
If both θ and -θ are symmetry operators, the green and orange points must also be lattice points of the same Bravais lattice, and thus the distance
between a green and orange points (marked as m a) must be an integer times the lattice constant a. Two sides of the triangle has length a. The
third side is m a. The top angle is 2 π - 2 θ. Thus geometry tells us that 

m a = a2 + a2 - 2 a2 cos(2 π - 2 θ) = 2 a
1 - cos(π - 2 θ)

2
= 2 a

1 + cos(2 θ)

2
= 2 a cos(θ) (5.4)

cos θ =
m

2
(5.5)

Because m is an integer and -1 ≤ cosθ ≤ +1, m can only take the following values: -2, -1, 0, +1, +2. So θ can only be π, 2 π /3, π /2, π/3, 0.

5.3. Lattice systems
There are multiple ways to classify crystals. In earlier chapters, we introduced the idea of crystal families. There are 6 crystal families. Each
family contains 1,2, 3 or 4 Bravais lattices, and there are 14 Bravais lattice in total.
After  we understand the  ideas  of  point  groups,  we can introduce a  new classification,  known as  lattice  system.  There  7  lattice  systems,  one
more than crystal families. Lattice systems are very close to crystal families. The only modification is to split hexagonal crystal family into two
lattice systems: hexagonal and rhombohedral.
NOTE:  there  is  an  hexagonal  crystal  family  and  there  is  a  hexagonal  lattice  system.  They  are  both  called  “hexagonal”,  but  they  are  not  the
same thing. Th hexagonal lattice system is a subset of the hexagonal crystal family.
The idea of  lattice  systems  is  as  the  following:  assume that  we draw all  possible  Bravais  lattice  and we put  a  sphere  at  each Bravais  lattice
point (ignoring details inside each primitive unit). Then we can ask what is the point group for all these lattices? It turns out that there are only 7
possible point groups here. They give us the 7 lattice systems.
NOTE: in a crystal, the degeneracy is often higher than the prediction below for 2 reasons (1) many crystal has additional symmetries,
e.g. the time-reversal symmetry and (2) when we consider spin-1/2 particles, like electrons, there are additional representations, known
as double-group representations. This extra representations are from quantum physics.

5.3.1. Triclinic lattice system with Ci  symmetry
Triclinic lattice system coincides with the triclinic crystal family. Lattices in this lattice systems has Ci symmetry, identity and inversion.

Ci contains 2 elements, and thus 2 1D representations. Because only has 1D representations, no degeneracy is in general expected in this type of
crystals.

5.3.2. Monoclinic lattice system with C2 h symmetry
Monoclinic lattice system coincides with the monoclinic crystal family. Lattices in this lattice systems has C2 h symmetry.

C2 h  contains identity,  a 2-fold rotation (perpendicular to the non-rectangular surface), a mirror plane (parallel to the non-rectangular surface),
and inversion.
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C2 h  contains 4 elements, and thus 4 1D representations. Because only has 1D representations, no degeneracy is in general expected in this type
of crystals.

5.3.3. Orthorhombic lattice system with D2 h symmetry
Orthorhombic lattice system coincides with the orthorhombic crystal family. Lattices in this lattice systems has D2 h symmetry, like a cuboid.

The D2 h group contains 8 elements: Identity, 2-fold rotations along x, y and z, inversion I, and three mirror planes xy, yz xz.

D2 h  contains 8 elements, and 8 1D representations. Because only has 1D representations, no degeneracy is in general expected in this type of
crystals.

5.3.4. tetragonal lattice system with D4 h symmetry
Orthorhombic lattice system coincides with the orthorhombic crystal family. Lattices in this lattice systems has D4 h  symmetry, like a square
prism
The D4 h group contains 16 elements: Identity, 90 and 180 and 270 degree rotations along z, 2-fold rotations along x or y, 2-fold rotations along
x+y or x-y,  inversion I, mirror planes xy, yz, xz, (x+y)z and (x-y)z, 90 and 270 degree improper rotation along z.

D2 h contains 16 elements, and 8 1D representations and 2 2D representations.

