsic parameters (i.e., relative location and orientation), and intrinsic parameters (i.e., focal length and 

distortion of the lenses) of each construction site camera. In addition the superimposition of the reconstructed 

scene over as-planned model requires absolute locations of the cameras. However in our system, we do not rely 

on the camera itself or any other equipment such as GPS or wireless location trackers for detecting location, 

orientation, or geometry. Rather, we compute such information from the images themselves using computer 

vision techniques. In this section, the steps towards reconstruction of the as-built scene and superimposition of 

3D model over photographs are presented as follows: 

FIG. 6: SIFT Features detected on a daily progress photograph (08/27/08), Student Dining Hall Project – 

Photograph  is taken right after concrete was placed in the First Floor Slab; Photographs courtesy of Turner 

Construction Company; Champaign, IL; used by permission. 
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4.1 Reconstructing cameras and sparse as-built scene  

We first detect a set of robust features in each image, then match these features across images, and finally run a 

robust SfM procedure to recover camera intrinsic and extrinsic parameters. We use EXIF tag of image files to 

initialize our estimate on focal length. However using EXIF tag is not necessary when this information is 

inaccurate. This component of the system allows photographs being taken from any type of camera to be 

applicable for sparse reconstruction. In this system, SfM only provides the relative position of each camera, while 

we are interested in absolute coordinates. Therefore we calculate the transformation between as-planned and as-

built models using a method similar to that of (Golparvar-Fard et al. 2009). We registered an as-built 3D set of 

points to a set of as-planned 3D model points that minimizes the sum of squared residual errors between the set 

and the model. Each of these steps is described in the following subsections: 

Keypoint detection and matching 

The first step in reconstruction of the as-built scene and geo-registration of progress images is to find feature 

points in each image that could be used to estimate the initial structure of the scene. In our work, we use the 

SIFT keypoint detector (Lowe 2004), because of its good invariance to scale changes and view and illumination 

transformations as well as its widespread application in the computer vision domain. For a detailed study of 

feature detectors and descriptors, the reader can look into Moreels and Perona (2008), Tuytelaars and 

Mikolajczyk (2008), Mikolajczyk et al. (2005), Tuytelaars and Van Gool (2004) and Lowe (2004) wherein 

different feature detectors and descriptors are compared with each other. A small image of 500x500 pixels 

typically gives about 1,500 to 2,000 SIFT features. As a proof of concept for keypoint detection and matching, 

we run SIFT detection on a subset of 160 daily progress photographs. This data set of images was taken on the 

Student Dining and Residence Hall construction project of Turner Construction Company in Champaign, IL. A 

field engineer carried a high-resolution SLR camera (Nikon D300) for this task. The choice of a high resolution 

camera was only based on the possibility for further enhancement of the algorithm so the quality of the images 

could be synthetically reduced (in our experiment reduced to about 3 Mega Pixels) and the keypoint detection 

could be tested on synthetically lowered resolution images. Figure 7 shows these points on a subset of images on 

the same dataset.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once the features have been detected over the dataset, we need to detect how many of these features are matched 

in each image pair. We use SIFT descriptors to match keypoint between each image pair. Each SIFT descriptor 

is a 128-dimensional feature vector. Using (Lowe 2004) approach, once keypoints are identified, the gradient of 

intensities is captured over a window of pixels centered around a keypoint. Then these pixels are categorized to a 

4x4 sample windows wherein each sample window and histogram of intensity gradients are stored in 8 cardinal 

directions (4x4x8 directions = 128 dimensions). Descriptors are matched across two images by computing a 

FIG. 7: SIFT Features shown on two daily progress photographs taken on 08/27/08, Student Dining Hall 

Construction Project; Photographs are taken right after concrete was placed in the First Floor Slab; 

Photographs courtesy of Turner Construction Company; Champaign, IL; used by permission.
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distance function between corresponding histograms of intensity gradients. Features are matched by using a 

nearest neighborhood matching strategy. As experienced by Snavely et al. (2006), if the number of features is 

large enough a k-d tree matching scheme (Arya et al.1998) may be used instead; this is particularly effective 

when the dimension of the data is large (as in our case). Overall this improves the efficiency of the matching 

algorithm. To minimize computation load, we also use ANN’s priority search algorithm and instead of 

classifying false matches by thresholding the distance to the nearest neighbor, we use the ratio test described by 

Lowe (2004): for a feature descriptor in image i, we find the two nearest neighbors in image j, with distances d1 

and d2, then accept the match if d1⁄d2< 0.6.  If more than one feature in image i matches the same feature in 

image j, we remove both of such matches, as one of them is a false match. Figure 8 shows the keypoints across 

the same image pair used in Figure 8 and visualizes matches through connecting these features by solid lines. In 

this image pair, 2071 matches are found in which some false matches are also formed and visualized in lower 

image in Figure 8.  

