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R(s) E(s) C(s) R(s) C(s)
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1
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1
Ts + 1+

–Figure 5–1
(a) Block diagram of
a first-order system;
(b) simplified block
diagram.

analyses of the step response, ramp response, and impulse response of the second-order
systems are presented. Section 5–4 discusses the transient-response analysis of higher-
order systems. Section 5–5 gives an introduction to the MATLAB approach to the solution
of transient-response problems. Section 5–6 gives an example of a transient-response
problem solved with MATLAB. Section 5–7 presents Routh’s stability criterion. Section
5–8 discusses effects of integral and derivative control actions on system performance.
Finally, Section 5–9 treats steady-state errors in unity-feedback control systems.

5–2 FIRST-ORDER SYSTEMS

Consider the first-order system shown in Figure 5–1(a). Physically, this system may
represent an RC circuit, thermal system, or the like.A simplified block diagram is shown
in Figure 5–1(b). The input-output relationship is given by

(5–1)

In the following, we shall analyze the system responses to such inputs as the unit-step,
unit-ramp, and unit-impulse functions. The initial conditions are assumed to be zero.

Note that all systems having the same transfer function will exhibit the same output
in response to the same input. For any given physical system, the mathematical response
can be given a physical interpretation.

Unit-Step Response of First-Order Systems. Since the Laplace transform of
the unit-step function is 1/s, substituting R(s)=1/s into Equation (5–1), we obtain

Expanding C(s) into partial fractions gives

(5–2)

Taking the inverse Laplace transform of Equation (5–2), we obtain

for t � 0 (5–3)

Equation (5–3) states that initially the output c(t) is zero and finally it becomes unity.
One important characteristic of such an exponential response curve c(t) is that at t=T
the value of c(t) is 0.632, or the response c(t) has reached 63.2% of its total change.This
may be easily seen by substituting t=T in c(t). That is,

c(T) = 1 - e-1 = 0.632

c(t) = 1 - e-t�T,

C(s) =
1
s

-
T

Ts + 1
=

1
s

-
1

s + (1�T)

C(s) =
1

Ts + 1

1
s

C(s)

R(s)
=

1

Ts + 1
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Exponential
response curve.

Note that the smaller the time constant T, the faster the system response. Another
important characteristic of the exponential response curve is that the slope of the tangent
line at t=0 is 1/T, since

(5–4)

The output would reach the final value at t=T if it maintained its initial speed of
response. From Equation (5–4) we see that the slope of the response curve c(t) decreases
monotonically from 1/T at t=0 to zero at t=q.

The exponential response curve c(t) given by Equation (5–3) is shown in Figure 5–2.
In one time constant, the exponential response curve has gone from 0 to 63.2% of the final
value. In two time constants, the response reaches 86.5% of the final value.At t=3T, 4T,
and 5T, the response reaches 95%, 98.2%, and 99.3%, respectively, of the final value.Thus,
for t � 4T, the response remains within 2% of the final value. As seen from Equation
(5–3), the steady state is reached mathematically only after an infinite time. In practice,
however, a reasonable estimate of the response time is the length of time the response
curve needs to reach and stay within the 2% line of the final value, or four time constants.

Unit-Ramp Response of First-Order Systems. Since the Laplace transform of
the unit-ramp function is 1/s2, we obtain the output of the system of Figure 5–1(a) as

Expanding C(s) into partial fractions gives

(5–5)

Taking the inverse Laplace transform of Equation (5–5), we obtain

for t � 0 (5–6)

The error signal e(t) is then

 = TA1 - e-t�TB e(t) = r(t) - c(t)

c(t) = t - T + Te-t�T,

C(s) =
1

s2 -
T
s

+
T2

Ts + 1

C(s) =
1

Ts + 1

1

s2

dc
dt
2
t = 0

=
1

T
e-t�T 2

t = 0
=

1

T
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Figure 5–3
Unit-ramp response
of the system shown
in Figure 5–1(a).

c(t)

0 2TT 4T3T t

1
T

c(t) = e– (t /T)1
TFigure 5–4

Unit-impulse
response of the
system shown in
Figure 5–1(a).