16 = 8×11 + 2×22 (5.6)

This lattice support 2-fold degeneracy

5.3.5. Hexagonal lattice system with D6 h symmetry
Hexagonal lattice system is a sub-set of the hexagonal crystal family. Lattices in this lattice systems has D6 h symmetry, like a hexagonal prism

The D6 h group contains 24 elements: 

◼ Identity (one)

◼ 2 π
6
×n-degree rotations along z (five), 

◼ 2-fold rotations six axes in the xy-plane (six)
◼ Inversion (one)
◼ six mirror planes perpendicular to the xy plane (six)
◼ xy mirror plane (one)
◼ two 6-fold improper rotations S6 along z (two)
◼ two 3-fold improper rotations S3 along z (two)
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D6 h contains 24 elements, and 8 1D representations and 4 2D representations.

24 = 8×11 + 4×22 (5.7)

This lattice support 2-fold degeneracy.

Note:  graphene  is  a  2D material.  Its  point  group  symmetry  is  D6 h.  The  key  physics  is  in  graphene  is  the  Dirac  points,  at  which  two energy
bands meet together with the same energy. The reason this is possible in graphene is because the symmetry group allow two-fold degeneracy. If
we break the symmetry (make the x-y plan not perfect hexagonal, by stretching along one direction), the degeneracy will be lifted and the Dirac
point will be gapped.

5.3.6. Rhombohedral lattice system with D3 d  symmetry
rhombohedral lattice system is a sub-set of the hexagonal crystal family. Lattices in this lattice systems has D3 d  symmetry, like a rhombohe-
dron 

For  a  lattice  made of  rhombohedrons,  if  we look along a  diagonal  line,  we see  stacks  of  equilateral  triangle.  In  that  sense  the  rhombohedral
lattice system is very similar to the hexagonal lattice system. This is why in crystal family classifications, we don’t even distinguish them. To
see this connection, we can draw a (bigger) conventional unit cell, which contains three primitive cells. This conventional cell is identical to the
primitive cell of a hexagonal lattice. 

These lattices are similar to hexagonal, but they have a different rotational symmetry. The key difference is, now along the z-axis, we only have
3-fold rotational symmetry, instead of 6-fold.
The D3 d group contains 12 elements. It has 4 1D representations and 2 2D representations.

12 = 4×11 + 2×22 (5.8)

This lattice support 2-fold degeneracy.

5.3.7. Cubic lattice system with Oh symmetry
Cubic lattice system is the same as the cubic crystal family. Lattices in this lattice systems has Oh symmetry, like a cube 
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The Oh group contains 48 elements. It has two 1D representations, one 2D representation, and two 3D representations

48 = 4×11 + 2×22 + 4×32 (5.9)

This lattice support 2-fold and 3-fold degeneracy.

5.4. Beyond lattice systems
Crystal classification: in general two types (1) classify the Bravais lattices and (2) classify based on the real symmetry of the crystal.

Q: Are these two types of classifications mathematically compatible?

A: Almost, but no.

5.4.1. Bravais lattices vs real material
Lattice systems only classifies Bravais lattice. It doesn’t care about structures inside a unit cell. This cause two problems

1. It doesn’t contain all the information about a lattice. A lot important details are ignored.

2.  The  symmetry  of  a  real  material  may  be  lower  than  the  symmetry  of  its  Bravais  lattice  (i.e.  the  symmetry  we  talked  about  here  is  the
symmetry of Bravais lattice, but it may not be the symmetry of the material).
This is because we ignored anything inside a unit cell when we draw the Bravais lattice. What is inside a unit cell may be very crucial.

5.4.2. Point group symmetry of a crystal
As we discussed in earlier chapters, Bravais lattices only care about the periodicity. It doesn’t carry information about what is inside each unit.
In  the  lattice  system classification,  we  also  ignored  information  inside  each  unit  cell,  i.e.  we  put  a  sphere  at  each  lattice  site  of  the  Bravais
lattice. Because these spheres are invariant under any rotations, mirror reflections, inversions, improper rotations, we ignored information about
the rotations inside each unit.
In general, a real solid is NOT like this. It is NOT made of perfect spheres at each Bravais lattice site. As a result, the symmetry of a real solid
may be lower than that of the Bravais lattice. For example,

Here is the figure of a 1D Bravais lattice. If we put one atom at each lattice site (i.e. a sphere at each site), we can rotate the chain by 180 degree
(along an axis perpendicular to the chain), and the crystal is invariant. 
However, if each unit cell is composed by more than one atom, e.g. 3 atoms as shown in the figure below

The Bravais lattice is still the same, but for this crystal, we cannot rotate 180 degree, and thus it has lower symmetry.

