5-1
 Midsegments of Triangles

Vocabulary

Review

Use the number line at the right for Exercises 1-3.

1. Point C is the midpoint of $\overline{A E}$.

2. Point D is the midpoint of $\overline{C E}$.
3. Point B is the midpoint of $\overline{A C}$.

Use the graph at the right for Exercises 4-6. Name each segment.
4. a segment that lies on the x-axis
$\overline{D C}$ or $\overline{C D}$
5. a segment that contains the point $(0,4)$
$\overline{D A}, \overline{A D}, \overline{A B}$, or $\overline{B A}$

6. a segment whose endpoints both have x-coordinate 3
$\overline{B C}$ or $\overline{C B}$

- Vocabulary Builder

midsegment (noun) MID seg munt
Related Words: midpoint, segment
Definition: A midsegment of a triangle is a segment connecting the midpoints of two sides of the triangle.

Use Your Vocabulary

Circle the correct statement in each pair.
7. A midsegment connects the midpoints of two sides of a triangle.

A midsegment connects a vertex of a triangle to the midpoint of the opposite side.
8. A triangle has exactly one midsegment. A triangle has three midsegments.

Theorem 5-1 Triangle Midsegment Theorem

If a segment joins the midpoints of two sides of a triangle, then the segment is parallel to the third side and is half as long.
9. Use the triangle at the right to complete the table below.

D is the midpoint of $\overline{C A}$ and	$\overline{D E} \\| \overline{A B}$
E is the midpoint of $\overline{C B}$	$\overline{D E}=\frac{1}{2} A B$

Use the graph at the right for Exercises 10-11.
10. Draw $\overline{R S}$. Then underline the correct word or number to complete each sentence below.
$\overline{R S}$ is a midsegment of / parallel to $\triangle A B C$.
$\overline{R S}$ is a midsegment of / parallel to $\overline{A C}$.
11. Use the Triangle Midsegment Theorem to complete.
 $R S=\frac{1}{2} A C$
12. Draw $\overline{S T}$. What do you know about $\overline{S T}$?

Sample: It is a midsegment of $\triangle A B C$; it is parallel to and half the length of $\overline{B C}$.

Problem 1 Identifying Parallel Segments

Got It? In $\triangle X Y Z, A$ is the midpoint of $\overline{X Y}, B$ is the midpoint of $\overline{Y Z}$, and C is the midpoint of $\overline{Z X}$. What are the three pairs of parallel segments?
13. Draw a diagram to illustrate the problem.

14. Write the segment parallel to each given segment.
$\overline{A B} \| \overline{Z X}$
$\overline{C B} \| \overline{X Y}$
$\overline{C A} \| \overline{Y Z}$

Problem 2 Finding Lengths

Got It? In the figure below, $A D=6$ and $D E=7.5$. What are the lengths of $\overline{D C}$, $\overline{A C}, \overline{E F}$, and $\overline{A B}$?

15. Complete the problem-solving model below.

Know	Need
$A D=6$ and $D E=7.5$.	The lengths of $\overline{D C}$,
$C E=E B, A D=D C$,	$\overline{A C}, \overline{E F}$, and $\overline{A B}$
$B F=F A$	Use the Triangle

16. The diagram shows that $\overline{E F}$ and $\overline{D E}$ join the midpoints of two sides of $\triangle A B C$.

By the Triangle Midsegment Theorem, $E F=\frac{1}{2} \cdot A C$ and $D E=\frac{1}{2} \cdot A B$.
Complete each statement.
17. $D C=A D=6$
18. $A C=A D+D C=6+6=12$
19. $E F=\frac{1}{2} \cdot A C=\frac{1}{2} \cdot 12=6$
20. $C B=2 \cdot D E=2 \cdot 7.5=15$

Problem 3 Using the Midsegment of a Triangle

Gof It? $\overline{C D}$ is a bridge being built over a lake, as shown in the figure at the right. What is the length of the bridge?
21. Complete the flow chart to find the length of the bridge.

22. The length of the bridge is 1320 ft .

Lesson Check - Do you know HOW?

If $J K=5 x+20$ and $N O=20$, what is the value of x ?
Complete each statement.
23. N is the midpoint of $\overline{L J}$.
24. O is the midpoint of $\overline{L K}$.
25. $\overline{N O}$ is a ? of $\triangle J K L$, so $N O=\frac{1}{2} J K$. midsegment
26. Substitute the given information into the equation in Exercise 25
 and solve for x.

$$
\begin{aligned}
N O & =\frac{1}{2} J K \\
20 & =\frac{1}{2}(2 x+20) \\
40 & =(2 x+20) \\
20 & =5 x \\
x & =4
\end{aligned}
$$

Lesson Check - Do you UNDERSTAND?