As t approaches infinity, e–t/T approaches zero, and thus the error signal e(t) approaches
T or

The unit-ramp input and the system output are shown in Figure 5–3. The error in
following the unit-ramp input is equal to T for sufficiently large t. The smaller the time
constant T, the smaller the steady-state error in following the ramp input.

Unit-Impulse Response of First-Order Systems. For the unit-impulse input,
R(s)=1 and the output of the system of Figure 5–1(a) can be obtained as

(5–7)

The inverse Laplace transform of Equation (5–7) gives

for t � 0 (5–8)

The response curve given by Equation (5–8) is shown in Figure 5–4.

c(t) =
1

T
e-t�T,

C(s) =
1

Ts + 1

e(q) = T
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An Important Property of Linear Time-Invariant Systems. In the analysis
above, it has been shown that for the unit-ramp input the output c(t) is

for t � 0 [See Equation (5–6).]

For the unit-step input, which is the derivative of unit-ramp input, the output c(t) is

for t � 0 [See Equation (5–3).]

Finally, for the unit-impulse input, which is the derivative of unit-step input, the output
c(t) is

for t � 0 [See Equation (5–8).]

Comparing the system responses to these three inputs clearly indicates that the response
to the derivative of an input signal can be obtained by differentiating the response of the
system to the original signal. It can also be seen that the response to the integral of the
original signal can be obtained by integrating the response of the system to the original
signal and by determining the integration constant from the zero-output initial condi-
tion.This is a property of linear time-invariant systems. Linear time-varying systems and
nonlinear systems do not possess this property.

5–3 SECOND-ORDER SYSTEMS

In this section, we shall obtain the response of a typical second-order control system to
a step input, ramp input, and impulse input. Here we consider a servo system as an
example of a second-order system.

Servo System. The servo system shown in Figure 5–5(a) consists of a proportional
controller and load elements (inertia and viscous-friction elements). Suppose that we
wish to control the output position c in accordance with the input position r.

The equation for the load elements is

where T is the torque produced by the proportional controller whose gain is K. By
taking Laplace transforms of both sides of this last equation, assuming the zero initial
conditions, we obtain

So the transfer function between C(s) and T(s) is

By using this transfer function, Figure 5–5(a) can be redrawn as in Figure 5–5(b), which
can be modified to that shown in Figure 5–5(c).The closed-loop transfer function is then
obtained as

Such a system where the closed-loop transfer function possesses two poles is called a
second-order system. (Some second-order systems may involve one or two zeros.)

C(s)

R(s)
=

K

Js2 + Bs + K
=

K�J

s2 + (B�J)s + (K�J)

C(s)

T(s)
=

1

s(Js + B)

Js2C(s) + BsC(s) = T(s)

Jc
$ + Bc

# = T

 c(t) =
1

T
e-t�T,

 c(t) = 1 - e-t�T,

 c(t) = t - T + Te-t�T,
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Figure 5–5
(a) Servo system;
(b) block diagram;
(c) simplified block
diagram.

Step Response of Second-Order System. The closed-loop transfer function of
the system shown in Figure 5–5(c) is

(5–9)

which can be rewritten as

The closed-loop poles are complex conjugates if B2-4JK<0 and they are real if
B2-4JK � 0. In the transient-response analysis, it is convenient to write

where s is called the attenuation;vn , the undamped natural frequency; and z, the damp-
ing ratio of the system. The damping ratio z is the ratio of the actual damping B to the
critical damping or

z =
B

Bc
=

B

21JK

Bc = 21JK

K

J
= v2

n ,  B

J
= 2zvn = 2s

C(s)

R(s)
=

K

Jc s +
B

2J
+ B a B

2J
b 2

-
K

J
d c s +

B

2J
- B a B

2J
b 2

-
K

J
d

C(s)

R(s)
=

K

Js2 + Bs + K
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R(s) E(s) C(s)vn

s(s + 2zvn)

2
+

–

Figure 5–6
Second-order system.