If we consider the structure inside a unit cell, the point group symmetry may be lower than the point group symmetry of the Bravais
lattices.
In group theory language, this means: the point group of a real solid is the subgroup of the point group of the Bravais lattices (i.e. the sub-group
of one of the 7 point groups discussed above).
Bottom line:

Without considering the structure inside each unit cell, there are 7 possible point groups, and they give us the seven lattice systems.

If we consider the structure inside a cell, there are 32 possible point groups. These 32 groups are the 7 groups above + their subgroups.

These 32 point groups classifies crystals into 32 classes, known as crystal classes.

5.4.3. Classifying Bravais lattices vs Classifying the symmetry of the crystal
Q: Are the 32 crystal classes compatible with the 7 lattice systems?

A: Almost, but no.
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Problems about the rhombohedral and hexagonal lattice systems 

Both  lattice  systems  and  crystal  classes  are  based  on  point  groups.  The  former  ignore  information  about  structure  inside  a  cell,  so  we  may
expect the latter is a finer classification. Maybe crystal classes are sub-classes of lattice systems? This is true for 5 of the lattice systems, but not
the rhombohedral and hexagonal lattice systems.

◼ triclinic lattice system = C1 + Ci
◼ monoclinice lattice system = C2 + CS + C2 h

◼ orthorhombic lattice system= D2 + C2 v + D2 h

◼ tetragonal lattice system = C4 + S4 + C4 h + D4 + C4 v + D2 d + D4 h

◼ rhombohedral + hexagonal lattice systems = C3 + S6 + D3 + C3 v + D3 d + C6 + C3 h + C6 h + D6 + C6 v + D3 h + D6 h

◼ cubic lattice system= T + Td + Th + O + Oh

Once we take into consideration of things inside a unit cell, the rhombohedral and hexagonal lattice systems are not fully compatible with point
group classifications. Knowing the point group of a material doesn’t uniquely determine the lattice systems. We can resolve this incompatibility
using one of  the following two methods:  (1)  merge rhombohedral  + hexagonal  lattice systems into one and (2)  regroup crystals  in these two
lattice systems into two classes, which are compatible with point groups.

◼ 6 crystal families: Similar to lattice systems, but rhombohedral and hexagonal lattice systems are merged into 1 crystal family, known as 
the hexagonal crystal family.

◼ 7 crystal systems: similar to lattice systems, but regroup rhombohedral and hexagonal lattice systems into trigonal and hexagonal crystal 
systems.

trigonal crystal systems= C3 + S6 + D3 + C3 v + D3 d

hexagonal crystal systems = C6 + C3 h + C6 h + D6 + C6 v + D3 h + D6 h

The trigonal  crystal  system is  slightly  larger  than  the  rhombohedral  lattice  system.  The  hexagonal  crystal  system is  slightly  smaller  than  the
hexagonal lattice systems.

5.4.4. Space groups
Space group taken into account both translations and point group symmetries, as well as their combinations. There are 230 space groups, and
they gives 230 different classes of crystals, known as 230 space group types.
The space groups contains lattice translations, point group symmetries, their combinations, and more.

More here means: translations that is a fraction of a lattice vector, combined with a rotation/mirror/inversion/...

◼ Translations:

x
y
z

→
x '
y '
z '

=
x
y
z

+
Δx
Δy
Δz

(5.10)

For a lattice, Δ
→

 must be lattice vector
◼ Point group symmetries: (operations that fix one point, fix the length of any vectors, and fix the angle between any two vectors)

x
y
z

→
x '
y '
z '

=M
x
y
z

(5.11)

where M MT = MT M = E
◼ General formula for a space group element

x
y
z

→
x '
y '
z '

=M
x
y
z

+
Δx
Δy
Δz

(5.12)

If  M  is  an element in the point group of the lattice,  and Δ
→

 is  a lattice vector,  their combination is an elements of the space group. But space
group has more elements then them: Glide planes and Screw axes
Glide planes: A glide plane is a reflection in a plane, followed by a translation parallel with that plane

Example: a row of arrows with up-down-up-down patterns.

Screw Axes: A screw axis is a rotation about an axis, followed by a translation along the direction of the axis.
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