 

 

 

 

 

 

 
 

Due to the sensitivity of the reconstruction algorithm to false matches, we further refine our process to remove 

such false matches. In our approach, once the matching features are detected in an image pair, we robustly 

estimate a fundamental matrix for the pair using RANSAC (Fischler and Bolles 1981). Fundamental matrix 

helps remove false matches as it enforces that corresponding features have to be consistent under view point 

transformation, that is: pL
T
FpR=0 (pL and pR are point coordinates and F is the Fundamental matrix; See Fig 9). In 

our model, in each iteration of RANSAC, a fundamental matrix is computed using the eight-point algorithm of 

Hartley and Zisserman (2004), and then the problem is normalized to improve the robustness to noises (Hartley 

1997).   

 

 

 

 

 

 

 

 

 

 

FIG. 8: Detected SIFT features matched over the same image pair of Figure 8. The upper image shows the first 

5 matches found (lines in blue color) and the lower images shows the overall 2071 matches found. If looked 

closely a couple of mismatches diagonal to the stream of matches are visible. 

FIG. 9: Epipolar geometry of an image pair. In this figure OL and OR are the origin of cameras. 
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As suggested by Snavely et al. (2007), we set the RANSAC outlier threshold to be 0.6% of the maximum image 

dimension, i.e., 0.006 maximum of image width or height) (about 12 and 9 pixels for two dimensions of a 

2144x1424 image). The Fundamental matrix returned by RANSAC is refined by running the Levenberg-

Marquardt algorithm (Nocedal and Wright 1999) on the eight parameters of the Fundamental matrix, minimizing 

errors for all the inliers to the Fundamental matrix.  We remove outliers to the recovered F-matrix (false 

matches) using the above suggested threshold. Figure 10 shows the keypoint matches in the same image pair as 

of Figure 8 and shows how the false matches are pulled out. 

Since for lower numbers of matches in an image pair, even after fitting a Fundamental matrix through RANSAC 

iteration, the possibility of getting false matches is still high, we set a threshold to remove image pairs with 

number of matches less than the threshold. We set this threshold to be twenty matches which seems reasonable 

to opt out false matches. After finding a set of consistent matches between all image pairs, we organize these 

matches into tracks. A track connects matching keypoints across multiple images (Snavely et al. 2006). We keep 

tracks with a minimum of two keypoints for the next phase of the reconstruction procedure. 

Structure from Motion 

Now, we recover camera extrinsic and intrinsic parameters (extrinsic: rotation, translation; and intrinsic: focal 

length and distortion) for each image and a 3D location for each keypoint. The recovered parameters should be 

consistent, in that the re-projection error, i.e., the sum of distances between the projections of each keypoint 

track and its corresponding image features, is minimized.  Similar to other SfM approaches, in our experiment 

this minimization problem is formulated as a non-linear least squares problem and solved using bundle 

adjustment. Here we briefly describe the required steps but the reader is encouraged to look into Snavely et al. 

(2007) and Triggs et al. (1999) for more details.  

First, we estimate extrinsic and intrinsic parameters of a single image pair. Since bundle adjustment as other 

algorithms for solving non-linear problems is prone to getting stuck in bad local minima, it is strongly suggested 

by many researchers (e.g., Nistér 2004) to start with a good initial image pair and good estimates for camera 

parameters in the chosen pair. This initial pair for SfM should not only have a large number of matches but also a 

large baseline, so that the initial as-built scene can be robustly reconstructed.  An image pair that is poorly 

described by a homographic transformation satisfies this condition. A 2D image homography is a projective 

transformation that maps points from one image plane to another image plane (Hartley and Zisserman 2004). We 

find the homography between all image pairs using RANSAC with an outlier threshold of 0.4% of maximum of 

image width and height, and store the percentage of feature matches that are inliers to the estimated homography. 