In terms of z and vn , the system shown in Figure 5–5(c) can be modified to that shown
in Figure 5–6, and the closed-loop transfer function C(s)/R(s) given by Equation (5–9)
can be written

(5–10)

This form is called the standard form of the second-order system.
The dynamic behavior of the second-order system can then be described in terms of

two parameters z and vn . If 0<z<1, the closed-loop poles are complex conjugates
and lie in the left-half s plane. The system is then called underdamped, and the tran-
sient response is oscillatory. If z=0, the transient response does not die out. If z=1,
the system is called critically damped. Overdamped systems correspond to z>1.

We shall now solve for the response of the system shown in Figure 5–6 to a unit-step
input.We shall consider three different cases: the underdamped (0<z<1), critically
damped (z=1), and overdamped (z>1) cases.

(1) Underdamped case (0<z<1): In this case, C(s)/R(s) can be written

where The frequency vd is called the damped natural frequency. For
a unit-step input, C(s) can be written

(5–11)

The inverse Laplace transform of Equation (5–11) can be obtained easily if C(s) is writ-
ten in the following form:

Referring to the Laplace transform table in Appendix A, it can be shown that

 l-1 c vdAs + zvnB2 + v2
d

d = e-zvn t sinvd t

 l-1 c s + zvnAs + zvnB2 + v2
d

d = e-zvn t cosvd t

 =
1
s

-
s + zvnAs + zvnB2 + v2

d

-
zvnAs + zvnB2 + v2

d

 C(s) =
1
s

-
s + 2zvn

s2 + 2zvn s + v2
n

C(s) =
v2

nAs2 + 2zvn s + v2
nBs

vd = vn21 - z2 .

C(s)

R(s)
=

v2
nAs + zvn + jvdB As + zvn - jvdB

C(s)

R(s)
=

v2
n

s2 + 2zvn s + v2
n
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Hence the inverse Laplace transform of Equation (5–11) is obtained as

for t � 0 (5–12)

From Equation (5–12), it can be seen that the frequency of transient oscillation is the
damped natural frequency vd and thus varies with the damping ratio z.The error signal
for this system is the difference between the input and output and is

for t � 0

This error signal exhibits a damped sinusoidal oscillation. At steady state, or at t=q,
no error exists between the input and output.

If the damping ratio z is equal to zero, the response becomes undamped and
oscillations continue indefinitely. The response c(t) for the zero damping case may be
obtained by substituting z=0 in Equation (5–12), yielding

for t � 0 (5–13)

Thus, from Equation (5–13), we see that vn represents the undamped natural frequen-
cy of the system.That is,vn is that frequency at which the system output would oscillate
if the damping were decreased to zero. If the linear system has any amount of damping,
the undamped natural frequency cannot be observed experimentally. The frequency 
that may be observed is the damped natural frequency vd, which is equal to 
This frequency is always lower than the undamped natural frequency. An increase in z
would reduce the damped natural frequency vd . If z is increased beyond unity, the
response becomes overdamped and will not oscillate.

(2) Critically damped case (z=1): If the two poles of C(s)/R(s) are equal, the system
is said to be a critically damped one.

For a unit-step input, R(s)=1/s and C(s) can be written

(5–14)

The inverse Laplace transform of Equation (5–14) may be found as

for t � 0 (5–15)

This result can also be obtained by letting z approach unity in Equation (5–12) and by
using the following limit:

lim
zS 1

sinvd t

21 - z2
= lim
zS 1

sinvn21 - z2 t

21 - z2
= vn t

c(t) = 1 - e-vn tA1 + vn tB,
C(s) =

v2
nAs + vnB2s

vn21 - z2 .

c(t) = 1 - cosvn t,

 = e-zvn t a cosvd t +
z

21 - z2
sinvd t b ,

 e(t) = r(t) - c(t)

