5-2 Verifying Trigonometric Identities

Verify each identity.

1. $\left(\sec ^{2} \theta-1\right) \cos ^{2} \theta=\sin ^{2} \theta$

SOLUTION:
$\left(\sec ^{2} \theta-1\right) \cos ^{2} \theta$
$=\left(\tan ^{2} \theta\right) \cos ^{2} \theta \quad$ Pythagorean Identity
$=\left(\frac{\sin ^{2} \theta}{\cos ^{2} \theta}\right) \cos ^{2} \theta$ Quotient Identity
$=\sin ^{2} \theta \quad$ Multiply and divide out common factor.
2. $\sec ^{2} \theta\left(1-\cos ^{2} \theta\right)=\tan ^{2} \theta$

SOLUTION:
$\sec ^{2} \theta\left(1-\cos ^{2} \theta\right)$
$=\sec ^{2} \theta-\sec ^{2} \theta \cos ^{2} \theta \quad$ Distributive Property
$=\sec ^{2} \theta-\frac{1}{\cos ^{2} \theta} \cdot \cos ^{2} \theta$ Reciprocal Identity
$=\sec ^{2} \theta-1 \quad$ Multiply and divide out common factor.
$=\tan ^{2} \theta \quad$ Pythagorean Identity
3. $\sin \theta-\sin \theta \cos ^{2} \theta=\sin ^{3} \theta$

SOLUTION:
$\sin \theta-\sin \theta \cos ^{2} \theta$
$=\sin \theta\left(1-\cos ^{2} \theta\right)$ Factor.
$=\sin \theta \sin ^{2} \theta \quad$ Pythagorean Identity
$=\sin ^{3} \theta \quad$ Multiply.
4. $\csc \theta-\cos \theta \cot \theta=\sin \theta$

SOLUTION:
$\csc \theta-\cos \theta \cot \theta$
$=\frac{1}{\sin \theta}-\cos \theta\left(\frac{\cos \theta}{\sin \theta}\right) \quad$ Reciprocal and Quotient Identities
$=\frac{1-\cos ^{2} \theta}{\sin \theta} \quad$ Write as a fraction with a common denominator.
$=\frac{\sin ^{2} \theta}{\sin \theta} \quad$ Pythagorean Identity
$=\sin \theta \quad$ Divide out common factor of $\sin \theta$.

5-2 Verifying Trigonometric Identities

5. $\cot ^{2} \theta \csc ^{2} \theta-\cot ^{2} \theta=\cot ^{4} \theta$

SOLUTION:
$\cot ^{2} \theta \csc ^{2} \theta-\cot ^{2} \theta$
$=\cot ^{2} \theta\left(\csc ^{2} \theta-1\right) \quad$ Factor.
$=\cot ^{2} \theta \cot ^{2} \theta \quad$ Pythagorean Identity
$=\cot ^{4} \theta \quad$ Multiply and add exponents.
6. $\tan \theta \csc ^{2} \theta-\tan \theta=\cot \theta$

SOLUTION:
$\tan \theta \csc ^{2} \theta-\tan \theta$
$=\tan \theta\left(\csc ^{2} \theta-1\right) \quad$ Factor
$=\tan \theta \cot ^{2} \theta \quad$ Pythagorean Identity
$=\frac{\sin \theta}{\cos \theta} \cdot \frac{\cos ^{2} \theta}{\sin ^{2} \theta} \quad$ Quotient Identities
$=\frac{\cos \theta}{\sin \theta} \quad$ Multiply and divide common factors.
$=\cot \theta \quad$ Quotient Identity
7. $\frac{\sec \theta}{\sin \theta}-\frac{\sin \theta}{\cos \theta}=\cot \theta$

SOLUTION:
$\frac{\sec \theta}{\sin \theta}-\frac{\sin \theta}{\cos \theta}$
$=\frac{\frac{1}{\cos \theta}}{\sin \theta}-\frac{\sin \theta}{\cos \theta}$
Reciprocal Identity
$=\frac{1}{\sin \theta \cos \theta}-\frac{\sin ^{2} \theta}{\sin \theta \cos \theta} \quad$ Common denominator
$\begin{array}{ll}=\frac{1-\sin ^{2} \theta}{\sin \theta \cos \theta} & \text { Write as a fraction w } \\ =\frac{\cos ^{2} \theta}{\sin \theta \cos \theta} & \text { Pythagoren Identity }\end{array}$
$=\frac{\cos \theta}{\sin \theta} \quad$ Divide out common factor of $\cos \theta$.
$=\cot \theta \quad$ Quotient Identity

5-2 Verifying Trigonometric Identities

8. $\frac{\sin \theta}{1 \cos \theta}+\frac{1 \cos \theta}{\sin \theta}=2 \csc \theta$

SOLUTION:
$\frac{\sin \theta}{1-\cos \theta}+\frac{1-\cos \theta}{\sin \theta}$
$=\frac{\sin \theta}{\sin \theta} \cdot \frac{\sin \theta}{1-\cos \theta}+\frac{1-\cos \theta}{1-\cos \theta} \cdot \frac{1-\cos \theta}{\sin \theta}$
$=\frac{\sin ^{2} \theta}{\sin \theta(1-\cos \theta)}+\frac{1-2 \cos \theta+\cos ^{2} \theta}{\sin \theta(1-\cos \theta)} \quad$ Mulitply.
$=\frac{\sin ^{2} \theta+\cos ^{2} \theta+1-2 \cos \theta}{\sin \theta(1-\cos \theta)}$
$=\frac{1+1-2 \cos \theta}{\sin \theta(1-\cos \theta)}$
$=\frac{2-2 \cos \theta}{\sin \theta(1-\cos \theta)}$
$=\frac{2(1-\cos \theta)}{\sin \theta(1-\cos \theta)}$
$=\frac{2}{\sin \theta}$
$=2 \csc \theta$
9. $\frac{\cos \theta}{1+\sin \theta}+\tan \theta=\sec \theta$

SOLUTION:

$$
\frac{\cos \theta}{1+\sin \theta}+\tan \theta
$$

$$
=\frac{\cos \theta}{1+\sin \theta}+\frac{\sin \theta}{\cos \theta}
$$

$$
=\frac{\cos \theta}{\cos \theta} \cdot \frac{\cos \theta}{1+\sin \theta}+\frac{1+\sin \theta}{1+\sin \theta} \cdot \frac{\sin \theta}{\cos \theta}
$$

$$
=\frac{\cos ^{2} \theta}{\cos \theta(1+\sin \theta)}+\frac{\sin \theta+\sin ^{2} \theta}{(1+\sin \theta) \cos \theta}
$$

$$
=\frac{\cos ^{2} \theta+\sin \theta+\sin ^{2} \theta}{\cos \theta(1+\sin \theta)}
$$

$$
=\frac{1+\sin \theta}{\cos \theta(1+\sin \theta)}
$$

$$
=\frac{1}{\cos \theta}
$$

$$
=\sec \theta
$$

Quotient Identity
Rewrite 1 using the common denominator.

Multiply.

Write as a fraction with a common denominator.

Pythagorean Identity

Divide out common factor of $(1+\sin \theta)$.
Reciprocal Identity

5-2 Verifying Trigonometric Identities

10. $\frac{\sin \theta}{1 \cot \theta}+\frac{\cos \theta}{1 \tan \theta}=\sin \theta+\cos \theta$

SOLUTION:
$\frac{\sin \theta}{1-\cot \theta}+\frac{\cos \theta}{1-\tan \theta}$
$=\frac{\sin \theta}{1-\frac{\cos \theta}{\sin \theta}}+\frac{\cos \theta}{1-\frac{\sin \theta}{\cos \theta}}$
Quotient Identity
$=\frac{\sin \theta}{\frac{\sin \theta}{\sin \theta}-\frac{\cos \theta}{\sin \theta}}+\frac{\cos \theta}{\frac{\cos \theta}{\cos \theta}-\frac{\sin \theta}{\cos \theta}}$
Rewrite 1 using the common denominator.
$\begin{array}{ll}=\frac{\sin \theta}{\frac{\sin \theta-\cos \theta}{\sin \theta}}+\frac{\cos \theta}{\frac{\cos \theta-\sin \theta}{\cos \theta}} & \text { Write denominator } \\ =\frac{\sin ^{2} \theta}{\sin \theta-\cos \theta}+\frac{\cos ^{2} \theta}{\cos \theta-\sin \theta} & \text { Simplify fractions. }\end{array}$
$=\frac{\sin ^{2} \theta}{\sin \theta-\cos \theta}-\frac{\cos ^{2} \theta}{\sin \theta-\cos \theta}$
Factor out -1 .
$=\frac{\sin ^{2} \theta-\cos ^{2} \theta}{\sin \theta-\cos \theta}$
$=\frac{(\sin \theta+\cos \theta)(\sin \theta-\cos \theta)}{\sin \theta-\cos \theta}$
$=\sin \theta+\cos \theta$
Divide out common factor of $(\sin \theta-\cos \theta)$.

5-2 Verifying Trigonometric Identities

$$
\text { 11. } \frac{1}{1 \tan 2 \theta}+\frac{1}{1 \cot 2 \theta}=1
$$

SOLUTION:
$\frac{1}{1-\tan ^{2} \theta}+\frac{1}{1-\cot ^{2} \theta}$
$=\frac{1}{1-\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}+\frac{1}{1-\frac{\cos ^{2} \theta}{\sin ^{2} \theta}}$
Quotient Identity
$=\frac{1}{\frac{\cos ^{2} \theta}{\cos ^{2} \theta}-\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}+\frac{1}{\frac{\sin ^{2} \theta}{\sin ^{2} \theta}-\frac{\cos ^{2} \theta}{\sin ^{2} \theta}}$
Rewrite 1 using the common denominator.
$=\frac{1}{\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos ^{2} \theta}}+\frac{1}{\frac{\sin ^{2} \theta-\cos ^{2} \theta}{\sin ^{2} \theta}}$
$=\frac{\cos ^{2} \theta}{\cos ^{2} \theta-\sin ^{2} \theta}+\frac{\sin ^{2} \theta}{\sin ^{2} \theta-\cos ^{2} \theta}$
Write denominators as fractions with common denominators.
$=\frac{\cos ^{2} \theta}{\cos ^{2} \theta-\sin ^{2} \theta}+\frac{-1}{-1} \cdot \frac{\sin ^{2} \theta}{\cos ^{2} \theta-\sin ^{2} \theta}$
Factor out -1 .
$=\frac{\cos ^{2} \theta}{\cos ^{2} \theta-\sin ^{2} \theta}+\frac{-\sin ^{2} \theta}{\cos ^{2} \theta-\sin ^{2} \theta}$
Common denominator
$=\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos ^{2} \theta-\sin ^{2} \theta}$
Write as a fraction with a common denominator.
$=1$
Divide out common factor of $\left(\cos ^{2} \theta-\sin ^{2} \theta\right)$.