Reasoning If two noncollinear segments in the coordinate plane have slope 3, what can you conclude?
27. Place a \checkmark in the box if the response is correct. Place an X if it is incorrect.
\checkmark If two segments in a plane are parallel, then they have the same slope.
x If two segments lie on the same line, they are parallel.
28. Now answer the question. Answers may vary. Sample:

The segments do not lie on the same line,
so they are parallel lines.

Math Success

Check off the vocabulary words that you understand.
midsegment
\square midpoint
segment
Rate how well you can use properties of midsegments.

5-2
 Perpendicular and Angle Bisectors

Vocabulary

Review

Complete each statement with bisector or bisects.

1. $\overrightarrow{B D}$ is the ? of $\angle A B C$.
bisector
2. $B D ? \angle A B C$. bisects

Write T for true or F for false.
\qquad 3. Two perpendicular segments intersect to form four right angles.
\square 4. You can draw more than one line perpendicular to a given line through a point not on the line.

Vocabulary Builder

equidistant (adjective) ee kwih dis tunt
equidistant

Related Words: equal, distance
Definition: Equidistant means at an equal distance from a single point or object.

Use Your Vocabulary

Use to the number line at the right for Exercises 5 and 6.
5. Circle two points equidistant from zero.

6. Name points that are equidistant from point C.

$$
B \text { and } D
$$

Use to the diagram at the right for Exercises 7 and 8.
7. Circle two points equidistant from point Q.
8. Name four segments that are equidistant from the origin.
$\overline{P Q}$
$\overline{Q R}$
$\overline{R S}$
$\overline{S P}$

If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.
9. Use the diagrams below to complete the hypothesis and the conclusion.

$\stackrel{\text { If }}{\overleftrightarrow{P M}} \perp \overline{A B}$ and $A M=M B$

Then
$P A=P B$

Theorem 5-3 Converse of the Perpendicular Bisector Theorem

10. Complete the converse of Theorem 5-2.

If a point is equidistant from the endpoints of a segment, then it is on the \qquad of the segment.

perpendicular bisector

11. Complete the diagram at the right to illustrate Theorem 5-3.

Problem 1 Using the Perpendicular Bisector

Got $I+$? Use the diagram at the right. What is the length of $\overline{Q R}$?
12. Complete the reasoning model below.

Think	Write
$\overline{Q S}$ is the perpendicular bisector of $\overline{P R}$, so Q is equidistant from P and R by the Perpendicular Bisector Theorem.	$\begin{aligned} P Q & =Q R \\ 3 n-1 & =5 n-7 \end{aligned}$
I need to solve for n.	$\begin{aligned} 3 n+6 & =5 n \\ 6 & =2 n \\ 3 & =n \end{aligned}$
Now I can substitute for n to find $Q R$.	$\begin{aligned} Q R & =5 n-7 \\ & =5(3)-7=8 \end{aligned}$

Problem 2 Using a Perpendicular Bisector

Got It? If the director of the park at the right wants a T-shirt stand built at a point equidistant from the Spaceship Shoot and the Rollin' Coaster, by the Perpendicular Bisector Theorem he can place the stand anywhere along line ℓ. Suppose the park director wants the T-shirt stand to be equidistant from the paddle boats and the Spaceship Shoot. What are the possible locations?

13. On the diagram, draw $\overline{P S}$.
14. On the diagram, sketch the points that are equidistant from the paddle boats and the Spaceship Shoot. Describe these points.

the points on the perpendicular bisector of $\overline{P S}$

Got It? Reasoning Can you place the T-shirt stand so that it is equidistant from the paddle boats, the Spaceship Shoot, and the Rollin' Coaster? Explain.
15. Does the line you drew in Exercise 14 intersect line ℓ ?
16. Where should the T-shirt stand be placed so that it is equidistant from the paddle boats, the Spaceship Shoot, and the Rollin Coaster? Explain. Answers may vary.

Sample: Place the stand at the intersection point X of the perpendicular
bisectors of $\overline{R S}$ and $\overline{P S}$. By the Perpendicular Bisector Theorem,
$\underline{X R=X S}$ and $X S=X P$, so $X R=X S=X P$ by the Transitive Property.

The distance from a point to a line is the length of the perpendicular segment from the point to the line. This distance is also the length of the shortest segment from the point to the line.

Angle Bisector Theorem

If a point is on the bisector of an angle, then the point is equisdistant from the sides of the angle.
17. If point S is on the angle bisector of $\angle P Q R$, then $S P=S R$.

Converse of the Angle Bisector Theorem

If a point in the interior of an angle is equidistant from the sides of the angle, then the point is on the angle bisector.
18. Point S is in the interior of $\angle P Q R$

Problem 3 Using the Angle Bisector Theorem

Got It? What is the length of $\overline{F B}$?
20. The problem is solved below. Justify each step.