We select the initial image pair as that with the lowest percentage of inliers to the recovered homography, but 

with at least 100 matches (As also noted by Snavely et al. 2007). The extrinsic camera parameters for this pair 

are estimated using Nistér’s five point algorithm (Nistér 2004), and then the tracks visible in the image pair are 

triangulated. A two-frame bundle adjustment for this initial pair is performed. Next, we add another photograph 

camera to the optimization. We choose the camera that examines the largest number of estimated tracks, and 

initialize the new camera’s extrinsic parameters using the Direct Linear Transform (DLT) technique (Hartley 

and Zisserman 2004) within a RANSAC procedure. For this RANSAC step, we use an outlier threshold of 0.4% 

of maximum of image width or height. As mentioned previously we use focal length from the EXIF - 

Exchangeable image file format- tags of JPEG images (file type of almost all digital cameras) to initialize the 

focal length of the new camera and estimate the intrinsic camera matrix (see Snavely et al. 2007 more details).  

 

 

FIG. 10: Left to Right: Visualizing keypoint matching between a pair of images shown as (a) Image1-

BeforeRANSAC, (b) Image1-After RANSAC, (c) Image2-Before RANSAC, (d) Image2-After RANSAC, number 

of matches have dropped from 2079 to 1800 and show a more accurate matching. 
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Starting from this initial set of parameters, while the model is kept fixed, we run the bundle adjustment algorithm 

allowing only the new camera and the keypoints it observes to change. Finally, we add points observed by the 

new camera into the optimization algorithm only if it is observed by at least one existing recovered camera, and 

if triangulating the point gives a well-conditioned estimate of its location. We estimate the conditioning by 

considering all ray pairs that could be used to triangulate that point, and finding the pairs with maximum angle of 

separation. If this maximum separation angle is larger than a threshold, then the point is triangulated. Once the 

new points have been added, another global bundle adjustment is run to refine the entire as-built reconstructed 

scene. In our experiment, the minimum error solution using the sparse bundle adjustment library of Lourakis and 

Argyros (2004). This procedure is continued for all cameras until no camera is remained which observes enough 

3D points to be reliably reconstructed. With such an approach, the algorithm may only determine and reconstruct 

a subset of the used images. Figure 11 shows the reconstructed sparse scene from the set of 160 images used 

from Student Dining and Residence Hall Projects of Turner Construction in Champaign, IL. Interestingly not 

only the scene, but also its peripheral structures (e.g., Garner Residence Hall building) on campus of University 

of Illinois in Champaign-Urbana is sparsely reconstructed. 

 

Geo-Registration  

The SfM procedure estimates relative camera locations. The final step of the location estimation process is to 

align the reconstructed scene with the as-planned model to determine the absolute geocentric coordinates of each 

camera. Although the as-built scene browser can work with relative coordinates, for geo-registration of the scene 

with as-planned model, the absolute coordinates are required. The estimated camera locations are related to the 

absolute locations by a global translation, rotation, and uniform scale transform. To determine the correct 

transformation, we use the closed-form solution of absolute orientation using unit quaternions (Horn 1987) 

similar to that of Golparvar-Fard et al. (2009) to register the as-built scene over the as-planned model. We 

register as-built 3D set of points to a set of as-planned 3D model control points that minimize the sum of squared 

residual errors between the set and the model. Figure 12 shows a screenshot of the expected alignment. In some 

cases the recovered as-built scene cannot be aligned to a geo-referenced coordinate system using a similarity 

transform. This can happen if the SfM procedure fails to obtain a fully metric reconstruction of the scene, or 

because of low frequency drift in the recovered point and camera locations. One way to rectify the recovered 

scene is to pin down a sparse set of ground control points or cameras to known 3D locations (acquired, from 

surveying instrument when visible location in some photographs before SfM step) by adding constraints to the 

SfM optimization (not tested yet by authors). Also a set of lines that are known to be orthogonal in the original 

model (self-calibration constraints) could be chosen to rectify the superimposition. In order to further refine the 

alignment, ICP-based (Iterative Closest Point) technique (Besl and McKay 1992) can also be used (Not tested by 

the authors - In future work). 

FIG. 11: The reconstructed sparse scene of Student Dining and Residence Hall construction project in 

Champaign, IL. The right image represents 7 camera frusta for which their images were used for sparse 

reconstruction of the as-built site. 
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As-built Scene Representation 

After the as-built scene is reconstructed and is superimposed over the 3D model, scene needs to be used for 

interactive explorations. The following data structure is used to represent the as-built reconstructed scene:  

 

• A set of keypoints, in which each keypoint consists of a 3D location and a color that has been averaged 

out from all the site images that the keypoint is being observed from. 