5-2 Verifying Trigonometric Identities

12. $\frac{1}{\csc \theta+1}+\frac{1}{\csc \theta 1}=2 \sec ^{2} \theta \sin \theta$

SOLUTION:
$\frac{1}{\csc \theta+1}+\frac{1}{\csc \theta-1}$
$=\frac{\csc \theta-1}{\csc \theta-1} \cdot \frac{1}{\csc \theta+1}+\frac{\csc \theta+1}{\csc \theta+1} \cdot \frac{1}{\csc \theta-1} \quad$ Common denominator
$=\frac{\csc \theta-1}{\csc ^{2} \theta-1}+\frac{\csc \theta+1}{\csc ^{2} \theta-1} \quad$ Multiply.
$=\frac{2 \csc \theta}{\csc ^{2} \theta-1}$
$=\frac{2 \csc \theta}{\cot ^{2} \theta} \quad$ Pythagorean Identity
$=\frac{2\left(\frac{1}{\sin \theta}\right)}{\frac{\cos ^{2} \theta}{\sin ^{2} \theta}}$
$=\frac{2}{\sin \theta} \cdot \frac{\sin ^{2} \theta}{\cos ^{2} \theta}$
Reciprocal and Quotient Identities
$=\frac{2 \sin \theta}{\cos ^{2} \theta}$
Multiply by the reciprocal of the denominator.
$=\left(\frac{2}{\cos ^{2} \theta}\right) \sin \theta$
Multiply.
$=2 \sec ^{2} \theta \sin \theta$
Factor.
Reciprocal Identity
13. $(\csc \theta-\cot \theta)(\csc \theta+\cot \theta)=1$

SOLUTION:
$(\csc \theta-\cot \theta)(\csc \theta+\cot \theta)$
$=\csc ^{2} \theta-\cot ^{2} \theta$
Multiply.
$=1$
Pythagorean Identity
14. $\cos ^{4} \theta-\sin ^{4} \theta=\cos ^{2} \theta-\sin ^{2} \theta$

SOLUTION:
$\cos ^{4} \theta-\sin ^{4} \theta$
$=\left(\cos ^{2} \theta+\sin ^{2} \theta\right)\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \quad$ Factor.
$=1\left(\cos ^{2} \theta-\sin ^{2} \theta\right)$
Pythagorean Identity
$=\cos ^{2} \theta-\sin ^{2} \theta$
Multiply.

5-2 Verifying Trigonometric Identities

15. $\frac{1}{1 \sin \grave{e}}+\frac{1}{1+\sin \grave{e}}=2 \sec ^{2} \theta$

SOLUTION:
$\frac{1}{1-\sin \theta}+\frac{1}{1+\sin \theta}$
$=\frac{1+\sin \theta}{1+\sin \theta} \cdot \frac{1}{1-\sin \theta}+\frac{1-\sin \theta}{1-\sin \theta} \cdot \frac{1}{1+\sin \theta} \quad$ Common denominator
$=\frac{1+\sin \theta}{1-\sin ^{2} \theta}+\frac{1-\sin \theta}{1-\sin ^{2} \theta}$
$=\frac{2}{1-\sin ^{2} \theta}$
$=\frac{2}{\cos ^{2} \theta}$
$=2 \sec ^{2} \theta$
Multiply.

Write as a fraction with a common denominator.

Pythagorean Identity
Reciprocal Identity
16. $\frac{\cos \theta}{1+\sin \theta}+\frac{\cos \theta}{1 \sin \theta}=2 \sec \theta$

SOLUTION:
$\frac{\cos \theta}{1+\sin \theta}+\frac{\cos \theta}{1-\sin \theta}$
$=\frac{\cos \theta}{1+\sin \theta} \cdot \frac{1-\sin \theta}{1-\sin \theta}+\frac{\cos \theta}{1-\sin \theta} \cdot \frac{1+\sin \theta}{1+\sin \theta}$
Common denominator
$=\frac{\cos \theta(1-\sin \theta)}{(1+\sin \theta)(1-\sin \theta)}+\frac{\cos \theta(1+\sin \theta)}{(1-\sin \theta)(1+\sin \theta)} \quad$ Multiply.
$\begin{array}{ll}=\frac{\cos \theta(1-\sin \theta)+\cos \theta(1+\sin \theta)}{(1+\sin \theta)(1-\sin \theta)} & \text { Write as } \\ =\frac{\cos \theta-\sin \theta \cos \theta+\cos \theta+\sin \theta \cos \theta}{1-\sin ^{2} \theta} & \text { Multiply. }\end{array}$
$=\frac{2 \cos \theta}{1-\sin ^{2} \theta}$
$=\frac{2 \cos \theta}{\cos ^{2} \theta}$
$=\frac{2}{\cos \theta}$
$=2 \sec \theta$
Simplify the numerator.

Pythagorean Identity

Divide out common factor of $\cos \theta$.
Quotient Identity

5-2 Verifying Trigonometric Identities

17. $\csc ^{4} \theta-\cot ^{4} \theta=2 \cot ^{2} \theta+1$

SOLUTION:
$\csc ^{4} \theta-\cot ^{4} \theta$
$=\left(\csc ^{2} \theta-\cot ^{2} \theta\right)\left(\csc ^{2} \theta+\cot ^{2} \theta\right)$
$=\left[\csc ^{2} \theta-\left(\csc ^{2} \theta-1\right)\right]\left[\csc ^{2} \theta+\left(\csc ^{2} \theta-1\right)\right]$
Pythagorean Identity
$\left.=\left[\csc ^{2} \theta-\csc ^{2} \theta+1\right)\right]\left[\csc ^{2} \theta+\csc ^{2} \theta-1\right]$
$=[1]\left[2 \csc ^{2} \theta-1\right]$
$=2 \csc ^{2} \theta-1$
$=2\left(\cot ^{2} \theta+1\right)-1$
$=2 \cot ^{2} \theta+2-1$
$=2 \cot ^{2} \theta+1$
18. $\frac{\csc 2 \theta+2 \csc \theta 3}{\csc 2 \theta 1}=\frac{\csc \theta+3}{\csc \theta+1}$

SOLUTION:
$\frac{\csc ^{2} \theta+2 \csc \theta-3}{\csc ^{2} \theta-1}$
$=\frac{(\csc \theta+3)(\csc \theta-1)}{(\csc \theta+1)(\csc \theta-1)} \quad$ Factor the numerator and denominator.
$=\frac{\csc \theta+3}{\csc \theta+1}$
Divide out common factor of $(\csc \theta-1)$.

5-2 Verifying Trigonometric Identities

19. FIREWORKS If a rocket is launched from ground level, the maximum height that it reaches is given by $h=$ $\frac{v 2 \sin 2 \theta}{2 g}$, where θ is the angle between the ground and the initial path of the rocket, v is the rocket's initial speed, and g is the acceleration due to gravity, 9.8 meters per second squared.

a. Verify that $\frac{v 2 \sin 2 \theta}{2 g}=\frac{v 2 \tan 2 \theta}{2 g \sec 2 \theta}$.
b. Suppose a second rocket is fired at an angle of 80° from the ground with an initial speed of 110 meters per second. Find the maximum height of the rocket.
SOLUTION:
a.

$$
\begin{array}{rlr}
\frac{v^{2} \tan ^{2} \theta}{2 g \sec ^{2} \theta} & =\frac{v^{2}\left(\frac{\sin ^{2} \theta}{\cos ^{2} \theta}\right)}{2 g\left(\frac{1}{\cos ^{2} \theta}\right)} & \quad \text { Quotient and Reciprocal Identities } \\
& =\frac{v^{2} \sin ^{2} \theta}{2 g} & \text { Divide out the common factor } \frac{1}{\cos ^{2} \theta} .
\end{array}
$$

b. Evaluate the expression $\frac{v^{2} \sin ^{2} \theta}{2 g}$ for $v=110 \mathrm{~m}, \theta=80^{\circ}$, and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

$$
\begin{aligned}
\frac{v^{2} \sin ^{2} \theta}{2 g} & =\frac{110^{2} \sin ^{2} 80^{\circ}}{2(9.8)} \\
& \approx 598.7
\end{aligned}
$$

The maximum height of the rocket is about 598.7 meters.

5-2 Verifying Trigonometric Identities

Verify each identity.
20. $(\csc \theta+\cot \theta)(1-\cos \theta)=\sin \theta$

SOLUTION:
$(\csc \theta+\cot \theta)(1-\cos \theta)$
$=\csc \theta-\csc \theta \cos \theta+\cot \theta-\cot \theta \cos \theta \quad$ Multiply binomials.
$=\frac{1}{\sin \theta}-\left(\frac{1}{\sin \theta}\right) \cos \theta+\left(\frac{\cos \theta}{\sin \theta}\right)-\left(\frac{\cos \theta}{\sin \theta}\right) \cos \theta$ Reciprocal and Quotient Identities
$=\frac{1}{\sin \theta}-\frac{\cos \theta}{\sin \theta}+\frac{\cos \theta}{\sin \theta}-\frac{\cos ^{2} \theta}{\sin \theta}$
Multiply.
$=\frac{1-\cos \theta+\cos \theta-\cos ^{2} \theta}{\sin \theta}$
Write as one fraction with a common denominator.
$=\frac{1-\cos ^{2} \theta}{\sin \theta}$
Simplify numerator.
$=\frac{\sin ^{2} \theta}{\sin \theta}$
Pythagorean Identity
$=\sin \theta$
Divide out common factor.
21. $\sin ^{2} \theta \tan ^{2} \theta=\tan ^{2} \theta-\sin ^{2} \theta$

SOLUTION:
$\tan ^{2} \theta-\sin ^{2} \theta$
$=\frac{\sin ^{2} \theta}{\cos ^{2} \theta}-\sin ^{2} \theta \quad$ Quotient Identity
$=\frac{\sin ^{2} \theta}{\cos ^{2} \theta}-\sin ^{2} \theta \cdot 1 \quad$ Multiply by 1.
$=\frac{\sin ^{2} \theta}{\cos ^{2} \theta}-\left(\sin ^{2} \theta\right)\left(\frac{\cos ^{2} \theta}{\cos ^{2} \theta}\right) \quad$ Re write 1 using the common denominator.
$=\frac{\sin ^{2} \theta}{\cos ^{2} \theta}-\frac{\sin ^{2} \theta \cos ^{2} \theta}{\cos ^{2} \theta} \quad$ Multiply.
$=\frac{\sin ^{2} \theta-\sin ^{2} \theta \cos ^{2} \theta}{\cos ^{2} \theta} \quad$ Write as a fraction with a common denominator.
$=\frac{\sin ^{2} \theta\left(1-\cos ^{2} \theta\right)}{\cos ^{2} \theta} \quad$ Factor the numerator.
$=\frac{\sin ^{2} \theta \sin ^{2} \theta}{\cos ^{2} \theta} \quad$ Pythagorean Identity
$=\sin ^{2} \theta\left(\frac{\sin ^{2} \theta}{\cos ^{2} \theta}\right) \quad$ Factor.
$=\sin ^{2} \theta \tan ^{2} \theta \quad$ Quotient Identity

5-2 Verifying Trigonometric Identities

22. $\frac{1 \tan 2 \theta}{1 \cot 2 \theta}=\frac{\cos 2 \theta 1}{\cos 2 \theta}$

SOLUTION:
$\frac{1-\tan ^{2} \theta}{1-\cot ^{2} \theta}$
$=\frac{1-\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{1-\frac{\cos ^{2} \theta}{\sin ^{2} \theta}}$

$$
\cos ^{2} \theta-\sin ^{2} \theta
$$

$=\frac{\cos ^{2} \theta}{} \begin{aligned} & \cos ^{2} \theta \\ & \sin ^{2} \theta \\ & \cos ^{2} \theta\end{aligned}$
$\overline{\sin ^{2} \theta}-\frac{\sin ^{2} \theta}{}$
$\cos ^{2} \theta-\sin ^{2} \theta$
$=\frac{\cos ^{2} \theta}{\frac{\sin ^{2} \theta-\cos ^{2} \theta}{\sin ^{2} \theta}}$
$=\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos ^{2} \theta} \cdot \frac{\sin ^{2} \theta}{\sin ^{2} \theta-\cos ^{2} \theta}$
$=\frac{\cos ^{2} \theta-\left(1-\cos ^{2} \theta\right)}{\cos ^{2} \theta} \cdot \frac{1-\cos ^{2} \theta}{\left(1-\cos ^{2} \theta\right)-\cos ^{2} \theta}$
$=\frac{-1+2 \cos ^{2} \theta}{\cos ^{2} \theta} \cdot \frac{1-\cos ^{2} \theta}{1-2 \cos ^{2} \theta}$
Reciprocal Identities

Rewrite 1 using the common denominator.