$F B=F D$	Angle Bisector Theorem
$6 x+3=4 x+9$	Substitute.
$6 x=4 x+6$	Subtract 3 from each side.
$2 x=6$	Subtract $4 x$ from each side.
$x=3$	Divide each side by 2.
$F B=6 x+3$	Given
$=6(3)+3=21$	Substitute 3 for x and simplify.

$$
6 x+3=4 x+9
$$

Substitute.

$$
\text { Subtract } 3 \text { from each side. }
$$

$$
\text { Subtract } 4 x \text { from each side. }
$$

$$
\text { Divide each side by } 2 .
$$

Given

Substitute 3 for x and simplify.

Lesson Check - Do you know HOW?

Use the figure at the right. What is the relationship between $\overline{A C}$ and $\overline{B D}$?
21. Underline the correct word or symbol to complete each sentence.
$\overline{A C}$ is parallel / perpendicular to $\overline{B D}$.
$\overline{A C}$ divides $\overline{B D}$ into two congruent / noncongruent segments.
 $\overline{B D}$ divides $\overline{A C}$ into two congruent / noncongruent segments.
$\underline{\overline{A C}} / \overline{B D}$ is the perpendicular bisector of $\overline{A C} / \underline{\overline{B D}}$.

Math Success

Check off the vocabulary words that you understand.
perpendicular bisectorequidistantdistance from a point to a line

Rate how well you can understand bisectors.

| Need to | 0 | 2 | 4 | 6 | 8 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Now I |
| :---: |
| review |

5-3
 Bisectors in Triangles

Vocabulary

Review
Use the figure at the right. Write T for true or F for false .
\qquad 1. $\overline{A B}$ is the perpendicular bisector of $\overline{C D}$.
2. $\overline{C D}$ is a perpendicular bisector, so it intersects $\overline{A B}$ at its midpoint.

3. Any point on $\overline{C D}$ is equidistant from points A and B.

Vocabulary Builder

concurrent (adjective) kun Kun int
Main Idea: Concurrent means occurring or existing at the same time.

Math Usage: When three or more lines intersect in one point, they are concurrent.

Use Your Vocabulary

Complete each statement with concurrency, concurrent, or concurrently.
4. Two classes are ? when they meet at the same time.
5. The point of \qquad of three streets is the intersections of the streets.
6. A person may go to school and hold a job ? .
\qquad concurrency
concurrently
9.

[^0]The perpendicular bisectors of the sides of a triangle are concurrent at a point equidistant from the vertices.
Perpendicular bisectors $\overline{P X}, \overline{P Y}$ and $\overline{P Z}$ are concurrent at P.
10. Mark $\triangle A B C$ to show all congruent segments.

Problem 1 Finding the Circumcenter of a Triangle

Got It? What are the coordinates of the circumcenter of the triangle with vertices $A(2,7), B(10,7)$, and $C(10,3)$?
11. Draw $\triangle A B C$ on the coordinate plane.
12. Label the coordinates the midpoint of $\overline{A B}$ and the midpoint of $\overline{B C}$.
13. Draw the perpendicular bisector of $\overline{A B}$.
14. Draw the perpendicular bisector of $\overline{B C}$.
15. Label the coordinates of the point of intersection of
 the bisectors.
16. The circumcenter of $\triangle A B C$ is (6,5).

Problem 2 Using a Circumcenter

Got It? A town planner wants to place a bench equidistant from the three trees in the park. Where should he place the bench?
17. Complete the problem-solving model below.

Know

The trees form the ? of a triangle.

vertices

Need

Find the point of concurrency of the ? of the sides.

Plan
Find the ? of the triangle, which is equidistant from the three trees.

18. How can the town planner determine where to place the bench? Explain.

Explanations may vary. Sample: The town planner can place the

bench at the circumcenter of the triangle formed by the three trees.

The bisectors of the angles of a triangle are concurrent at a point equidistant from the sides of the triangle.

Angle bisectors $\overline{A P}, \overline{B P}$, and $\overline{C P}$ are concurrent at P.
19. $P X=P Y=P Z$

Complete each sentence with the appropriate word from the list.
incenter
inscribed
inside

20. The point of concurrency of the angle bisectors of a triangle is the ? of the triangle.
21. The point of concurrency of the angle bisectors of a triangle is always ? the triangle.
22. The circle is ? in $\triangle A B C$.

inside

inscribed

Problem 3 Identifying and Using the Incenter

Got lt? $Q N=5 x+36$ and $Q M=2 x+51$. What is $Q O$?
23. Complete the reasoning model below.