 = 1 -
e-zvn t

21 - z2
sin avd t + tan-1 

21 - z2

z
b ,

 = 1 - e-zvn t a cosvd t +
z

21 - z2
sinvd t b l-1 CC(s) D = c(t)
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(3) Overdamped case (z>1): In this case, the two poles of C(s)/R(s) are negative
real and unequal. For a unit-step input, R(s)=1/s and C(s) can be written

(5–16)

The inverse Laplace transform of Equation (5–16) is

for t � 0 (5–17)

where and Thus, the response c(t)
includes two decaying exponential terms.

When z is appreciably greater than unity, one of the two decaying exponentials
decreases much faster than the other, so the faster-decaying exponential term (which
corresponds to a smaller time constant) may be neglected. That is, if –s2 is located very
much closer to the jv axis than –s1 Awhich means @s2 @ � @s1 @ B , then for an approximate
solution we may neglect –s1.This is permissible because the effect of –s1 on the response
is much smaller than that of –s2 , since the term involving s1 in Equation (5–17) decays
much faster than the term involving s2 . Once the faster-decaying exponential term has
disappeared, the response is similar to that of a first-order system, and C(s)/R(s) may
be approximated by

This approximate form is a direct consequence of the fact that the initial values and
final values of both the original C(s)/R(s) and the approximate one agree with each
other.

With the approximate transfer function C(s)/R(s), the unit-step response can be
obtained as

The time response c(t) is then

for t � 0

This gives an approximate unit-step response when one of the poles of C(s)/R(s) can
be neglected.

c(t) = 1 - e-Az-2z2 - 1Bvn t,

C(s) =
zvn - vn2z2 - 1As + zvn - vn2z2 - 1Bs

C(s)

R(s)
=

zvn - vn2z2 - 1

s + zvn - vn2z2 - 1
=

s2

s + s2

s2 = Az - 2z2 - 1Bvn .s1 = Az + 2z2 - 1Bvn

= 1 +
vn

22z2 - 1
a e-s1 t

s1
-

e-s2 t

s2
b ,

-
1

22z2 - 1 Az - 2z2 - 1B e-Az-2z2 - 1Bvnt

c(t) = 1 +
1

22z2 - 1 Az + 2z2 - 1B e-Az+2z2 - 1Bvnt

C(s) =
v2

nAs + zvn + vn2z2 - 1B As + zvn - vn2z2 - 1Bs
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Figure 5–7
Unit-step response
curves of the system
shown in Figure 5–6.

A family of unit-step response curves c(t) with various values of z is shown in Fig-
ure 5–7, where the abscissa is the dimensionless variable vnt. The curves are functions
only of z. These curves are obtained from Equations (5–12), (5–15), and (5–17). The
system described by these equations was initially at rest.

Note that two second-order systems having the same z but different vn will exhibit
the same overshoot and the same oscillatory pattern. Such systems are said to have the
same relative stability.

From Figure 5–7, we see that an underdamped system with z between 0.5 and 0.8 gets
close to the final value more rapidly than a critically damped or overdamped system.
Among the systems responding without oscillation, a critically damped system exhibits
the fastest response.An overdamped system is always sluggish in responding to any inputs.

It is important to note that, for second-order systems whose closed-loop transfer
functions are different from that given by Equation (5–10), the step-response curves
may look quite different from those shown in Figure 5–7.

Definitions of Transient-Response Specifications. Frequently, the perform-
ance characteristics of a control system are specified in terms of the transient response to
a unit-step input, since it is easy to generate and is sufficiently drastic. (If the response to
a step input is known, it is mathematically possible to compute the response to any input.)

The transient response of a system to a unit-step input depends on the initial condi-
tions. For convenience in comparing transient responses of various systems, it is a com-
mon practice to use the standard initial condition that the system is at rest initially with
the output and all time derivatives thereof zero. Then the response characteristics of
many systems can be easily compared.