Write numerator and denominator as a fraction with a common denon

Multiply by the reciprocal of the denominator.

Pythagorean Identity

Simplify the numerator.
$=\frac{-\left(1-2 \cos ^{2} \theta\right)}{\cos ^{2} \theta} \cdot \frac{1-\cos ^{2} \theta}{1-2 \cos ^{2} \theta}$
Factor out -1 in the numerator.
$=\frac{-\left(1-2 \cos ^{2} \theta\right)\left(1-\cos ^{2} \theta\right)}{\cos ^{2} \theta\left(1-2 \cos ^{2} \theta\right)}$
$=$
$=\frac{-\left(1-\cos ^{2} \theta\right)}{\cos ^{2} \theta}$
Divide out the common factor of $\left(1-2 \cos ^{2} \theta\right)$.
$=\frac{\cos ^{2} \theta-1}{\cos ^{2} \theta}$
Simplify the numerator.

5-2 Verifying Trigonometric Identities

23. $\frac{1+\csc \theta}{\sec \theta}=\cos \theta+\cot \theta$

SOLUTION:
$\frac{1+\csc \theta}{\sec \theta}$
$=\frac{1+\frac{1}{\sin \theta}}{\frac{1}{\cos \theta}}$
$=\frac{\frac{\sin \theta}{\sin \theta}+\frac{1}{\sin \theta}}{\frac{1}{\cos \theta}}$
Reciprocal Identity
$=\frac{\sin \theta+1}{\sin \theta}$
$\frac{1}{\cos \theta}$
$=\frac{\sin \theta+1}{\sin \theta} \cdot \frac{\cos \theta}{1} \quad$ Multiply by the reciprocal of the denominator.
$=\frac{\sin \theta \cos \theta+\cos \theta}{\sin \theta} \quad$ Write as a fraction with a common denominator.
$=\frac{\sin \theta \cos \theta}{\sin \theta}+\frac{\cos \theta}{\sin \theta} \quad$ Write as two fractions.
$=\cos \theta+\frac{\cos \theta}{\sin \theta} \quad$ Divide out the common factor of $\sin \theta$.
$=\cos \theta+\cot \theta \quad$ Quotient Identity

5-2 Verifying Trigonometric Identities

24. $(\csc \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$

SOLUTION:
$(\csc \theta-\cot \theta)^{2}$
$=(\csc \theta-\cot \theta)(\csc \theta-\cot \theta)$
$=\csc ^{2} \theta-2 \csc \theta \cot \theta+\cot ^{2} \theta$
$=\frac{1}{\sin ^{2} \theta}-\frac{2}{\sin \theta} \cdot \frac{\cos \theta}{\sin \theta}+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}$
Rewrite as a product of two binomials.
Multiply binomials.
Reciprocal and Quotient Identities
$=\frac{1}{\sin ^{2} \theta}-\frac{2 \cos \theta}{\sin ^{2} \theta}+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}$
$=\frac{1-2 \cos \theta+\cos ^{2} \theta}{\sin ^{2} \theta}$
Multiply fractions.
$=\frac{1-2 \cos \theta+\cos ^{2} \theta}{1-\cos ^{2} \theta}$
$=\frac{(1-\cos \theta)^{2}}{(1+\cos \theta)(1-\cos \theta)}$
$=\frac{1-\cos \theta}{1+\cos \theta}$
Write as a fraction with a common denominator.

Pythagorean Identity

Factor the numerator and the denominator.

Divide out the common factor of $(1-\cos \theta)$.

5-2 Verifying Trigonometric Identities

25. $\frac{1+\tan 2 \theta}{1 \tan 2 \theta}=\frac{1}{2 \cos 2 \theta 1}$

SOLUTION:
$\frac{1+\tan ^{2} \theta}{1-\tan ^{2} \theta}$
$=\frac{1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{1-\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}$
$=\frac{\frac{\cos ^{2} \theta}{\cos ^{2} \theta}+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{\frac{\cos ^{2} \theta}{\cos ^{2} \theta}-\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}$
$\cos ^{2} \theta+\sin ^{2} \theta$
$=\frac{\frac{\cos ^{2} \theta}{\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos ^{2} \theta}}}{\text { 和 }}$
$=\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta} \cdot \frac{\cos ^{2} \theta}{\cos ^{2} \theta-\sin ^{2} \theta}$
$=\frac{\cos ^{2} \theta\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}{\cos ^{2} \theta\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}$
$=\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta-\sin ^{2} \theta}$
$=\frac{1}{\cos ^{2} \theta-\sin ^{2} \theta}$
$=\frac{1}{\cos ^{2} \theta-\left(1-\cos ^{2} \theta\right)}$
$=\frac{1}{\cos ^{2} \theta-1+\cos ^{2} \theta}$
$=\frac{1}{2 \cos ^{2} \theta-1}$

Quotient Identity

Rewrite 1 using the common denominator.

Write the numerator and the denominator as a fraction with a common denomin

Multiply by the reciprocal of the denominator.

Multiply.

Divide out the common factor of $\cos ^{2} \theta$.
Pythagorean Identity
Pythagorean Identity

Muliply in the denominator.
Simplify the denominator.

5-2 Verifying Trigonometric Identities

26. $\tan ^{2} \theta \cos ^{2} \theta=1-\cos ^{2} \theta$

SOLUTION:
$\tan ^{2} \theta \cos ^{2} \theta$
$=\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \cdot \cos ^{2} \theta \quad$ Quotient Identity
$=\frac{\sin ^{2} \theta \cos ^{2} \theta}{\cos ^{2} \theta} \quad$ Multiply.
$=\sin ^{2} \theta \quad$ Divide out common factor of $\cos ^{2} \theta$.
$=1-\cos ^{2} \theta \quad$ Pythagorean Identity
27. $\sec \theta-\cos \theta=\tan \theta \sin \theta$

SOLUTION:
$\sec \theta-\cos \theta$
$=\frac{1}{\cos \theta}-\cos \theta \quad$ Reciprocal Identity
$=\frac{1}{\cos \theta}-\frac{\cos ^{2} \theta}{\cos \theta} \quad$ Rewrite $\cos \theta$ using the common denominator.
$=\frac{1-\cos ^{2} \theta}{\cos \theta} \quad$ Add fractions.
$=\frac{\sin ^{2} \theta}{\cos \theta} \quad$ Pythagorean Identity
$=\frac{\sin \theta}{\cos \theta} \cdot \frac{\sin \theta}{1} \quad$ Rewrite as a procuct of two fractions.
$=\tan \theta \sin \theta \quad$ Quotient Identity
28. $1-\tan ^{4} \theta=2 \sec ^{2} \theta-\sec ^{4} \theta$

SOLUTION:
$1-\tan ^{4} \theta$
$=\left(1-\tan ^{2} \theta\right)\left(1+\tan ^{2} \theta\right) \quad$ Factor difference of two squares.
$=\left[1-\left(\sec ^{2} \theta-1\right)\right]\left(\sec ^{2} \theta\right) \quad$ Pythagorean Identities
$\left.=\left[1-\sec ^{2} \theta+1\right)\right]\left(\sec ^{2} \theta\right) \quad$ Distributive Property
$=\left(2-\sec ^{2} \theta\right)\left(\sec ^{2} \theta\right) \quad$ Simplify .
$=2 \sec ^{2} \theta-\sec ^{4} \theta \quad$ Distributive Property

5-2 Verifying Trigonometric Identities

29. $(\csc \theta-\cot \theta)^{2}=\frac{1 \cos \theta}{1+\cos \theta}$

SOLUTION:

$$
\begin{array}{ll}
(\csc \theta-\cot \theta)^{2} & \\
=\left(\frac{1}{\sin \theta}-\frac{\cos \theta}{\sin \theta}\right)^{2} & \text { Reciprocal and Quotient Identities } \\
=\left(\frac{1-\cos \theta}{\sin \theta}\right)^{2} & \text { Add fractions. } \\
=\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta} & \text { Power of a Quotient } \\
=\frac{(1-\cos \theta)^{2}}{1-\cos ^{2} \theta} & \text { Pythagorean Identity } \\
=\frac{(1-\cos \theta)(1-\cos \theta)}{(1+\cos \theta)(1-\cos \theta)} & \text { Factor. } \\
=\frac{1-\cos \theta}{1+\cos \theta} & \text { Divide out common factor. }
\end{array}
$$

30. $\frac{1+\tan \theta}{\sin \theta+\cos \theta}=\sec \theta$

SOLUTION:
$\frac{1+\tan \theta}{\sin \theta+\cos \theta}$
$=\frac{1+\frac{\sin \theta}{\cos \theta}}{\sin \theta+\cos \theta}$
Quotient Identity
$=\frac{\frac{\cos \theta}{\cos \theta}+\frac{\sin \theta}{\cos \theta}}{\sin \theta+\cos \theta}$
$=\frac{\frac{\cos \theta+\sin \theta}{\cos \theta}}{\sin \theta+\cos \theta}$
$=\frac{\cos \theta+\sin \theta}{\cos \theta} \cdot \frac{1}{\sin \theta+\cos \theta}$
$=\frac{\cos \theta+\sin \theta}{\cos \theta(\sin \theta+\cos \theta)}$
$=\frac{1}{\cos \theta}$
Write the numerator as a fraction with a common denominator.
$=\sec \theta$
Rewrite 1 using the common denominator.

Multiply by the reciprocal of the denominator.
Multiply.

Divide out the common factor of $(\sin \theta+\cos \theta)$.
Reciprocal Identity

5-2 Verifying Trigonometric Identities

31. $\frac{2+\csc \theta \sec \theta}{\csc \theta \sec \theta}=(\sin \theta+\cos \theta)^{2}$

SOLUTION:
$\frac{2+\csc \theta \sec \theta}{\csc \theta \sec \theta}$
$=\frac{2}{\csc \theta \sec \theta}+\frac{\csc \theta \sec \theta}{\csc \theta \sec \theta} \quad$ Write as a sum of two fractions.
$=\frac{2}{\csc \theta \sec \theta}+1 \quad \frac{\csc \theta \sec \theta}{\csc \theta \sec \theta}=1$
$=2 \cdot \frac{1}{\csc \theta} \cdot \frac{1}{\sec \theta}+1 \quad$ Write $\frac{2}{\csc \theta \sec \theta}$ as a product.
$=2 \sin \theta \cos \theta+\left(\sin ^{2} \theta+\cos ^{2} \theta\right)$ Reciprocal and Pythagorean Identities
$=\sin ^{2} \theta+2 \sin \theta \cos \theta+\cos ^{2} \theta \quad$ Commutative Property of Addition
$=(\sin \theta+\cos \theta)^{2} \quad$ Factor Perfect Square Trinomial.
32. OPTICS If two prisms of the same power are placed next to each other, their total power can be determined using $z=2 p \cos \theta$, where z is the combined power of the prisms, p is the power of the individual prisms, and θ is the angle between the two prisms. Verify that $2 p \cos \theta=2 p\left(1-\sin ^{2} \theta\right) \sec \theta$.
SOLUTION:

$$
\begin{aligned}
2 p\left(1-\sin ^{2} \theta\right) \sec \theta & =2 p \cos ^{2} \theta \sec \theta & & \text { Pythagorean Identity } \\
& =2 p \cos ^{2} \theta \cdot \frac{1}{\cos \theta} & & \text { Reciprocal Identity } \\
& =2 p \cos \theta & & \text { Divide out the common factor } \cos \theta .
\end{aligned}
$$

33. PHOTOGRAPHY The amount of light passing through a polarization filter can be modeled using $I=I_{m} \cos ^{2} \theta$, where I is the amount of light passing through the filter, I_{m} is the amount of light shined on the filter, and θ is the angle of rotation between the light source and the filter. Verify that $I_{m} \cos ^{2} \theta=I_{m}-\frac{I m}{\cot 2 \theta+1}$.

