5.0 The Tree Method of Origami Design

This section describes the mathematical ideas that underly (O O O underlie? ) the tree method of origami
design —and technical origami, or origami sekkei — in particular. The Japanese art of origami,
thoughcenturies old, has undergone a renaissance in the last few decades from new advances in
origamidesign. The simple stylized birds, flowers, and fish of old have been replaced by incrediblycomplex
replicas of insects, crustacea, mammals, amphibians, dinosaurs, humans, objects, andjust about
everything under the sun. The explosion of subject matter was driven in part by newdiscoveries in design
techniques. One of the most significant of these discoveries was a series ofmathematical algorithms for
designing origami bases in terms of the number, size, and arrangement of their points. This document
section some of those algorithms.
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Even before mathematics came into the picture, the concept of “points” — flaps that becomeappendages of
an origami model — and their number, length, and connections have figuredheavily in the origami
designer’s approach to creating new folds. Over the past few years, I andseveral folders have been
formulating mathematical techniques for designing origami models onthe basis of their points. We have
discovered several general algorithms for design, algorithmsthat enable one to compute the crease pattern
for a base containing any number of points ofarbitrary complexity. A complete description of such
algorithms and all of their nuances wouldfill a book — in fact, I am working on that very task — but the
basic technique can be quicklyoutlined and may be of interest to folders interested in exploring new bases
and symmetries.
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I am going to describe an algorithm using terminology and concepts that I developed in my ownresearch.
However, I should acknowledge major contributions from other mathematical folders.In any scientific
endeavor, the rate of progress is vastly accelerated through the interaction andcross-fertilization of ideas
among several investigators and those who have contributed to thistheory are many: they include Jun
Mackawa, Fumiaki Kawahata, Toshiyuki Meguro, Alex Bateman and Tom Hull, with additional insights
from John Montroll, Peter Engel, Issei Yoshino, Brian Ewins, Jeremy Shafer, and Martin and Erik
Demaine. My thanks and acknowledgment to these, as well as the many more folders whose works formed
both inspiration and guide for my work over the years.
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And now, on with design.
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The name “technical folding” has come to be applied to origami designs that, whetherintentionally or not,
display a strong geometrical elegance and sophistication. The target conceptfor much of technical folding is
the base. A base is simply a geometric shape that resembles thesubject to be folded — usually, a shape
having the same number and length of flaps as thesubject has appendages. For example, a base for a bird
might have four flaps, corresponding to ahead, tail, and two wings. A slightly more complicated subject
such as a lizard would require abase with six flaps, corresponding to the head, four legs, and a tail. And an
extremely complicated subject such as a flying horned beetle might have six legs, four wings, three horns,
two antennae and an abdomen, requiring a base with sixteen flaps. You needn’t stop there, either.Throw in
mouthparts and a separate flap for the thorax, if you like, for a total of nineteen flaps.The number of flaps
required in a model depends on the level of anatomical accuracy desired bythe designer. Historically, much
origami design was performed by trial and error — manipulatinga piece of paper until it began to resemble
something recognizable. However, for a complexsubject, trial and error is a highly inefficient approach,
since one is unlikely to stumble upon anineteen-pointed base with flaps of the right size in the right places
purely by luck. For suchmodels, a more directed approach is called for.

goboobooooobooooboboboooooboooooboboobobobobooboboomobooooboo
goobooboooooboooobooooobooooobooboooboboooooooooooooobboooooDo
gboboooooboobobooooboooboobooooooboboobooboobobobobooobOobobooon
gobobooooobobooooooobooboooooobobooboooooboboboooobobobooo
gooooooooooooooooooboooooooboooboooobooOobOooobooOobo0oOobOoOoboOooDn
gboboooooboobobooooboobooboooooobobooboobooboboboboooboobobooon
gbooobooooboo 1e0b0obooboooobobobooboobooooobobooobOOobOooooboobooo
gooooooooboobooooooooooobooooobobooO0on0 1vooooooooooobooooooo
gboobooooooboobooboooboooboobooboooboobobboboOoobOobOobbOboOoobOoboboo
gbobooooooboobobooooboooboobooooooboobobOoobOobobbOobOOooboOOoboboon
goboobooooooboobooooobooooboooooooboobooboooboobobobooooobDobobooo
uboobooobo 19ooooboobooooboobooboboobooboboOoOobOOobOoobooboboo
gpbobooobodoboooobobooboboobooboobobooobOoboboooon

For a given number and distribution of flaps, there are always many possible bases that can befolded that
differ in various ways: the overall size of the base, which flaps have how manylayers, how the flaps are
positioned in the plane of the paper, the stacking order of the layers, andso forth. I doubt that there is a
universal algorithm that could come up with every possible basefor a given subject; at any rate, most
folders would be satisfied with an algorithm that could atleast come up with one. It turns out that such an
algorithm exists for a particular class of base.We will consider bases that have a special property: their
flaps and layers can be arranged suchthat (1) one edge of every flap lies in a common plane and (2) when
the edges all lie in a plane, all of the layers of the base are perpendicular to the plane. I call this type of
base a uniaxial base (because when the base is flattened, all of the flaps lie along a single common axis).
An example of a hypothetical uniaxial base for a hypothetical four-legged (and hence six-flapped) creature
is shown in figure 5.1.
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Figure 5.1.Schematic of a uniaxial base for an animal with four legs, a head, body, and tail. It’s a uniaxial
base if it can be manipulated so that all of the flaps lie in a plane and all of the layers are perpendicular to
the plane. The shadow of the base consists entirely of lines.
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While a great many origami bases can be represented as uniaxial bases including the four classicbases —
the Kkite, fish, bird, and frog bases — many others cannot. For example, John Montroll’s Dog Base and its
derivatives do not fall into this category. But there are many bases that do, and most importantly from the
standpoint of design, for a great many subjects, a uniaxial base is a sufficiently good approximation of the
subject that you can easily transform it into a veryaccurate and detailed replica of the subject.
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We can represent any uniaxial base by the stick figure formed by the projection of the base intothe plane,
i.e., the shadow cast by the base if illuminated from above. This stick figure has thesame number and
length sticks as the base has flaps, and therefore it is a convenient abstractionof the base, even as the base
is an abstraction of the subject which we are trying to fold. Theproblem to be solved is: for a given stick
figure, can one find a way of folding a square into abase whose projection is that stick figure?
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Let’s first define some terms describing this stick figure. The mathematical term for a stick figureis a
graph. T'll call the particular stick figure for a uniaxial base the graph of the uniaxial base. Each line
segment in the graph is called an edge of the graph; each endpoint of a line segment (orpoint where two
segments come together) is called a node. Each flap of the base corresponds to adistinct edge of the graph,
and since each flap has a specified length, each edge of the graph has alength as well, which is the length