The transient response of a practical control system often exhibits damped oscilla-
tions before reaching steady state. In specifying the transient-response characteristics of
a control system to a unit-step input, it is common to specify the following:

1. Delay time, td

2. Rise time, tr
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Figure 5–8
Unit-step response
curve showing td, tr ,
tp , Mp , and ts .

3. Peak time, tp

4. Maximum overshoot, Mp

5. Settling time, ts

These specifications are defined in what follows and are shown graphically in Figure 5–8.

1. Delay time, td : The delay time is the time required for the response to reach half
the final value the very first time.

2. Rise time, tr : The rise time is the time required for the response to rise from 10%
to 90%, 5% to 95%, or 0% to 100% of its final value. For underdamped second-
order systems, the 0% to 100% rise time is normally used. For overdamped systems,
the 10% to 90% rise time is commonly used.

3. Peak time, tp :The peak time is the time required for the response to reach the first
peak of the overshoot.

4. Maximum (percent) overshoot, Mp : The maximum overshoot is the maximum
peak value of the response curve measured from unity. If the final steady-state
value of the response differs from unity, then it is common to use the maximum
percent overshoot. It is defined by

The amount of the maximum (percent) overshoot directly indicates the relative
stability of the system.

5. Settling time, ts : The settling time is the time required for the response curve to
reach and stay within a range about the final value of size specified by absolute per-
centage of the final value (usually 2% or 5%). The settling time is related to the
largest time constant of the control system.Which percentage error criterion to use
may be determined from the objectives of the system design in question.

The time-domain specifications just given are quite important, since most control
systems are time-domain systems; that is, they must exhibit acceptable time responses.
(This means that, the control system must be modified until the transient response is
satisfactory.)

Maximum percent overshoot =
cAtpB - c(q)

c(q)
* 100%
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Definition of the
angle b.

Note that not all these specifications necessarily apply to any given case. For exam-
ple, for an overdamped system, the terms peak time and maximum overshoot do not
apply. (For systems that yield steady-state errors for step inputs, this error must be kept
within a specified percentage level. Detailed discussions of steady-state errors are post-
poned until Section 5–8.)

A Few Comments on Transient-Response Specifications. Except for certain
applications where oscillations cannot be tolerated, it is desirable that the transient re-
sponse be sufficiently fast and be sufficiently damped.Thus, for a desirable transient re-
sponse of a second-order system, the damping ratio must be between 0.4 and 0.8. Small
values of z(that is, z<0.4) yield excessive overshoot in the transient response, and a
system with a large value of z(that is, z>0.8) responds sluggishly.

We shall see later that the maximum overshoot and the rise time conflict with each other.
In other words, both the maximum overshoot and the rise time cannot be made smaller
simultaneously. If one of them is made smaller, the other necessarily becomes larger.

Second-Order Systems and Transient-Response Specifications. In the fol-
lowing, we shall obtain the rise time, peak time, maximum overshoot, and settling time
of the second-order system given by Equation (5–10). These values will be obtained in
terms of z and vn . The system is assumed to be underdamped.

Rise time tr: Referring to Equation (5–12), we obtain the rise time tr by letting cAtrB=1.

(5–18)

Since we obtain from Equation (5–18) the following equation:

Since and , we have

Thus, the rise time tr is

(5–19)

where angle b is defined in Figure 5–9. Clearly, for a small value of tr ,vd must be large.

tr =
1
vd

tan-1 a vd

-s b =
p - b
vd

tanvd tr = - 
21 - z2

z
= - 
vd

s

zvn = svn21 - z2 = vd

cosvd tr +
z

21 - z2
sinvd tr = 0

e-zvn tr Z 0,

cAtrB = 1 = 1 - e-zvn tr a cosvd tr +
z

21 - z2
sinvd tr b
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Peak time tp : Referring to Equation (5–12), we may obtain the peak time by differen-
tiating c(t) with respect to time and letting this derivative equal zero. Since

and the cosine terms in this last equation cancel each other, dc�dt, evaluated at t=tp ,
can be simplified to

This last equation yields the following equation:

or

Since the peak time corresponds to the first peak overshoot, Hence

(5–20)

The peak time tp corresponds to one-half cycle of the frequency of damped oscillation.