• A set of cameras, while the extrinsic parameters (translation and rotation), and intrinsic parameters 

(focal length and distortion in height and width directions) are known. 

• A mapping between each point and all the cameras that observe the point. A list of number of cameras 

which observe the point, the location of the point in local coordinates of the image, and the SIFT 

keypoint index are all stored. 

While this information is stored, cameras would be rendered as frusta. Once a camera is visited in this 

reconstructed scene, the camera frustum is texture-mapped with the full resolution image so the user can zoom in 

and thoroughly analyze progress, productivity as well as site logistics. Figure 13 shows two images of the 

reconstructed scene while the image under study is shown with respect to the reconstructed scene. 

 

 

 

 

 

 

 

Once the registration of the 3D model with the reconstructed scene is performed, the reconstructed sparse scene 

is masked and only images with respect to the as-planned model are visualized. Figure 14 shows two images 

from Student Dining and Residence Hall projects wherein the as-planned model as of the day image was taken is 

superimposed over the image. 

FIG. 12: The alignment of the Student Dining and Residence Hall construction project 3D model with one of 

the construction progress images using Golparvar-Fard et al. (2009) approach. As shown some of the 

foundations and foundation short walls as well as piers that are not yet constructed, are superimposed over the 

image. Photograph courtesy of Turner Construction Company; Champaign, IL; used by permission. 

FIG. 13: The registration of images within the sparsely reconstructed scene. Student Dining and Residence Hall 

construction project in Champaign, IL. Photographs courtesy of Turner Construction Company; Champaign, 

IL; used by permission. 
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5. APPLICATION OF D
4
AR MODEL FOR PROGRESS MONITORING 

 

Authors implemented D4AR system in Microsoft C++ .NET using Microsoft DirectX9 graphics library. The 

D4AR marks the first system that allows as-built construction spatial information to be visualized within the 

same framework of as-planned construction information. As shown, as-of-now, our system is only capable of 

reconstructing a sparse as-built scene and superimposition of the scene over a 3D model. As a proof of concept 

and to perceive how this model could be used in different aspects of the construction domain, many 

superimposed images have been generated and a set of them has been specifically used during the construction 

of two of our case studies. The first author of this paper has been a part of the onsite Turner Construction team 
for both Dining Hall and Residence Hall construction projects in Champaign, IL and has been generating such 

images for the project. In this section, the experiences of the authors on current and perceived applications of 

D4AR on those ongoing projects are discussed in full details. 

 

 

 

 

5.1 Virtual walk through on the as-built scene 

One of the major applications of this system is that it allows project managers, project executives, 

superintendents, subcontractors as well as owners and even architects to remotely access the under construction 

site (specifically if this system is offered through a web browser) and navigate through all the as-built scene, and 

browse through the collection of progress photographs in any given day. Such application can create significant 

benefits as follow:  

1. Remote Construction Control Decision Making: It allows project managers, superintendents and other 

project participants to virtually walk on the construction site, as-of the time the scene has been 

reconstructed and position themselves in those positions that progress images have been taken. Such an 

interactive user walk-through allows progress to be discussed remotely without the need of any of those 

participants to be physically on the jobsite.  

2. Minimizes the time required to discuss the as-built scene: Project managers and superintendents will 

spend less amount of time discussing or explaining progress. Rather, they can spend more time on how 

a control decision could be made, especially because the reconstructed as-built scene and geo-registered 

images allow workspace logistics, safety issues, progress and even productivity of workforce and 

machinery to be remotely analyzed. Such an as-built system could also be very beneficial in weekly 

contractor coordination meeting as the workspace could be navigated through the virtual world, 

especially once used in conjunction with large screen collaboration tools (e.g., such as smart board used 

in Golparvar-Fard et al. (2006) or even multi-touch screens (e.g., multi-touch interaction wall of Han 

(2006))) 

3. Significant cut in travel time and cost on project executives and architects – Project Executives and 

architects can study the reconstructed scene and geo-registered images, instead of spending time and 

money to travel to the jobsite. The reconstructed scene with as-built progress images can be very 

beneficial, especially when the possibility of adding new photographs quickly to the system is 

considered. Even if a perspective of an interest is not registered within the reconstructed scene and is 

FIG. 14: The registration of images with the construction progress images. Student Dining and Residence Hall 

construction project in Champaign, IL. Photographs courtesy of Turner Construction Company; Champaign, 

IL; used by permission. 
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not present in geo-registered image dataset, the user in the case of being owner and project executives 

can request the scene to be photographed. Those photographs taken can also be quickly geo-registered 

allowing a significant progress communication problem to be resolved.  