of its associated flap. Thus, the planar graph for the six-leggedanimal base shown in figure 5.2 has eight
nodes and seven edges. In figure 2, I have assigned alength of 1 to each edge of the graph, which implies
that each segment in the base has the samelength. One can, of course, assign any desired combination of
lengths — if you wanted an extra-long tail, you could give it a length of 2 or 3 — but for simplicity, we'll
make all of the edges thesame in this example.
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Figure 5.2. Planar graph for the six-legged base. Each edge of the graph has a length of 1 unit in this
example.
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We will also restrict ourselves to bases that don’t contain any loops of paper, which correspondto planar
graphs that don’t have any cycles in them. If a base has a closed loop, that implies it hasa hole in it
somewhere, which would imply cutting — a no-no, in origami design. (Of course, wecan always simulate a
loop by joining two flaps together and hiding the joint.) A graph with nocycles is called a tree graph or just
tree. It’s easy to see that for any tree, the number of nodes isalways exactly one more than the number of
edges. Thus, we will be searching for bases whoseprojections are trees; for this reason, I call this design
approach the tree method of design.
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We will also divide the nodes into two types: terminal nodes are nodes that come at the end of a single edge.
Terminal nodes correspond to the tips of legs, wings, and other appendages. Nodes formed where two or
more edges come together are called internal nodes.
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Internal nodes — Edges
Figure 5.3. Parts of a tree graph. Line segments are called edges of the graph; points where lines end or
come together are nodes. Terminal nodes are nodes with only one edge; internal nodes have two or more
edges.
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Suppose we have a base that has been folded from a square and we construct its tree. If we unfold the base,
we get a square with a crease pattern that uniquely defines the base. The folding sequence that transforms
the square into the base can be thought of as a mapping between points on the square and points on the
tree.
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If you think of the tree as the shadow of the base, you can see from figure 1 that wherever you have vertical
layers of paper, there are many points on the base that map to the same point on the tree. However, at the
terminal nodes of the tree, there is exactly one point on the square that maps to the node. Thus, we can
uniquely identify the points on the square that become the tips of the flaps of the base.
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Now consider the following thought experiment: suppose an ant were sitting at the tip of one ofthe legs of
the base and wished to travel to another part of the base — say, the tail — withoutleaving the paper. It
would have to walk down the leg to the body, down the body, and back outthe tail. The distance it traveled
would be (length of the leg) + (length of the body) + (length ofthe tail).
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Figure 5.4. An ant wishes to go from a foreleg to the tail along the base. It can take several different paths,
but the most direct path is the path that lies in the plane of projection.
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Now, let’s think about what the path of the ant would look like on the unfolded square (you canimagine
dipping the ant into ink so that it left a trail soaking through the paper as it walked). Onthe square, the
path might meander around a bit or it might go directly from one point to theother, depending on the
course of the ant. One thing is certain, however: the distance traveled onthe unfolded square must be at
least as long as the minimum distance traveled along the base.

gooooooooooooooobooobooobooooboooooobooOoOooobooOoboOoOobOOo0oOooDn
goooboooooobooboooooooooooboooobo@mboooooboobooboobooooobooooono
gobobooooooboobobooooooboboooooooboobooobooooobobobooooobDoboobooo
gooooooooooooooobooobooobooooboooooobooboOobobooOoboOoOoobOboOoOooDn
gboboooooobao

Foreleg

%, Tail

R

Figure 5.5.The trail of the ant. The path of the ant might wander around on the square onceyou’ve
unfolded it, but there is no way that the path can be shorter on the square than the pathwas on the base.
Thus, the distance between two nodes on the square must be at least as large asthe distance between the
two nodes measured along the edges of the tree.
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This illustrates an extremely important property of any mapping from a square to a base: thedistance
between any two points on the square must be greater than or equal to the distancebetween the two
corresponding points on the base. And in particular, this relationship must holdfor any two points on the
base that correspond to nodes on the tree. Now while this conditionmust hold for any pair of points on the
base, it turns out that if it holds for any pair of terminalnodes, it will hold for every pair of points on the
base. That is, if you identify a set of points onthe square corresponding to terminal nodes of a tree and the
points satisfy the condition that thedistance between any pair of points on the square is greater than or
equal to the distance betweenthe points as measured on the graph, then it is guaranteed that a crease
pattern exists totransform the square into a base whose projection is the tree.
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This is a remarkable property. It tells us that no matter how complex a base is sought, no matterhow many
points it may have and how they are connected to one another, we can a/ways find acrease pattern that
transforms the square (or any other shape paper, for that matter) into the base.Putting this into
mathematical language, we arrive at the fundamental theorem of the tree methodof design (which I call
the “tree theorem” for short):
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Define a simply connected tree Pwith terminal nodes P, =1, 2,... V. Define by /; the
distance between nodes P; and P as measured along the edges of the tree; that is, Z;
is the sum of the lengths of all the edges between nodes F; and P. Define a set of
points u;in the unit square u;xe [0,1], uiye [0,1]. Then a crease pattern exists that
transforms the unit square into a uniaxial base whose projection is Pif and only if
|u~u;|>1; for every 1,j. Furthermore, in such a base, P;is the projection of u; for all 1.
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Although the proof of the tree theorem is beyond the scope of this article, we won't let that stop us from
using it. The tree theorem tells us that if we can find a distribution of nodes on a square for which the
distance between any two nodes is greater than or equal to the distance between the nodes on the tree,
then a crease pattern exists that can transform that node pattern into a base. For a given tree, there are
often several possible node patterns that satisfy the tree theorem, each of which yields a different base. For
our six-pointed base, a little doodling with pen and paper will reveal that the pattern of nodes shown in
figure 5.6 fits inside of a square of side 2N((121+8V179)/65) = 3.7460.

0000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000O00O0
0000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000
00000 600000000000000NO00000O0000O0O00OD 5600000000000
00000 2V((121+8V179)/65)=3.7460 00 0 0 0 0000000000000

[1] For a proof of the tree theorem, see “A Computational Algorithms for Origami Design,” 12th Annual
Symposium on Computational Geometry, May 22-26, 1996, Philadelphia, PA.
0000000000000 0“A Computational Algorithms for Origami Design,” 12th Annual
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Figure 5.6. Node pattern that satisfies the tree theorem for the six-legged tree.
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The tree theorem is an existence theorem:; it says that a crease pattern exists but it doesn’t tell uswhat this
supposed crease pattern actually zs. However, it does provide a strong clue. The treetheorem says that the
points on the square that correspond to terminal nodes of the tree becomethe tips of the flaps on the folded
base. Are there any other parts of the square that we canidentify on the base?
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Consider the inequality in the tree theorem. Two points corresponding to terminal nodes must beseparated
on the square by a distance greater than or equal to the distance between them on thetree. In the special
case where equality holds, we can uniquely identify the line between the twopoints. We will call a line on
the square that runs between any two terminal nodes a path. Everypath has a minimum length, which is
the sum of the edges of the tree between the terminalnodes that define the path. (In the symbolism of the
tree theorem, /; is the minimum length of path 7j) The actual length of a path is given by the distance
between the terminal nodes asmeasured upon the square (| u~u;| in the tree theorem). Any path for which
its actual length is equal to its minimum length is called an active path.
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On the base, the only route between two flap tips that is equal to the distance between the terminal nodes
lies in the plane of the projection. Thus, any active path between two terminal nodes on the square
becomes an edge of the base that lies in the plane of projection. Consequently, we have another important
result:
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All active paths between terminal nodes map to an edge of the base in the plane