Think	Write
I know that Q is the point of concurrency of the angle bisectors.	Q is the incenter / midpoint of $\triangle J K L$.
And I know that	the distance from Q to each side of $\triangle J K L$ is equal $/$ unequal.
$Q 0=Q M$	
I can write an equation and solve for x.	$5 x+36=2 x+51$ $3 x=15$
$x=5$	

$$
\begin{aligned}
& Q O=5 x+36 \\
& Q O=5(5)+36 \\
& Q O=25+36 \\
& Q O=61
\end{aligned}
$$

Got It? Reasoning Is it possible for QP to equal 50? Explain.

25. Drawn an inscribed circle in the diagram at the right.
26. $\overline{Q N}$ and $\overline{Q M}$ are two segments that have the same length as $\overline{Q O}$.
27. Circle the correct relationship between $Q O$ and $Q P$.

$$
Q O<Q P \quad Q O=Q P \quad Q O>Q P
$$

28. Given your answer to Exercise 27, is it possible for $Q P$ to equal 50 ? Explain. Answers may vary. Sample:

The radii measure 61 , since $\overline{Q O}$ is one of the radii. $\overline{Q P}$ is longer
than the radius of the circle. Therefore, its length cannot be 50.

Lesson Check - Do you UNDERSTAND?

Vocabulary A triangle's circumcenter is outside the triangle. What type of triangle is it?

29. Draw an example of each type of triangle on a coordinate plane below.

Answers may vary. Samples are given.

obtuse

right

30. Circle the phrase that describes the circumcenter of a triangle.

the point of concurrency of the	the point of concurrency of the perpendicular bisectors of the sides
angle bisectors	

31. Underline the correct word to complete the sentence.

When a triangle's circumcenter is outside the triangle, the triangle is acute / obtuse / right .

Math Success

Check off the vocabulary words that you understand.
concurrentcircumscribed aboutincenterinscribed inbisector

Rate how well you can use bisectors in triangles.

5-4
 Medians and Altitudes

Vocabulary

Review

1. Are three diameters of a circle concurrent?
2. Are two diagonals of a rectangle concurrent?
3. Is point C at the right a point of concurrency?

Yes/ No
Yes /No
Yes/No

Vocabulary Builder

median (noun) mee dee un
Related Words: median (adjective), middle (noun),

midpoint (noun)
Definition: A median of a triangle is a segment whose endpoints are a vertex and the midpoint of the opposite side.

Use Your Vocabulary

Write T for true or F for false.
\qquad 4. The median of a triangle is a segment that connects the midpoint of one side to the midpoint of an adjacent side.

T
5. The point of concurrency of the medians of a triangle is where they intersect.

F
6. A triangle has one median.
7. Circle the drawing that shows median $\overline{A D}$ of $\triangle A B C$.

Theorem 5-8 Concurrency of Medians Theorem

The medians of a triangle are concurrent at a point (the centroid of the triangle) that is two thirds the distance from each vertex to the midpoint of the opposite side.

For any triangle, the centroid is always inside the triangle.
8. Complete each equation.
$D C=\frac{2}{3} D J$
$E C=\frac{2}{3} E G$
$F C=\quad \frac{2}{3} F H$

Problem 1 Finding the Length of a Median

Got It? In the diagram at the right, $Z A=9$. What is the length of $\overline{Z C}$?
9. Point A is the centroid of $\triangle X Y Z$.
10. Use the justifications at the right to solve for ZC.

$$
\begin{aligned}
Z A & =\frac{2}{3} \cdot Z C & & \text { Concurrency of Medians Theorem } \\
9 & =\frac{2}{3} \cdot Z C & & \text { Substitute for } Z A . \\
9\left(\frac{3}{2}\right) & =\left(\frac{3}{2}\right) \frac{2}{3} \cdot Z C & & \text { Multiply each side by } \frac{3}{2} . \\
\frac{27}{2} & =Z C & & \text { Simplify. }
\end{aligned}
$$

11. $Z C$ is $\frac{27}{2}$, or $13 \frac{1}{2}$.

An altitude of a triangle is the perpendicular segment from a vertex of the triangle to the line containing the opposite side.