SOLUTION:

$$
\begin{aligned}
I_{m}-\frac{I_{m m}}{\cot ^{2} \theta+1} & =I_{m}\left(1-\frac{1}{\cot ^{2} \theta+1}\right) & & \text { Factor. } \\
& =I_{m}\left(1-\frac{1}{\csc ^{2} \theta}\right) & & \text { Pythagorean Identity } \\
& =I_{m}\left(1-\sin ^{2} \theta\right) & & \text { Reciprocal Identity } \\
& =I_{m} \cos ^{2} \theta & & \text { Pythagorean Identity }
\end{aligned}
$$

5-2 Verifying Trigonometric Identities

GRAPHING CALCULATOR Test whether each equation is an identity by graphing. If it appears to be an identity, verify it. If not, find an \boldsymbol{x}-value for which both sides are defined but not equal.
34. $\frac{\tan x+1}{\tan x 1}=\frac{1+\cot x}{1 \cot x}$

SOLUTION:
Graph $\mathrm{Y} 1=\frac{\tan x+1}{\tan x-1}$ and then graph $\mathrm{Y} 2=\frac{1+\cot x}{1-\cot x}$.

The graphs of the related functions do not coincide for all values of x for which both functions are defined. Using the CALC feature on the graphing calculator to find that when $x=\pi, \mathrm{Y} 1=-1$ and Y 2 is undefined. Therefore, the equation is not an identity.

5-2 Verifying Trigonometric Identities

35. $\sec x+\tan x=\frac{1}{\sec x \tan x}$

SOLUTION:
Graph $\mathrm{Y} 1=\sec x+\tan x$ and then graph $\mathrm{Y} 2=\frac{1}{\sec x-\tan x}$.

The equation appears to be an identity because the graphs of the related functions coincide. Verify this algebraically.

$$
\begin{array}{rlrl}
\frac{1}{\sec x-\tan x} & =\frac{1}{\frac{1}{\cos x}-\frac{\sin x}{\cos x}} & & \text { Reciprocal and Quotient Identities } \\
& =\frac{1}{\frac{1-\sin x}{\cos x}} & & \text { Subtract fractions in the denominator. } \\
& =\frac{\cos x}{1-\sin x} & & 1 \div \frac{1-\sin x}{\cos x}=\frac{\cos x}{1-\sin x} \\
& =\frac{\cos x}{1-\sin x} \cdot \frac{1+\sin x}{1+\sin x} & & \begin{array}{l}
\text { Multiply numerator and denominator } \\
\text { by the conjugate of the denominator. } \\
\end{array} \\
& =\frac{\cos x+\sin x \cos x}{1-\sin ^{2} x} & & \text { Multiply. } \\
& =\frac{\cos x+\sin ^{2} x \cos x}{\cos ^{2} x} & & \text { Pythagorean Identity } \\
& =\frac{\cos x}{\cos 2}+\frac{\sin x \cos x}{\cos { }^{2} x} & \text { Write as a sum of two fractions. } \\
& =\frac{1}{\cos x}+\frac{\sin x}{\cos x} & \text { Divide out the common factor } \cos x . \\
& =\sec x+\tan x & \text { Reciprocal and Quotient Identities. }
\end{array}
$$

5-2 Verifying Trigonometric Identities

36. $\sec ^{2} x-2 \sec x \tan x+\tan ^{2} x=\frac{1 \cos x}{1+\cos x}$

SOLUTION:
Graph Y1 $=\sec ^{2} x-2 \sec x \tan x+\tan ^{2} x$ and then graph Y2 $=\frac{1 \cos x}{1+\cos x}$.

$[-2 \pi, 2 \pi]$ scl: $\frac{\pi}{2}$ by $[-4,4]$ scl: 1

$[-2 \pi, 2 \pi]$ scl: $\frac{\pi}{2}$ by $[-4,4]$ scl: 1

The graphs of the related functions do not coincide for all values of x for which both functions are defined. Using the CALC feature on the graphing calculator to find that when $x=0, \mathrm{Y} 1=1$ and $\mathrm{Y} 2=0$. Therefore, the equation is not an identity.
37. $\frac{\cot 2 x 1}{1+\cot 2 x}=1-2 \sin ^{2} x$

SOLUTION:
Graph $\mathrm{Y} 1=\frac{\cot 2 x 1}{1+\cot 2 x}$ and then graph $\mathrm{Y} 2=1-2 \sin ^{2} x$.

$[-2 \pi, 2 \pi]$ scl: $\frac{\pi}{2}$ by $[-4,4]$ scl: $1[-2 \pi, 2 \pi]$ scl: $\frac{\pi}{2}$ by $[-4,4]$ scl: 1
The equation appears to be an identity because the graphs of the related functions coincide. Verify this algebraically.

$$
\begin{aligned}
\frac{\cot ^{2} x-1}{1+\cot ^{2} x} & =\frac{\cot ^{2} x-1}{\csc ^{2} x} & & \text { Pythagorean Identity } \\
& =\frac{\frac{\cos ^{2} x}{\sin ^{2} x}-1}{\frac{1}{\sin ^{2} x}} & & \text { Quotient and Reciprocal Identities } \\
& =\left(\frac{\cos ^{2} x}{\sin ^{2} x}-1\right) \sin ^{2} x & & 1 \div \frac{1}{\sin ^{2} x}=\sin ^{2} x \\
& =\cos ^{2} x-\sin ^{2} x & & \text { Multiply and divide out common factor. } \\
& =\left(1-\sin ^{2} x\right)-\sin ^{2} x & & \text { Pythagorean Identity } \\
& =1-2 \sin ^{2} x \checkmark & & \text { Simplify. }
\end{aligned}
$$

5-2 Verifying Trigonometric Identities

38. $\frac{\tan x \sec x}{\tan x+\sec x}=\frac{\tan 2 x 1}{\sec 2 x}$

SOLUTION:
Graph $\mathrm{Y} 1=\frac{\tan x \sec x}{\tan x+\sec x}$ and then graph $\mathrm{Y} 2=\frac{\tan 2 x 1}{\sec 2 x}$.

$[-2 \pi, 2 \pi]$ scl: $\frac{\pi}{2}$ by $[-4,4]$ scl: 1

$[-2 \pi, 2 \pi]$ scl: $\frac{\pi}{2}$ by $[-4,4]$ scl: 1
The graphs of the related functions do not coincide for all values of x for which both functions are defined.
Using the CALC feature on the graphing calculator to find that when $x=\frac{\pi}{4}, \mathrm{Y} 1 \approx-0.17$ and $\mathrm{Y} 2=0$. Therefore, the equation is not an identity.

5-2 Verifying Trigonometric Identities

39. $\cos ^{2} x-\sin ^{2} x=\frac{\cot x \tan x}{\tan x+\cot x}$

SOLUTION:
Graph Y1 $=\cos ^{2} x-\sin ^{2} x$ and then graph $\mathrm{Y} 2=\frac{\cot x \tan x}{\tan x+\cot x}$.

$[-2 \pi, 2 \pi]$ scl: $\frac{\pi}{2}$ by $[-4,4]$ scl: 1

$[-2 \pi, 2 \pi]$ scl: $\frac{\pi}{2}$ by $[-4,4]$ scl: 1
The equation appears to be an identity because the graphs of the related functions coincide. Verify this algebraically.

$$
\begin{array}{rlrl}
\frac{\cot x-\tan x}{\tan x+\cot x} & =\frac{\frac{\cos x}{\sin x}-\frac{\sin x}{\cos x}}{\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}} & & \text { Quotient Identities } \\
& =\frac{\frac{\cos ^{2} x}{\sin x \cos x}-\frac{\sin ^{2} x}{\sin x \cos x}}{\frac{\sin 2}{\sin x \cos x}+\frac{\cos ^{2} x}{\sin x \cos x}} & & \text { Multiply to change to common denominators. } \\
& =\frac{\frac{\cos ^{2} x-\sin ^{2} x}{\sin ^{2} x \cos ^{2} x}}{\frac{\sin ^{2} x+\cos ^{2} x}{\sin x \cos ^{2}}} & & \text { Add fractions in numerator and denominator. } \\
& =\frac{\cos ^{2} x-\sin ^{2} x}{\sin ^{2} x+\cos ^{2} x} & & \text { Multiply numerator and denominator by }(\sin x \cdot \cos x) . \\
& =\cos ^{2} x-\sin ^{2} x \checkmark & \text { Pythagorean Identity }
\end{array}
$$

5-2 Verifying Trigonometric Identities

Verify each identity.

40. $\sqrt{\frac{\sin x \tan x}{\sec x}}=\sin x$

SOLUTION:

$$
\sqrt{\frac{\sin x \tan x}{\sec x}}=\sqrt{\frac{\sin x\left(\frac{\sin x}{\cos x}\right)}{\frac{1}{\cos x}}}
$$

Multiply $(\sin x)(\sin x)$.
$=\sqrt{\sin ^{2} x}$
$=|\sin x|$
Quotient Identities

$$
=\sqrt{\frac{\frac{\sin ^{2} x}{\cos x}}{\frac{1}{\cos x}}}
$$

$$
=\sqrt{\frac{\sin ^{2} x}{\cos x} \cdot \frac{\cos x}{1}}
$$

41. $\sqrt{\frac{\sec x 1}{\sec x+1}}=\frac{\sec x 1}{|\tan x|}$

SOLUTION:

$$
\begin{aligned}
\sqrt{\frac{\sec x-1}{\sec x+1}} & =\sqrt{\frac{\sec x-1}{\sec x+1}} \cdot \sqrt{\frac{\sec x-1}{\sec x-1}} & & \text { Multiply numerator and denominator by conjugate of the } \\
& =\sqrt{\frac{(\sec x-1)^{2}}{\sec ^{2} x-1}} & & \text { Multiply in the numerator and denominator. } \\
& =\sqrt{\frac{(\sec x-1)^{2}}{\tan ^{2} x}} & & \text { Pythagorean Identity } \\
& =\left|\frac{\mid \sec x-1}{\tan x}\right| \checkmark & & \text { Simplify the square root of numerator and denominator. }
\end{aligned}
$$

42. $\ln \csc x+\cot x+\ln \csc x-\cot x=0$

SOLUTION:

$$
\begin{array}{ll}
\ln |\csc x+\cot x|+\ln |\csc x-\cot x| & \\
=\ln |(\csc x+\cot x)(\csc x-\cot x)| & \\
=\ln \left|\csc ^{2} x-\cot ^{2} x\right| & \\
=\ln |1| & \\
=0 \checkmark & \\
\text { Product Property of Logarithms } \\
\text { Pimplify. }
\end{array}
$$

5-2 Verifying Trigonometric Identities

43. $\ln \cot x+\ln \tan x \cos x=\ln \cos x$

SOLUTION:
$\ln |\cot x|+\ln |\tan x \cos x|$
$=\ln \left|\frac{\cos x}{\sin x}\right|+\ln \left|\frac{\sin x}{\cos x} \cdot \cos x\right|$
Quotient Identities
$=\ln \left|\frac{\cos x}{\sin x}\right|+\ln |\sin x|$
Divide out common factor $\cos x$.
$=\ln \left|\frac{\cos x}{\sin x} \cdot \sin x\right|$
Product Property of Logarithms
$=\ln |\cos x| \checkmark$
Divide out common factor $\sin x$.