ofprojection of the base.
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Active paths on the square lie in the plane of projection of the square, but the plane of projectionis where
the vertical layers of paper in the base meet each other. Thus, active paths are not onlyedges of the base:
they are major creases of the base.
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So now we have the rudiments of the crease pattern for the base. We know the points on thesquare that
correspond to terminal nodes of the tree become the tips of the flaps of the base, andwe know that active
paths on the square become major creases of the base. Furthermore, they are creases that lie in the plane
of projection of the base. In many cases, this information alone is enough to find the complete crease
pattern for the uniaxial base that corresponds to the tree. Inmany cases, though, it isn’t. So we’ll keep

going.
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If you draw all of the active paths on a square, you get a network of lines, each of which is a major crease of
the base. Figure 6 includes the active paths for the node pattern for the six-legged animal, labeled with
their length. Each of those lines will turn out to be a crease in the base.

goooboooooobooboboooooooboooooooboboobooobooboboboooDLDoboboo
gbobooob seb0dU0ebODbOOOODOOOODODOOOODODODOOOODOODOOOODOOOO
gboboooobooboooboobobooobooboooboobobo

Since the active paths map one-to-one to paths on the tree, any features on the tree can bemapped directly
onto the active paths. Specifically, we can locate where on an active path eachinternal node falls. If our
hypothetical ant travels from one terminal node to another encountering internal nodes at distances di, dz,
ds, and so forth along the way, then when we draw the creasepattern, we can identify each internal node
along the active path connecting the nodes at the samedistances from the terminal nodes. Thus, we can
add all of the internal nodes to our buddingcrease pattern. In figure 5.7, I've identified all of the nodes,
terminal and internal, by a letter onthe tree, and have added their locations to the active paths in the
crease pattern on the square.Note that in general, an internal node will show up on more than one active
path.

goooooooooooooooboooboooboooobooooooobooOoboOoobooOoboOoOoOboOoOooDn
gbooboooooboobobooooboooboobooboooboobobobOoobOobOobbObObOOobLOoboboo
oooooOooOO0ODO0O000o0000o0o0o0oOo0OoO0O0ODO0ODO0O0O000UO0OO0o0OOn dOodddso...O
goooooooooooooboobooobooobooOoooboooboooobooOoboOoobooboOoOoOboOoOooDn
gooooooooooooooobooobooobooOooOoboooboooobooOoOooobooOoboOoOoOboOoOooDn
gboboooobooboboooboooobooboobooboboobobOooobo s 7O0bOODObDOOOO
gboboooooboobooboooobooobooboooooobobobooOoobobobobooobooboobooon
goooooooobooooooooooooobooobooobooooobOooo



Figure 5.7. (Left). Tree with all nodes lettered. (Right) Crease pattern with terminal nodes, internal nodes,
and active paths.

057.(0)000000000000000O0@) 00000000000000000000

It’s also worth pointing out that we don’t show any terminal nodes along the edges of the squarebecause
the paths between nodes Gand E, £ and F, and Fand H are not active paths.
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It can be shown that active paths never cross each other, so the only places where lines cometogether on
the square are terminal nodes. This pattern of lines breaks up the square into a set ofpolygons. In some of
the polygons, all of their sides are active paths (like the inverted-kite-shapedquadrilateral in the center of
figures 5.6 and 5.7). If one of the sides of a polygon lies onthe edge of a square, it may or may not be an
active path (in figure 5.6 and 5.7, each triangle hasone side on the edge of the square that is not an active
path.)
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We'll call a polygon whose corners are terminal nodes and whose sides are active paths or theedge of the
square an active polygon. Each active polygon has the property that all of its sidesmap to the plane of
projection of the base when the square is folded into a base. Consequently, tofind a crease pattern that
collapses the square into the base, it is necessary to find a crease patternthat maps the network of active
paths onto the plane of projection of the base.
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This sounds like we have added requirements and made our job harder, but in fact we haveactually
simplified things. One of the things that makes origami design so difficult is theinterrelatedness of all the
parts of the base; if you try to change the dimensions of one part of themodel, you have to take into account
how that part interacts with the rest of the paper. But itturns out that when you have a square broken up
into active polygons, you can separate thedesign into independent pieces. Recall that the tree is the
projection of the base, which is foldedfrom the complete square. Each polygon on the square corresponds to
a portion of the overallbase and if you collapse any polygon into a section of the base — which I call a
subbase — the projection of the subbase is itself a portion of the projection of the complete base, i.e., a
portionof the original tree. For example, figure 5.8 shows the polygons for our six-legged base and
thecorresponding trees for each subbase. Note that since all of the corners of an active polygon must be



terminal nodes, the triangles at the bottom corners of the square are not active polygons and infact do not
contribute to the base at all.
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Figure 5.8. The four active polygons for the six-legged base and the trees corresponding to each subbase.
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An incredibly useful property of active polygons is that although two polygons may share acommon side, if
that side is an active path, any crease pattern that collapses one polygon into a subbase is always
compatible with a crease pattern that collapses the adjacent polygon into its subbase! If you like, for
example, you could cut up the square into separate polygons, fold each polygon into a subbase, and then
glue matching edges of the subbases back together and beassured that they would match up. This
matching property is unique to active paths, so any twopolygons that share a side that is an active path
will be guaranteed to match up. The practicalupshot of this is that in order to find the creases that collapse
the entire base, we can find creasepatterns that collapse each polygon into a section of the overall base,
taking the polygons one at atime. So here is a way to break up the design of a complicated base into a
bunch of much simplerbases. To collapse the entire square into a uniaxial base, it suffices to find a way to
collapse eachpolygon individually into the appropriate subbase.
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Now, there is conceivably an infinite number of polygons and a polygon can have any number of sides, so
we're not out of the woods yet. We need to find a way to collapse an arbitrary polygon into its corresponding
subbase. Let’s look at a few simple cases.
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We'll start with triangles. A triangle has three sides and three corners. Recall that the corners of active
polygons are terminal nodes. Thus, the tree of a triangle must be a tree with three terminal nodes and
vice-versa. There is only one graph with three terminal nodes, which is shown in figure 5.9. This tree
corresponds to a uniaxial base with three flaps, whose lengths I have dubbed a, b, and c.
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Figure 5.9. (Left) The tree with three terminal nodes, corresponding to a subbase with flaps of length a, 5,
and c. (Right) The corresponding triangle polygon.
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Now, one of the assumptions we’ve made is that the sides of the active polygons are active paths. For a
triangle whose three sides are active paths, that means we already know the lengths of the sides: they are,
respectively, (a+5), (b+0), and (ct+a). A triangle is uniquely specified by its sides, so if we are given the tree
we know what the triangle is and vice versa. Given a triangle with sides defined above, is there a crease
pattern that collapses this triangle into a subbase with flaps of the appropriate length?