5.2 Visualizing Deviation of progress 

The main motivation of authors behind developing the D4AR system has been to come up with a system that 

geo-registers spatial as-built and as-planned models within the same environment allowing construction progress 

to be measured, analyzed and communicated. To that extent, authors have proposed the application of a traffic 

light color spectrum to be used for visualizing progress (Golparvar-Fard et al. 2009 and Golparvar-Fard et al. 

2007). Figure 15 shows the application of the proposed color metaphor to visualize progress. As seen, the color 

spectrum (shown in Figure 4) has been used over the as-planned model to easily communicate deviations in 

progress. The presented image shows the actual progress made on construction of the College of Business 

Instructional Facility at the University of Illinois. As seen the concrete foundations have not been placed as of 

Dec 02, 2006 (the day photo was taken but schedule run date is November 13, 2006) and therefore forms for 

concrete walls are not set in place yet.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One of the other observed applications of visualizing deviation is to facilitate onsite discussions. In the Student 

Dining and Residence Hall project, the authors came up with a D4AR superimposed image, highlighting the 

building foundation which was misinterpreted by the concrete subcontractor. This image has been used by the 

project manager to communicate the component under attention to concrete superintendent and foreman. The 

poor architectural/structural detailed-drawings respective to a continuous concrete footing miscommunicated the 

scope of work. The concrete subcontractor’s foreman interpreted drawings in a way that a specific continuous 

footing is not a load-bearing component and therefore it does not need to be constructed along with the rest of 

the footings. Figure 16 shows the image where in the component which was not yet constructed as-of the day 

photo was taken (May 16, 2008) is highlighted. As seen, the strip footing highlighted in red (between two single 

footings) needs to be constructed while the foreman did not interpret it as a load bearing component from the 

drawing. After series of discussions using this image, concrete was placed and the strip footing was constructed. 

FIG. 15: The superimposed photo has been color-coded based on actual progress on the jobsite. As seen the 

concrete foundations have not been placed yet and therefore wall forms are not put in place yet. Photograph  

from construction of College of Business Instructional Facility at University of Illinois’s campus, courtesy of 

College of Agriculture, Communication and Education, UIUC and Gilbane Construction Co; used by 

permission. 



ITcon Vol. 14 (2009), Golparvar-Fard et al.; pg. 147 

 

 

 

 

 

 

 

 

 

 

 

5.3 Automatic progress tracking 

The D4AR system geo-registers construction site photographs with as-planned building components, and 

therefore serves as a rich baseline for automatic progress monitoring through consistent visual detection of 

progress and comparison with as-planned information. Figure 17 shows an IDEF-0 process model for automating 

progress monitoring through the D4AR system. As shown, first the digital as-planned model will be combined 

with progress metrics to provide a progress monitoring baseline. In this case, Earned Value Analysis (EVA) as a 

robust monitoring mechanism is proposed. Although EVA has some limitations as referred in Kim and Ballard 

(2000), all the construction work is planned, scheduled and budgeted in time-phased planning value increment, 

so it can constitute a performance measurement baseline (Abba 1997) which is useful for comparison. As-

planned model wherein progress monitoring baseline is set will be used for comparison with the reconstructed 

as-built model. Once site images are all registered, progress will be analyzed and according to the analysis 

perform, as-planned model will be color-coded and superimposed over site images. 

 

Figure 18 presents step A4 of automatic progress monitoring system using the D4AR model in detail. Once the 

images and the 3D model components are geo-spatially and temporally registered, deviations could be measured 

using image recognition or processing techniques.  

The middle section  

highlighted in red color 

needs to be constructed.  

FIG. 16: The superimposed photo visualizing the component which has been misinterpreted by the carpenter 

foreman. Student Dining and Residence Hall project, Champaign, IL. Photograph courtesy of Turner 

Construction Company; Champaign, IL; used by permission. 

FIG. 17: IDEF0 representation of automatic progress monitoring using the D
4
AR model 
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Figure 19 schematically visualizes how progress for a concrete wall given one geo-registered image could be 

analyzed. Now, one can imagine how a set of site images that contain photos of the same building component 

can minimize false-positive returns on any image processing technique. Furthermore, using a site photo-log 

minimizes redundant occlusion problems (which exists in case of using time-lapse cameras on a job site). Since 

these photos are normally taken closer to construction components, a larger patch containing more pixels would 

be available for analysis. This in turn boosts the accuracy of an automated progress detection system.  The more 

number of image patches available for each component, the better the implemented image processing algorithm 

can be. 