Verify each identity.

44. $\sec ^{2} \theta+\tan ^{2} \theta=\sec ^{4} \theta-\tan ^{4} \theta$

SOLUTION:

Start with the right side of the identity.

$$
\begin{aligned}
& \sec ^{4} \theta-\tan ^{4} \theta \\
& =\left(\sec ^{2} \theta+\tan ^{2} \theta\right)\left(\sec ^{2} \theta-\tan ^{2} \theta\right) \\
& =\left(\sec ^{2} \theta+\tan ^{2} \theta\right)\left(\tan ^{2} \theta+1-\tan ^{2} \theta\right) \\
& =\left(\sec ^{2} \theta+\tan ^{2} \theta\right)(1) \\
& =\sec ^{2} \theta+\tan ^{2} \theta
\end{aligned}
$$

Factor.
Pythagorean Identity
Combine like terms.
Multiplicative Identity
45. $-2 \cos ^{2} \theta=\sin ^{4} \theta-\cos ^{4} \theta-1$

SOLUTION:

Start with the right side of the identity.

$$
\begin{array}{ll}
\sin ^{4} \theta-\cos ^{4} \theta-1 & \\
=\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\left(\sin ^{2} \theta-\cos ^{2} \theta\right)-1 & \\
=(1)\left(1-\cos ^{2} \theta-\cos ^{2} \theta\right)-1 & \\
=1-\cos ^{2} \theta-\cos ^{2} \theta-1 & \\
=\text { Pythagorean Identities } \\
\left.=\sin ^{4} \theta-\cos ^{4} \theta\right) . \\
\text { Multiply. }
\end{array}
$$

$$
=-2 \cos ^{2} \theta
$$

5-2 Verifying Trigonometric Identities

46. $\sec ^{2} \theta \sin ^{2} \theta=\sec ^{4}-\left(\tan ^{4} \theta+\sec ^{2} \theta\right)$

SOLUTION:
Start with the right side of the identity.

$$
\sec ^{4} \theta-\left(\tan ^{4} \theta+\sec ^{2} \theta\right)
$$

$$
=\left(\sec ^{4} \theta-\tan ^{4} \theta\right)-\sec ^{2} \theta \quad \text { Distributive and Associative Properties of Addition }
$$

$$
=\left(\sec ^{2} \theta-\tan ^{2} \theta\right)\left(\sec ^{2} \theta+\tan ^{2} \theta\right)-\sec ^{2} \theta \quad \text { Factor. }
$$

$$
=(1)\left(\sec ^{2} \theta+\tan ^{2} \theta\right)-\sec ^{2} \theta
$$

$$
=\sec ^{2} \theta+\tan ^{2} \theta-\sec ^{2} \theta
$$

$$
=\tan ^{2} \theta
$$

$$
=\frac{\sin ^{2} \theta}{\cos ^{2} \theta}
$$

$$
=\frac{1}{\cos ^{2} \theta} \cdot \frac{\sin ^{2} \theta}{1}
$$

$$
=\sec ^{2} \theta \sin ^{2} \theta
$$

Pythagorean Identity
Multiply.
Add.
Quotient Identity
Write as product of two fractions.
Reciprocal Identity

5-2 Verifying Trigonometric Identities

47. $3 \sec ^{2} \theta \tan ^{2} \theta+1=\sec ^{6} \theta-\tan ^{6} \theta$

SOLUTION:
Start with the right side of the identity.

$$
\begin{aligned}
& \sec ^{6} \theta-\tan ^{6} \theta \\
& =\left(\sec ^{3} \theta-\tan ^{3} \theta\right)\left(\sec ^{3} \theta+\tan ^{3} \theta\right) \quad \text { Factor difference of squares. } \\
& =(\sec \theta-\tan \theta)\left(\sec ^{2} \theta+\sec \theta \tan \theta+\tan ^{2} \theta\right) \text {. } \\
& (\sec \theta+\tan \theta)\left(\sec ^{2} \theta-\sec \theta \tan \theta+\tan ^{2} \theta\right) \quad \text { Factor sum and difference of cubes. } \\
& =(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)\left(\sec ^{2} \theta+\sec \theta \tan \theta+\tan ^{2} \theta\right) \text {. } \\
& \left(\sec ^{2} \theta-\sec \theta \tan \theta+\tan ^{2} \theta\right) \quad \text { Commutative Property of Multiplication } \\
& =\left(\sec ^{2} \theta-\tan ^{2} \theta\right)\left[\left(1+\tan ^{2} \theta\right)+\sec \theta \tan \theta+\tan ^{2} \theta\right] \text {. } \\
& {\left[\left(1+\tan ^{2} \theta\right)-\sec \theta \tan \theta+\tan ^{2} \theta\right] \quad \text { Multiply and replace } \sec ^{2} \theta \text { with } 1+\tan ^{2} \theta \text {. }} \\
& =(1)\left(1+2 \tan ^{2} \theta+\sec \theta \tan \theta\right) \text {. } \\
& \left(1+2 \tan ^{2} \theta-\sec \theta \tan \theta\right) \quad \text { Pythagorean Identity and Additon } \\
& =\left[\left(1+2 \tan ^{2} \theta\right)+\sec \theta \tan \theta\right]\left[\left(1+2 \tan ^{2} \theta\right)-\sec \theta \tan \theta\right] \quad \text { Associative Property of Addition } \\
& =\left(1+2 \tan ^{2} \theta\right)^{2}-(\sec \theta \tan \theta)^{2} \quad \text { Product of sum and difference of two terms. } \\
& =1+4 \tan ^{2} \theta+4 \tan ^{4} \theta-\sec ^{2} \theta \tan ^{2} \theta \quad \text { Square each expression. } \\
& =1+\left(4 \tan ^{2} \theta+4 \tan ^{4} \theta-\sec ^{2} \theta \tan ^{2} \theta\right) \quad \text { Associative Property of Addition } \\
& =1+\tan ^{2} \theta\left(4+4 \tan ^{2} \theta-\sec ^{2} \theta\right) \\
& =1+\tan ^{2} \theta\left[4+4\left(\sec ^{2} \theta-1\right)-\sec ^{2} \theta\right] \\
& =1+\tan ^{2} \theta\left(4+4 \sec ^{2} \theta-4-\sec ^{2} \theta\right) \\
& \text { Pyagoran } \\
& \text { Distributive Property } \\
& =1+\tan ^{2} \theta\left(3 \sec ^{2} \theta\right) \\
& \text { Combine like terms. } \\
& =1+3 \tan ^{2} \theta \sec ^{2} \theta \\
& =3 \sec ^{2} \theta \tan ^{2} \theta+1 \quad \checkmark \\
& \text { Multiply. } \\
& \text { Commutative Property of Addition }
\end{aligned}
$$

48. $\sec ^{4} x=1+2 \tan ^{2} x+\tan ^{4} x$

SOLUTION:
Start with the right side of the identity.

$$
\begin{array}{ll}
& 1+2 \tan ^{2} x+\tan ^{4} x \\
& \\
= & 1+2\left(\sec ^{2} x-1\right)+\left(\sec ^{2} x-1\right)^{2} \\
= & \\
= & \\
=\sec ^{2} x-2+\sec ^{4} x-2 \sec ^{2} x+1 &
\end{array} \text { Pythagorean Identities } . \text { Distribute and square. }
$$

5-2 Verifying Trigonometric Identities

49. $\sec ^{2} x \csc ^{2} x=\sec ^{2} x+\csc ^{2} x$

SOLUTION:
Start with the left side of the identity.
$\sec ^{2} x \csc ^{2} x$
$=\left(\tan ^{2} x+1\right) \csc ^{2} x$
Pythagorean Identity
$=\left(\frac{\sin ^{2} x}{\cos ^{2} x}+1\right)\left(\frac{1}{\sin ^{2} x}\right)$
Quotient and Reciprocal Identities
$=\frac{1}{\cos ^{2} x}+\frac{1}{\sin ^{2} x}$
Multiply.
$=\sec ^{2} x+\csc ^{2} x \checkmark \quad$ Reciprocal Identities
50. ENVIRONMENT A biologist studying pollution situates a net across a river and positions instruments at two different stations on the river bank to collect samples. In the diagram shown, d is the distance between the stations and w is width of the river.

a. Determine an equation in terms of tangent α that can be used to find the distance between the stations.
b. Verify that $d=\frac{w \cos \left(90^{\circ} \alpha\right)}{\cos \alpha}$.
c. Complete the table shown for $d=40$ feet.

w	20	40	60	80	100	120
α						

d. If $\alpha>60^{\circ}$ or $\alpha<20^{\circ}$, the instruments will not function properly. Use the table from part \mathbf{c} to determine whether sites in which the width of the river is 5,35 , or 140 feet could be used for the experiment.

SOLUTION:

a.

$$
\begin{array}{ll}
\tan \alpha=\frac{\text { opp }}{\text { adj }} & \text { Tangent ratio } \\
\tan \alpha=\frac{d}{w} & \text { opp }=d \text { and adj }=w \\
w \tan \alpha=d & \text { Multiply each side by } w . \\
d=w \tan \alpha & \text { Symmetric Property of Equality } \\
\begin{aligned}
& \text { b. } \\
& d=w \tan \alpha \\
&=\frac{w \sin \alpha}{\cos \alpha} \text { Quotient Identity } \\
&=\frac{w \cos \left(90^{\circ}-\alpha\right)}{\cos \alpha} \text { Cofunction Identity }
\end{aligned}
\end{array}
$$

c.

5-2 Verifying Trigonometric Identities

$$
\begin{array}{rl}
\tan \alpha & =\frac{d}{w} \\
\alpha & =\tan ^{-1}\left(\frac{d}{w}\right) \\
\alpha & =\tan ^{-1}\left(\frac{40}{20}\right) \approx 63.4 \\
& \\
\alpha & =\tan ^{-1}\left(\frac{40}{40}\right)=45 \\
\alpha & =\tan ^{-1}\left(\frac{40}{60}\right) \approx 33.7 \\
\hline \mathbf{w} & 20 \\
\hline \alpha & 40 \\
\hline 63.4 & 45 \\
\hline
\end{array}
$$

d. Sample answer: If $w=5$ then α will be greater than 63.4° since $5<20$. If $w=140$, then α will be less than 18.4° since $140>120$. If $w=35$, then $45^{\circ}<\alpha<63.4^{\circ}$ since 35 is between 20 and 40 . The sites with widths of 5 and 140 feet could not be used because $\alpha>60^{\circ}$ and $\alpha<20^{\circ}$, respectively. The site with a width of 35 feet could be used because $20^{\circ}<\alpha<60^{\circ}$.