gboobooooooboobooboooooobooboooooboobobobOoobOobOobbobObOOobLOoboboo
00000000000000000000(@@+0 ol (c+20000000000000000D0000
goboboooooboboboooooooobooboooooooboboooboooooboboboooboboooo
upbooboooooobooboboooobooobooboboboooboobobobOooboobOobbOboboobOoboboo
gbooboooooboboooboobooooboooon

There is such a crease pattern and it is one familiar to every paper folder: the humble rabbit ear. It’s been
known since Euclid that the three bisectors of a triangle intersect at a point, which enables one to form a
rabbit ear from any triangle with all of the edges lying in the same plane (or if you flatten the rabbit ear,
the edges all lie on a line). One can also show the converse; if three sides of a triangle are (a+5), (b+¢), and



(ct+a), then the length of the flaps of the resulting rabbit ear are a, b, and c. So any triangle bounded by
three active paths can be filled in with the creases of a rabbit ear, as shown in figure 5.10.
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Figure 5.10. Crease pattern for a rabbit ear and resulting subbase. Note that the three flaps of the subbase
have the same lengths as the three edges of the tree.
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If you are actually folding the active polygon, you can find the intersection of the angle bisectors— point £
in the figure — just by pinching each corner in half along the bisector and finding thepoint where all the
creases come together. If you are calculating the crease locations numerically, there is a beautiful formula
for the location of the intersection of the angle bisectors of anarbitrary triangle. If pa, ps, and pc are the
vector coordinates of corners 4, B, and C and pe is the coordinate of the bisector intersection, then pz is
given by the simple formula

goooooooooooooooboooboooooooboooboOooobooOoboOoboobooboOoOobOOoOoOooDn
pgooooooOoDOOO0OO0OO00000O0O0OOOOODO0OD0O0D0 AOO0O00O00O00ODOOODOODODOOOO
gooooOooOoDOO0O0O000o00OoooooOoOooOODoO0oO00oODUoOoODOooooooooooDO AOBD
CcO00000000 pA0psdpc000pre00000000C0CO0O0O0O0000p,00000000C0CD0DOO
od

That is, the location of the bisector intersection is simply the average of the coordinates of thethree corners
with each corner weighted by the length of the opposite side.
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What happens when one of the sides of the triangle is not an active path? This can happen, forexample,
when one of the sides of the triangle lies along an edge of the square; all of the trianglesin figure 5.8 are of
this type. Since the distance between any two terminal nodes must be greaterthan or equal to the
minimum path length, the side that isn’t an active path must be slightly toolong to be an active path
rather than too short. Fortunately, only a slight modification of therabbit ear is necessary to address this
situation. Figure 5.11 shows the crease pattern and subbase when side BC is slightly too long.
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Figure 5.11. (Left) Crease pattern for a triangle when side BC is not an active path. (Right) Resulting
subbase.
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If the triangle has two sides that aren’t active paths, a similar modification will still collapse
itappropriately.
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Another case that we should consider is a triangle graph that has one or more internal nodesalong its
edges, which may or may not be due to a kink in the subgraph. For example, the two side subgraphs in
figure 5.8 each have three terminal nodes, but in each graph, one of the edgeshas an internal node because
the subgraph has a kink at that point. We can still use the rabbit earconstruction to find most of the
creases, but wherever we have an internal node along an activepath, we need a crease radiating inward
from the internal node to the mountain fold that formsthe “spine” of the subbase.
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We might wonder which creases are valley and mountain folds. All of the creases that form the spine of the
subbase are always mountain folds. Most of the creases corresponding to activepaths are valley folds;
however, for terminal nodes that fall in the interior of the paper, there is amathematical requirement that
the number of mountain and valley folds that come together at apoint differ by 2; consequently, for any
terminal node that lies in the interior of the square, one ofthe active paths must be converted to a
mountain fold.
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The other type of creases we will encounter are those creases that radiate inward from internal nodes; they
can be mountain folds, valley folds, or no folds at all, depending on which way we lay the flaps when we
flatten the uniaxial base. Since any such fold has three possible states, I call them tri-state folds. To give
some indication which way the folds go, I'll draw all of the active paths as valley folds (even though a few of
them may actually turn out to be mountain folds) and draw all of the tri-state folds as x-ray lines (since
they can go either way).
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Using the rabbit-ear crease pattern, we can fill in three of the four active polygons of the six legged base as
shown in figure 5.12. Using similar patterns, we can fill in the crease patterns forany triangle in any
network of active polygons. Let us now turn out attention to the next case: four-sided active polygons.
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Figure 5.12. Crease pattern for the six-legged base with triangles filled in.
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Just as a triangular polygon corresponded to a tree with three terminal nodes, a four-sidedpolygon, or
quadrilateral, has a tree with four terminal nodes. There are two distinct types oftrees with four terminal
nodes, shown in figure 5.13. I call these two graphs the “4-star” and the" sawhorse.” If 4, b, ¢, and d are the
lengths of the four terminal edges in either graph and e is thelength of the “body” in the sawhorse, then a
quadrilateral whose sides are all active paths willhave sides of length (a+5), (b+0), (ctd), and (d+a) for the
4-star and (at+bd), (b+cte), (ctd), and (d+ate) for the sawhorse. There is an ambiguity associated with
quadrilateral polygons; with thetriangle, if we are given the lengths of the three sides, then the lengths of
the edges of the tree areuniquely determined but with a quadrilateral, knowledge of just the lengths of the
sides isinsufficient to fully specify the dimensions of the tree. We must have the full tree to knowwhether
the graph is a 4-star or a sawhorse and in the latter case, to know the length of the body.