Maximum overshoot Mp : The maximum overshoot occurs at the peak time or at
t=tp=p�vd .Assuming that the final value of the output is unity, Mp is obtained from
Equation (5–12) as

(5–21)

The maximum percent overshoot is 
If the final value c(q) of the output is not unity, then we need to use the following

equation:

Settling time ts : For an underdamped second-order system, the transient response is
obtained from Equation (5–12) as

for t � 0c(t) = 1 -
e-zvn t

21 - z2
sin avd t + tan-1 

21 - z2

z
b ,

Mp =
cAtpB - c(q)

c(q)

e-As�vdBp * 100%.

 = e-As�vdBp = e-Az�21 -z2Bp
 = -e-zvnAp�vdB a cosp +

z

21 - z2
sinp b Mp = cAtpB - 1

tp =
p

vd

vd tp = p.

vd tp = 0, p, 2p, 3p, p

sinvd tp = 0

dc
dt
2
t = tp

= Asinvd tpB vn

21 - z2
 e-zvn tp = 0

 + e-zvn t avd sinvd t -
zvd

21 - z2
cosvd t b

 
dc
dt

= zvn e-zvn t a cosvd t +
z

21 - z2
sinvd t b
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Figure 5–10
Pair of envelope
curves for the unit-
step response curve
of the system shown
in Figure 5–6.

The curves are the envelope curves of the transient response to
a unit-step input. The response curve c(t) always remains within a pair of the envelope
curves, as shown in Figure 5–10. The time constant of these envelope curves is 1�zvn .

The speed of decay of the transient response depends on the value of the time constant
1�zvn . For a given vn , the settling time ts is a function of the damping ratio z. From
Figure 5–7, we see that for the same vn and for a range of z between 0 and 1 the settling time
ts for a very lightly damped system is larger than that for a properly damped system. For an
overdamped system, the settling time ts becomes large because of the sluggish response.

The settling time corresponding to a ; 2% or ;5% tolerance band may be measured
in terms of the time constant T=1�zvn from the curves of Figure 5–7 for different
values of z.The results are shown in Figure 5–11. For 0<z<0.9, if the 2% criterion is
used, ts is approximately four times the time constant of the system. If the 5% criterion
is used, then ts is approximately three times the time constant. Note that the settling
time reaches a minimum value around z=0.76 (for the 2% criterion) or z=0.68 (for
the 5% criterion) and then increases almost linearly for large values of z.
The discontinuities in the curves of Figure 5–11 arise because an infinitesimal change
in the value of z can cause a finite change in the settling time.

For convenience in comparing the responses of systems, we commonly define the
settling time ts to be

(2% criterion) (5–22)

or

(5% criterion) (5–23)

Note that the settling time is inversely proportional to the product of the damping
ratio and the undamped natural frequency of the system. Since the value of z is usually
determined from the requirement of permissible maximum overshoot, the settling time

ts = 3T =
3
s

=
3

zvn

ts = 4T =
4
s

=
4

zvn

1 ; Ae-zvn t�21 - z2B
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Settling time ts

versus z curves.

is determined primarily by the undamped natural frequency vn . This means that the
duration of the transient period may be varied, without changing the maximum over-
shoot, by adjusting the undamped natural frequency vn .

From the preceding analysis, it is evident that for rapid response vn must be large.To limit
the maximum overshoot Mp and to make the settling time small, the damping ratio z should
not be too small. The relationship between the maximum percent overshoot Mp and the
damping ratio z is presented in Figure 5–12. Note that if the damping ratio is between 0.4
and 0.7, then the maximum percent overshoot for step response is between 25% and 4%.
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It is important to note that the equations for obtaining the rise time, peak time, max-
imum overshoot, and settling time are valid only for the standard second-order system
defined by Equation (5–10). If the second-order system involves a zero or two zeros,
the shape of the unit-step response curve will be quite different from those shown in
Figure 5–7.