5-2 Verifying Trigonometric Identities

HYPERBOLIC FUNCTIONS The hyperbolic trigonometric functions are defined in the following ways.
$\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right)$
$\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right)$
$\tanh x=\frac{\sinh x}{\cosh x}$
$\operatorname{csch} x=\frac{1}{\sinh x}, x \neq 0$
$\operatorname{sech} x=\frac{1}{\cosh x}$
$\operatorname{coth} x=\frac{1}{\tanh \mathrm{x}}, x \neq 0$
Verify each identity using the functions shown above.
51. $\cosh ^{2} x-\sinh ^{2} x=1$

SOLUTION:
$\cosh ^{2}-\sinh ^{2} x \quad$ Start with the left side.
$=\frac{1}{4}\left(e^{x}+e^{-x}\right)^{2}-\frac{1}{4}\left(e^{x}-e^{-x}\right)^{2} \quad \quad$ Replace cosh and \sinh with definitions.
$=\frac{1}{4}\left[e^{2 x}+2+e^{-2 x}-\left(e^{2 x}-2+e^{-2 x}\right)\right] \quad$ Factor and square each expression.
$=\frac{1}{4}\left[e^{2 x}+2+e^{-2 x}-e^{2 x}+2-e^{-2 x}\right] \quad$ Distribute the negative.
$=\frac{1}{4}(4)$
Combine like terms.
$=1$
Multiply.
52. $\sinh (-x)=-\sinh x$

SOLUTION:

	$\sinh (-x)$	
$=\frac{\text { Start with the left side. }}{2}\left[e^{-x}-e^{-(-x)}\right]$		Substitute $-x$ for x in defintion for sinh.
$=\frac{1}{2}\left(e^{-x}-e^{x}\right)$		Simplify.
$=\frac{1}{2}\left(-e^{x}+e^{-x}\right)$		Commutative Property of Addition
$=-\frac{1}{2}\left(e^{x}-e^{-x}\right)$		Factor out -1.
$=-\left[\frac{1}{2}\left(e^{x}-e^{-x}\right)\right]$		Associative Property of Multiplication
$=-\sinh x \checkmark$		Substitute.

5-2 Verifying Trigonometric Identities

53. $\operatorname{sech}^{2} x=1-\tanh ^{2} x$

SOLUTION:
$1-\tanh ^{2} x$
Start with the right side.
$=1-\frac{\sinh ^{2} x}{\cosh ^{2} x}$
Replace tanh with $\frac{\sinh }{\cosh }$.
$=\frac{\cosh ^{2} x}{\cosh ^{2} x}-\frac{\sinh ^{2} x}{\cosh ^{2} x} \quad$ Change to common denominators.
$=\frac{\cosh ^{2} x-\sinh ^{2} x}{\cosh ^{2} x} \quad$ Add fractions.
$=\frac{1}{\cosh ^{2} x}$
From Problem 51, $\cosh ^{2} x-\sinh ^{2} x=1$.
$=\operatorname{sech}^{2} x \checkmark$
Replace $\frac{1}{\cosh x}$ with $\operatorname{sech} x$.
54. $\cosh (-x)=\cosh x$

SOLUTION:
$\cosh (-x)$
Start with the left side.
$=\frac{1}{2}\left[e^{-x}+e^{-(-x)}\right] \quad$ Substitute $-x$ for x in definition for cosh.
$=\frac{1}{2}\left(e^{-x}+e^{x}\right) \quad$ Simplify .
$=\frac{1}{2}\left(e^{x}+e^{-x}\right) \quad$ Commutative Property of Addition
$=\cosh x \checkmark \quad$ Substitute.

5-2 Verifying Trigonometric Identities

GRAPHING CALCULATOR Graph each side of each equation. If the equation appears to be an identity, verify it algebraically.
55. $\frac{\sec x}{\cos x}-\frac{\tan x \sec x}{\csc x}=1$

SOLUTION:

The graphs appear to be the same, so the equation appears to be an identity. Verify this algebraically.

$$
\begin{array}{ll}
\frac{\sec x}{\cos x}-\frac{\tan x \sec x}{\csc x} & \text { Start with the left side of the identity. } \\
=\frac{1}{\cos x} \cdot \frac{1}{\cos x}-\frac{\frac{\sin x}{\cos x} \cdot \frac{1}{\cos x}}{\frac{1}{\sin x}} & \text { Quotient and Reciprocal Identities } \\
=\frac{1}{\cos ^{2} x}-\frac{\frac{\sin x}{\cos ^{2} x}}{\frac{1}{\sin x}} & \text { Multiply fractions. } \\
=\frac{1}{\cos ^{2} x}-\frac{\sin ^{2} x}{\cos ^{2} x} & \text { Multiply by reciprocal of the denominator. } \\
=\sec ^{2} x-\tan ^{2} x & \text { Reciprocal and Quotient Identity } \\
=1 \checkmark & \text { Pythagorean Identity }
\end{array}
$$

5-2 Verifying Trigonometric Identities

56. $\sec x-\cos ^{2} x \csc x=\tan x \sec x$

SOLUTION:

$[-2 \pi, 2 \pi]$ scl: $\frac{\pi}{2}$ by $[-4,4]$ scl: $1 \quad[-2 \pi, 2 \pi]$ scl: $\frac{\pi}{2}$ by $[-4,4]$ scl: 1
Graphs are not the same so $\sec x-$
$\cos ^{2} x \csc x \neq \tan x \sec x$.
57. $(\tan x+\sec x)(1-\sin x)=\cos x$

SOLUTION:

$[-2 \pi, 2 \pi]$ scl: $\frac{\pi}{2}$ by $[-4,4]$ scl: $1[-2 \pi, 2 \pi]$ scl: $\frac{\pi}{2}$ by $[-4,4]$ scl: 1
$(\tan x+\sec x)(1-\sin x)$
$=\tan x-\tan x \sin x+\sec x-\sec x \sin x$
$=\tan x-\frac{\sin x}{\cos x} \cdot \sin x+\frac{1}{\cos x}-\frac{1}{\cos x} \cdot \sin x$ Quotient and Reciprocal Identities
$=\tan x-\frac{\sin ^{2} x}{\cos x}+\frac{1}{\cos x}-\frac{\sin x}{\cos x}$
$=\tan x-\frac{\sin ^{2} x}{\cos x}+\frac{1}{\cos x}-\tan x \quad$ Quotient Identity
$=-\frac{\sin ^{2} x}{\cos x}+\frac{1}{\cos x} \quad \tan x-\tan x=0$
$=\frac{1}{\cos x}+\frac{-\sin ^{2} x}{\cos x} \quad$ Commutative Property
$=\frac{1-\sin ^{2} x}{\cos x}$
$=\frac{\cos ^{2} x}{\cos x}$
$=\cos x$

Start with the left side.
Multiply binomials.

Multiply.

Add fractions.

Pythagorean Identity
Divide out common factor.

5-2 Verifying Trigonometric Identities

58. $\frac{\sec x \cos x}{\cot 2 x}-\frac{1}{\tan 2 x \sin 2 x \tan 2 x}=-1$

SOLUTION:

$[-2 \pi, 2 \pi]$ scl: $\frac{\pi}{2}$ by $[-4,4]$ scl: $1 \quad[-2 \pi, 2 \pi]$ scl: $\frac{\pi}{2}$ by $[-4,4]$ scl: 1
The graphs are not the same, so $\frac{\sec x \cos x}{\cot ^{2} x}-\frac{1}{\tan ^{2} x-\sin ^{2} x \tan ^{2} x} \neq-1$
59. MULTIPLE REPRESENTATIONS In this problem, you will investigate methods used to solve trigonometric equations. Consider $1=2 \sin x$.
a. NUMERICAL Isolate the trigonometric function in the equation so that $\sin x$ is the only expression on one side of the equation.
b. GRAPHICAL Graph the left and right sides of the equation you found in part \mathbf{a} on the same graph over $[0,2 \pi)$.

Locate any points of intersection and express the values in terms of radians.
c. GEOMETRIC Use the unit circle to verify the answers you found in part \mathbf{b}.
d. GRAPHICAL Graph the left and right sides of the equation you found in part \mathbf{a} on the same graph over $-2 \pi<x$ $<2 \pi$. Locate any points of intersection and express the values in terms of radians.
e. VERBAL Make a conjecture as to the solutions of $1=2 \sin x$. Explain your reasoning.

SOLUTION:
a. $2 \sin x=1$

$$
\begin{aligned}
\frac{2 \sin x}{2} & =\frac{1}{2} \\
\sin x & =\frac{1}{2}
\end{aligned}
$$

b.

$[0,2 \pi]$ scl: $\frac{\pi}{2}$ by $[-2,2]$ scl: 1
The graphs of $y=\sin x$ and $y=\frac{1}{2}$ intersect at $\frac{\pi}{6}$ and $\frac{5 \pi}{6}$ over $[0,2 \pi)$.

5-2 Verifying Trigonometric Identities

c.

d.

$[-2 \pi, 2 \pi]$ scl: $\frac{\pi}{2}$ by $[-2,2]$ scl: 1
The graphs of $y=\sin x$ and $y=\frac{1}{2}$ intersect at $-\frac{11 \pi}{6},-\frac{7 \pi}{6}, \frac{\pi}{6}$ and $\frac{5 \pi}{6}$ over ($-2 \pi, 2 \pi$).
e. Sample answer: Since sine is a periodic function, the solutions of $\sin x=\frac{1}{2}$ are
$x=\frac{\pi}{6}+2 n \pi$ and $x=\frac{5 \pi}{6}+2 n \pi$, where n is an integer.
60. REASONING Can substitution be used to determine whether an equation is an identity? Explain your reasoning.

SOLUTION:
Sample answer: Substitution can be used to determine whether an equation is not an identity. However, this method cannot be used to determine whether an equation is an identity, because there is no way to prove that the identity is true for the entire domain.

5-2 Verifying Trigonometric Identities

61. CHALLENGE Verify that the area A of a triangle is given by

$$
A=\frac{a 2 \sin \beta \sin \gamma}{2 \sin (\beta+\gamma)}
$$

where a, b, and c represent the sides of the triangle and α, β, and γ are the respective opposite angles. SOLUTION:
Using the Law of Sines, $\frac{\sin \beta}{b}=\frac{\sin \alpha}{a}$, so $b=\frac{a \sin \beta}{\sin \alpha}$.
$\begin{array}{ll}A=\frac{1}{2} a b \sin \gamma & \text { Area of a triangle given SAS } \\ A=\frac{1}{2} a\left(\frac{a \sin \beta}{\sin \alpha}\right) \sin \gamma & \text { Substitution } \\ A=\frac{a 2 \sin \beta \sin \gamma}{2 \sin \alpha} & \text { Multiply. } \\ A=\frac{a 2 \sin \beta \sin \gamma}{2 \sin \left[180^{\circ}(\beta+\gamma)\right]} & \alpha+\beta+\gamma=180^{\circ}, \operatorname{so} \alpha=180^{\circ}-(\beta+\gamma) .\end{array}$
$A=\quad$ Sine Sum Identity
$A=\frac{a 2 \sin \beta \sin \gamma}{2[0 \cdot \cos (\beta+\gamma)(1) \sin (\beta+\gamma)]} \quad \sin 180^{\circ}=0, \cos 180^{\circ}=-1$
$A=\frac{a 2 \sin \beta \sin \gamma}{2 \sin (\beta+\gamma)}$
Simplify.
62. Writing in Math Use the properties of logarithms to explain why the sum of the natural logarithm of the six basic trigonometric functions for any angle θ is 0 .