0000000000000 000000O0000000000000000000000NOooooooon
00000000000 00000000000000 5130000000000000000000000
00000000000000000000000000000000000a0M A0d000000000
0000000000000 e 000000000 DO0ODODOO0OOOOOOODOODOOOOOOOOOO
00000000000000000@@p00+d0(c+tdd(da20000000000 (a+h)O(bteted(ctdO
(are0 0000000000000 O0O0OOO0OO0O0O0O0O0O0OOO00O00O0O0O0ODO0OO0OoOOO
0000000000000 0000000000000000000000000000N00ooooon
0000000000000 00000000000000000000000000000000O0ooon
00000 0000oO0ooOoooo



Figure 5.13. The two trees with four terminal nodes. (Left) The 4-star. (Right) The sawhorse.
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Finding crease patterns for quadrilaterals is more complex than finding patterns triangles becausethere is
more than one crease pattern that will collapse a given quadrilateral into the appropriate subbase. In fact,
there can be infinitely many different crease patterns for a given quad. However, there is one pattern that
has the desirable property that it works for quadrilaterals correspondingto either type of tree. I call it “the
gusset quad” crease pattern because it usually has a gusset across its top. Its construction is rather
complex, but I will describe it briefly here.
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Given a quadrilateral ABCD as shown in figure 5.14. Inscribe a smaller quadrilateral insidewhose sides
are parallel to the sides of the original quadrilateral but are shifted inward a distanceA (the value of 4 is
not yet determined). Denote the corners of the new quadrilateral by A} B, C’, and D’ Drop perpendiculars
from these four corners to the sides of the original quadrilateral.Llabel their points of intersection
Aapwhere the line from Ahits side AB, Bapwhere the linefrom Bhits AB, and so forth.
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Figure 5.14.Construction of the gusset quad for a quadrilateral ABCD. Inset the quadrilateral adistance A;
then drop perpendiculars from the new corners to the original sides.
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Now we need some distances from the tree. Let Jacbe the distance from node A to node Con the tree and
Iepbe the distance from node B to node D. In most cases (see below for the exceptions), there is a unique
solution for the distance A for which one of these two equations holds:
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Let us suppose we found a solution for the first equation. The diagonal 4°Cdivides the innerquadrilateral
into two triangles. Find the intersections of the bisectors of each triangle and callthem B’and D’ (If the
second equation gave the solution, you’d use the opposite diagonal ofthe inner quadrilateral and find
bisector intersections 4’and C”) The points A, B”, C, and D’are used to construct the complete crease
pattern.
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Figure 15. On the inner quadrilateral, construct the bisectors of each triangle to find points B”and D”.
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You’ve now found all of the points necessary to construct the crease pattern; connect them withcreases as
shown in figure 16 to produce the mountain folds that form the spine and the onevalley fold that forms the
gusset. You will also have to construct tri-state creases from eachinternal node along the sides of the quad
to complete the crease pattern. Figure 5.16 also showsthe folded gusset quad and its tree.
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Figure 5.16. (Left) The mountain and valley folds of the gusset quad. Two tri-state creases are shown.
(Right) The folded version of the gusset quad.
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You can construct an equation for the distance A in terms of the coordinates of the four cornersand the
distances; it’s a rather involved quadratic equation, but can be solved using a pocketcalculator and
high-school algebra. For arbitrary quadrilaterals, there is not a simple method tofind the crease pattern by



folding, but symmetric quadrilaterals (such as the one in the middle offigure 5.8) can be found by folding
alone.
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I alluded to exceptions above; there are quadrilaterals for which the points A B, C, and D4llfall on a line.
In these special cases, you don’t get an inner quadrilateral; all of the inner creasescollapse onto a line (or
sometimes a point) and you get the simplified crease pattern shown infigure 5.17. Jun Maekawa has
proven a theorem — called, appropriately enough, the Maekawa theorem — that says, in essence, any
quadrilateral can have its edges collapsed onto a line usinga crease pattern similar to this one. However,
only in a relatively small number of cases will thelengths of the resulting flaps match the desired tree.
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Figure 5.17. The Maekawa crease pattern.
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The Japanese folder Toshiyuki Meguro has extensively explored crease patterns that collapsepolygons onto
lines and has coined the name “bun-shi,” or “molecules,” to describe suchpatterns. Just as individual
molecules fit together to make a larger biological structure, so too doorigami molecules fit together to make
an origamical structure: the base.
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Using the rabbit ear crease pattern for triangles and the gusset quad crease pattern forquadrilaterals, you
can fill in any active polygon network that consists of triangles andquadrilaterals to get the complete
crease pattern for the base. Such a polygon network is the onefor the six-legged base considered earlier in
this article. Figure 5.18 shows the full crease patternfor the six-legged base and the resulting base. Unlike
figure 5.1, this base is a real, foldable base; you can easily verify the crease pattern by cutting it out and
folding it on the lines. As you cansee, the projection of the base into the plane is indeed the tree, and all of
the flaps have theirproper length.
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Figure 5.18. Full crease pattern and six-legged base.
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If you try to collapse figure 5.18 into the base, you will have to flatten some valley folds and turnseveral
tri-state creases into valley or mountain folds, depending on how you stack the layers andarrange the
points. Although Tom Hull, Toshikazu Kawasaki, and others have identified severalrules for assigning
mountain and valley folds to a crease pattern that will allow it to be foldedflat, I haven’t yet identified an
algorithm to assign mountain and valley folds to a tree methodcrease pattern — in fact, as you can tell by
folding up a base, there is always more than onedistribution of mountain and valley folds for a given crease
pattern. In any event, when youcollapse the base, all of the points will be free and unattached from the
others and each segmentof the base is precisely the same length as corresponding segment on the tree. You
can thin thepoints further and add reverse folds, et cetera, to turn the base into a subject.
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Much the same procedure can be used for any network of active polygons. However, whathappens if there
are polygons with five, six, or more sides? You saw the jump in complexitygoing from three to four corners
was considerable. Although there was only one type of tree for atriangle and two for a quadrilateral, for a
five-sided polygon there are three possible types oftrees and the number rises quickly beyond that. So
there are many more possibilities toenumerate. In addition, computation of the crease pattern for
higher-order polygons gets verycomplicated very quickly, and you can imagine the difficulties as the
number of points increases.For a nineteen-pointed insect, the network of active polygons could conceivably
consist of asingle nineteen-sided polygon! How would we ever collapse such a beast?
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I recently discovered one solution: there is a generalization of the gusset quad that produces acrease
pattern for any active polygon. However, its construction is even more complex than theconstruction of the
gusset quad was. It turns out, though, that we need no more than the gussetquad and the rabbit ear to fold
a base for any tree.
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Again, a paradox: we'll simplify the design problem by making the tree more complicated.Consider the tree
in figure 5.19, which is a 5-pointed star. This graph leads to a set of activepaths that comprise a single
five-sided polygon.

pboboooobodoboooobobobooboboobobobobobbObobobOoboOoobOoDbOn 5.19
gbobooooboobobooobooboooooboobooboobooooboboobOobobobobonbo