Problem 2 Identifying Medians and Altitudes

Got It? For $\triangle A B C$, is each segment, $\overline{A D}, \overline{E G}$, and $\overline{C F}$, a median, an altitude, or neither? Explain.
12. Read each statement. Then cross out the words that do NOT describe $\overline{A D}$. $\overline{A D}$ is a segment that extends from vertex A to $\overline{C B}$, which is opposite A. $\overline{A D}$ meets $\overline{C B}$ at point D, which is the midpoint of $\overline{C B}$ since $\overline{C D} \cong \overline{D B}$.
 $\overline{A D}$ is not perpendicular to $\overline{C B}$.
alture median neitherationormedian
13. Circle the correct statement below.
$\overline{A D}$ is a median. $\quad \overline{A D}$ is an altitude. $\overline{A D}$ is neither a median nor an altitude.
14. Read the statement. Then circle the correct description of $\overline{E G}$.
$\overline{E G}$ does not extend from a vertex.
$\overline{E G}$ is a median. $\quad \overline{E G}$ is an altitude.
$\overline{E G}$ is neither a median nor an altitude.
15. Read each statement. Then circle the correct description of $\overline{C F}$.
$\overline{C F}$ is a segment that extends from vertex C to $\overline{A B}$, which opposite C.
$\overline{C F} \perp \overline{A B}$
$\overline{C F}$ is median. $\quad \overline{C F}$ is an altitude. $\overline{C F}$ is neither a median nor an altitude.

Theorem 5-9 Concurrency of Altitudes Theorem

The lines that contain the altitudes of a triangle are concurrent.
The point of concurrency is the orthocenter of the triangle. The orthocenter of a triangle can be inside, on, or outside the triangle.

Answers may vary. Samples
16. Draw an example of each type of triangle on a coordinate plane below. are given.
acute

obtuse

right

Draw a line from the type of triangle in Column A to the location of its orthocenter in Column B.

Column A

Column B
17. acute \qquad outside the triangle
18. right
 inside the triangle
19. obtuse at a vertex of the triangle

Problem 3 Finding the Orthocenter

Got It? $\triangle D E F$ has vertices $D(1,2), E(1,6)$, and $F(4,2)$. What are the coordinates of the orthocenter of $\triangle D E F$?
20. Graph $\triangle D E F$ on the coordinate plane.

Underline the correct word to complete each sentence.
21. $\triangle D E F$ is $\mathrm{a}(\mathrm{n})$ acute / right triangle, so the orthocenter is at vertex D.
22. The altitude to $\overline{D F}$ is horizontal / vertical .
23. The altitude to $\overline{D E}$ is horizontal / vertical.
24. The coordinates of the orthocenter

of $\triangle D E F$ are (1,2).

Concept Summary Special Segments and Lines in Triangles

25. Use the words altitudes, angle bisectors, medians, and perpendicular bisectors to describe the intersecting lines in each triangle below.

perpendicular
bisectors

Lesson Check - Do you UNDERSTAND?

Reasoning The orthocenter of $\triangle A B C$ lies at vertex A. What can you conclude about $\overline{B A}$ and $\overline{A C}$? Explain.
26. Circle the type of triangle whose orthocenter is located at a vertex.
acute
right
obtuse
27. $\overline{B A}$ and $\overline{A C}$ are sides of $\angle A$.
28. Write your conclusion about $\overline{B A}$ and $\overline{A C}$. Justify your reasoning.
$\overline{B A}$ is perpendicular to $\overline{A C}$. Explanations may vary. Sample: $\triangle A B C$
is a right triangle and vertex A is a right angle.

Math Success

Check off the vocabulary words that you understand.
median of a triangle $\quad \square$ altitude of a triangleorthocenter of a triangle
Rate how well you can understand medians and altitudes.

5-5

Vocabulary

Review

Draw a line from each statement in Column A to one or more pictures that contradict it in Column B.

Column A

3. $x>y$

4. $x=y$

Vocabulary Builder

indirect (adjective) in duh rekt
Definition: Indirect means not direct in course or action, taking a roundabout route to get to a point or idea.

Math Usage: In indirect reasoning, all possibilities are considered and then all but one are proved false. The remaining possibility must be true.

Use Your Vocabulary

Write indirect or indirectly to complete each sentence.
4. The \qquad way home from school takes a lot more time.

indirect

indirectly
5. By finding the negation of a statement false, you ? prove the statement true. \qquad

Key Concept Writing an Indirect Proof

Step 1

State as a temporary assumption the opposite (negation) of what you want to prove.

Step 2

Show that this temporary assumption leads to a contradiction.

Step 3

Conclude that the temporary assumption must be false and what you want to prove must be true.

Problem 1 Writing the First Step of an Indirect Proof

Gof It? Suppose you want to write an indirect proof of the statement. As the first step of the proof, what would you assume?
$\triangle B O X$ is not acute.
6. What do you want to prove?
$\triangle B O X$ is not acute.
7. What is the opposite of what you want to prove?

$\triangle B O X$ is acute.

8. The first step in the indirect proof is to write the following:

Assume temporarily that $\triangle B O X$ is \qquad acute

Gof It? Suppose you want to write an indirect proof of the statement. As the first step of the proof, what would you assume?

At least one of the items costs more than \$25.
9. What do you want to prove?

At least one of the items costs more than \$25.