EXAMPLE 5–1 Consider the system shown in Figure 5–6, where z=0.6 and vn=5 rad�sec. Let us obtain the rise
time tr , peak time tp , maximum overshoot Mp , and settling time ts when the system is subjected
to a unit-step input.

From the given values of z and vn , we obtain and s=zvn=3.

Rise time tr : The rise time is

where b is given by

The rise time tr is thus

Peak time tp : The peak time is

Maximum overshoot Mp : The maximum overshoot is

The maximum percent overshoot is thus 9.5%.

Settling time ts : For the 2% criterion, the settling time is

For the 5% criterion,

Servo System with Velocity Feedback. The derivative of the output signal can
be used to improve system performance. In obtaining the derivative of the output
position signal, it is desirable to use a tachometer instead of physically differentiating the
output signal. (Note that the differentiation amplifies noise effects. In fact, if
discontinuous noises are present, differentiation amplifies the discontinuous noises more
than the useful signal. For example, the output of a potentiometer is a discontinuous
voltage signal because, as the potentiometer brush is moving on the windings, voltages
are induced in the switchover turns and thus generate transients. The output of the po-
tentiometer therefore should not be followed by a differentiating element.)

ts =
3
s

=
3

3
= 1 sec

ts =
4
s

=
4

3
= 1.33 sec

Mp = e-As�vdBp = e-(3�4) * 3.14 = 0.095

tp =
p

vd
=

3.14

4
= 0.785 sec

tr =
3.14 - 0.93

4
= 0.55 sec

b = tan-1
vd

s
= tan-1 4

3
= 0.93 rad

tr =
p - b
vd

=
3.14 - b

4

vd = vn21 - z2 = 4
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(a)

1
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K
Js + B

Kh

R(s) C(s)

(b)

K
s(Js + B + KKh)

+
–

+
–

+
–Figure 5–13

(a) Block diagram of
a servo system;
(b) simplified block
diagram.

The tachometer, a special dc generator, is frequently used to measure velocity with-
out differentiation process. The output of a tachometer is proportional to the angular
velocity of the motor.

Consider the servo system shown in Figure 5–13(a). In this device, the velocity signal,
together with the positional signal, is fed back to the input to produce the actuating
error signal. In any servo system, such a velocity signal can be easily generated by a
tachometer. The block diagram shown in Figure 5–13(a) can be simplified, as shown in
Figure 5–13(b), giving

(5–24)

Comparing Equation (5–24) with Equation (5–9), notice that the velocity feedback has
the effect of increasing damping. The damping ratio z becomes

(5–25)

The undamped natural frequency is not affected by velocity feedback. Not-
ing that the maximum overshoot for a unit-step input can be controlled by controlling
the value of the damping ratio z, we can reduce the maximum overshoot by adjusting
the velocity-feedback constant Kh so that z is between 0.4 and 0.7.

It is important to remember that velocity feedback has the effect of increasing the
damping ratio without affecting the undamped natural frequency of the system.

EXAMPLE 5–2 For the system shown in Figure 5–13(a), determine the values of gain K and velocity-feedback
constant Kh so that the maximum overshoot in the unit-step response is 0.2 and the peak time is 1 sec.
With these values of K and Kh , obtain the rise time and settling time.Assume that J=1 kg-m2 and
B=1 N-m�rad�sec.