A F B

D

Figure 5.19.(Left) Tree for a base with 5 equal flaps. (Right) Pattern of terminal nodes andactive paths
corresponding to this tree.
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Now suppose we wanted to add one more point to the star. That would entail adding one moreterminal
node — node GG — to the active polygon network. On the tree graph, the new nodewould be connected to
node F as shown in figure 5.20. (If we connected it to one of the othernodes that wouldn’t add another
point; it would just lengthen an existing point.) Suppose thepoint has a length Z Then since all the other
edges are 1 unit long, the tree theorem tells us thatthe new terminal node must be separated from each of
the other terminal nodes by a distance (1+J).
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We can visualize these constraints by imagining that each terminal node is surrounded by a circlewhose
radius is equal to the length of the edge attached to that node in the tree. That is, nodes A-F are
surrounded by circles of unit radius, while node G is surrounded by a circle of radius Z Therequirement
that G'be separated from the other nodes by at least a distance (1+J) is equivalent tothe requirement that
circle G not overlap with any other circle.
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Figure 5.20. (Left) Tree with a new terminal node. (Right) One possible position for node G that satisfies
the tree theorem.
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Figure 5.20 shows the circles around each node. As long as the circles do not overlap, the treetheorem is
satisfied. As / the length of the new edge, is increased, the size of the circle aroundnode G must be
increased as well. Eventually, circle G will swell until it is touching at least three other circles, and at that
point, shown in figure 5.21, the new point is as large as it can possibly be.
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Figure 5.21.Terminal node pattern with the largest possible circle around node G.
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Wherever circle G touches another circle, the two terminal nodes are spaced at their minimumseparation.
Consequently, the paths between the nodes of touching circles are active paths.Whenever we add a new
node inside a polygon, if we make the corresponding flap sufficientlylarge, it forms several new active
paths with the vertices of the old active polygon. In the process, it breaks up the polygon into smaller
polygons with fewer sides than the original polygon. Infigure 5.21, adding the new point has broken the



five-sided polygon into one quadrilateral andthree triangles. But we already know crease patterns for
quadrilaterals and triangles! Filling inthe crease patterns in each polygon gives a crease pattern for the
full base, shown in figure 5.22.
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Figure 5.22. Crease pattern for the 5-pointed base.
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Imagining terminal nodes as being surrounded by circles makes it easier to visualize the pathconstraints
of the tree theorem. Although strictly speaking, the circle analogy only holds forterminal nodes with
exactly one internal node between them, one can devise a similar conditionfor more widely separated
nodes. If you draw in circular arcs around each terminal node tangentto the tri-state creases, you get a set
of contours on both the crease pattern and the base, in whichedges attached to terminal nodes are
represented by circles and edges attached only to internalnodes are represented by contours that snake
through the crease pattern as in figure 5.23. Fornumerical computation, I find that it is simpler to do all
calculations in terms of paths and pathlengths, but for intuition and visualization, the circles and contours
constitute an equivalent andmore easily visualized tool for devising new crease patterns.
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Figure 5.23. Circles and contours for the six-pointed lizard base.
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If you've stuck with me so far, you're now at the goal: an algorithm for finding a crease pattern to fold a
base with any number of points from a square, rectangle, or any other shape paper. (Infact, this algorithm
even works for circular paper!) To summarize the algorithm:
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1. Draw a tree, or stick figure, of the base, labeling each edge with its desired length.
dddodooooooooboboodddoooooooooobobooooooono

2. Find a pattern of terminal nodes on the square that satisfies the tree theorem, namely, that the
distance between any two nodes on the square is greater than or equal to theirseparation on the
tree.
dooooobobobobdboooooooobooobooooooobobooooooooooo
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3. Mark all of the active paths, paths whose actual length is equal to their minimumlength. Identify
the active polygons.
oo oooobobobbodoooooboodoooooooo oo
oo

4. For any active polygon with five or more sides, add a node and edge to the treeattached at an
internal node of the polygon and make the edge as large as possible, thereby breaking up the active
polygon into quads and triangles.
doooooooobobobobboboddoooooooooobobobobboo000ooooooooo
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5. Fill in each active polygon with quad and triangle crease patterns.
0d0doooooooooooooooooooooooooo

The good news is that using the algorithm described above, a base can be constructed for any tree— in fact,
there are usually many distinctly different solutions for a single tree. The bad news is, as you might
suspect from some of the above, constructing the crease pattern can becomputationally intensive.
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(The worse news is that even when you have the crease pattern, folding it up into a base can be
infuriatingly difficult; there is rarely a step-by-step folding sequence. More often than not, you need to
precrease everything, then collapse the base all at once.)
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Since every polygon network can be broken up into triangles and quads by the addition of extracircles, the
triangle and quad molecules are by themselves sufficient for filling in the creasepattern for any tree.
However, there are many other possible molecules, including molecules thatcan be used for higher-order
polygons. It turns out that the gusset quad is just a special case of amore general construction that is
applicable to any higher-order polygon. I call this constructionthe universal molecule. In fact, many of the
known molecules — the Maekawa and Meguro molecules, the rabbit ear, and so forth (but not the
arrowhead quad, as it turns out) are specialcases of the universal molecule. The rest of this article
describes the construction of thismolecule for an arbitrary polygon.
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Consider a general polygon that satisfies the tree theorem, i.e., any two vertices are separated bya distance
greater than or equal to their separation on the tree graph. Since we are considering asingle active polygon,
we know that of the paths between nonadjacent vertices, none are at theirminimum length (otherwise it
would be an active path and the polygon would have been split).
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Suppose we inset the boundary of the polygon by a distance A, as shown in figure 5.24. If the original
vertices of the polygon were A;, Az,... then we will label the inset vertices A7) Az)... as we did for the gusset
quad construction. I will call the inset polygon a reduced polygon of theoriginal polygon.
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polygon

— reduced polygon

Figure 5.24.A reduced polygon is inset a distance 4 inside of an active polygon. The insetcorners lie on the
angle bisectors (dotted lines) emanating from each corner.
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Note that the points A;lie on the bisectors emanating from the points Afor any A. Consider firsta reduced
polygon that is inset by an infinitesimally small amount. In the folded base, the sidesof the reduced
polygon all lie in a common plane, just as the sides of the original active polygonall lie in a common plane;
however, the plane of the sides of the reduced polygon is offset fromthe plane of the sides of the active
polygon by a perpendicular distance A. As we increase A, weshrink the size of the reduced polygon. Is there
a limit to the shrinkage? Yes, there is, and thislimit is the key to the universal molecule. Recall that for any
polygon that satisfies the treetheorem, the path between any two vertices satisfies a path length
constraint
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|A; — Al = 1 1)

where /;is the path length between nodes 7 and j measured along the tree graph. There is ananalogous
condition for reduced polygons; any two vertices of a reduced polygon must satisfythe condition
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where /7 is a reduced path length given by
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I';; = 1jj — h(cot a; + cot o)) 3



and a ;is the angle between the bisector of corner 7 and the adjacent side. I call equation (2) the reduced
path constraint for a reduced polygon of inset distance A. Any path for which thereduced path constraint
becomes an equality is, in analogy with active paths between nodes, called an active reduced path.
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So for any distance A, we have a unique reduced polygon and a set of reduced path constraints, each of
which corresponds to one of the original path constraints. We have already assumed thatall of the original
path constraints are met; thus, we know that all of the reduced path constraintsare met for the A=0 case
(no inset distance). It can also be shown that there is always somepositive nonzero value of h for which the
reduced path constraints hold. On the other hand, as weincrease the inset distance, there comes a point
beyond which one or more of the reduced pathconstraints is violated. Suppose we increase A to the largest
possible value for which everyreduced path constraint remains true. At the maximum value of A, one or
both of the followingconditions will hold:
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(1) For two adjacent corners, the reduced path length has fallen to zero and the two inset corners are
degenerate; or
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(2) For two nonadjacent corners, a path between inset corners has become an active reduced path.
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These two situations are illustrated in figure 5.25.
oooooooooOo s25000
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Figure 5.25. (Left) Two corners are inset to the same point, which is the intersection of the angle bisectors.
(Right) Two nonadjacent corners inset to the point where the reduced path between the inset corners