For Exercises 10-11, use $<,>, \leq, \geq$, or $=$ to complete each statement.
Let $\boldsymbol{n}=$ the cost of at least one of the items.
10. What do you want to prove?
$n>25$
11. What is the opposite of what you want to prove?

$$
n \leq 25
$$

12. The first step in the indirect proof is to write the following:

Assume temporarily that at least one of the items costs ? \$25.
at most
Write the first step of the indirect proof of each statement.
13. Prove: $A B=C D$

Assume temporarily that $A B \neq C D$.
14. Prove: The sun is shining.

Assume temporarily that the sun is not shining.

Problem 2 Identifying Contradictions

Got It? Which two statements contradict each other?
I. $\triangle X Y Z$ is acute.
II. $\triangle X Y Z$ is scalene
III. $\triangle X Y Z$ is equiangular

16. In the first row of the flow chart above, circle the two statements that contradict one another.

Problem 3 Writing an Indirect Proof

Got It? Given: $7(x+y)=70$ and $x \neq 4$.
Prove: $y \neq 6$
17. Give the reason for each statement of the proof. Answers may vary. Samples are given.

Statements

1) Assume $y=6$.
2) $7(x+y)=70$
3) Given
4) $7(x+6)=70$
5) $7 x+42=70$

Reasons

1) Assume the opposite of what you want to prove.
2) Substitute 6 for y.
3) The Distributive Property.
4) $7 x=28$
5) Subtract 42 from each side.
6) $x=4$
7) Divide each side by 7.
8) $\quad x \neq 4$
9) Given
10) $y \neq 6$
11) Statements (6) and (7) contradict each other. Reaching a
contradiction means the assumption was wrong.

Lesson Check - Do you know HOW?

Suppose you want to write an indirect proof of the following statement. As the first step of the proof, what would you assume?

Quadrilateral $A B C D$ has four right angles.
18. Place a \checkmark if the statement is the correct assumption to make as the first step in the indirect proof. Place an X if it is not.
\times Quadrilateral $A B C D$ is a rectangle.
x Quadrilateral $A B C D$ has four non-right angles.
\checkmark Quadrilateral $A B C D$ does not have four right angles.

Lesson Check - Do you UNDERSTAND?

Error Analysis A classmate began an indirect proof as shown at the right. Explain and correct your classmate's error.
19. Complete the flow chart.

Statement: $\angle A$ is obtuse. \rightarrow Negation: $\angle A$ is ? obtuse. not

20. Underline the correct words to complete the sentence.

The indirect proof has an incorrect conclusion / assumption because the opposite of
" $\angle A$ is obtuse" is " $\angle A$ is acute / not obtuse / right."

Math Success

Check off the vocabulary words that you understand.
\square indirect reasoningindirect proofcontradiction
Rate how well you can use indirect reasoning.

5-6 Inequalities in One Triangle

Vocabulary

OReview

1. Circle the labeled exterior angle.
2. Write the Exterior Angle Theorem as it relates to the diagram.

$$
m \angle 4=m \angle 1+m \angle 2
$$

3. Draw an exterior angle adjacent to $\angle 1$ and label it $\angle 5$.

Circle the statement that represents an inequality in each pair below.
4. $\begin{array}{r}x \neq 32 \\ x=32\end{array}$
5. The number of votes is equal to 10,000 .
The number of votes is greater than 10,000.

Complete each statement with an inequality symbol.
6. y is less than or equal to z.
$y \leq z$
7. The temperature t is at least 80 degrees.
$t \geq 80^{\circ}$

- Vocabulary Builder

compare (verb) kum PEHR
Other Word Form: comparison (noun)
Definition: To compare is to examine two or more items, noting similarities and differences.

Math Usage: Use inequalities to compare amounts.

Use Your Vocabulary

8. Complete each statement with the appropriate form of the word compare.

NOUN By ? a spider has more legs than a beetle.
There are more letters in the word comparison than in the word compare.

If $a=b+c$ and $c>0$, then $a>b$.
9. Circle the group of values that satisfies the Comparison Property of Inequality.

$$
a=5, b=5, \text { and } c=0 \quad a=5, b=2, \text { and } c=3 \quad a=8, b=6, \text { and } c=1
$$

$k \in$ note

Corollary Corollary to the Triangle Exterior Angle Theorem

The measure of an exterior angle of a triangle is greater
than the measure of each of its remote interior angles.
10. Circle the angles whose measures are always less than the measure of $\angle 1$.

Problem 1 Applying the Corollary

Got It? Use the figure at the right. Why is $m \angle 5>m \angle C$?

Write the justification for each statement.

11. $\angle 5$ is an exterior angle of $\triangle A D C$.