 

 

 

 

 

 

 

 

 

5.4 Application of the D
4
AR System for Interior Progress Monitoring 

One of the major applications of the D4AR is for tracking progress of interior components. If enough 

photographs are taken to connect exterior photographs’ path to those of interior, this system could be efficiently 

used for tracking interior as well. As such, visualizing progress of MEP/FP (Mechanical-Electrical-

Plumbing/Fire Protection) systems will also become possible. For such application, we perceive using short focal 

length lenses or wide angle lenses to allow short distances to be captured as well. This component of the research 

is still ongoing. 

5.5 Registering New Daily Site Photographs 
New construction progress photographs can be incrementally added to the reconstruction (the as-built model) so 

as to update the model without the need to redo the reconstruction from scratch. First, a user can open a set of 

progress images, and drag and drop each image onto its approximate location on the as-built model. After each 

image has been dropped, the proposed system estimates the location, orientation, and focal length of the new 

photo by running a version of the SfM algorithm. In a similar fashion first, SIFT keypoints are extracted and 

matched to the keypoints of the cameras closest to the initial location;  then the existing 3D points corresponding 

Wall surface that needs to be extracted from the image 

Extracted image 
patch 

Wall surface 
image patch 

FIG. 19: Proposed Method of extracting image patches and performing image analysis for detecting progress. 

Photograph of College of Business Instructional Facility construction project, Champaign, IL; November 08, 

2007, Gilbane Construction Company.  

FIG. 18: IDEF0 representation of analyzing progress monitoring (Step A4 of the overall IDEF-0 representation 

of proposed D
4
AR system). 
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to the matches are identified; and finally, these matches are used to refine the configuration of the new camera. 

After a set of photos has been dragged onto the environment, it generally takes in order of seconds to optimize 

the parameters for each new camera. 

5.6 Augmented Reality Occlusion Removal 
One of the perceived applications of geo-registered photograph is for occlusion removal. Occlusion within 

augmented reality systems changes the perspective of the virtual model and real world possibly causing 

confusion. A practical example of how occlusion may cause misperception is presented in Figure 20. As seen, 

the footing and pier highlighted appear in front of the temporary electricity box on the jobsite, but in reality they 

should be located behind the box. Note that the registration error in this image is minimal, especially when the 
accuracy of registration of the virtual foundation walls over actual foundation walls is perceived. Such 

occlusions may create confusion. We suggest two solutions for such cases: 

 

• Since in the D4AR environment each component has the chance of being observed in a subset of 

images, user can study each component from different perspectives which will remove all potential 

confusions on depth and/or perspective. 

• Since each image in the D4AR is geo-registered and intrinsic and extrinsic camera parameters are 

known, cameras are all calibrated. This information helps to extract geospatial information of certain 

components and allows occlusions to be removed through rendering the image patch associated with 

that component over the 3D model. 

 

 

 

 

6. CONCLUSIONS AND FUTURE WORKS 

Visualization of as-built and as-planned construction can enhance identification, processing and communication 

of progress discrepancies. To that end, D4AR is proposed wherein application of unsorted daily progress 

photograph logs available on any construction site as a data collection technique is explored. Based on 

computing - from the images themselves - photographer’s locations and orientations, along with a sparse 3D 

geometric representation of the as-built site using daily progress photographs and superimposition of the 

reconstructed scene over as-planned 4D models will be possible. Within such an environment, progress 

photographs are registered in the virtual as-planned environment which allows a large unstructured collection of 

daily construction images to be sorted, interactively browsed and explored. In addition, sparse reconstructed 
scenes are superimposed over 4D models allowing site imagery to be geo-registered with the as-planned 

components and also allowing a location-based image processing technique to be used and progress data to be 

automatically extracted. The D4AR system can perform as a robust tool for contractor coordination and 

communication purposes.  Our preliminary results show perceived benefits and future potential enhancement of 

this new technology in construction, in all fronts of automatic data collection, processing and communication. 

There are still many technical challenges in developing a full systematic progress monitoring system and these 

are currently being explored within the research project highlighted in this paper. 

FIG. 20: As-built model superimposed over the progress photograph. Student Dining and Residence Hall 

construction project in Champaign, IL. Photograph courtesy of Turner Construction Company; Champaign, IL; 

used by permission. 
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