becomes active.
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As I said, one or the other or both of these situations must apply; it zs possible that pathcorresponding to
both adjacent and nonadjacent corners have become active simultaneously orfor multiple reduced paths to
become active for the same value of A (this happens surprisinglyoften). In either case, the reduced polygon



can be simplified, thus reducing the complexity of theproblem.
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In a reduced polygon, if two or more adjacent corners have coalesced into a single point, then thereduced
polygon has fewer sides (and paths) than the original active polygon. And if a pathbetween nonadjacent
corners has become active, then the reduced polygon can be split intoseparate polygons along the active
reduced paths, each with fewer sides than the original polygonhad (just as in the polygon network, an
active path across an active polygon splits it into twosmaller polygons). (In the gusset quad, for example,
the reduced quad is inset until one of itsdiagonals becomes an active path; the reduced quad is then split
along the diagonal into twotriangles.) In either situation, you are left with one or more polygons that have
fewer sides thanthe original. The process of insetting and subdivision is then applied to each of the
interiorpolygons anew, and the process repeated as necessary.
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If a polygon (active or reduced) has three sides, then there are no nonadjacent reduced paths. Thethree
bisectors intersect at a point, and the polygon’s reduced polygon evaporates to a point, leaving a rabbit ear
molecule behind composed of the bisectors.
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Four-sided polygons can have the four corners inset to a single point or to a line, in which caseno further
insetting is required, or to one or two triangles, which are then inset to a point. Higher-order polygons are
subdivided into lower-order ones in direct analogy.
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Since each stage of the process absolutely reduces the number of sides of the reduced polygonscreated
(although possibly at the expense of creating more of them), the process must necessarilyterminate. Since
each polygon (a) can fold flat, and (b) satisfies the tree theorem, then the entirecollection of nested
polygons must also satisfy the tree condition. Consequently, any activepolygon that satisfies the tree
theorem — no matter how many sides — can be filled with acrease pattern using the procedure outlined
above and collapsed into a base on the resultingcreases.
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So what are the creases of the universal molecule? Each polygon is divided into two parts: the core is the
reduced polygon (which may be crossed by active reduced paths); the border aroundthe core is the ring.
The angle bisectors that cross the ring are mountain folds. Internal nodesalong active paths propagate
inward across the ring forming tri-state folds. Active reduced pathsthat cross the core are valley folds. The
boundary of reduced polygons can also be tri-state folds, as one may or may not fold layers along them. The
same assignment of crease applies to eachlevel of the recursive universal molecule construction.
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A remarkable feature of the universal molecule is that many of the molecular crease patterns thathave
been previously enumerated are just special cases of it, including the rabbit ear molecule, the gusset quad,
and both Maekawa and Meguro quads. Figures 5.26 and 5.27 illustrates these special cases.
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Figure 5.26.In a triangle, all three corners are inset to the same point, which is the intersectionof the angle
bisectors. This gives the rabbit ear molecule.
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Figure 5.27.The four possible universal molecules for a quad. If all four corners are inset to thesame point,
the result is the Husimi molecule (top left). If adjacent pairs of corners are inset to two points, the
Maekawa molecule is obtained (top right). If the inset polygon is a triangle, it isfilled in with a rabbit ear



molecule, which also results in a Maekawa molecule (bottom left).Finally, if the inset polygon is a quad
crossed by an active reduced path, the result is the gussetquad.
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These examples are just the tip of the iceberg; beyond four sides, the possibilities rapidlyexplode. But this
explosion doesn’t matter; there is a unique universal molecule for everypossible active polygon that
satisfies the tree theorem.
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An alternative design approach that blends aspects of the circle method and tree methods hasbeen
described by Kawahata? and Maekawa3. It has been called this the “string-of-beads”approach to design. As
in the tree method, you begin with a tree graph of the model to be folded.Each line of the graph is doubled
and the graph is expanded to fill a square, with the nodes of thegraph spaced around the edges of the
square like beads on a string. The process is illustrated for asix-flap based in figure 5.28.
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[2] Fumiaki Kawahata, Fantasy Origami, pub. by Gallery Origami House, Tokyo, Japan, 1995 [in
Japanese].
00000000000 000000000000000000001995

[3] Jun Maekawa, Oru magazine, also in Proceedings of the Second International Conference on Origami
Science and Technology, 1994 [in Japanesel
0000000000000 Proceedings of the Second InternationalConference on Origami Science and
Technology, 1994

Figure 5.28.The string-of-beads design method. The tree graph is turned into a closed polygon, which is
then “inflated” inside of a square with straight lines between the terminal nodes. Theresult is a large
polygon inside the square that is collapsed into the base.
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In the string-of-beads method, the tree graph is converted into a large polygon in which eachcorner is one
of the terminal nodes of the tree and each side is as long as the path betweenadjacent terminal nodes. It is
clear that this distribution of terminal nodes is just a special case ofthe tree method in which we have
constrained all of the nodes to lie on the edge of the square; itavoids having middle points, but at the
expense of possibly reduced efficiency.
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The string-of-beads approach produces a large polygon that must be collapsed into the base, andthe
techniques described by Maekawa involve placing tangent circles in the contours shown inthe last step of
figure 5.28 (which is analogous to our use of additional circles to break downactive polygons into smaller
polygons in the tree method; Kawahata’s algorithm projects hyperbolas in from the edges to locate
reference points for molecular patterns.) However, onecan also apply the universal molecule directly to the
string-of-beads polygon, achieving anotherefficient crease pattern that collapses it into a base.
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Figure 5.29.Construction of the universal molecule for the polygon shown in figure 28.
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Figure 5.29 shows the universal molecule. The initial hexagon is inset to the point that the twohorizontal
reduced paths become active, and the hexagon is split into two triangles and rectangle.The triangles are
filled with rabbit ear creases; the rectangle is further inset, forming a Maekawa molecule.
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Figure 5.30 compares the crease pattern obtained from this polygon by adding an additional nodeto the
tree pattern (i.e., adding a middle flap) and that obtained with the universal molecule. (Tristatecreases are
shown as dotted lines.)
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Figure 5.30. (Left) Crease pattern obtained by adding an additional node to the hexagonal activepolygon.
(Right) Crease pattern obtained by using the universal molecule.