Definition of an exterior angle
12. $m \angle 5>m \angle C$
 Corollary to the Triangle Exterior Angle Theorem

You can use the Corollary to the Triangle Exterior Angle Theorem to prove the following theorem.

rake note Theorem 5-10 and Theorem 5-11

Theorem 5-10

If two sides of a triangle are not congruent, then the larger angle lies opposite the longer side.

If $X Z>X Y$, then $m \angle Y>m \angle Z$.
13. Theorem $5-11$ is related to Theorem 5-10. Write the text of Theorem 5-11 by exchanging the words "larger angle" and "longer side."

Theorem 5-11 If two sides of a triangle are not congruent, then the longer side lies opposite the larger angle

Problem 3 Using Theorem 5-11

Got It? Reasoning In the figure at the right, $m \angle S=24$ and $m \angle O=130$. Which side of $\triangle S O X$ is the shortest side? Explain your reasoning.

14. By the Triangle Angle-Sum Theorem, $m \angle S+m \angle O+m \angle X=180$,

$$
\text { so } m \angle X=180-m \angle S-m \angle O
$$

15. Use the given angle measures and the equation you wrote in Exercise 14 to find $m \angle X$.

$$
m \angle X=180-24-130=26
$$

16. Complete the table below.

angle	$\angle O$	$\angle X$	$\angle S$
angle measure	130	26	24
opposite side	$\overline{S X}$	$\overline{S O}$	$\overline{O X}$

17. Which is the shortest side? Explain.

The shortest side is $\overline{O X}$ because it is opposite the smallest angle, $\angle S$.

ke note
 Theorem 5-12 Triangle Inequality Theorem

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.
18. Complete each inequality.

$$
X Y+Y Z>X Z \quad Y Z+Z X>Y X \quad Z X+X Y>Z Y
$$

Problem 4 Using the Triangle Inequality Theorem

Got It? Can a triangle have sides with lengths $2 \mathrm{~m}, 6 \mathrm{~m}$, and 9 m ? Explain.
19. Complete the reasoning model below.

Think			
The sum of the lengths of any two sides must be greater than the length of the third side.	$2+6=8$	$6+9=15$	$2+9=11$
I need to write three sums and three inequalities.	$8<9$	$15>2$	

Problem 5 Finding Possible Side Lengths

Got It? A triangle has side lengths of 4 in . and 7 in . What is the range of possible lengths for the third side?
20. Let $x=$ the length of the third side. Use the Triangle Inequality Theorem to write and solve three inequalities.
$x+4>7$
$x>3$

$x+7$	>4
x	>-3

$$
\begin{aligned}
7+4 & >x \\
11 & >x
\end{aligned}
$$

21. Underline the correct word to complete each sentence.

Length is always / sometimes / never positive.
The first / second / third inequality pair is invalid in this situation.
22. Write the remaining inequalities as the compound inequality $3<x<11$.
23. The third side must be longer than 3 in. and shorter than 11 in .

Lesson Check - Do you UNDERSTAND?

Error Analysis A friend tells you that she drew a triangle with perimeter 16 and one side of length 8. How do you know she made an error in her drawing?
24. If one side length is 8 and the perimeter is 16 , then the sum of the lengths of the two remaining sides must be $16-8=8$.
25. Underline the correct words or number to complete each sentence.

By the Triangle Inequality Theorem, the sum of the lengths of two sides of a triangle must be equal to / greater than / less than the length of the third side.

By the Triangle Inequality Theorem, the sum of the lengths of the two unknown sides must be equal to / greater than / less than the length $\underline{8} / 16$.

But 8 is not equal to / greater than 8 , so there must be an error in the drawing.

Math Success

Check off the vocabulary words that you understand.
exterior angle \square comparison property of inequality
Rate how well you can use the Triangle Inequality Theorem.

5-7
 Inequalities in Two Triangles

Vocabulary

Review

Circle the included angles in each diagram.

1. A

2.

In Exercises 3-5, cross out the group of values that does not satisfy the Comparison Property of Inequality.
3.
$\overline{a \equiv}=c=0$
$a=6, b=4, c=2$
4. $a=11, b=3, c=8$
$a \equiv c \equiv 3$
5. $a=8, b=3, c=5$
$\bar{a}=8, b-c=4$

Write a number so that each group satisfies the Comparison Property of Inequality.
6. $a=2, b=0, c=2$
7. $a=9, b=8, c=1$
8. $a=3, b=1, c=2$

- Vocabulary Builder

hinge (noun, verb) hini
Definition (noun): A hinge is a device on which something else depends or turns.
Definition (verb): To hinge upon means to depend on.