Determination of the values of K and Kh : The maximum overshoot Mp is given by Equation
(5–21) as

Mp = e-Az�21 -z2Bp

vn = 1K�J

z =
B + KKh

21KJ

C(s)

R(s)
=

K

Js2 + AB + KKhBs + K
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This value must be 0.2. Thus,

or

which yields

The peak time tp is specified as 1 sec; therefore, from Equation (5–20),

or

Since z is 0.456,vn is

Since the natural frequency vn is equal to 

Then Kh is, from Equation (5–25),

Rise time tr : From Equation (5–19), the rise time tr is

where

Thus, tr is

Settling time ts : For the 2% criterion,

For the 5% criterion,

ts =
3
s

= 1.86 sec

ts =
4
s

= 2.48 sec

tr = 0.65 sec

b = tan-1
vd

s
= tan-1 1.95 = 1.10

tr =
p - b
vd

Kh =
21KJz - B

K
=

21Kz - 1

K
= 0.178 sec

K = Jv2
n = v2

n = 12.5 N-m

1K�J ,

vn =
vd

21 - z2
= 3.53

vd = 3.14

tp =
p

vd
= 1

z = 0.456

zp

21 - z2
= 1.61

e-Az�21 -z2Bp = 0.2
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Unit-impulse
response curves of
the system shown in
Figure 5–6.

Impulse Response of Second-Order Systems. For a unit-impulse input r(t), the
corresponding Laplace transform is unity, or R(s)=1.The unit-impulse response C(s)
of the second-order system shown in Figure 5-6 is

The inverse Laplace transform of this equation yields the time solution for the response
c(t) as follows:

For 0 � z<1,

for t � 0 (5–26)

For z=1,

for t � 0 (5–27)

For z>1,

for t � 0 (5–28)

Note that without taking the inverse Laplace transform of C(s) we can also obtain
the time response c(t) by differentiating the corresponding unit-step response, since
the unit-impulse function is the time derivative of the unit-step function. A family of
unit-impulse response curves given by Equations (5–26) and (5–27) with various val-
ues of z is shown in Figure 5–14. The curves c(t)/vn are plotted against the dimen-
sionless variable vnt, and thus they are functions only of z. For the critically damped
and overdamped cases, the unit-impulse response is always positive or zero; that is,
c(t) � 0. This can be seen from Equations (5–27) and (5–28). For the underdamped
case, the unit-impulse response c(t) oscillates about zero and takes both positive and
negative values.

c(t) =
vn

22z2 - 1
e-Az-2z2 - 1Bvn t -

vn

22z2 - 1
 e-Az+2z2 - 1Bvn t,

c(t) = v2
n te-vn t,

c(t) =
vn

21 - z2
e-zvn t sinvn21 - z2 t,

C(s) =
v2

n

s2 + 2zvn s + v2
n
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Unit-impulse
response curve of the
system shown in
Figure 5–6.

From the foregoing analysis, we may conclude that if the impulse response c(t) does
not change sign, the system is either critically damped or overdamped, in which case
the corresponding step response does not overshoot but increases or decreases monot-
onically and approaches a constant value.

The maximum overshoot for the unit-impulse response of the underdamped system
occurs at

where 0<z<1 (5–29)

[Equation (5–29) can be obtained by equating dc�dt to zero and solving for t.] The max-
imum overshoot is

where 0<z<1 (5–30)

[Equation (5–30) can be obtained by substituting Equation (5–29) into Equation (5–26).]
Since the unit-impulse response function is the time derivative of the unit-step

response function, the maximum overshoot Mp for the unit-step response can be
found from the corresponding unit-impulse response. That is, the area under the unit-
impulse response curve from t=0 to the time of the first zero, as shown in Figure
5–15, is 1+Mp , where Mp is the maximum overshoot (for the unit-step response)
given by Equation (5–21). The peak time tp (for the unit-step response) given by
Equation (5–20) corresponds to the time that the unit-impulse response first crosses
the time axis.

5–4 HIGHER-ORDER SYSTEMS

In this section we shall present a transient-response analysis of higher-order systems in
general terms. It will be seen that the response of a higher-order system is the sum of the
responses of first-order and second-order systems.

c(t)max = vn exp a-
z

21 - z2
tan-1 21 - z2

z
b ,

t =
tan-1 21 - z2

z

vn21 - z2
,