gs3o00000oooooooooooboooooboobooooooboooooooboobooboooboooon
oooooo

A nice feature of the universal molecule is that it is very frugal with creases. A tree filled in with universal
molecules tends to have relatively few creases and large, wide flaps (which can, ofcourse, be subsequently
narrowed arbitrarily as desired). In fact, I conjecture the following: for any active polygon, the universal
molecule is the crease pattern with the shortest total length of creases that collapses that polygon to the
uniaxial base. Few creases translates into relatively few layers in the base (at least, until you start sinking
edges to narrow them). And because you don’t have to arbitrarily add circles (and hence points) to a crease
pattern to knock polygons down to quads and triangles (as you do using the classical tree method
algorithm), bases made with the universal molecule tend to have less bunching of paper and fewer layers
near joints of the base, resulting in cleaner and (sometimes) easier-to-fold models.
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As another example of the utility of the universal molecule, an article by Maekawa in Oru magazine
illustrated the design of a tree structure using the string-of-beads/contour algorithm. In this algorithm, all
terminal nodes are arranged around the outside of the square to form one large active polygon. Then
fixed-size circles are added to the interior to break up the active polygon into quads and triangles. Figure
5.31 shows the tree and the circle pattern derived thereby.
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Figure 5.31.(Left) tree and (right) crease pattern from Oru
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Maekawa’s construction used rabbit ear molecules to fill in the triangles and a different, but similarly
versatile construction to fill in quads, called the arrowhead quad. The resulting crease pattern is shown in
figure 5.32. Because of the large number of interior circles, the crease pattern is quite complex and is quite
difficult to fold flat.
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Figure 5.32.Crease pattern from Oru using arrowhead quad and rabbit-ear molecules.

0532 0000000000000 000DOO0OOOOOOOODOO

We can simplify the crease pattern obtained for the same terminal node positions by adding a smaller
number of interior circles and inflating each new circle to its maximum size before adding the next, as
described above. It turns out that we need add only three nodes to insure that all active polygons have
three or four sides. The resulting modified tree and crease pattern, shown in figure 5.33, is reasonably
simple to fold, and utilizes only rabbit-ear and gusset quad molecules.
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Figure 5.33.Tree and crease pattern for the Oru tree with three additional interior circles and filled with
triangle and gusset quads.
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By applying the universal molecule to the original polygon, we can get a still simpler crease pattern, which
is shown in figure 5.34. This pattern has the additional perk that it is yet easier tofold up in the base (I
encourage you to try). The flaps are, as you might expect, much wider than they are long. However, by

sinking the top of the base in and each, all of the flaps can be thinned to arbitrarily large aspect ratio while
maintaining their relative lengths.

gooooooooobooooooboOooooob s34b00obobooooooobooooobOonoooDn
goooboooooobooooooooooooobooooboooooobobboooooboboooooboobooomo
gobobooooooboobobooooooboboooooooboboobooooobobobooooobDobobooo
gobobooobooboboooboboobooooboooobooooboboooobobooboon

) A
NG V4
// / ///_/ Y \\
- e X
- // \I‘ \\\_
) |
} | |
/ e “ ||
| \\ I\ |
\ . AN ‘|‘ “\ |
S, | -~
“ {
.




Figure 5.34.Universal molecule version of the Oru tree
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All of the crease patterns in figures 5.31-5.34 share the property that all points lie on the edge of the
square. If we relax this constraint and allow middle points, then we can achieve a slightly larger and even
simpler pattern (with a scale of 0.067 as compared to 0.065 for the previous pattern), shown in figure 5.35.
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Figure 5.35. Oru tree crease pattern with middle points.
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Without the universal molecule one must arbitrarily add circles to the network of active paths until every
polygon is of order 4 or smaller. Since there is some choice about where circles are added, the tree method
solution for a base is not necessarily unique. The universal molecule, however, is entirely determined. By
applying the recursive universal molecule construction, any network of active paths can be filled in with
creases and collapsed into a uniaxial base. Thus, the projection from tree graph to full crease pattern may
be accomplished using a single optimization.
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There is another, subtler advantage to the universal molecule: it tends to shift paper away from the plane
of projection of the base, which simplifies collapsing the base and reduces the buildup of layers where flaps
join together. Although the flaps tend to be wider than those produced with other algorithms, one can
easily make points narrower by repeatedly sinking the corners of collapsed polygons to narrow the flaps.
This, of course, builds up layers of paper in the base, which is to some degree unavoidable. The most
equitable distribution of these extra layers comes when the points are sunk along lines parallel to the
plane of projection. Since the edges of the inset polygons are parallel to the plane of projection in the folded
base, these lines naturally form lines along which to sink.
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There are other polygon-filling algorithms beyond the universal molecule described above, and I will
mention two of them here. Toshiyuki Meguro — who coined the term “molecule” (bun-shi, in Japanese) has
developed a technique that makes use of overlapping circles, which in effect, allows one to add new
branches to the tree by adding nodes to the middle of existing edges. This technique allows each new circle
to touch four, rather than three, existing circles, and cuts down on the number of circles that need to be
added. I have extended and generalized Meguro’s concept to apply to arbitrary polygons by introducing the
concept of a “stub.” Also Fumiaki Kawahata has developed a technique for filling in polygons that involves
projecting hyperbolas, rather than straight lines, inward from the edges of an active polygon, which results
is bases whose points can be narrower and more regular (if desired). No doubt there are yet other
algorithms lurking out there in the mathematical wilds.
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Although the mathematical algorithms for origami design are rigorously defined, the actual location of the
nodes and creases can be computationally intensive. Computationally intensive problems are best handled
by computer and indeed, the procedures described above can be cast in the mathematical and logical terms
that lend themselves to computer modeling. The computer program 7reeMaker implements these
algorithms. Using 7TreeMaker, I've solved for bases for a number of subjects whose solutions have eluded
me over the years — deer with varying sizes and types of antlers, 32-legged centipedes, flying insects, and
more. Using a computer program accelerates the development of a model by orders of magnitude; from the
tree to the full crease pattern takes less than five minutes (although folding the crease pattern into a base
may take two to three hours after that!) Not only does 7TreeMaker come up with the base initially, but it
lets one incrementally iterate the design of the model, shifting paper from one part of the model to another
to lengthen some points and shorten others, all the while keeping the entire model maximally efficient.
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One need not program a computer, of course, to use the techniques I've described to design origami —
origami designers have used similar techniques for years. But I foresee a dramatic shift in the art as these
techniques — what one might call “algorithmic” origami design — become more widespread. For years,
technical folders concentrated on getting the right numberand lengths of points to the near-exclusion of
other folding considerations such as line, form, and character. With algorithmic origami design, point



count comes automatically and is no longer the overwhelming consideration in technical origami design. In
the past, origami art and origami science have often been at odds, but with algorithmic origami design, the
technical designer, freed from the need to expend his or her energies on the number of appendages, can
focus on the art of folding, secure in the knowledge that the science will take care of itself.
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