- Use Your Vocabulary

Circle the correct form of the word hinge.
9. Everything hinges on his decision.
10. The hinge on a gate allows it to swing open or closed.
11. Your plan hinges on your teacher's approval.
12. The lid was attached to the jewelry box by two hinges.
Noun Verb
Noun/ Verb
Noun Verb
Noun / Verb

Theorems 5-13 and 5-14 The Hinge Theorem and its Converse

13. Use the triangles at the right to complete the table.

14. Explain why Theorems 5-13 and 5-14 are also called the SAS and SSS Inequality Theorems. Answers may vary. Sample:

Theorem 5-13 compares two pairs of sides and the pair of included angles (SAS).
Theorem 5-14 compares three pairs of sides (SSS).

Problem 1 Using the Hinge Theorem

Got It? What inequality relates $L N$ and $O Q$ in the figure at the right?
15. Use information in the diagram to complete each statement.

The included angle in $\triangle L M N$ is $\angle \boldsymbol{M}$.
The included angle in $\triangle O P Q$ is $\angle P$.
16. Circle the side opposite the included angle in $\triangle L M N$. Underline the side opposite the included angle in $\triangle O P Q$.
$\overline{L M}$
$\widehat{L N}$
$\overline{M N}$
$\overline{Q O}$
$\overline{Q P}$
$\overline{O P}$
17. Use the Hinge Theorem to complete the statement below
$m \angle \boldsymbol{M}>m \angle P$, so $L N>\mathbf{O Q}$.

Problem 3 Using the Converse of the Hinge Theorem

Got It? What is the range of possible values for x in the figure at the right?
18. From the diagram you know that the triangles have two pairs of congruent corresponding sides, that $L M<O P$, and that $m \angle N=90$.

Complete the steps and justifications to find upper and lower limits on x.
19. $m \angle K<m \angle N \quad$ Converse of the Hinge Theorem

$$
\begin{aligned}
3 x+18<90 & \text { Substitute. } \\
3 x<72 & \text { Subtract } 18 \text { from each side. } \\
x<24 & \text { Divide each side by } 3
\end{aligned}
$$

20. $m \angle K>0 \quad$ The measure of an angle of a triangle is greater than 0 .

$$
\begin{aligned}
3 x+18 & >0 & & \text { Substitute. } \\
3 x & >-18 & & \text { Subtract } 18 \text { from each side. } \\
x & >-6 & & \text { Divide each side by } 3 .
\end{aligned}
$$

21. Write the two inequalities as the compound inequality $-6<x<24$.

Problem 4 Proving Relationships in Triangles

Got It? Given: $m \angle M O N=80 ; O$ is the midpoint of $\overline{L N}$.
Prove: $L M>M N$
22. Write a justification for each statement.

Statements Reasons

1) $m \angle M O N=80$
2) Given
3) $m \angle M O N+m \angle M O L=180$
4) Supplementary Angles
5) $80+m \angle M O L=180$
6) Substitute 80 for $m \angle M O N$.
7) $m \angle M O L=100$
8) Subtract 80 from each side.
9) $\overline{L O} \cong \overline{O N}$
10) O is the midpoint of $\overline{L N}$.
11) $\overline{M O} \cong \overline{M O}$
12) Reflexive Property of Congruence
13) $m \angle M O L>m \angle M O N$
14) $100>80$
15) $L M>M N$
16) Hinge Theorem

Lesson Check - Do you know HOW?

Write an inequality relating $F D$ and $B C$.
In Exercises 23-26, circle the correct statement in each pair.
23. $\overline{A C} \cong \overrightarrow{E F}$
$A C>E F$
24. $A B>E D$
$\overline{A B} \cong \overrightarrow{E D}$

25. $m \angle B A C>m \angle F E D \quad m \angle B A C<m \angle F E D$
26. By the Hinge Theorem, you can relate $F D$ and $B C$.

By the Converse of Hinge Theorem, you can relate $F D$ and $B C$.
27. Write an inequality relating $F D$ and $B C$.
$F D>B C$

Lesson Check - Do you UNDERSTAND?

Error Analysis From the figure at the right, your friend concludes that $m \angle B A D>m \angle B C D$. How would you correct your friend's mistake?

Write T for true or F for false.

T
28. $A B=C D$
F
29. $A D=C B$
T 30. $B D=B D$
31. Your friend should compare $A D$ and $C B$.
32. The longer of the two sides your friend should compare is $\overline{A D}$.
33. How would you correct your friend's mistake? Explain.

Answers may vary. Sample: $A D>C B$, so use the Converse of the
Hinge Theorem to conclude that $m \angle A B D>m \angle C D B$.

Math Success

Check off the vocabulary words that you understand.
exterior angle
comparison property of inequality
Hinge Theorem
Rate how well you can use triangle inequalities.

| Need to |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| review | O

[^0]: not concurrent