SOLUTION:

Sample answer: According to the Product Property of Logarithms, the sum of the logarithms of the basic trigonometric functions is equal to the logarithm of the product. Since the product of the absolute values of the functions is 1 , the sum of the logarithms is $\ln 1$ or 0 .

5-2 Verifying Trigonometric Identities

63. OPEN ENDED Create identities for $\sec x$ and $\csc x$ in terms of two or more of the other basic trigonometric functions.

SOLUTION:
Sample answers: $\tan x \sin x+\cos x=\sec x$ and $\sin x+\cot x \cos x=\csc x$

$$
\begin{aligned}
\tan x \sin x+\cos x & =\frac{\sin x}{\cos x} \cdot \sin x+\cos x \\
& =\frac{\sin ^{2} x}{\cos x}+\cos x \\
& =\frac{1-\cos ^{2} x}{\cos x}+\cos x \\
& =\frac{1}{\cos x}-\cos x+\cos x \\
& =\frac{1}{\cos x} \\
& =\sec x
\end{aligned}
$$

$\sin x+\cot x \cos x=\sin x+\frac{\cos x}{\sin x} \cdot \cos x$

$$
=\sin x+\frac{\cos ^{2} x}{\sin x}
$$

$$
=\sin x+\frac{1-\sin ^{2} x}{\sin x}
$$

$$
=\sin x+\frac{1}{\sin x}-\sin x
$$

$$
=\frac{1}{\sin x}
$$

$$
=\csc x
$$

64. REASONING If two angles α and β are complementary, is $\cos ^{2} \alpha+\cos ^{2} \beta=1$? Explain your reasoning. Justify your answers.

SOLUTION:
Yes; sample answer: If α and β are complementary angles, then $\alpha+\beta=90^{\circ}$
$\cos ^{2} \alpha+\cos ^{2} \beta$
$=\cos ^{2} \alpha+\cos ^{2}\left(90^{\circ}-\alpha\right)$
$=\cos ^{2} \alpha+\sin ^{2} \alpha=1$.
65. Writing in Math Explain how you would verify a trigonometric identity in which both sides of the equation are equally complex.

SOLUTION:
Sample answer: You could start on the left side of the identity and simplify it as much as possible. Then, you could move to the right side and simplify until it matches the left side.

5-2 Verifying Trigonometric Identities

Simplify each expression.
66. $\cos \theta \csc \theta$

SOLUTION:

$$
\begin{aligned}
\cos \theta \csc \theta & =\cos \theta \cdot \frac{1}{\sin \theta} & & \text { Reciprocal Identity } \\
& =\frac{\cos \theta}{\sin \theta} & & \text { Multiply. } \\
& =\cot \theta & & \text { Quotient Identity }
\end{aligned}
$$

67. $\tan \theta \cot \theta$

SOLUTION:
$\tan \theta \cot \theta=\frac{\sin \theta}{\cos \theta} \cdot \frac{\cos \theta}{\sin \theta}$
Quotient Identities

$$
=1
$$

Divide out the common factors.
68. $\sin \theta \cot \theta$

SOLUTION:
$\begin{aligned} \sin \theta \cot \theta & =\sin \theta \cdot \frac{\cos \theta}{\sin \theta} & & \text { Quotient Identity } \\ & =\cos \theta & & \text { Divide out the common factors. }\end{aligned}$
69. $\frac{\cos \theta \csc \theta}{\tan \theta}$

SOLUTION:

$$
\begin{aligned}
\frac{\cos \theta \csc \theta}{\tan \theta} & =\frac{\frac{\cos \theta}{1} \cdot \frac{1}{\sin \theta}}{\frac{\sin \theta}{\cos \theta}} & & \text { Reciprocal and Quotient Identities } \\
& =\frac{\cos \theta}{\sin \theta} \cdot \frac{\cos \theta}{\sin \theta} & & \text { Multiply by reciprocal of the denominator. } \\
& =\frac{\cos ^{2} \theta}{\sin ^{2} \theta} & & \text { Multiply fractions. } \\
& =\cot ^{2} \theta & & \text { Quotient Identity }
\end{aligned}
$$

5-2 Verifying Trigonometric Identities

70. $\frac{\sin \theta \csc \theta}{\cot \theta}$

SOLUTION:

$$
\begin{array}{rlrl}
\frac{\sin \theta \csc \theta}{\cot \theta} & =\frac{\frac{\sin \theta}{1} \cdot \frac{1}{\sin \theta}}{\frac{\cos \theta}{\sin \theta}} & & \text { Reciprocal and Quotient Identities } \\
& =\frac{1}{1} \cdot \frac{\sin \theta}{\cos \theta} & & \text { Divide out common factor of } \sin \theta \\
& =\frac{\sin \theta}{\cos \theta} & & \text { and multiply by reciprocal of denominator. } \\
& =\tan \theta & & \text { Quotiply. } \\
\text { Quotient Identity }
\end{array}
$$

71. $\frac{1-\cos 2 \theta}{\sin 2 \theta}$

SOLUTION:
$\frac{1-\cos ^{2} \theta}{\sin ^{2} \theta}=\frac{\left(\sin ^{2} \theta+\cos ^{2} \theta\right)-\cos ^{2} \theta}{\sin ^{2} \theta} \quad$ Pythagorean Identity
$=\frac{\sin ^{2} \theta}{\sin ^{2} \theta} \quad$ Combine like terms.
$=1 \quad$ Divide out the common factor of $\sin ^{2} \theta$.

5-2 Verifying Trigonometric Identities

72. BALLOONING As a hot-air balloon crosses over a straight portion of interstate highway, its pilot eyes two consecutive mileposts on the same side of the balloon. When viewing the mileposts, the angles of depression are 64° and 7°. How high is the balloon to the nearest foot?

SOLUTION:

First, find the measures of $\angle C A D, \angle B C A, \angle A C D$ and $\angle D A E$.

$$
\begin{aligned}
m \angle C A D & =64^{\circ}-7^{\circ} \\
& =57^{\circ} \\
m \angle B C A & =180^{\circ}-\left(7^{\circ}+90^{\circ}\right) \\
& =83^{\circ} \\
m \angle A C D & =90^{\circ}-83^{\circ} \\
& =7^{\circ} \\
m \angle D A E & =90^{\circ}-64^{\circ} \\
& =26^{\circ}
\end{aligned}
$$

In $\triangle A C D$, use the law of sines to find the length of $\overline{A D}$.

$$
\begin{aligned}
\frac{\sin 57^{\circ}}{5280} & =\frac{\sin 7^{\circ}}{A D} \\
A D & =\frac{5280 \sin 7^{\circ}}{\sin 57^{\circ}} \text { or about } 767.3 \text { feet }
\end{aligned}
$$

Next, use right triangle $A D E$ and the cosine function to find the length of $\overline{A E}$.

$$
\begin{aligned}
\cos 26^{\circ} & =\frac{A E}{A D} \\
\cos 26^{\circ} & =\frac{A E}{767.3} \\
A E & =767.3 \cos 26^{\circ} \text { or about } 690 \mathrm{ft}
\end{aligned}
$$

5-2 Verifying Trigonometric Identities

Locate the vertical asymptotes, and sketch the graph of each function.
73. $y=\frac{1}{4} \tan x$

SOLUTION:

The graph of $y=\frac{1}{4} \tan x$ is the graph of $y=\tan x$ compressed vertically. The period is $\frac{\pi}{|1|}$ or π. Find the location of two consecutive vertical asymptotes.

$$
b x+c=-\frac{\pi}{2} \quad b x+c=\frac{\pi}{2}
$$

(1) $x+0=-\frac{\pi}{2} \quad$ and \quad (1) $x+0=\frac{\pi}{2}$

$$
x=-\frac{\pi}{2} \quad x=\frac{\pi}{2}
$$

Create a table listing the coordinates of key points for $y=\frac{1}{4} \tan x$ for one period on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Function	Vertical Asymptote	Intermediate Point	\boldsymbol{x}-intercept	Intermediate Point	Vertical Asymptote
$y=\tan x$	$x=-\frac{\pi}{2}$	$\left(-\frac{\pi}{4},-1\right)$	$(0,0)$	$\left(\frac{\pi}{4}, 1\right)$	$x=\frac{\pi}{2}$
$y=\frac{1}{4} \tan x$	$x=-\frac{\pi}{2}$	$\left(-\frac{\pi}{4},-\frac{1}{4}\right)$	$(0,0)$	$\left(\frac{\pi}{4}, \frac{1}{4}\right)$	$x=\frac{\pi}{2}$

Sketch the curve through the indicated key points for the function. Then repeat the pattern.

5-2 Verifying Trigonometric Identities

74. $y=\csc 2 x$

SOLUTION:
The graph of $y=\csc 2 x$ is the graph of $y=\csc x$ compressed horizontally. The period is $\frac{2 \pi}{|2|}$ or π. Find the location of two vertical asymptotes.
$b x+c=-\pi$
$b x+c=\pi$
(2) $x+0=-\pi \quad$ and
(2) $x+0=\pi$
$x=-\frac{\pi}{2}$
$x=\frac{\pi}{2}$

Create a table listing the coordinates of key points for $y=\csc 2 x$ for one period on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Function	Vertical Asymptote	Intermediate Point	Vertical Asymptote	Intermediate Point	Vertical Asymptote
$y=\csc x$	$x=-\pi$	$\left(-\frac{\pi}{2},-1\right)$	$x=0$	$\left(\frac{\pi}{2}, 1\right)$	$x=\pi$
$y=\csc 2 x$	$x=-\frac{\pi}{2}$	$\left(-\frac{\pi}{4},-1\right)$	$x=0$	$\left(\frac{\pi}{4}, 1\right)$	$x=\frac{\pi}{2}$

Sketch the curve through the indicated key points for the function. Then repeat the pattern.

5-2 Verifying Trigonometric Identities

75. $y=\frac{1}{2} \sec 3 x$

SOLUTION:

The graph of $y=\frac{1}{2} \sec 3 x$ is the graph of $y=\sec x$ compressed vertically and horizontally. The period is $\frac{2 \pi}{|3|}$ or $\frac{2 \pi}{3}$. Find the location of two vertical asymptotes.

$$
\begin{aligned}
& b x+c=-\frac{\pi}{2} \quad b x+c=\frac{3 \pi}{2} \\
& 3 x+0=-\frac{\pi}{2} \quad \text { and } \quad 3 x+0=\frac{3 \pi}{2} \\
& 3 x=-\frac{\pi}{2} \quad 3 x=\frac{3 \pi}{2} \\
& x=-\frac{\pi}{6} \quad x=\frac{\pi}{2}
\end{aligned}
$$

Create a table listing the coordinates of key points for $y=\frac{1}{2} \sec 3 x$ for one period on $\left[-\frac{\pi}{6}, \frac{\pi}{2}\right]$.

Function	Vertical Asymptote	Intermediate Point	Vertical Asymptote	Intermediate Point	Vertical Asymptote
$y=\sec x$	$x=-\frac{\pi}{2}$	$(0,1)$	$x=\frac{\pi}{2}$	$(\pi,-1)$	$x=\frac{3 \pi}{2}$
$y=\frac{1}{2} \sec 3 x$	$x=-\frac{\pi}{6}$	$\left(0, \frac{1}{2}\right)$	$x=\frac{\pi}{3}$	$\left(\frac{\pi}{3},-\frac{1}{2}\right)$	$x=\frac{\pi}{2}$

Sketch the curve through the indicated key points for the function. Then repeat the pattern.

Write each degree measure in radians as a multiple of π and each radian measure in degrees.
76. 660°

SOLUTION:
$660^{\circ}=660^{\circ}\left(\frac{\pi \text { radians }}{180^{\circ}}\right)$
Multiply by $\frac{\pi \text { radians }}{180^{\circ}}$.
$=\frac{11 \pi}{3}$ radians or $\frac{11 \pi}{3} \quad$ Simplify .

5-2 Verifying Trigonometric Identities

77. 570°

SOLUTION:
$570^{\circ}=570^{\circ}\left(\frac{\pi \text { radians }}{180^{\circ}}\right) \quad$ Multiply by $\frac{\pi \text { radians }}{180^{\circ}}$.
$=\frac{19 \pi}{6}$ radians or $\frac{19 \pi}{6} \quad$ Simplify.
78. 158°

SOLUTION:
$158^{\circ}=158^{\circ}\left(\frac{\pi \text { radians }}{180^{\circ}}\right)$
Multiply by $\frac{\pi \text { radians }}{180^{\circ}}$.
$=\frac{79 \pi}{90}$ radians or $\frac{79 \pi}{90}$
Simplify.
79. $\frac{29 \pi}{4}$

SOLUTION:
$\frac{29 \pi}{4}=\frac{29 \pi}{4}$ radians
$=\frac{29 \pi}{4}$ radians $\left(\frac{180^{\circ}}{\pi \text { radians }}\right) \quad$ Multiply by $\frac{180^{\circ}}{\pi \text { radians }}$.
$=1305^{\circ}$
80. $\frac{17 \pi}{6}$

SOLUTION:
$\frac{17 \pi}{6}=\frac{17 \pi}{6}$ radians
$=\frac{17 \pi}{6}$ radians $\left(\frac{180^{\circ}}{\pi \text { radians }}\right) \quad$ Multiply by $\frac{180^{\circ}}{\pi \text { radians }}$.
$=510^{\circ}$
Simplify.
81.9

SOLUTION:
$9=9$ radians
$=9$ radians $\left(\frac{180^{\circ}}{\pi \text { radians }}\right) \quad$ Multiply by $\frac{180^{\circ}}{\pi \text { radians }}$.
$=\left(\frac{1620}{\pi}\right)^{\circ}$
$\approx 515.7^{\circ}$
Simplify.
Divide.

5-2 Verifying Trigonometric Identities

Solve each inequality.

82. $x^{2}-3 x-18>0$

SOLUTION:
Let $f(x)=x^{2}-3 x-18$

$$
=(x+3)(x-6)
$$

$f(x)$ has real zeros at $x=-3$ and $x=6$. Set up a sign chart. Substitute an x-value in each test interval into the polynomial to determine if $f(x)$ is positive or negative at that point.

The solutions of $x^{2}-3 x-18>0$ are x-values such that $f(x)$ is positive. From the sign chart, you can see that the solution set is $(-\infty,-3) \cup(6, \infty)$.
83. $x^{2}+3 x-28<0$

SOLUTION:
Let $f(x)=x^{2}+3 x-28$

$$
=(x+7)(x-4)
$$

$f(x)$ has real zeros at $x=-7$ and $x=4$. Set up a sign chart. Substitute an x-value in each test interval into the polynomial to determine if $f(x)$ is positive or negative at that point.

The solutions of $x^{2}+3 x-28<0$ are x-values such that $f(x)$ is negative. From the sign chart, you can see that the solution set is $(-7,4)$.
84. $x^{2}-4 x \leq 5$

SOLUTION:

First, write $x^{2}-4 x \leq 5$ as $x^{2}-4 x-5 \leq 0$.

$$
\text { Let } \begin{aligned}
f(x) & =x^{2}-4 x-5 \\
& =(x+1)(x-5)
\end{aligned}
$$

$f(x)$ has real zeros at $x=-1$ and $x=5$. Set up a sign chart. Substitute an x-value in each test interval into the polynomial to determine if $f(x)$ is positive or negative at that point.

The solutions of $x^{2}-4 x-5 \leq 0$ are x-values such that $f(x)$ is negative or equal to 0 . From the sign chart, you can see that the solution set is $[-1,5]$.

5-2 Verifying Trigonometric Identities

85. $x^{2}+2 x \geq 24$

SOLUTION:
First, write $x^{2}+2 x \geq 24$ as $x^{2}+2 x-24 \geq 0$.
Let $f(x)=x^{2}+2 x-24$

$$
=(x+6)(x-4)
$$

$f(x)$ has real zeros at $x=-6$ and $x=4$. Set up a sign chart. Substitute an x-value in each test interval into the polynomial to determine if $f(x)$ is positive or negative at that point.

The solutions of $x^{2}+2 x-24 \geq 0$ are x-values such that $f(x)$ is positive or equal to 0 . From the sign chart, you can see that the solution set is $(-\infty,-6] \cup[4, \infty)$.
86. $-x^{2}-x+12 \geq 0$

SOLUTION:

First, write $-x^{2}-x+12 \geq 0$ as $x^{2}+x-12 \leq 0$.

$$
\text { Let } \begin{aligned}
f(x) & =x^{2}+x-12 \\
& =(x+4)(x-3)
\end{aligned}
$$

$f(x)$ has real zeros at $x=-4$ and $x=3$. Set up a sign chart. Substitute an x-value in each test interval into the polynomial to determine if $f(x)$ is positive or negative at that point.

The solutions of $x^{2}+x-12 \leq 0$ are x-values such that $f(x)$ is negative or equal to 0 . From the sign chart, you can see that the solution set is $[-4,3]$.

5-2 Verifying Trigonometric Identities

87. $-x^{2}-6 x+7 \leq 0$

SOLUTION:

First, write $-x^{2}-6 x+7 \leq 0$ as $x^{2}+6 x-7 \geq 0$.
Let $f(x)=x^{2}+6 x-7$

$$
=(x+7)(x-1)
$$

$f(x)$ has real zeros at $x=-7$ and $x=1$. Set up a sign chart. Substitute an x-value in each test interval into the polynomial to determine if $f(x)$ is positive or negative at that point.

The solutions of $x^{2}+6 x-7 \geq 0$ are x-values such that $f(x)$ is positive or equal to 0 . From the sign chart, you can see that the solution set is $(-\infty,-7] \cup[1, \infty)$.
88. FOOD The manager of a bakery is randomly checking slices of cake prepared by employees to ensure that the correct amount of flavor is in each slice. Each 12-ounce slice should contain half chocolate and half vanilla flavored cream. The amount of chocolate by which each slice varies can be represented by $g(x)=\frac{1}{2}|x-12|$. Describe the transformations in the function. Then graph the function.

SOLUTION:

The parent function of $g(x)$ is $f(x)=|x|$. The factor of $\frac{1}{2}$ will cause the graph to be compressed since $\left|\frac{1}{2}\right|<1$ and the subtraction of 12 will translate the graph 12 units to the right.
Make a table of values for x and $g(x)$.

x	4	8	12	16	20
$g(x)$	4	2	0	2	4

Plot the points and draw the graph of $g(x)$.

5-2 Verifying Trigonometric Identities

89. SAT/ACT

$$
a, b, a, b, b, a, b, b, b, a, b, b, b, b, a, \ldots
$$

If the sequence continues in this manner, how many $b s$ are there between the 44th and 47th appearances of the letter a ?
A 91
B 135
C 138
D 182
E 230

SOLUTION:

The number of b s after each a is the same as the number of a in the list (i.e., after the 44th a there are $44 b \mathrm{~s}$). Between the 44th and 47th appearances of a the number of $b s$ will be $44+45+46$ or 135 .
Therefore, the correct answer choice is B.
90. Which expression can be used to form an identity with $\frac{\sec \theta+\csc \theta}{1+\tan \theta}$, when
$\tan \theta \neq-1$?
$\mathbf{F} \sin \theta$
$\mathbf{G} \cos \theta$
$\mathbf{H} \tan \theta$
$\mathbf{J} \csc \theta$
SOLUTION:
$\frac{\sec \theta+\csc \theta}{1+\tan \theta}=\frac{\frac{1}{\cos \theta}+\frac{1}{\sin \theta}}{1+\frac{\sin \theta}{\cos \theta}} \quad$ Reciprocal and Quotient Identities
$=\frac{\frac{\sin \theta}{\cos \theta \sin \theta}+\frac{\cos \theta}{\sin \theta \cos \theta}}{\frac{\cos \theta}{\cos \theta}+\frac{\sin \theta}{\cos \theta}} \quad$ Change fractions to common denominators.
$=\frac{\frac{\sin \theta+\cos \theta}{\cos \theta \sin \theta}}{\cos \theta+\sin \theta} \quad$ Add fractions.
$=\frac{\sin \theta+\cos \theta}{\cos \theta \sin \theta} \cdot \frac{\cos \theta}{\cos \theta+\sin \theta} \quad$ Multiply by reciprocal of the denominator.
$=\frac{1}{\sin \theta}$
Divide out the common factors.
$=\csc \theta \quad$ Reciprocal Identity
Therefore, the correct answer choice is J.

5-2 Verifying Trigonometric Identities

91. REVIEW Which of the following is not equivalent to $\cos \theta$, when $0<\theta<\frac{\pi}{2}$?

A $\frac{\cos \theta}{\cos 2 \theta+\sin 2 \theta}$
B $\frac{1-\sin 2 \theta}{\cos \theta}$
$\mathbf{C} \cot \theta \sin \theta$
$\mathbf{D} \tan \theta \csc \theta$
SOLUTION:
A. $\frac{\cos \theta}{\cos ^{2} \theta+\sin ^{2} \theta}=\frac{\cos \theta}{1}$ or $\cos \theta$
B. $\frac{1-\sin ^{2} \theta}{\cos \theta}=\frac{\cos ^{2} \theta}{\cos \theta}=\cos \theta$
C. $\cot \theta \sin \theta=\frac{\cos \theta}{\sin \theta} \cdot \sin \theta=\cos \theta$
D. $\tan \theta \csc \theta=\frac{\sin \theta}{\cos \theta} \cdot \frac{1}{\sin \theta}=\frac{1}{\cos \theta} \neq \cos \theta$

Therefore, the correct answer choice is D.
92. REVIEW Which of the following is equivalent to $\sin \theta+\cot \theta \cos \theta$?

F $2 \sin \theta$
G $\frac{1}{\sin \theta}$
$\mathbf{H} \cos ^{2} \theta$
J $\frac{\sin \theta+\cos \theta}{\sin 2 \theta}$
SOLUTION:
$\sin \theta+\cot \theta \cos \theta=\sin \theta+\frac{\cos \theta}{\sin \theta} \cdot \frac{\cos \theta}{1}$ Reciprocal Identity
$=\sin \theta+\frac{\cos ^{2} \theta}{\sin \theta}$
Multiply.
$=\frac{\sin ^{2} \theta}{\sin \theta}+\frac{\cos ^{2} \theta}{\sin \theta}$
Multiply $\sin \theta$ by $\frac{\sin \theta}{\sin \theta}$.
$=\frac{\sin ^{2} \theta}{\mathrm{~s}}$
$=\frac{1}{\sin \theta}$
Add fractions.

Therefore, the correct answer choice is G.

